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Disclosing recurrence properties in fluidized beds
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In this paper we shortly investigate the similarity between states for different fluidized
bed regimes, which is an essential requirement for the application of recurrence computa-
tional fluid dynamics (rCFD) [Lichtenegger and Pirker, Chem. Eng. Sci. 153, 394 (2016)].
Therefore, bubbling and turbulent fluidization regimes are outlined in the frame of different
variable-based recurrence/distance norms (rNorm/dNorm). This last is typically used to
quantify the degree of flow similarity within the observation time span. The recurrence
plots or the so-called recurrence/distance matrices are accordingly constructed upon the
rNorm/dNorm values and show no recurrence tendency for the full-resolved turbulent
fluidization regimes. It is reported thereabouts that the high fluctuated nature of turbulent
fluidization (interphase small scales) absentees the periodicity, and a disclosing procedure
for the superstructure (large-scale) dynamics is vitally needed. To that end, a spatial
filtering with the idea of the domain decomposition (recurrence island) has been applied
to reveal a proper posterior indicator of turbulent fluidization recurrence. The filtering
approach handles in increasing the recurrence prominence without changing the system
behavior and makes the recurrence more visible. From other perspectives, a turbulence
modeling using the coarse-grained approximate deconvolution model–two-fluid model
(ADM-TFM) is employed for the turbulent fluidization case. Following its recurrence
investigations, the resultant prominence offered by ADM-TFM is in a very comparable
aspect to the same grid spatial filtering.

DOI: 10.1103/PhysRevFluids.6.044310

I. INTRODUCTION

Fluidization is an operation by which a set of solid particles is suspended in blowing gas or liquid
upwards and moves like high viscous liquid behavior. This allows a worthwhile contacting process
leading to conscientious mixing and favorable heat and mass transfer properties. One of the eminent
examples thereof are the fluidized bed (FB) reactors [1]. They are classified as attractive tools for
chemical processing industries with prominent applications in coating, granulation, coking, drying,
and synthesis of fuels and polymers. Nonetheless, due to variety of the gas-solid interacting scales,
most of the fluidized bed numerical models are limited to an expensive short duration. In the light
of this shortcoming, our group have recently introduced the concept of recurrence computational
fluid dynamics (rCFD) for the time-efficient modeling of pseudoperiodic flows [2]. Therewith, the
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similarity between states, e.g., (t, t ′), separated by a recurrence time step �trec, is quantified by
means of a distance (dNorm) Dϕ

t,t ′ or recurrence (rNorm) Rϕ (t, t ′) [2] norm, given by

Dϕ

t,t ′ =
∫

d3x[ϕ(t ) − ϕ(t ′)]2

max
∫

d3x[ϕ(t ) − ϕ(t ′)]2
, and Rϕ (t, t ′) = 1 − Dϕ

t,t ′ , (1)

where ϕ is chosen depending on the phenomenon of interest. The rNorm (Rϕ ) is interpreted
as a degree of recurrence relative to the most extreme distinctness (Dϕ ) of occurring states.
Equation (1) generalizes the original definition given in Ref. [3], which delineates a binary or thresh-
olded recurrence [R(t, t ′) ∈ {0, 1}]. Namely, first, Eq. (1) allows continuous extents of similarity,
which are referred to as unthresholded recurrence matrices [4]. Second, Eq. (1) contains information
from the whole flow field at each moment t , which is different than the most experimental studies
that process signals from single point probes to determine R(t, t ′) [5,6]. On top of a sequence of
rNorm values a recurrence plot is constructed to be used afterwards for an extended path prediction
[2]. We call the recurrence plot as a recurrence matrix (rMatrix) Rϕ

n,m [7], similar to a distance matrix
(dMatrix) Dϕ

n,m, defined as

Dϕ
n,m ≡ Dϕ (n �trec, m �trec), and Rϕ

n,m ≡ 1 − Dϕ
n,m. (2)

The off-diagonal entries with the lower values on the dMatrix indicate the field similarity between
two instants, whereas the adequacy of dMatrix size (i.e., n ≡ m) can, in turn, be judged by comput-
ing the average degree of recurrence Dϕ

sim. It renders the mean calculation of the (off-diagonal) most
similar moments [8] inside the dMatrix and reads as

Dϕ
sim = 1

N

N∑

m

minnDϕ
n,m. (3)

When the ongoing evolution of the mean starts to get insensitive to appending more states, the flow
then can be considered repeated enough and the size of the dMatrix is sufficient. The concept of
a recurrence plot had engrossed many authors as a visual tool to analyze the dynamical behavior
of nonlinear systems [9]. For instance, it had been utilized for the cyclic events characterization in
turbulent flows [10], the analysis of trailing-edge vortex shedding [11], on a velocity time series of
magnetohydrodynamic turbulent channel flow [12], and for stochastic random dynamical systems
[13]. Time-series data taken from single probes were usually processed to construct the recurrence
plot in different than our global rCFD norm. In this scope fall furthermore various investigations on
the hydrodynamics in fluidized beds using the recurrence plots as in Refs. [5,6,14–16]. The novel
methodology of rCFD has been successfully applied for the fast modeling of long-term chemical
species and heat propagation in bubbling FB reactors [7,17–19]. Therein, the bubble evolution was
clearly identified with recurrent running, and the solid/gas volume fraction αs/g was utilized as a
variable-based ϕ in the rNorm computation.

In the present paper, we aim to shed light on the following research question: Do the pure
turbulent fluidization regimes actually have a kind of recurrent tendency? To that end, we consider
a series of instantaneous fields taken of bubbling and turbulent fluidized bed simulations where
the two-fluid model (TFM) [20] is adopted. They have been investigated in the framework of
evaluating the dNorm and dMatrix with the aim for disclosing its tendency to recurrent behavior.
Therefore, in this paper, we abstain from presenting the details of the utilized TFM since our review
is independent of the choice of the physical and numerical representations. Following that approach,
the observations do not unveil a recurrent nature in the turbulent fluidization regimes, and posterior
procedures are absolutely required to explore the periodicity of coherent uniform flows. The paper
is arranged in a twofold aspect. One for bubbling FB in Sec. II, and the other for turbulent FB in
Sec. III. At the end, conclusions are given in Sec. IV.
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TABLE I. Summary of physical properties, principal flow conditions, and simulation parameters for the
bubbling, full-resolved, and coarse-grained turbulent fluidized beds studied.

Property/condition Symbol Bubbling FB Turbulent FB ADM-TFM Unit

Gas density ρg 1.224 kg m−3

Gas viscosity μg 1.7894 × 10−5 Pa s
Particle diameter ds 150 × 10−6 m
Hexahedral grid size �ri 1.25 × 10−3 1.22 × 10−3 9.76 × 10−3 m
Recurrence time step �trec 0.1 0.04 s
Initial solids inventory mbed 900 4500 gr
Particle density ρs 860 2500 kg m−3

Inlet fluidization velocity ‖uin‖ 0.4 0.63 m s−1

Width W 0.01875 0.04 m
Length L 0.14875 0.15 m
Height H 0.39875 1.25 m

II. BUBBLING FLUIDIZED BED

We simulate a bubbling fluidized bed (Geldart’s B group) using the Eulerian model of ANSYS

FLUENT within the TFM framework [20]. The operating parameters and simulation details are given
in Table I. After storing a series of sequences of the fields, separated by �trec, the dMatrix is
constructed on the base of the solid volume fraction Dαs and solid fluxes Dφs , where φs = αsus

as represented in Fig. 1. With a close inspection therein, one can note the analogous behavior of
reoccurring patterns on αs and φs with lower dNorm values identified on the fluxes. The dMatrix
in both can be characterized by regular long-term segments parallel to the diagonal to indicate
similar events of solid distribution repeated after some time. In other words, line segments with
45◦ slopes, that run far from the diagonal by a certain distance, imply a uniform similarity between
temporally separated states over a finite duration. In our case, the separation between segments
is controlled by the corresponding frequency of coherent (mesoscopic) rising bubbles and their
subsequent entrainment to the freeboard.

In general, the low-frequency macroscopic structures (coalescence and eruptions of large
bubbles) together with the high-frequency microscopic structures (single particle-particle and fluid-
particle interactions), determine the complex dynamics of fluidized beds [5]. Our dMatrix shows a
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FIG. 1. The dMatrix of the dNorm (a) Dαs and (b) Dφs for the bubbling fluidized bed.
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FIG. 2. Midwidth planes of αs at two recurrence states, (a) Dαs
1 (121, 32) = 0.428 [black circle in Fig. 1(a)],

and (b) Dαs
2 (270, 140) = 0.52 [white circle in Fig. 1(a)] in the bubbling fluidized bed.

short start phase, which is followed by repeated bubbling. The dynamics can be characterized by
almost a pair of bubbles induced at the bottom and arise across the particles (see snaps in Fig. 2).
The bubbles coalesce upwards to eventually either erupt on the bed surface or break up into smaller
bubbles. These latter, then, moves downwards at the sides and bend again joining new rising bubbles.
One can observe the evolution of such similar states by simply picturing αs at a low dNorm value.
For example, let us consider two pairs in Fig. 1(a) that correspond to Dαs

1 (121, 32) = 0.428 (black
circle) and Dαs

2 (270, 140) = 0.52 (white circle). By plotting the midwidth plane of αs in Figs. 2(a)
and 2(b), respectively, we can note the high degree of similarity between the states which affords
a clear signature on the system periodicity. Another quantitative property of recurrence can be in
measuring the fluctuation amplitude of the so-called recurrence vector (rVector) [7]. That said, by
drawing the values of the rNorm/dNorm along the horizontal line m = cte on the rMatrix/dMatrix,
the profile should fluctuate around a horizontal mean (recurrence plateau rPlateau) reaching a good
variance, named as recurrence prominence rProminence. Thus, we generate the rVector profiles
on the dMatrices in Figs. 1(a) and 1(b) at m = 30 and 20 and show them in Figs. 3(a) and 3(b),
respectively. One can note the good rProminence presented by both dNorms for the current bubbling
FB case.

Looking back to the dMatrices, the adequacy of matrix size is assessed by computing the
ongoing mean parameter Dαs

sim, given in Eq. (3). It discloses the temporal mean accumulation of
the (off-diagonal) most similar instants as depicted in Fig. 4(b). The profile, therein, unveils an
initial increase towards a particular difference and, subsequently, saturated at a constant plateau
after approximately n = 100. We interpret this behavior that the states start to reoccur after, at least,
this time, with a degree of similarity of 0.5, and longer observations indicate similar reappearances
to satisfy the sequence plenty. In order to get local insight on how the dynamics arranges in time
(instead of the global background Dϕ

t,t ′ ), the magnitude of the solid flux gradient tensor is considered
at each flow state. Therewith, we aim to expose the spatial correlation of multiscale dynamics
along its history (n ≡ m). It is noteworthy to evoke the strong sensitivity of φs to the uniform flow
periodicity and rising bubbles passage [19]. Because of the high effective solid mixing persistent
through the wake effect-particles, emulsion drift-particles, and the bubble eruptions-particles [21],
the solid flow stands as a delicate feature for FB periodic structures and bubbles passage. Hence,
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FIG. 3. The rVector profiles taken along the horizontal line m = 30 on (a) dMatrix Dαs in Fig. 1(a) and
m = 20 on (b) dMatrix Dφs in Fig. 1(b) in the bubbling fluidized bed.

we investigate the probability density function (PDF) of ‖∇φs‖ at two unsimilar time segments,
i.e., n = 50 and 100 and plot them in Fig. 4(a). Therein, the ‖∇φs‖ data are represented on the
logarithmic scale after an exponential bin width division. A clear no overlapping event is observed,
particularly, in the lower ranges of ‖∇φs‖, which correspond to the large-scale uniform flow. This
indicates that the local large-scale structures are really uncorrelated in-between the periodic lags,
whereas the small-scale structures rendered by high values of ‖∇φs‖ are correlated because of
fluctuations.

III. TURBULENT FLUIDIZED BED

We simulate a turbulent fluidized bed (Geldart’s B group) using the TFM solver
(TWOPHASEEULERFOAM) distributed with OPENFOAM 6. The operating parameters and simulation
details are summarized in Table I [22]. Identically to the bubbling fluidized bed case, the dMatrix
of the solid volume fraction Dαs and solid fluxes Dφs , are constructed and displayed in Figs. 5(a)
and 5(b), respectively. The dynamics in this regime follows an initial stage of disrupting the
packed particles by the gas [Fig. 9(a)] isolating, straightforwardly, the posterior dynamics from
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FIG. 4. (a) displays the probability density function (PDF) distribution of ‖∇φs‖ at different time segments
in the bubbling FB, where ‖∇φs‖ data are represented on the logarithmic scale after an exponential bin
width division. Note that the highest PDF event which corresponds to the gas-filled areas outside the bed,
i.e., ‖∇φs‖ = 0, is omitted. (b) represents the mean (off-diagonal) most similarity for αs [Eq. (3)] in the
bubbling FB.
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FIG. 5. The dMatrix of the dNorm Dαs in (a) and Dφs in (b) for the turbulent fluidized bed.

any recurrent patterns. This can be seen on the dMatrices with a period that lasts about 30 frames
starting from the beginning. Afterwards, the dynamics holds a picture of bubble clusters [Fig. 9(b)]
that move randomly in the bulk center and produce a lead dispersion on the solids. The particles,
thereby, tend to reside next to the bed sidewalls at heights good far from the perforated bottom
plate. By looking at the dMatrices patterns displayed in Figs. 5(a) and 5(b), one cannot recognize
any recurrence tendency where the dissimilarity between states (dNorm) is running almost uniform
everywhere with an approximate united coloring.

Moreover, the corresponding rVectors, rendered by Figs. 6(a) and 6(b) at m = 60 and m = 65,
respectively, show a very low rProminence, where Dφs does not even unveil any mean. This is prin-
cipally returned to the dominant turbulent fluctuations and small-scale highly mixed solid structures
that correlate the dynamics between states and, therefore, hide any superstructure recurrence. Again,
for the current turbulent case this can be supported by performing an identical approach as in the
bubbling case in Fig. 4(a). Namely, we plot the PDF charts of ‖∇φs‖ for wide different temporal
segments, inside and after the initial disruption stage as manifested in Fig. 7(a). It is worth noting
first, this particular distribution presented inside the initial stage where the highest PDF events are
pertaining to the low-gradient initial large-scale flow. After this stage, the states present a strong
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FIG. 6. The rVector profiles taken along the horizontal line m = 60 on the dMatrix Dαs in Fig. 5(a) and
m = 65 on the rMatrix Dφs in Fig. 5(b) in the turbulent fluidized bed.
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FIG. 7. (a) displays the PDF distribution of ‖∇φs‖ at different time segments in the turbulent FB, where
‖∇φs‖ data are represented on the logarithmic scale after an exponential bin width divisions. (b) represents the
mean (off-diagonal) most similarity for αs [Eq. (3)] in the turbulent FB.

throughout overlapping events clustered at the utmost magnitudes of ‖∇φs‖ (the dominant small-
scale mixing structures), which, in turn, confirms the high correlated local dynamics in-between the
states. It is worth mentioning that the few PDF events that correspond to the lowest values of ‖∇φs‖
in Fig. 7(a), belong to the freeboard dynamics and the bed’s surface eruption. Finally, plenty of the
turbulent dMatrix sizes are assessed by perceiving the constant plateau of Dαs

sim as shown in Fig. 7(b).
In fact, due to the hard solid mixing sustained by the turbulent bubbles, the regime enters in repeti-
tion early in time at n = 40 and maintains a similarity degree of 0.7 because of the (very close) states
correlation.

Further investigations can be conducted in a global sense by focusing on the global similarity of
the gradient term ‖∇φs‖ between the states. Put differently, we seek to explore how the underlying
small-scale dynamics are recurrent by constructing the dMatrix of D‖∇φs‖ and render it in Fig. 8(b)
(top). It is useful therewith to avoid the early transient states, and the dMatrices building starts
at n = m = 40. As expected, the figure unveils a kind of smooth feature parallel to the diagonal
indicating the close similarity of the small-scale dynamics in-between the states. However, it
can be worthwhile, that we decompose these structures in order to certainly clarify where this
similarity is coming from. To do so and by looking at the PDF charts in Fig. 7(a), a distinct
common threshold can be recognized at the corresponding utmost PDF event. It reads a value of
‖∇φs‖ = 50, which reflects the most widespread and dominant structures in correspondence to
the high good mixing. Therefore, we build the dMatrices of D‖∇φs‖ conditioned by higher and
lower range values than the threshold ‖∇φs‖ = 50 and display them in Fig. 8(b) at the middle
and bottom, respectively. It is stimulating again to note the different pictures of dMatrices for
the two ranges where the extensive-gradient fine structures (‖∇φs‖ > 50) fluctuate significantly
in time and gives a high degree of correlated segments [Fig. 8(b) middle]. Note the fine filament
structures determined by ‖∇φs‖ > 50 in Fig. 8(a) (first right), and how they contribute to the
underlying small scales in-between the large uniform flow in ‖φs‖ (first left) and αs (second left)
maps. Differently, the irrelevant low-gradient large structures (‖∇φs‖ < 50) are the main source
of ‖∇φs‖ smooth periodicity where its dMatrix, which is shown in Fig. 8(b) (bottom), exposes
that kind of parallel-diagonal patterns. See, in this regard, how the structures, determined by
‖∇φs‖ < 50 in Fig. 8(a) (second right), constitute the irrelevant coherent uniform flow. However,
at the end, it should be admitted that in this turbulent fluidization regime, a hard coupling of
the small- and large-scale dynamics is predominantly persistent since the PDF profile around
‖∇φs‖ = 50 in Fig. 7(a) is very narrow. This in total yields to the conclusion that disclosing
the recurrence properties for such hardly existing superstructure in the pure turbulent regime is a
pipe dream.
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FIG. 8. (a) shows midwidth planes of ‖φs‖ (first left), αs (second left), ‖∇φs‖ > 50 (first right), and
‖∇φs‖ < 50 (second right), taken from the turbulent fluidized bed at state (n = 125). (b) depicts the dMatrices
of D‖∇φs‖ when ‖∇φs‖ is not conditioned (top) or conditioned by ‖∇φs‖ > 50 (middle) and ‖∇φs‖ < 50
(bottom) for the same turbulent FB.

A. Spatial filtering

In order to avoid the high noised mixing and wash out of the rich fluctuation structures, one
may employ a spatial filtering. We can apply a spatial filter on the original fields, e.g., αs and φs,
which diffuses the superstructure motions by dissipating/eliminating the small scales. To do so, a
second-order (Taylor expansion) discrete elliptic differential filter [23],

ϕ̄(r, t ) = Fϕ(r, t ) = (1 + a2∇2)ϕ(r, t ) (4)
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(a) (b) (c) (d) (e) (f)

FIG. 9. Midwidth plane of αs taken from the turbulent fluidized bed: (a) Initial-state n = 14. (b) State
n = 125. (c) Filtered n = 125 using box filter �̄ = 12 �ri. (d) Filtered n = 125 using elliptic filter F (128).
(e) Filtered n = 125 using 10× binning procedure. (f) presents the variance 〈α′2

s 〉 as an indicator for the less
homogeneous area, i.e., rIsland (the gray line frame).

is used, where a2 � 1/6. This equation constitutes the general second-order discrete operator of
the filters used in the large-eddy simulation, such as box filter (top hat), Gaussian filter, etc. By
applying the filter several times F (i), we can actually broaden the filtering length to get further
smoothed structures. Apart from the elliptic filter, we adopt other filters for comparison, such as the
box filter that takes the mean value of cells’ neighbors, including itself within �̄, and the binning
procedure which makes the mean for each �̄ content and runs block by block.

See, in Fig. 9, first the pure turbulent FB snapshot of αs in [Fig. 9(b)], and its filtering results
using the box filter �̄ = 12 �ri [Fig. 9(c)], the elliptic filter F (128) [Fig. 9(d)] and the 10× binning

044310-9



F. DABBAGH et al.

0 10 20 30 40 50 60 70 80
n

0

10

20

30

40

50

60

70

80

m

0

0.2

0.4

0.6

0.8

1

(a)

0 10 20 30 40 50 60 70 80
n

0

10

20

30

40

50

60

70

80

m

0

0.2

0.4

0.6

0.8

1

(b)

0 10 20 30 40 50 60 70 80
n

0

10

20

30

40

50

60

70

80

m

0

0.2

0.4

0.6

0.8

1

(c)

0 10 20 30 40 50 60 70 80
n

0

10

20

30

40

50

60

70

80
m

0

0.2

0.4

0.6

0.8

1

(d)

FIG. 10. dMatrices of Dαs in (a) and its outcomes applying filtered fields Dᾱs using the box filter �̄ =
12 �ri (b), the 10× binning procedure (c), and the elliptic filter F (128) (d). The normalization maximals, i.e.,
denominator in Eq. (1) scaled by the volume, are as follows: (a) 0.05, (b) 0.03, (c) 0.03, and (d) 0.016.

procedure [Fig. 9(e)]. One can observe how the uniform structures become diffused and expanded
by applying longer lengths of filtering. Building the dMatrices for the filtered ᾱs, the picture of
the pure turbulent αs dMatrix turns from strong dissimilarity reflected in almost uniform red in
Fig. 10(a) to an enhanced appearance of blue parallel-diagonal segments in Figs. 10(b)–10(d).

Basically, the filtering approach reduces the magnitude of dissimilarity to unveil the coherent
uniform-flow superstructure recurrence. It highly discloses the large-scale fingerprints on dMatrices
and gives better visualization for the recurrence process. Eventually, this filtering approach can be
very helpful in trailing the mean solution which is usually the most interesting feature in turbulent
flows. Looking at the Dᾱs dMatrices in Fig. 10, one can see the better recurrence tendency obtained
using longer filter lengths, such as the elliptic F (128) [Fig. 10(d)] and 10× binning [Fig. 10(c)] in
comparison with the box filter �̄ = 12 �ri [Fig. 10(b)].

In a direct assessment way, the filtering performance can be fundamentally revealed by inves-
tigating the corresponding rVectors and rProminence. Hence, we extract rVectors in Fig. 10 at
m = 20 and plot them in Fig. 12. Therein, each profile is normalized by its own rPlateau in order
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FIG. 11. dMatrices of the rIsland displayed in Fig. 9(f) (gray line frame) for Dαs in (a) and its outcomes
applying filtered fields Dᾱs , the 10× binning procedure (b), and the elliptic filter F (128) (c). The normalization
maximals, i.e., denominator in Eq. (1) scaled by the volume, are as follows: (a) 0.035, (b) 0.025, and (c) 0.014.

to be comparable among each other. Hence, by looking inside, the filtered approaches do show an
important rProminence in comparison with the no filtering, and this variance (rProminence grade)
becomes larger at wider filter lengths. On the other hand, it is interesting to note that the filters do
not change the structure of the dMatrix. They only expose the recurrent properties hidden by the
turbulent fluctuations to be more visible.

Further enhancement on recurrence featuring can be as well by focusing on those visually less
mixing areas. For instance, if we look at the pure turbulent snapshot in Fig. 9(b), we can note that
the lower part next to the inlet is homogeneously fluidized and well mixed. This may be verified by
computing the variance of αs as

〈
α′2

s

〉 = 〈αsαs〉 − 〈αs〉〈αs〉, (5)

where its highest magnitude corresponds to the less homogeneous areas. Consistent to our view, the
map of 〈α′2

s 〉, depicted in Fig. 9(f), shows higher values (red regions) far above the inlet, whereas
the lowest ones (green towards blue) reside next to the inlet and outside the bed. This can lead us
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FIG. 12. The rVector profiles taken along the horizontal line m = 20 on the dMatrices in Figs. 10 and 11
and normalized by its own rPlateau.

to a kind of intensive-recurrent areas identification, called recurrence islands (rIsland), which are
detached from the rest of the domain, i.e., the background sea. The rIslands in our case can then
be detected following the lowest mixing grade and the utmost values of 〈α′2

s 〉 about a determined
threshold. Since our study is generic and aiming to only analyze recurrence properties, we simply
choose the part of the domain marked by the gray line frame in Fig. 9(f) as an rIsland. Therewith,
the dMatrices of Dαs belong to that part and their filtered outcomes (using elliptic F (128) and 10×
binning) are built and rendered in Fig. 11.

It is worth noting now the enhanced appearance of more recurrent runs with lower dissimilarity,
particularly, in the elliptic filter F (128) case. This can be more visible in the corresponding rVector
profiles plotted in Fig. 12 together with the previous entire domain results. Similar to the others, the
rIsland rVectors are also normalized by its rPlateau and reveal the best recurrence indicators with
the highest rProminence utilizing the elliptic filter F (128).

To conclude, applying an a posteriori procedure that removes spatially the rich fluctuation
structures, such as the filtering approach, is an essential require to expose the recurrence properties
in turbulent fluidization.

B. Turbulence modeling

On the top of the previous findings, the key ingredient of disclosing the turbulent fluidization
recurrence rises from reducing the fluctuation effect of the interphase small scales. So, employing
a turbulence model can as well comply with that requirement. Namely, a turbulence model imposes
spatial filtering with a direct resolving to the more energetic large-scale dynamics, whereas the
subgrid-scale rich fluctuation turbulence is modeled. Following this concept, we simulate the same
turbulent fluidized bed using a filtered two-fluid model where the unresolved terms are closed
by employing an approximate deconvolution model (ADM-TFM) [22]. After storing the series
sequences of (modeled) fields, similar recurrence procedures as depicted in Fig. 5, but discarding
the initial stage, are pictured in Figs. 13(a) top (solid flux) and middle (solid volume fraction). It
can be clearly observed the appearing of blue patterns parallel to the diagonal which exposes the
good recurrence in both coarse-grained fields dMatrices. For instance, if we picture two states of
a low dNorm value on the ᾱs dMatrix [Fig. 13(a) (middle)], e.g., Dᾱs (42, 3) (black circle), one
can note the remarkable similarity shown in Fig. 13(b). The interesting issue is that the coarse-
grained (ADM-TFM) recurrence properties are very comparable to the spatial filtering approach,
particularly, the box filter �̄ = 12 �ri or 10× binning procedure (which render almost the same
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FIG. 13. (a) represents the dMatrices of Dφ̄s (top), Dᾱs (middle), and the rVector along m = 20 on Dᾱs

dMatrix, normalized by its rPlateau (bottom), for the coarse-grained (ADM-TFM) turbulent fluidized bed.
(b) displays midwidth planes of one recurrent point Dᾱs (42, 3) (black circle) in (a) (middle). The normalization
maximals, i.e., denominator in Eq. (1) scaled by the volume, are as follows: (a) top 0.07 and (a) middle 0.035.

grid size as ADM-TFM). Meaning that, if we plot the rVector at m = 20 on Dᾱs dMatrix [Fig. 13(a)
(middle)], normalized by its rPlateau, the resultant rProminence as shown in Fig. 13(a) (bottom), is
almost the same in Fig. 12 (full box filter �̄ = 12 �ri and full 10× binning). Hence, similar to the
spatial filtering, applying a turbulence modeling, can as well disclose the recurrent superstructure
properties in turbulent fluidization. It differs than the spatial filtering in the recurrence frequency
because of the systems nonlinearity but leading to the same similarity/dissimilarity magnitudes.
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FIG. 14. jVectors extracted from the dMatrices in Fig. 10.

C. Implications to rCFD

The recurrence CFD process (rProcess) implicates the generation of a recurrence path (rPath)
on the base of rMatrix/dMatrix, which extends a passive evolution far beyond the recording time
span [2]. The rPath is extracted randomly by choosing a temporal interval of segments inside the
rMatrix/dMatrix sizes and jump to the most similar moment at the end of this interval. In order
to check the influence of spatial filtering on this jumping process, and, thus, the rProcess, we
consider an array of the minimal dNorms on the dMatrix in corresponding to each m moment.
This array holds the most similar moment index of every moment m, e.g., array[5] = 20 means that
the moment 20 is the most similar to 5 with the lowest dNorm. If we call this array as a jump vector
(jVector), its representations are displayed in Fig. 14 for the pure turbulent case and the different
filters, extracted from the dMatrices in Fig. 10. One can note that, although the filtering approach
does not significantly change the structures of the dMatrices (as seen in Figs. 10 and 12), however,
on the level of segments, it can modify the jVector leading to jump towards different moments.
This modification can be more observant at wider filter lengths (elliptic filter F (128)) when the
recurrent segments of high rProminence can grow and run longer. A proper decision on the filter
length extent required to disclose the large-scale recurrence properties can be obtained using the
two-point correlation. To do so, we investigate the correlation of αc

s vertical midlength plane with
its neighboring towards the walls and using the formula,

Corr =
〈
α′

s

(
rc

i

)
α′

s

(
rc

i + �r0
)〉

〈
α′

s

(
rc

i

)〉 . (6)

It measures the correlated fluctuations of αs starting from the vertical center-length points towards
the walls. By considering multiple heights {0.05:0.8}, the resultant profiles are represented in Fig. 15
to show a separation scale after about �r0 ∼ 0.01. This length, in fact, consists with the filter size
of the coarse-grained ADM-TFM (see Table I). Therefore, one can conclude that using the box filter
�̄ = 12 �ri or 10× binning procedure, which render almost the same grid size and rProminence as
ADM-TFM is the utmost appropriate approach for rCFD application.

In the end, this spatial filtering falls in the advantage of being solely a posterior postprocess-
ing procedure analyzing the pure turbulent database, whereas the turbulence modeling is a new
simulation. Notably, the method of proper orthogonal decomposition (POD) [24] constitutes an
alternative approach to extract coherent superstructures with pronounced recurrences [25]. It has
been employed for the analysis of recurring events in turbulent flows [10] and, more recently, in
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FIG. 15. Two-point correlation profiles of αs starting from the midlength plane towards the walls and
extracted at different heights {0.05:0.8} inside the turbulent FB.

the framework of rCFD for the fast modeling of species transport in a confined turbulent jet [26].
In the latter case, a reconstruction of the coherent fields from a small number of low-order modes
(maximum kinetic-energy content) revealed significant recurrent patterns in the dMatrix. Eventually,
this led to a similar picture as the results from spatial filtering presented in this paper. However, we
stress that filtering is numerically cheaper than solving the eigenvalue problem of POD and less
complicated to set up but requires an a priori decision on the filter length.

IV. CONCLUDING REMARKS

In this paper, we give a short review of inspecting the recurrence properties for bubbling and
turbulent fluidized bed reactors. In principle, the recurrence/distance norms and recurrence/distance
matrices are considered to judge the recurrent phenomena. It is found that the full-resolved turbulent
regime exposes no recurrence tendency within the observation time in contrast to the bubbling
fluidization regime. It is argued thereabouts, that the highly mixed (fluctuated and dominant)
interphasic small scales make the states meaningfully correlated and absentee its similarity. Because
of the considerable mixing presented in the turbulent fluidization, the small and large scales are
strongly coupled to obtain a significant value of ‖∇φs‖. This is then showed a kind of smooth un-
derlying recurrence owing to the correlation. Thus, the uniform superstructures are hardly identified
in the turbulent regime because of the hard mixing, and a short-term history of turbulent dynamics
is sufficiently representative. As a remedy, a posterior spatial filtering on the fields is applied in
order to wash out the fluctuation effects. More precisely, different filters with various lengths are
employed and shown a good disclosure of the large-scale dynamics with recurrent fingerprints on
the distance matrices. The filtering approach arises the recurrence prominence without changing the
behavior of the system. We stress that even though filtering increases the prominence of a distance
matrix and reveals otherwise hidden recurrences, it does not change intrinsic dynamic properties.
Although filtered fields look differently than the unfiltered ones, the contained information is not
lost but reorganized. As discussed in Ref. [27], the correlation dimension and the prediction time of
a gas-solid flow show hardly any dependence of the length of a box filter.

Another focus on the recurrent dynamics is realized by decomposing the domain to intensive
recurrent islands and the stable (well-mixed) background sea. Namely, following the variance field
of αs, the highest values correspond to the less homogeneous areas which presented a prominent
degree of recurrence. Its distance matrices have shown an enhanced appearance of recurrence with
the lowest dissimilarity using the elliptic filter F (128).
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On the other hand, a filtered TFM in which the unresolved terms are closed by employing an
approximate deconvolution model (ADM-TFM) [22] is used to compare the recurrence properties
of the turbulent fluidization case. As a result, the recurrence prominence offered by ADM-TFM
have revealed a very comparable aspect to the spatial filtering approach (of the same level grid size)
using the box filter �̄ = 12 �ri, or the 10× binning procedure. At the end, these latter have been
demonstrated as the appropriate filter length extents needed to disclose the large-scale recurrence
and rCFD application for the studied turbulent fluidization case.
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