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In this paper we develop a methodology for the mesoscale simulation of strong elec-
trolytes. The methodology is an extension of the fluctuating immersed-boundary approach
that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrody-
namic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin
is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped,
with thermal noise incorporated using the fluctuating Stokes equation, including a “dry
diffusion” Brownian motion to account for scales not resolved by the coarse-grained model
of the solvent. Long-range electrostatic interactions are computed by solving the Poisson
equation, with short-range corrections included using an immersed-boundary variant of the
classical particle-particle particle-mesh technique. Also included is a short-range repulsive
force based on the Weeks-Chandler-Andersen potential. This methodology is validated
by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-
Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields.
In each case, good agreement is observed, provided that hydrodynamic interactions at the
typical ion-ion separation are resolved by the fluid grid.

DOI: 10.1103/PhysRevFluids.6.044309

I. INTRODUCTION

Understanding transport properties in electrolytes is important for the study of fundamental
processes such as electrophoresis, electro-osmosis, and electrochemistry that arise in both biological
systems [1] and engineered devices [2] such as catalytic micropumps [3,4], batteries [5,6], and fuel
cells [7–9]. Many of these phenomena occur at the mesoscale, where the effects of thermal fluc-
tuations must be captured correctly. This has previously motivated the development of fluctuating
hydrodynamics [10] methods for electrolytic flows [11–13], in which the system is described using
stochastic partial differential equations, which are solved on a grid. Using this approach, thermal
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fluctuations are captured while avoiding the computational expense inherent in direct molecular
simulations [14]. However, one drawback of a purely continuum model is that it is not suitable for
mesoscopic systems that contain features that occur on a molecular scale, but which still have an
important effect on the overall dynamics. In the context of electrolytes the electrical double-layer
[15] effect is an important example of such phenomena.1

In order to capture this behavior while avoiding the computational expense of molecular dynam-
ics, an approach is required that combines a particle model for the solutes with a coarse-grained
model of the solvent. Currently, the most well-established numerical method that uses this approach
is Brownian dynamics (BD) [16]. The key feature of this technique is the use of Green’s functions
to represent particles immersed in an implicit solvent. These Green’s functions describe the effects
of single particles, which can be joined together in groups to form complex molecules such as
polymers, or even structures such as flexible membranes. While this approach works well in many
cases, it has a range of shortcomings. First, in a basic implementation, the calculation of interparticle
hydrodynamic forces has computational complexity O(N2), where N is the number of particles
being simulated. Further, the calculation of the thermal noise applied to each particle scales as
O(N3) (from the Cholesky factorization of the mobility matrix), making simulation of large systems
infeasible. Additionally, the application of boundary conditions is complicated to implement in all
but the simplest cases.

More recently, an approach referred to as general geometry Ewald-type method (GGEM) [17,18]
has been proposed. Similar in principle to the particle-particle particle-mesh (P3M) method [19]
used in electrostatics, short-range hydrodynamic interactions are computed using Green’s functions,
and long-range interactions are computed using a grid-based discretization of the relevant PDE, in
this case Stokes’ equation. With suitable preconditioning of the Stokes solver and choice of the
splitting parameter, this achieves near linear scaling for deterministic hydrodynamics by limiting
the calculation of pairwise interactions to small subsets of particles. In principle, GGEM allows for
handling of nontrivial boundary conditions, although some approximations are introduced [17,18]
to handle the boundaries in the near field;2 see Ref. [20] for exact handling of a bottom wall
geometry with Ewald splitting. Importantly, the handling of Brownian motion in GGEM is based
on methods introduced in the 1970s by Fixman, and these methods increase the computational
cost over deterministic simulations manyfold [21]. First, generating the Brownian displacements
uses an iterative method, which ideally employs preconditioners [22,23] in order to control the
number of iterations. Second, when boundaries are present, generating the correct stochastic drift
required to achieve discrete fluctuation-dissipation balance relies on a method of Fixman that
requires generating the action of the square root of the resistance matrix, which itself requires a
slowly converging iterative method.

A related approach that addresses these issues is the fluctuating immersed-boundary (FIB) [24]
method. This technique uses immersed-boundary (IB) [25] kernels instead of Green’s functions
to couple particles to an explicitly simulated solvent. Importantly, whereas both the original IB
and GGEM methods use standard deterministic hydrodynamics to represent the solvent, in FIB the
solvent is simulated using an incompressible fluctuating hydrodynamics methodology [26]. Using
this approach, thermal noise arises directly from the fluid, avoiding the complex per particle calcu-
lations required by GGEM and other Brownian dynamics methods. In FIB, no iterative methods are
required to generate either the Brownian increments or the stochastic drift (rather, they are computed
together with the deterministic displacements or generated by a simple “random finite difference”
midpoint scheme inspired by but different from Fixman’s), and discrete fluctuation-dissipation

1For example, the thickness of the double layer is roughly one Debye length, λD, and for a molar concentration
of 1.0 M there is only one ion per (3λD )3.

2In particular, in GGEM, the boundary condition imposed in the Stokes solver involves the near field, which
varies on scales that cannot be resolved by the grid. A further point-particle approximation is made in the
boundary conditions to keep the mobility positive semidefinite [17,18].
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balance is ensured exactly by construction even in the presence of boundaries. Linear time com-
plexity, in both domain size and particle number, is achieved for the calculation of hydrodynamic
interactions and Brownian motion under all conditions. Additionally, the application of confining
boundary conditions, such as no-slip walls, is trivial when using FIB. We note a similar approach is
taken in the stochastic Eulerian Lagrangian method (SELM), described in Ref. [27]; some comments
regarding the relationship between FIB and SELM are given in Ref. [24].

Recently, the FIB approach to Brownian motion has been combined with the Ewald splitting
used in GGEM for periodic systems in the positively split Ewald (PSE) method [21]; we note
that the Hasimoto splitting used in PSE is the Fourier space equivalent of the real-space splitting
used in GGEM [28]. PSE is a linear-scaling, spectrally accurate, and grid-independent method that
has been shown [21] to be an order of magnitude faster than traditional approaches based on the
techniques developed by Fixman. However, including boundaries in spectral-Ewald methods relying
on Fourier transforms such as PSE is nontrivial and has not, to our knowledge, been done yet even
for deterministic simulations.

In this paper, we extend the FIB method to the simulation of electrolytic flows. Using this
approach, individual charged ions are described using immersed-boundary kernels, and the solvent
is treated using fluctuating hydrodynamics. In doing so we incorporate two contributions to the FIB
methodology: (i) a “dry diffusion” process which implements a coarse-grained model for small ions
(e.g., Na+), based on the approach derived in Ref. [29], and (ii) the incorporation of electrostatic
effects with an immersed-boundary P3M implementation for efficiently and accurately computing
the electric field. We refer to this approach as discrete ion stochastic continuum overdamped solvent
(DISCOS).

The layout of this paper is as follows. In Sec. II, we summarize the Brownian dynamics approach
and describe its relationship to the FIB method. In Sec. II E we discuss the dry diffusion process.
Section III contains a description of electrostatic and close range forces (with additional detail given
in Appendices A and B), while Sec. IV details the numerical methodology used to implement the
DISCOS algorithm. In Sec. V the DISCOS method is tested by comparison to theoretical results
for the radial distribution function and electrical conductivity. This includes an analysis of the
effect of the dry diffusion approach described in Sec. II E. Finally, some concluding remarks are
given in Sec. VI. Note that in this paper, to fully detail and test the aspects of the method without
introducing additional complications, we describe the application of DISCOS to unbounded and
periodic systems. The inclusion of boundaries will be the subject of a future publication, however,
we have included a brief discussion in Appendix C.

II. STOCHASTIC HYDRODYNAMICS

This section formulates stochastic hydrodynamics for Brownian particles, and Sec. III describes
the additional intermolecular forces present when these particles are ions. First, we briefly review
the Brownian dynamics and fluctuating immersed-boundary approaches to simulating particle-fluid
systems; more detailed descriptions can be found in Refs. [16,17,24,30,31]. Both approaches
assume an infinite Schmidt number

Sc = η

ρD
→ ∞, (1)

where D is the diffusion coefficient of a particle, and η and ρ are the viscosity and density of the
fluid, respectively. In this asymptotic regime, the diffusion time of the particles is large compared
to the relaxation time of the fluid, and the flow can therefore be treated as quasisteady. A detailed
discussion of the relationship between particle diffusion and Schmidt number is given in Ref. [32],
and the validity of this approximation in the context of electrolytes is discussed in Sec. V.

The FIB method was originally intended as a fast algorithm for performing Brownian dynamics
with hydrodynamic interactions for colloidal suspensions; the reader can consult Refs. [21,33] for
related state-of-the-art spectrally accurate methods for periodic suspensions. Here we adapt this
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methodology to ionic solutions. This necessitates some important changes to account for the fact
that ions are much smaller than typical colloids, as we describe in detail in Secs. II B and II E.

A. Brownian dynamics with hydrodynamic interactions

We consider a solute (ions) represented as N particles with positions x(t ) = {x1, . . . , xi, . . . , xN }.
The equation of motion for the particles is

dx
dt

= MF +
√

2kBTM1/2 � W (2)

= MF +
√

2kBTM ◦ M−1/2W . (3)

Here, F(x, t ) = {F1, . . . , F i, . . . , FN } are the net forces acting on the particles (in this paper
they consist of short-ranged intermolecular as well as long-ranged electrostatic forces), W (t ) =
{W1, . . . ,W i, . . . ,WM} are independent Gaussian white-noise processes,3 kB is Boltzmann’s con-
stant, and T is the temperature. The stochastic product symbol � indicates the kinetic interpretation
[34,35] of the stochastic integral, which can be viewed a mixed Stratonovich-Itô interpretation, with
◦ denoting the Stratonovich and the absence of a symbol denoting the Itô stochastic product. The
symmetric positive-definite mobility matrix M(x) encodes the hydrodynamic interactions between
particles. Here, we define M1/2 and M−1/2 to be (not necessarily square4) matrices such that

M = M1/2(M1/2)�, M−1 = M−1/2(M−1/2)�, (4)

where the � indicates L2 adjoint (conjugate-transpose). When the kinetic interpretation of the
stochastic integral is applied this property ensures fluctuation-dissipation balance is obeyed, i.e.,
that the equilibrium dynamics is time reversible with respect to the Gibbs-Boltzmann distribution.
When we recast Eq. (2) as a system of Itô stochastic differential equations for numerical simulation,
it is necessary to include a stochastic drift term, yielding

dx
dt

= MF + kBT ∇x · M +
√

2kBTM1/2W, (5)

where ∇x· is the divergence with respect to the particle position variables.
In Brownian dynamics the main considerations in the numerical integration of Eq. (5) are the

construction and fast application of M, and the subsequent application of M1/2 and calculation
of ∇x · M. The action of a point force at the origin on the fluid is given by the Green’s function
solution to the steady Stokes’ equation, the Oseen tensor

O(r) = 1

8πηr

(
I + r ⊗ r

r2

)
. (6)

Here, r is the position vector with r = |r| and I is the identity tensor. This can be modified to include
finite size [36] and close range corrections, giving the Rotne-Prager-Yamakawa (RPY) tensor [37]

R(r; a) = 1

6πηa

{
C1I + C2

r⊗r
r2 , r > 2a

C3I + C4
r⊗r
r2 , r � 2a

(7)

with

C1 = 3a

4r
+ a3

2r3
, C2 = 3a

4r
− 3a3

2r3
, C3 = 1 − 9r

32a
, C4 = 3r

32a
, (8)

3Note that it is not required that M = N .
4One may view the FIB/FHD approach as corresponding to a nonsquare decomposition of the mobility

matrix. In this case, the number of noise terms will be proportional to the number of grid points, rather than to
the number of particles; by construction the noise will have the correct covariance.
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where we have assumed all particles have the same hydrodynamic radius a. The 3 × 3 block of the
mobility matrix yielding the velocity of particle i due to a force applied to particle j is then

Mi j = R(xi j ; a), (9)

where xi j = xi − x j . The complete mobility matrix is assembled by computing Eq. (9) for all
particle pairs. We note that M is symmetric positive-definite by construction. Having obtained
M, the matrix M1/2 can be calculated exactly using Cholesky decomposition or applied using a
more rapid iterative method of approximation [22,38].

Rather than directly calculating the divergence of the mobility matrix to obtain the stochastic
drift, the drift is traditionally included via the Fixman [16,39] midpoint time-stepping algorithm.
This can also be viewed as a direct discretization of the kinetic version of the stochastic integral
[35] or, equivalently, a direct discretization of the mixed integral in Eq. (3):

xn+1/2,� = xn + �t

2
M(xn)Fn +

√
�tkBT

2
(Mn)1/2W n,

xn+1 = xn + �tM(xn+1/2,�)

(
Fn+1/2,� +

√
2kBT

�t
(M(n) )−1/2W n

)
. (10)

Here, �t is the discrete time step and W is a vector of independent Gaussian random variables.
The superscripts n and n + 1 denote values at consecutive time steps, with n + 1/2, � indicating a
midpoint update.

B. Fluctuating hydrodynamics formulation

As discussed in Sec. I, the FIB method differs from Brownian dynamics principally in that it
explicitly simulates a coarse-grained model of the solvent [29] on a Eulerian grid. The solvent
is taken to be isothermal and incompressible, and is therefore modeled by the fluctuating Stokes
equations [29,40]

ρ
∂v

∂t
+ ∇r p − η∇2

r v = f +
√

2kBT η ∇r · Z, (11a)

∇r · v = 0, (11b)

where ∇r is the gradient operator with respect to r, v(r, t ) is the fluid velocity, p(r, t ) is the pressure,
and f (r, t ) is a force density applied to the fluid; this is the mechanism by which the immersed
Brownian particles interact with the solvent. Finally, Z (r, t ) is a random, symmetric, spatiotemporal
Gaussian tensor field (the stochastic stress tensor) whose components are white in space and time,
i.e., they have mean zero and covariances

〈Zi j (r, t )Zkl (r′, t ′)〉 = (δikδ jl + δilδ jk )δ(t − t ′)δ(r − r′) ≡ � δ(t − t ′)δ(r − r′). (12)

Here, δi j is the Kronecker delta function, δ is the Dirac delta function, � is the pointwise covariance
of the noise, and 〈. . . 〉 denotes an ensemble average. This time-dependent system is a set of linear,
stochastic partial differential equations with additive noise, and it therefore has a well-defined
mathematical interpretation [41]. Furthermore, it can be shown to satisfy fluctuation-dissipation
balance [27,29].

In Refs. [24,27,40] the diffusing particles are coupled directly to the continuum equations (11).
However, as discussed in detail in Refs. [29,42], fluctuating hydrodynamics (FHD) is a coarse-
grained description that only has a clear interpretation once the conserved fluid quantities (mass,
momentum, energy) are spatially coarse grained on a discrete grid. Each hydrodynamic cell should
contain a sufficiently large number of solvent molecules for the coarse-grained description to be
justified. Since our particles are (solvated) ions of size comparable to the solvent molecules, this
implies that the fluid grid size must be larger than a diffusing “nanoparticle.” This is exactly the
case analyzed in Ref. [29] using the theory of coarse graining, where the discrete FHD equations
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are derived by coupling a single nanoparticle with compressible, isothermal FHD. We base our
discrete equations on this derivation, and take advantage of the flexibility of the framework to
improve numerical properties, such as grid independence of physical observables and preservation
of translational invariance.

One key conclusion of the analysis in Ref. [29] is that the total or effective diffusion coefficient
of an immersed particle consists of two pieces. The first comes from the random advection of
the particle by the coarse-grained stochastic fluid velocity; we will refer to this process as “wet
diffusion,” with the diffusion coefficient Dwet. The second comes from the additional random motion
of the particle relative to the coarse-grained fluid velocity; we will term this “dry diffusion,” with
the coefficient Ddry. The sum of these two terms gives the total diffusion coefficient of the particle
Dtot. One can formally write a Green-Kubo formula expressing the dry diffusion coefficient as the
integral of the autocorrelation function of the particle velocity relative to the coarse-grained fluid
velocity [29]; we discuss how we set the value of the dry diffusion coefficient in Sec. II E.

C. Steady, overdamped limit

For high Schmidt numbers the fluid relaxation time is fast on the timescale of particle diffusion,
so the time-dependent system (11) can be accurately approximated by a (quasi)steady Stokes
system. This limiting behavior, referred to as the overdamped limit, can be derived by a rigorous
analysis of the limit as Sc → ∞; this is shown in Appendix A of Ref. [40]. In the overdamped limit,
the dynamic variables are just the positions of the immersed particles, and they follow an equation
that is identical in structure to the overdamped Langevin equation (2).

Taking the subscript h to indicate a discrete operator, in the overdamped limit we take the discrete
fluid velocity and pressure to satisfy the steady-state form of Eq. (11) given by

∇h p − η∇2
hv = f +

√
2kBT η

�V ∇h · Z, (13a)

∇h · v = 0, (13b)

where Z(rh, t ) is a finite-dimensional collection of white-noise processes representing the spatial
discretization of Z on a regular grid with positions rh, and �V is the cell volume. Preserving the
fluctuation-dissipation property then requires that the discrete divergence be the negative of the L2

adjoint of the discrete gradient ∇�
h = −∇h·, and that

∇2
h = ∇h · �∇h = −∇�

h�∇h. (14)

The spatial discretization scheme describing the relationship between the continuum operators and
fields of Eq. (11) with discrete versions in Eq. (13) is given in Sec. IV; it is designed to ensure
that the above properties hold. Note also that comparing Eqs. (11)–(13) indicates the variance
of the noise term Z is 1/�V . Intuitively, this follows from the fact that a larger cell volume
represents a coarse graining over a larger number of solvent particles; this is discussed further in
Ref. [29].

D. Particle-fluid coupling

In the FIB method the spatial extent of each particle is defined by a compact kernel function
δhy(r), where the superscript “hy” indicates that this kernel applies to hydrodynamic fields (the
analogous electrostatic kernel will be denoted δes). The kernel is used to interpolate the local fluid
velocity to the particles’ locations xi, and to define the region over which force on the particle
is transmitted (spread) to the fluid; the functional form of the kernel is discussed in Sec. IV A.
To perform these operations, we define discrete interpolation and spreading operators J hy

h (xi ) and
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Shy
h (xi ), such that

V i =J hy
h (xi )v =

∫
δhy(xi − rh)v(rh)drh, (15)

f s(rh) = (
Shy

h (xi )F
)
(rh) =

N∑
i=1

δhy(xi − rh)F i, (16)

where the hydrodynamic (advective) part of the particle velocity, i.e., the velocity of the fluid at
the location of the particles, is denoted by V = {V 1, . . . ,V i, . . . ,V N }. The force density spread to
the fluid from the particles is given by f s and, as above, we use the subscript h to indicate discrete
operators. Note that the integral in Eq. (15) is just a shorthand notation for a weighted sum over the
grid points; the exact form of the discretization is discussed in Sec. IV A.

It is important to note that this coupling of the particles to the coarse-grained fluid, taken
from immersed-boundary methodology, is different from (though closely related to) that used in
the theory of coarse graining given in Ref. [29]. The FIB formulation is advantageous because
it is simpler to implement, achieves much better translational invariance in practical numerical
implementations, and allows flexibility in choosing δhy.

In addition to advection by the velocity given by Eq. (15), particles move by the dry diffusion
process, giving the complete overdamped equations of motion for the DISCOS method (see also
Appendix B1 in Ref. [43])

dxi

dt
= V i

wet

+Ddry
i

kBT
F i +

√
2Ddry

i Wdry
i

dry

, (17)

where Wdry
i (t ) is another independent Gaussian white-noise process. Note that here we have written

the equation of motion for a single particle since Ddry
i depends on the particle’s species.

We define the discrete Stokes operator Lh such that the solution of Eq. (13) is

v = L−1
h

(
f +

√
2kBT η

�V ∇h · Z

)
, (18)

so that the particles’ hydrodynamic velocity is

V i =J hy
h (xi )L−1

h

(
Shy

h (xi )F(x) +
√

2kBT η

�V ∇h · Z

)
. (19)

This allows us to relate the DISCOS method to Brownian dynamics [Eqs. (2) and (5)] by observing
that

M = Diag

{
Ddry

kBT

}
+ J hy

h L−1
h Shy

h , (20)

where Ddry = {Ddry
1 , . . . , Ddry

i , . . . , Ddry
N }, and Diag{X} denotes a diagonal matrix with the values of

X on the diagonal. The Brownian velocity is expressed as

M1/2W ≡ Diag

⎧⎨⎩
√

Ddry

kBT

⎫⎬⎭Wdry
i +

√
η

�VJ hy
h L−1

h ∇h · Z, (21)

where
√

Ddry = {
√

Ddry
1 , . . . ,

√
Ddry

i , . . . ,
√

Ddry
N }. In Ref. [24] (see also Appendix B of Ref. [43])

it is demonstrated that this combination satisfies fluctuation-dissipation balance, provided Eq. (14)
holds, and the spreading and interpolation are related by the adjoint property (J hy

h )
� = �VShy

h ,
which is ensured by the immersed-boundary method.

044309-7



D. R. LADIGES et al.

What is now needed is a way to evaluate the stochastic drift. Direct implementation of the Fixman
method [Eq. (10)] is complicated by the fact that it requires the inverse of the mobility matrix,
which is difficult to obtain in the context of FIB. As demonstrated in Ref. [24], the divergence of the
mobility can be evaluated numerically using a finite-difference method. However, this would require
multiple evaluations of M per step, which requires multiple applications of L−1

h , i.e., multiple
solves of Stokes equation. This can be avoided by rewriting the stochastic drift using the chain rule

∇x · M = J hy
h L−1

h ∇x · Shy
h + (∇xJ hy

h

)
:
(
L−1

h Shy
h

)
, (22)

where, in summation notation, the double-dot product is defined as{(∇xJ hy
h

)
:
(
L−1

h Shy
h

)}
i j = (

∂ j
(
J hy

h

)
ik

)
(Lh)−1

kl

(
Shy

h

)
l j . (23)

Defining the thermal forcing

f th = kBT ∇x · Shy
h , (24)

the first term on the right-hand side of Eq. (22) is then accounted for by including f th as part of the
force density in Eq. (13):

f = f s + f th. (25)

The divergence of the spreading operator can be evaluated with a single application of L−1
h ; the

details are discussed in Sec. IV. The second part of the stochastic drift [corresponding to the second
term on the right-hand side of Eq. (22)] is obtained by a midpoint temporal integrator described in
Sec. IV D, similar in spirit to how the Fixman midpoint scheme [Eq. (10)] obtains the total stochastic
drift. Some alternative approaches to evaluating the stochastic drift correction are discussed in
Refs. [44,45].

E. Total, wet, and dry diffusion

At the end of Sec. II B we describe two diffusion processes: wet diffusion, which arises from
fluctuations in the coarse-grained hydrodynamic solution, and dry diffusion, which represents
additional Brownian motion that is not resolved by the coarse-graining process. Here, we explain
how we set the dry diffusion coefficient.

Consider a single freely diffusing isolated spherical nanoparticle suspended in a quiescent fluid.
The particle will perform a standard Brownian motion with a “total” diffusion coefficient Dtot. From
the Stokes-Einstein relation, the total diffusion coefficient for a sphere with radius at is

Dtot = kBT

ςηat
, (26)

where ς is a constant depending on the boundary condition on the particle; here we take ς = 6π ,
corresponding to a no-slip boundary condition. Note that as long as Dtot is held fixed, the relative
value of ς and at will have no bearing on the dynamics. Note also that the radius a used in Eq. (7)
corresponds to at .

As described in Sec. II B, when simulating such a particle using the FIB method, the fluctuations
in the hydrodynamic velocity will yield a wet diffusion process with coefficient Dwet. Because
these fluctuations are transmitted to the particle via the interpolation operator J hy

h , the effective
hydrodynamic radius of the particle will depend on the form of the kernel function δhy; we designate
this wet radius aw, where

Dwet = kBT

ςηaw

. (27)

The value of aw is determined by the grid used to solve Eq. (13); coarsening this grid will result in
an increase of aw and a reduction in the diffusion experienced by the particle.
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If the discretization is such that aw > at , then the additional dry diffusion process to be added is
such that

Ddry = kBT

ςηad
, (28)

where the dry radius ad is

ad = awat

aw − at
, (29)

giving

Dtot = Dwet + Ddry. (30)

In order for the dry diffusion to remain positive, the total radius at must be smaller than the
wet radius aw. In practice, Dwet is set by the mesh spacing and the choice of kernel. We then
specify Ddry so that each species diffuses with the desired total diffusion coefficient. Using this
approach, the diagonal terms in an underresolved mobility matrix are corrected with the dry
diffusion terms [see Eq. (20)]. This has the effect of greatly improving computational speed, at
the cost of neglecting short-range hydrodynamic contributions. For electrolytes, in many cases we
expect these contributions to be small compared to the electrostatic effects; this is discussed further
in Sec. V B.

The above procedure was suggested, though not implemented, in Ref. [29], where the total, wet,
and dry diffusion coefficients are referred to as the renormalized, enhancement, and bare diffusion
coefficients, respectively. A similar approach is also used for inertial systems in Refs. [43,46,47].
Note that here we have taken the dry diffusion coefficient to be isotropic and spatially homogeneous,
which is true only in the case of unbounded and periodic domains. In this case, no stochastic drift
correction is necessary for the dry component of Eq. (17). For other boundary conditions the dry
diffusion coefficients can be spatially dependent, and a corresponding stochastic drift term would
have to be included.

III. IONIC FORCES

As discussed in Sec. I, we are considering long-range electrostatic and short-range repulsive
forces acting on the ions. For a given ion i, the total force is given by

F i = FE
i +

∑
j∈�R

i

FR
i j + Fext

i , (31)

where FE
i is the electrostatic force, Fext

i indicates forces due to an applied field (e.g., gravity, an
external electric field from a source outside the simulation domain), FR

i j is the short-range repulsive
force between particles i and j, and �R

i indicates all particles within a given range of the ith particle.

A. Electrostatic forces

First, we describe our immersed-boundary variant of the classical particle-particle, particle-mesh
(P3M) approach [14,19] in detail since we are not aware of prior work that implements an IB-P3M
algorithm. We employ an approach that is essentially linear in system size to evaluate electrostatic
interactions, while recovering a point charge representation of the ions which cannot be captured
using purely grid-based methods. For periodic systems, the current state of the art are variants of
the spectral Ewald method described in Ref. [48]; a key advantage of our IB approach is the ease of
handling other types of boundary conditions that are crucial for modeling confined systems, as we
will explore in future work. Some additional numerical results are presented in Appendix A.
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In the quasielectrostatic approximation assumed here, the electrostatic force is found by solving
Poisson’s equation for the electrical potential φ,

∇2
r φ = −
/ε, (32)

where the charge density is


(r) =
N∑

i=1

δ(xi − r)qi, (33)

with qi being the charge of ion i, and ε the electrical permittivity of the solvent. The resulting electric
field is then given by

E = −∇rφ, (34)

with the electrostatic force on ion i being FE
i = qiE(xi ); note that the singular self-induced electric

field is defined to be zero.
The P3M approach entails solving for the electrical potential on a grid, and then making local

close range corrections to the force in order to treat the ions as point charges. Note that for
triply periodic domains, the spectral Ewald method described in Ref. [48] is the most accurate
technique. However, this method is based on Fourier transforms and is nontrivial to generalize to
other boundary conditions and domain configurations.

In the initial stage of the electrostatic force computation we map the particle charges to a mesh,
discretize and solve Eq. (32) on the mesh, and interpolate the resulting field back to the particle
locations. Analogous to the hydrodynamics, the Lagrangian particles interact with the Eulerian
electrostatic mesh via interpolation and spreading operators:

EP
i =J es

h (xi )E =
∫

δes(xi − rh)E(rh)drh, (35)


(rh) =Ses
h (xi )q =

N∑
i=1

δes(xi − rh)qi, (36)

where the integral in Eq. (35) is a shorthand notation for a weighted sum over grid points, just as for
the hydrodynamic interpolation operator. Here, EP = {EP

1 , . . . , EP
i , . . . , EP

N } is the smoothed value
of E at the particle locations, q = {q1, . . . , qi, . . . , qN } is the vector of particle charges, and δes is
the kernel used for the electrostatic grid; we note that δes can be chosen independently from δhy.
The numerical solution of Eq. (32) is discussed in Sec. IV C. The smoothed electrostatic force on
particle i is then given by

FP
i = qiEP

i . (37)

A local correction is needed because a point charge representation of the ions would require an
unreasonably fine mesh when solving Eq. (32); for finite, nonzero �r, the force calculated between
two particles i and j on the mesh becomes less accurate as the distance between the particles
becomes smaller. This effect becomes particularly severe when the kernels overlap and the particles
no longer appear as points, i.e., xi j < ψ , where ψ is on the order of the diameter of the kernel. The
P3M method accounts for such situations by replacing the Poisson solution with a direct calculation
of the Coulomb force

FC
i j = 1

4πε

qiq j

x2
i j

x̂i j, (38)
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where xi j = |xi j |, and the unit vector x̂i j = xi j/xi j . Specifically, the electrostatic force is
computed as

FE
i = FP

i +
∑
j∈�E

i

FLC
i j , (39)

where �E
i indicates all particles within a range of ψ from particle i. Here, the local or near-field

correction is

FLC
i j = FC

i j − FP
i j, (40)

where FP
i j is the force computed by the immersed-boundary method if only the charges i and j were

present. As mentioned above, ψ is of the order of the diameter of the electrostatic kernel, and is
therefore a function of the cell size. In this work we apply an upper limit of ψ � L/2, where L is
the length of the periodic domain, so that for each pair of charges the local correction is only applied
for the nearest periodic image of one of the charges.

Following previous P3M and (spectral) Ewald methods, the local correction is approximated as
a radially symmetric short-ranged force using

FP
i j ≈ qiq j

4πε(�r)2
F P

(
xi j

�r

)
x̂i j, (41)

where the dimensionless scalar function F P(y) is tabulated for 0 � y � ψ/(�r) in a precomputation
step, which is done once and only once for a given kernel δes. The values used for the results
in this work are given in Table II in Appendix B. This table is computed using two charges in a
domain which is large enough that boundary effects are negligible. Because there is a small degree
of translational variance, the solution for each separation distance is calculated many times using
random placements and orientations of the pair relative to the grid, and the results averaged. We
show numerical results for the near-field corrections in Appendix A.

It is important to emphasize a key difference between the IB approach described here and that
used in other P3M-style methods, including the spectral Ewald method [48]. In the latter, the
smearing and smoothing of the delta functions in Eq. (33) are done at the continuum level, using
a smooth kernel function such as a Gaussian. For an unbounded domain, the correction potential
FLC

i j can easily be computed analytically using Fourier-space integration. The smooth continuum
density is then spread to the grid on which the Poisson equation is solved (using, e.g., a spectral
method in the spectral Ewald method or a finite-difference approach as done here), and the solution
is interpolated back on the particles just as we do. The spreading and interpolation operations to and
from the grid are done to spectral accuracy using the nonuniform fast Fourier transform (FFT) in
the spectral Ewald method, while in classical P3M methods it is done using a separate “window” or
“charge assignment function,” such as a power of the sinc function [19]; a plethora of methods exist
with different choices of how this step is done [14]. By contrast, in our approach there is only one
kernel, δes, that is used both to smear the charge and to communicate between particles and grid.
In Appendix A, we study the accuracy of our IB-P3M approach and isolate the contributions to
the dominant error coming from the loss of translational and rotational invariance from the Poisson
solver and from the spreading and interpolation using a compactly supported kernel.

B. Steric repulsion

To compute the short-range repulsive force FR
i j , we model the finite size and excluded volume

of the ions using a mollified Weeks-Chandler-Andersen (WCA) interaction potential [49], which
is a shifted and truncated Lennard-Jones potential; it has been selected to approximate hard-sphere
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FIG. 1. Illustration of short-range potential and repulsive force due to Eq. (42). For ease of viewing, here
we have set x̃m = 0.7σ . Note that the actual value used in the simulations, discussed in Sec. V, is x̃m = 0.25σ .

repulsion while remaining numerically tractable. This potential is given by

U sr (x̃; σ, ξ ) =

⎧⎪⎪⎨⎪⎪⎩
4ξ
(

6σ 6

x̃7
m

− 12σ 12

x̃13
m

)
(x̃ − x̃m ) − 4ξ

(
σ 6

x̃6
m

− σ 12

x̃12
m

)+ ξ, x̃ � x̃m

4ξ
[(

σ
x̃

)12 − (
σ
x̃

)6]+ ξ, x̃m < x̃ < 21/6σ

0, 21/6σ � x̃

(42)

where ξ is the magnitude of the potential, σ is the van der Waals diameter, and x̃ is the radial
distance between the particles. Note that this potential has been selected to produce a constant force
for x̃ � x̃m, equal to that at x̃ = x̃m, in order to reduce numerical stiffness; specific values of these
parameters are discussed in Sec. V. The cutoff at 21/6σ ensures that only the repulsive part of the
potential is used and shifting the potential by ξ ensures that there is no discontinuity in the potential
and in the force at the cutoff. The short-range repulsive force is then

FR
i j = −x̂i j

d

dx̃
U sr

i j (xi j ; σi j, ξi j ), (43)

where σi j is the average of the diameters of particles i and j, and in this work we set ξi j = ξ for all
pairs of ions. Note that the repulsion diameter is distinct from the hydrodynamic radius at discussed
in Sec. II E, however, both are related to the solvation layer formed around an ion [50]. The potential
and repulsive force are illustrated in Fig. 1.

IV. DETAILS OF NUMERICAL METHODOLOGY

In this section we discuss the details of the discretization and solution methods of the hy-
drodynamic and electrostatic5 equations (13) and (32), and the associated particle time-stepping
algorithm. These are all implemented in the AMREXframework described in Ref. [51] and available
in Ref. [52].

5Note that the hydrodynamic equations are in the quasihydrostatic approximation (neglect inertial terms)
while the electrostatic equations are in the quasielectrostatic approximation (neglect magnetic fields).
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A. Peskin kernels

In Secs. II B and III, we define kernel functions that describe the interaction of the particles with
continuous fields [see Eqs. (15), (16), (35), and (36)]. These functions are represented numerically
by Peskin kernels [25], which approximate Gaussian functions on a discrete grid. The four-point
kernel is defined using

δPe(ζk ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−2|ζk |+

√
1+4|ζk |−4|ζk |2

8�r , 0 � |ζk| � 1

5−2|ζk |−
√

−7+12|ζk |−4|ζk |2
8�r , 1 < |ζk| � 2

0, 2 < |ζk|

(44)

where ζ = (xi − r)/�r, ζk indicates a single Cartesian component of ζ (ζx, ζy, or ζz), and �r is
the grid spacing, which is the same in each direction. Peskin kernels attempt to maximize certain
ideal properties of a continuum Gaussian, notably isotropy and translational invariance; a detailed
discussion is given in Ref. [25]. Recently, kernels with a greater number of points in their support,
including five and six grid points [53], have been computed. These have improved smoothness and
come closer to the ideal case at the cost of increased computation time. Conversely, using a smaller
number of points will result in a less accurate kernel but reduced computational cost.

Although it is not necessary to use the same kernels for the hydrodynamic and electrostatic fields,
for simplicity in this paper we use the same four-point kernel in both cases,

δhy(ζ) = δes(ζ) = δPe(ζx )δPe(ζy)δPe(ζz ). (45)

We further use the same cell size, �r for all fields, although again this is not a necessity. The
discretized interpolation operation for a single Cartesian component of the hydrodynamic velocity
(vk) is

J hy
h,k (xi )vk = �V

∑
j∈�Pe

i

δhy(xi − r j )vk (r j ), (46)

where �V = (�r)3, and j ∈ �Pe
i indicates summation over discrete grid points r j that lie within the

support of δhy(xi − r j ) centered on xi, and on which the discrete velocity is defined. The spreading
operation for a single component of force is given by

Shy
h (xi )Fk =

N∑
i=1

∑
j∈�Pe

i

δhy(xi − r j )Fi,k . (47)

Similarly, the discretized electrostatic interpolation and spreading operators are, respectively,

J es
h,k (xi )Ek = �V

∑
j∈�Pe

i

δes(xi − r j )Ek (r j ) (48)

and

Ses
h (xi )q =

N∑
i=1

∑
j∈�Pe

i

δes(xi − r j )qi. (49)

As mentioned above, one reason for using Peskin kernels is to maximize translational in-
variance. However, a small degree of variance remains: the four-point kernel used here has a
position-dependent hydrodynamic radius of (1.255 ± 0.005)�r. Were perfect translational invari-
ance achieved, for unbounded and triply periodic domains the stochastic drift term in the particle
equation of motion, Eqs. (17) and (19), would be zero everywhere, as the divergence of the mobility
would be zero [40]. However, the slight lack of invariance of the kernels renders the stochastic drift
term necessary even in domains without solid boundaries; this is discussed in detail in Ref. [24].
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FIG. 2. Left: a 2D illustration of the MAC [54] discretization used for Eq. (50). Right: 2D illustration of
the ∇̃h · Z term in Eq. (50a), which is the discretization of the term ∇r · Z from Eq. (11). Random numbers
Z are generated at the faces of control volumes around the points where velocities v are defined so that the
divergence of the field Z can be calculated.

B. Fluid solver

We discretize the fluid velocity on a uniform Cartesian grid with mesh spacing �r. We use a stag-
gered grid system with normal velocities and force density defined at cell faces, and pressure defined
in cell centers, i.e., a standard marker-and-cell (MAC) discretization [54]. Multiple discretizations
are used for differential operators representing the gradient, divergence, and Laplacian. Each of
these operators use centered second-order differences. We use ∇c→ f

h to represent the face-centered
gradient of a cell-centered field, ∇c

h to represent the cell-centered gradient of a cell-centered field,
∇ f →c

h · to represent the cell-centered divergence of a face-centered field, (∇2
h) f to represent the

face-centered Laplacian of a face-centered field, and (∇2
h)c to represent the cell-centered Laplacian

of a cell-centered field. Finally, ∇̃h· is used to represent the face-centered divergence of a field
defined on control volumes corresponding to the shifted (staggered) velocity grid. This is illustrated
in two dimensions in Fig. 2. Using these operators, the discrete fluid equation solved at each time
step is [see Eqs. (13) and (25)]

−η
(∇2

h

) f
v + ∇c→ f

h p = Shy
h F +

√
2ηkBT

�t�V ∇̃h · Ẑ +
[
Shy

h

(
x + �R

2
Ŵ
)

− Shy
h

(
x − �R

2
Ŵ
)]

× kBT

�R
Ŵ , (50a)

∇ f →c
h · v = 0. (50b)

Here, Ẑ represents Gaussian random numbers of mean zero and variance one, defined such that their
divergence can be calculated at the locations where v is defined. This is illustrated in two dimensions
in Fig. 2, where Ẑ is stored on cell nodes and centers. In three dimensions Ẑ is stored on cell
edges and centers. This is described in detail in Ref. [26]. The vector Ŵ = {Ŵ 1, . . . ,Ŵ i, . . . ,Ŵ N }
consists of independent random vectors Ŵ i = (Ŵi,x,Ŵi,y,Ŵi,z ), where each Ŵ is an independent
Gaussian random number of mean zero and variance one.

The second line of Eq. (50a) represents the thermal forcing term given by Eq. (24). As discussed
in Ref. [24], it is essentially a finite-difference representation of the divergence of the spreading
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operator. It is implemented by spreading a random force kBTŴ/�R at locations randomly offset
from the particle positions x + �RŴ/2 and the negative of that force at positions x − �RŴ/2. The
distance �R should be smaller than the length scale over which Shy varies, but large enough to avoid
issues due to numerical roundoff. In this paper we have used the value �R = 10−4�r.

The system of discrete equations formed by Eq. (50) can be solved by a range of approaches;
here we have used a preconditioned generalized minimal RESidual (GMRES) method [54,55].

C. Electrostatic solver

The electrostatic potential and charge density, φ and 
, are defined on a cell-centered grid. The
Poisson equation (32) is discretized by (∇2

h

)c
φ = −
/ε. (51)

In this case, the resulting system of equations are solved using the geometric multigrid [56] method.
The resulting electric field is also stored at cell centers, and is found by

E = −∇c
hφ. (52)

The choice of a cell-centered differencing in Eq. (52) has some advantages over other options that
are worth noting. Importantly, it can be shown6 that Eq. (52), together with the IB interpolation and
spreading, ensures that, at least for periodic domains, Newton’s third law is obeyed. That is, the
force on ion i due to ion j is equal and opposite to that on ion j due to ion i,7 and momentum is
conserved.8 This implies that there is strictly no self-force of one ion on itself, which is an important
property desirable in any P3M method. It may appear more natural for staggered grids to compute
electric field not at cell centers using ∇c

h, but on cell faces using ∇c→ f
h , in particular because (∇2

h)c =
∇ f →c

h · ∇c→ f
h . However, this choice does not lead to equal and opposite action or reaction forces

and can generate spurious self-forces.
One thing that is lost with the discretization employed in Eq. (52) is that the force is no longer a

negative gradient of an electrostatic potential. That is, the IB-P3M approach followed here cannot
be used for applications where both forces and energies matter and need to be consistent with each
other; in BD or DISCOS we only need forces, and since the system is isothermal there are no issues
regarding energy conservation. It is possible to ensure consistency between electrostatic forces and
energy if one uses the derivative of the Peskin kernel to interpolate −φ at the particle positions to
obtain the electric field and force. However, this requires using a smoothly differentiable kernel such
as the six-point Peskin kernel [53], and also does not lead to momentum conservation.

When applying the close range correction to the electrostatic solution (and the steric repulsion),
near-linear scaling is maintained by using the neighbor list feature included with AMREX.

D. Temporal algorithm

The time-stepping scheme employed in DISCOS builds on that of the FIB method with the
addition of electrostatic forces and dry diffusion. A time step is then defined by the following four
steps:

6We thank C. Peskin for sharing with us an analytical proof of this property.
7Note that this force is, however, not strictly central. That is, the weak law of action and reaction (Newton’s

third law) is obeyed but not the strong law of action and reaction, which requires that the forces act along the
line joining the particles.

8Note that in the overdamped limit there is no momentum conservation per se, however, the steady Stokes
equation would not be solvable in triply periodic domains if the forces did not sum to zero.

044309-15



D. R. LADIGES et al.

(1) The charge density 
 is computed on the grid using the spreading operation defined by
Eqs. (36) and (49). Equation (51) is then solved using the geometric multigrid method, and Eq. (52)
is used to obtain the coarse electric field E.

(2) This electric field is interpolated to the particle locations using the operation defined by
Eqs. (35) and (48). The corresponding force on the particles is found using Eq. (37). For particles at
close range, this force is corrected as per Eqs. (38) and (39). Close range WCA interactions are also
calculated in this step, and the total force on the particle calculated as per Eqs. (31)–(43), including
the effect of any external fields.

(3) The force on the particles F is spread to the grid storing the force density using the operations
defined in Eqs. (16) and (47), recovering f s. The random finite-difference term is spread as per the
second line of Eq. (50a), yielding the thermal forcing f th. The resulting system, Eq. (50), is solved
via the GMRES method to compute the velocity at time step n, vn.

(4) The fluid velocity vn is interpolated to particle locations using the operations defined in
Eqs. (15) and (46) to obtain the “wet” component of the particle velocities, Eq. (17). The temporal
discretization of the particle diffusion is then given by the midpoint update scheme

xn+1/2,�
i = xn

i + �t

2

[
J hy

h (xn
i )vn

]
, (53)

xn+1
i = xn

i + �t

[
J hy

h

(
xn+1/2,�

i

)
vn + Ddry

i

kBT
Fn

i +
√

2Ddry
i

�t
W n

i

⎤⎦. (54)

As discussed in Sec. II B, the purpose of the midpoint update is to incorporate the part of the
stochastic drift not accounted for by the random finite-difference force density f th.

This algorithm is first order in time, as illustrated in Ref. [24], where higher-order schemes are
also discussed.

V. NUMERICAL RESULTS

In this section we test the DISCOS algorithm by comparison with theoretical results for the radial
pair correlation function and electrical conductivity. Additionally, we analyze the effect of changing
the ratio of wet and dry diffusion. In our numerical tests we model a 1:1 strong electrolyte solution,
similar to salt water, with species labeled A and B, with charges q = qA = −qB = 1.6 × 10−19 C.
The solvent is taken to be water at T = 295 K, viscosity η = 0.01 g/(cm s), and permittivity
ε = εrε0, with relative permittivity εr = 78.3 where ε0 is the vacuum permittivity. The diffusion
coefficients of the ions in water are Dtot

A = 1.17 × 10−5 cm2/s and Dtot
B = 1.33 × 10−5 cm2/s,

corresponding to hydrodynamic radii of at = 0.185 and 0.162 nm, respectively. In all cases the
close range potential parameters are ξ = 10−16 ergs, σ = 0.4 nm, and x̃m = 0.1 nm. Note that the
above parameters yield Schmidt numbers of 854 and 752 for species A and B, respectively. This
justifies the use of the infinite Schmidt number approximation discussed above.

For each problem, the time step �t was selected by successive refinement until a negligible
change in the result was observed. Note that the ion diffusive timescale a2

t /D is on the order of 10 ps.
The time steps used for the simulations below were typically constrained to the order of 0.1 ps by
the stiffness of the steric and electrostatic interactions. We are currently examining how the time
step may be increased by varying the parameters of these potentials.

In each case, the system size was selected to avoid significant finite-size effects. When consider-
ing electrostatic interactions, the relevant length scale is the Debye length [57,58]

λD =
√

εkBT∑Ns
j=1 n jq2

j

, (55)

where Ns it the number of species, and n j is the number density of species j. This is a measure
of how far electrostatic effects persist before they are screened by clouds of opposite charges.
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For hydrodynamic effects, it should be noted that the diffusion coefficient of an isolated particle
in a triply periodic domain has well-known strong finite-size corrections of order aw/L [43],
where L is the length of the cubic domain. This is because the mobility of an isolated particle is
determined by applying a force on it, and a force monopole interacts with its periodic images with
1/r hydrodynamic interactions. However, each ion diffuses with its Debye cloud, which experiences
an equal but opposite force, so that an ion interacts with its periodic images hydrodynamically as
a force dipole [59], which has a finite-size correction of order (aw/L)3. We are not aware of any
systematic analysis of finite-size effects in the literature; here we have systematically increased the
system size until no significant change in the result is observed.

A. Radial pair correlation function

We first validate the equilibrium properties of the DISCOS method by measuring radial pair
correlation functions between ions of like and opposite charge. In general, the radial pair correlation
function is the normalized time-average density of particles as a function of radius from an arbitrary
reference particle. For a binary system, the pair correlation function between species α and β is
defined as [14]

gαβ (x̃) = lim
τ→∞

V
Nαβ (Nαβ − 1)4π x̃2τ

∫ τ

0

N∑
i, j,i �= j

δ(x̃ − xi j ) δα,siδβ,s j dt, (56)

where V is the system volume, si and s j are the species of particles i and j, Nαβ is the number of
species pairs, and xi j is the radial distance between particles i and j. In practice, for each snapshot
in time, for each ion of type α, we count the number of ions of type β in thin spherical shells with
a specified bin width, and compute a number density in each bin by dividing by the volume of the
shell. We average the results over all α ions and over many time steps, and normalize the result with
the average number density of β.

For low to moderate ion concentrations Debye-Hückel theory [57,58] gives

gαβ (x̃) ≈ exp[−Uαβ (x̃)/kBT ], (57)

where the potential is

Uαβ (x̃) = qαqβ

4πε

e−x̃/λD

x̃
+ U sr

αβ (x̃). (58)

The first term in Eq. (58) is the screened Coulomb potential [57,58] and the second is the short-
ranged repulsion.

In Figs. 3 and 4, we compare the approximate theoretical expression of Eq. (57) with results
obtained from DISCOS. In Fig. 3, the comparison is shown for molarity (moles of cation or anion
per liter of solvent) of 0.1 M; excellent agreement is observed. Figure 4 shows the comparison for
a molarity of 1.0 M for two different ratios of wet and dry diffusion. A negligible difference is
observed between second and third simulations; this is unsurprising as we can see from Eq. (57)
that the pair correlation function does not depend on the hydrodynamic properties of the solvent.
Reasonable agreement is observed, with the largest deviation observed in the peak of the opposite
charge result. We note that Eq. (57) is derived in the low-concentration limit so we expect decreasing
agreement with increasing concentration. At the higher concentrations the Percus-Yevick and
hypernetted chain (HNC) approximations are more accurate [60].

B. Electrical conductivity

For an applied electric field of magnitude E the total current density in an electrolyte solution is

I =
Ns∑
j=1

n jq
2
jμ jE , (59)
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FIG. 3. Radial distribution for a molarity of 0.1 M. The right plot shows the pair correlation for ions of like
charge; also indicated is the Debye length. The left plot shows the pair correlation for ions of opposite charge.
The solid line shows the approximate analytical solution given by Eq. (57), and the squares show the numerical
result from DISCOS. These results were collected using a bin width of 0.025 nm, with a sample size of 50 000;
the simulation was run for 100 000 steps, with the first 50 000 steps used for equilibration. This sample size
resulted in negligible statistical error. For visual clarity, only every fourth point is displayed. The grid size was
set such that the total diffusion of species A was 14.7% wet and 85.3% dry, and for species B, 12.9% wet and
87.1% dry. This corresponds to �r = 1 nm, with a 32 × 32 × 32 cell periodic domain, and 3946 ions. The
time step was �t = 0.1 ps.
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FIG. 4. Radial distribution for a molarity of 1.0 M. The right plot shows the pair correlation for ions of like
charge; also indicated is the Debye length. The left plot shows the pair correlation for ions of opposite charge.
The solid line shows the approximate analytical solution given by Eq. (57), and the boxes and circles show
numerical result from DISCOS. The numerical parameters are the same as those described for Fig. 3, except
that two different grid resolutions are shown. The black circles show the case where the grid size was set such
that the total diffusion of species A was 14.7% wet and 85.3% dry, and for species B, 12.9% wet and 87.1%
dry. This corresponds to �r = 1 nm, with a 16 × 16 × 16 cell periodic domain, and 4932 ions. The red squares
show the case where the grid size was set such that the total diffusion of species A was 58.9% wet and 41.1%
dry, and for species B, 51.8% wet and 49.2% dry. This corresponds to �r = 0.25 nm, with a 32 × 32 × 32 cell
periodic domain, and 618 ions.
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where μ j is the mobility of species j. The conductivity is defined by Ohm’s law as C = I/E and
from the Nernst-Einstein relation [58] the mobility in the limit of infinite dilution is μ0

j = Dtot
j /kBT .

In this limit, the uncorrected total conductivity C0 is the sum of the species conductivities C0
i :

C0 =
Ns∑
j=1

C0
j =

Ns∑
j=1

n jq2
j D

tot
j

kBT
. (60)

Debye-Hückel-Onsager (DHO) theory gives the electrolyte conductivity [58,61] as the sum of the
uncorrected total conductivity, electrophoretic contribution, and a contribution due to the relaxation
effect

C = C0 + Cep + Crelx. (61)

See Ref. [12] for the relationship of this theory to fluctuating hydrodynamics.
The electrophoretic contribution is due to screening charges of opposite sign about each ion

imparting a retarding viscous stress on the ion, given by

Cep = −
Ns∑
j=1

n jq2
j

6πηρλD

λD

λD + aDH
j

. (62)

The last term is a Debye-Hückel correction to account for the finite ion size, which we take to be
aDH

j = 0.4 nm for both ions. The relaxation effect refers to the average force experienced by an ion
from its asymmetric ionic cloud relaxing due to thermal fluctuations. For binary electrolytes the
contribution due to the relaxation effect is

Crelx = −
2∑

j=1

C0

12π (2 + √
2)

q2
j

εkBT λD

λD

λD + aDH
j

. (63)

For aDH
j � λD both the electrophoretic and relaxation contributions go as the square root of the

ionic concentration.
The C0 term contains no hydrodynamic interactions between ions; it is therefore correctly

captured by a simulation with any wet or dry diffusion ratio. The same is true for the Crelx term, as
this arises entirely from electrostatic interactions which are well resolved using the P3M approach.
The Cep term arises from the collective hydrodynamic effect of an ion and its screening cloud
of opposite charge, and it is therefore only completely captured by a simulation using 100% wet
diffusion; the relative importance of this effect is discussed in the next section.

When the applied electric field is sufficiently strong, the distortion of the ionic clouds results
in an increased electrical conductivity, which is known as the first9 Wien effect. For a 1:1 strong
electrolyte solution the Wien corrections to the conductivity are [62]

Crelx
W (a) = AW(a) Crelx, (64)

Cep
W (a) = BW(a) Cep, (65)

where

AW(a) = 3(1 + √
1/2)

2a3
(a
√

1 + a2 −
√

2a + arctan(
√

2a) − arctan(a/
√

1 + a2)), (66)

BW(a) = 1√
2

+ 3

8a3
(2a2arcsinh(a) − a

√
1 + a2 +

√
2a − (1 + 2a2)[arctan(

√
2a)

− arctan(a/
√

1 + a2)]), (67)

9Note that there is a “second Wien effect” which applies to weak electrolytes.
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FIG. 5. Wien corrections to the DHO relaxation effect and electrophoretic contribution as a function of
a = (qλDE )/(kBT ).

and a = (qλDE )/(kBT ) is a dimensionless parameter for the electric field strength. These correction
factors are shown in Fig. 5. Note that AW(a) → 0 and BW(a) → 1/

√
2 as a → ∞.

In the presence of an applied electric field, the conductivity vector can be computed by

C = lim
τ→∞

1

EVτ
[Z(τ ) − Z(0)], (68)

where the ion polarization (displacement of the “center of charge”) is

Z(t ) =
N∑

i=1

qixi(t ). (69)

An alternative way to measure conductivity in the absence of an applied field is given by the
Einstein-Helfand formula [63], in terms of the long-time diffusion coefficient of the center of charge

CEH = lim
τ→∞

1

6kBTVτ

∫ τ

0
[Z(t ) − Z(0)]2dt . (70)

This is derived from the Green-Kubo relation [64,65], and is discussed in Refs. [63,66].
Formally, Eqs. (68) and (70) hold when τ is large enough to ensure that the short time correlations

have decayed; increasing τ beyond this point has no effect on the statistical convergence, as the
variance of Z does not decrease with time. An accurate result can be obtained by increasing N , or
averaging an ensemble of simulations. We find that the mean-square displacement of the center
of charge is perfectly linear in time on our overdamped timescales for all τ examined, so the
conductivity is not sensitive to the choice of τ . The correct result can therefore be obtained by
setting τ ∼ �t to maximize the statistical sample size. To ensure decorrelation between simulation
measurements the conductivity was sampled at intervals of 10 ps, which is on the order of the ion
diffusion time, when calculating the time average in Eq. (68). For Eq. (70), the displacement in Z

was measured and then reset every 10 ps. Note that this has no impact on the result itself, but it
influences the calculation of the statistical error.

Three sets of conductivity simulation measurements were performed at a concentration of 0.1 M:
(i) measurements with zero applied field using Eq. (70), (ii) using a weak applied field of 105 V/cm
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TABLE I. Conductivity simulation measurements in siemens per meter for zero E field [by Einstein-
Helfand, Eq. (70)] and weak and strong E field [center of charge displacement, Eq. (68)]. The uncertainty
notation is defined such that the numbers in parentheses indicate the error bar for the final digits, e.g., 0.898(6)
indicates 0.898 ± 0.006 and 0.946(12) indicates 0.946 ± 0.012. The right column is calculated from DHO
theory including Wien effect corrections for the strong-E -field cases. For comparison with the 0% wet case,
the theory prediction without the electrophoretic (EP) correction is also included in the table. A plot of these
results is given in Fig. 6.

Measured in case wet% A, wet% B

Theory 0% 11.75% 23.5% 46.9% 93.8% Theory
no EP 0% 10.33% 20.65% 41.3% 82.6% with EP

Zero E field

0.01147 M 0.106 0.1086(18) 0.1013(6) 0.1020(21) 0.1002(21) 0.1010(18) 0.100
0.1 M 0.897 0.946(12) 0.869(27) 0.837(21) 0.813(9) 0.803(12) 0.776
0.5 M 4.33 4.70(6) 4.21(9) 3.95(6) 3.63(6) 3.54(15) 3.34
2 M 16.8 18.5(6) 16.7(9) 14.8(9) 12.8(6) 11.6(9) 11.4

Weak E field

0.1 M 0.897 0.898(6) 0.831(6) 0.785(6) 0.785(9) 0.777(6) 0.776

Strong E field

0.1 M 0.943 0.943(3) 0.870(3) 0.851(3) 0.841(3) 0.837(3) 0.850

(a = 0.377), and (iii) using a strong applied field with a value of 107 V/cm (a = 37.7), each using
Eq. (68). In each case a range of diffusion ratios, i.e., values of Dwet and Ddry, were tested. Tests
using case (i) with Eq. (70) were also performed at concentrations of 0.0115, 0.5, and 2 M. The
results are summarized in Table I and illustrated in Fig. 6.

All simulations were performed in a cubic domain with length L = 10.043 nm. For concentra-
tions 0.0115, 0.1, 0.5, and 2 M, the domain contained 14, 122, 610, and 2440 ions, respectively. For

0.4

0.6

0.2

0.0

0 20 06 0840

FIG. 6. Relative difference in conductivity from DHO theory including Wien corrections for the strong-
field case, as a function of wetness percentage, for a range of molarities; based on data from Table I.

044309-21



D. R. LADIGES et al.

comparison, a molecular dynamics simulation of this system would contain roughly 30 000 water
molecules.

To vary the wetness, the computational domain was divided into 83, 163, 323, or 643 grid cells
for both the Stokes and Poisson solvers; simulations with fully dry diffusion used a 323 grid for
the Poisson solver. The 83 grid cell cases correspond to wetness percentages of 11.8% and 10.3%
for ions A and B, respectively, while the 643 grid cell cases correspond to wetness percentages of
93.8% and 82.6%. Most simulations for molar concentrations of 0.5 M and below used a time-step
size of 0.1 ps, while for the high-molarity 2 M cases �t was typically between 0.01 and 0.02 ps. It
is important to note that while a Stokes grid as coarse as 83 does little to accelerate the far-field cal-
culations for nearest image particles, the use of a periodic Stokes solver is crucial to account for the
hydrodynamic interactions with periodic image particles; the same applies also to the Poisson solver.

In all cases, good agreement is observed between the results with the highest Dwet value and the
theoretical prediction, for both high- and low-field cases, and at all concentrations. The weak- and
strong-field results are in particularly good agreement with the theory for both fully dry and fully
wet simulations. Note that DHO theory may not be accurate at high molarities, especially since we
do not tune the value of the finite-size radius aDH for either species. The dry (Dwet = 0) cases also
compare reasonably well with the theoretical result with the electrophoretic component removed, in
agreement with the discussion above.

For the weak-field simulations, the strength of the field has been set such that the Wien effect is
negligible; we therefore expect the same results for the weak- and zero-field cases. Interestingly, a
difference of about 3% is observed for the highest wet percentage, and 5% for the lowest. The cause
of this discrepancy is not apparent, but warrants further investigation.

C. Effect of wet vs dry diffusion

The results in the previous section show that while some wet diffusion is needed to capture the
electrophoretic contribution to conductivity, in most cases increasing the wet diffusion above 50%
has a relatively small impact. Furthermore, the relative effect depends on concentration, with wet
diffusion making a greater contribution at higher molar concentrations; this can be clearly seen in
Fig. 6. As mentioned in Sec. II E, reducing the hydrodynamic resolution (by reducing Dwet) neglects
short-range hydrodynamic interactions. It seems clear that short-range hydrodynamic interactions
should increase in importance as concentration increases, i.e., as the particles are on average closer
together. However, it must be noted that this will also increase the relative importance of electrostatic
interactions, which decay more rapidly than hydrodynamic influence.

To estimate the importance of these effects, and obtain an estimate for the required Dwet value
for a given concentration, we consider two ions, 1 and 2. In Fig. 7, the effect of dry diffusion on
the particle mobility matrix is illustrated as a function of particle separation. The mobility parallel
and perpendicular to the vector connecting the particles is shown, measured from 100% wet and
50% wet simulations. These are compared to the solution obtained from the RPY tensor, Eq. (7).
As discussed above, increasing the percentage of dry diffusion amounts to neglecting short-range
hydrodynamic interactions; as per Eqs. (26)–(30), changing from 100% wet to 50% wet is equivalent
to doubling the hydrodynamic radius.

To represent the dry component of the particle mobility, we introduce the dry tensor

Mdry(a) = 1

6πηa
I. (71)

The velocity of particle 1 has two contributions: that directly induced by the Coulomb force (38),

V dir
1 = (R(0, aw ) + Mdry(ad ))FC

12 = R(0, at )FC
12 = Mdry(at )FC

12, (72)

and the disturbance in the fluid induced by particle 2, which is subject to the opposite force,

V dst
1 = −R(x21, aw )FC

12, (73)
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FIG. 7. Left: mobility of particle 1 when a force is applied on particle 2, in the direction parallel to the
vector connecting particles 1 and 2. Right: mobility of particle 1 when a force is applied on particle 2, in the
direction perpendicular to the vector connecting particles 1 and 2. The red circles are values measured from a
100% wet simulation, the black crosses from a 50% wet simulation. In each case the values are normalized by
the particle self-mobility, and the separation is shown in terms of the average particle radius of species A and B,
i.e., āt = (aA

t + aB
t )/2, āw = (aA

w + aB
w )/2, ād = (aA

d + aB
d )/2. Each set of data is compared to the result from

the RPY tensor calculated using aw , shown with the red and black solid lines. Also shown for comparison is the
RPY result corresponding to the 75% wet case (dashed line). The approach of using the average particle radius
has been used for simplicity because the two species are of similar size; we note that a polydisperse version of
the RPY tensor is described in Ref. [67]. Simple fits of the pair mobility for the six-point Peskin kernel is given
in Ref. [68].

with the total velocity of particle 1 (parallel to the vector x12) being

V 1 = V dir
1 + V dst

1 . (74)

In Fig. 8 we plot V1 as a function of particle separation. Five curves are shown, ranging from 0%
to 100% wet, with increments of 25%. Also marked, with vertical lines, are the measured average
nearest particle separations for two concentrations, 0.1 M (black) and 2 M (red). At 0.1 M varying
the wetness from 50%–100% produces only a 2% change in particle velocity. At 2 M the same
range produces a change in velocity of 33%, suggesting a higher wetness percentage is necessary to
accurately capture the solution at higher molarities, as expected.

In Fig. 9 particle velocity is shown as a function of wet percentage, for a range of ion separations
using the same two-ion system; the curves are normalized by the value at 0% wet. In addition to
the measured nearest ion separation (solid lines), for comparison we have also indicated the average
nearest particle distance obtained by assuming the particles are in a random configuration (dashed
lines), and in a cubic lattice (dotted lines). For randomly distributed particles the average nearest
particle distance is [69]

x12 = �

(
4

3

)(
4

3
πn

)−1/3

≈ 0.55 n−1/3, (75)

where �(x) is the gamma function. Assuming a cubic lattice arrangement gives

x12 = n−1/3. (76)

Also shown are the conductivity simulation measurements from Table I, again normalized by the
0% wet value. For both 0.1 and 2 M the conductivity measurements follow a similar trend to the
particle velocity, suggesting that the simple particle velocity calculation from Eqs. (72)–(74) is a
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FIG. 8. Particle velocity due to electrostatic and hydrodynamic interactions between two ions, as a function
of separation. The velocity V1 is calculated using Eqs. (72)–(74), using a radius averaged from species A and
B, i.e., āt = (aA

t + aB
t )/2, āw = (aA

w + aB
w )/2, ād = (aA

d + aB
d )/2. A range of wet percentages are shown, the

corresponding particle radii can be found with Eqs. (29) and (30) and the radii quoted at the start of Sec. V.
The measured average closest ion separations corresponding to concentrations 0.1 and 2 M are indicated with
the black and red vertical lines.
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FIG. 9. Normalized particle velocity due to Eq. (74) (lines), and normalized conductivity simulation
measurements from Table I (symbols), as a function of wet and dry ratio of species A. All values are normalized
by the 0% wet value. Black signifies 0.1 M, red 2 M. The curves indicate the particle velocity, calculated
at the average nearest particle separation measured from simulation (solid), and corresponding to random
(dashed), and cubic lattice (dotted) configurations. Squares are zero-field conductivity measurements using
the Einstein-Helfand formula [Eq. (70)], diamonds indicate weak-field conductivity measurements using the
center-of-charge displacement [Eq. (68)], and crosses are the prediction of DHO theory [Eq. (61)].
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useful indicator of the lower bound of wet diffusion necessary to accurately simulate a given molar
concentration. For example, the change of 2% in the particle velocity for the 0.1-M case corresponds
to a 1% change in conductivity for the two highest wetness ratios, while the 33% change in velocity
for the 2-M case corresponds to a change in conductivity of 10%.

VI. CONCLUSIONS

In this paper we have presented an approach for the simulation of electrolytes at the mesoscale.
The method extends the FIB method to include electrostatic interactions, and incorporates a “dry
diffusion” process to correct for under-resolution of the hydrodynamics. The dry diffusion term
allows the method to be applied to systems of electrolytes where application of the standard FIB
approach would require an excessively fine grid to resolve particles of nanoscopic size. We note that
our approach is similar to the stochastic Eulerian Lagrangian method [27,70,71] and the stochastic
force coupling method [44,72–74]; the relationship of each of these to the FIB method is discussed
in Ref. [24]. In principle, some of the techniques outlined in this paper could also be applied in the
context of these distinct numerical approaches.

In Secs. V A and V B, we have demonstrated that the DISCOS method accurately reproduces
several important properties of electrolytes. In Sec. V C, we have demonstrated that the dry diffusion
approach can effectively replace resolving the near-field hydrodynamics at scales smaller than the
typical ion-ion distance. At 0.1 M, reducing the wetness to approximately 50% produces only a 2%
change in the conductivity, but at 2 M a 10% change is observed. Dry diffusion can therefore be used
to reduce the numerical resolution needed to simulate an electrolyte, but this approach becomes less
effective as the ion concentration is increased.

Our results clearly demonstrate that, for denser electrolyte solutions, near-field hydrodynamic
interactions contribute to macroscopic transport properties such as conductivity. As discussed
in great detail in Ref. [40], wet diffusion, which is diffusion due to advection by a fluctuating
velocity field, and standard dry diffusion, are very different both physically and mathematically.
This difference cannot be seen for a single particle since ultimately only the total (effective or
renormalized) diffusion coefficient matters; it is worth recalling that in Ref. [29] only a single
nanoparticle is analyzed. The difference between wet and dry diffusion, however, manifests itself in
collective properties such as the spectrum of nonequilibrium concentrations [40]. However, exper-
imentally distinguishing between wet and dry diffusion based on this spectrum requires examining
length scales below light-scattering reach, and, at the scales observable in typical experiments, one
only sees a total (effective or renormalized) diffusion coefficient. Our work shows that electrical
conductivity, which is easily measured to high accuracy, is a sensitive probe that is affected by
the hydrodynamic interactions (equivalently, the spectrum of the fluctuating velocity field [40]) at
distances comparable to the typical ion-ion spacing. In the future, it is important to perform more
detailed comparisons between simulations for different degrees of “wetness” and results for denser
electrolytes obtained using experiments or large-scale molecular dynamics simulations. This will
shed light on how good of a model the Rotne-Prager-Yamakawa tensor is for solvated ions.

A key advantage of the FIB method is the ability to handle other types of boundary conditions,
notably confinement by no-slip walls. As the discussion of DISCOS in this context requires
considerable exposition, of both details of the algorithm and the physics that arises, we defer this to a
future publication. However, as previously noted, we give some brief comments in Appendix C. It is
perhaps more relevant to contrast the numerical method used in DISCOS to the state-of-the-art posi-
tively split Ewald (PSE) method for Brownian dynamics with hydrodynamic interactions developed
in Ref. [21], by using some ideas from spectral Ewald methods for electrostatics [48] combined with
the idea of using fluctuating hydrodynamics to generate the far-field Brownian displacements. The
PSE method includes a spectrally accurate implementation of the Hasimoto-Ewald splitting used in
GGEM [17]; this splitting allows one to choose the grid size arbitrarily by using the same idea of
local near-field corrections that we used here for the Poisson equation. However, at present, the PSE
approach relies on Fourier-space decompositions and using the FFT algorithm, and therefore only
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apply to triply periodic domains. It remains a future challenge to find a way to incorporate near-field
hydrodynamic corrections to correct for under-resolution of the hydrodynamics by the Stokes solver
used in FIB and DISCOS, while also computing Brownian motion without expensive iterations.

In future work we intend to apply DISCOS to strong electrolyte solutions that are acids (e.g.,
HCl) or bases (e.g., NaOH) instead of salts. Also of interest are solutions in which the Wien effect is
more pronounced, such as weak electrolyte acids and bases (e.g., acetic acid, ammonium hydroxide)
and strong electrolyte salts that are not 1:1 (e.g., MgCl2). Furthermore, recent work suggests that
nonaqueous solvents with low permittivity (e.g., benzene) exhibit unusual Wien effects [75].

Here we have described the DISCOS approach for simple monoatomic, 1:1 electrolytes, where
each ion is described by a single IB kernel. In principle, multiple kernels may be combined to
form complex molecules such as charged polymers or DNA strands. This approach has already
been tested in the context of BD, for example in Refs. [30,31], and for electrically neutral systems
using FIB, for example in Refs. [68,76,77]. Future work may also include the extension of DISCOS
to encompass these cases. Further, there is the possibility of simulating large molecules, such as
DNA, in a solution represented as a continuum that includes smaller ionic species. This was done
previously using a deterministic solution in Ref. [78], in this case the solution would be modeled
using the fluctuating hydrodynamic approaches outlined in Refs. [11–13].
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APPENDIX A: ACCURACY OF IMMERSED-BOUNDARY P3M SOLVER

In this Appendix we examine the accuracy of the immersed-boundary P3M method described in
Secs. III A and IV C. In particular, we focus on the degree of translational and rotational invariance
of the electrostatic forces computed by the method for a pair of ions of equal and opposite charge
qi = −q j at a distance r from each other, using a uniform regular grid of spacing �r. The periodic
box size L � r so that periodic effects can be neglected.

We include in our tests both the four-point [see Eq. (44)] and six-point [53] Peskin kernels,
given by

δPe(ζk ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ζk � −3
ϕ(ζk ), −3 < ζk � −2

−3ϕ(ζk ) − 1
16 + K+ζ 2

k
8 + (3K−1)ζk

12 + ζ 3
k

12 , −2 < ζk � −1

2ϕ(ζk ) + 1
4 + (4−3K )ζk

6 − ζ 3
k
6 , −1 < ζk � 0

2ϕ(ζk ) + 5
8 − K+ζ 2

k
4 , 0 < ζk � 1

−3ϕ(ζk ) + 1
4 − (4−3K )ζk

6 + ζ 3
k
6 , 1 < ζk � 2

ϕ(ζk ) − 1
16 + K+ζ 2

k
8 − (3K−1)ζk

12 − ζ 3
k

12 , 2 < ζk � 3

0, 3 < ζk

, (A1)
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where

ϕ(ζk ) = [−ϑ (ζk ) + sgn
(

3
2 − K

)√
ϑ2(ζk ) − 112ς (ζ )

]/
56,

ϑ (ζk ) = 9/4 − (3/2)
(
K + ζ 2

k

)
ζk + (22/3 − 7K )ζk − (7/3)ζ 3

k ,

ς (ζk ) = −(11/32)ζ 2
k + (3/32)

(
2K + ζ 2

k

)
ζ 2

k + (1/72)
[
(3K − 1)ζk + ζ 3

k

]2

+ (1/18)
[
(4 − 3K )ζk − ζ 3

k

]2
,

K = 59/60 −
√

29/20.

In order to compare to alternative methods, these tests were performed in MATLAB using FFTs
instead of multigrid to solve the (discrete) Poisson equation. In addition to the second-order elec-
trostatic solver based on the 7-point Laplacian (∇2

h)c and centered difference ∇c
h, we also include,

for comparison, results obtained by using a fourth-order compact isotropic 24-point Laplacian in
Eq. (51) and a 4-point centered difference in Eq. (52).

In addition to the fourth-order finite-difference Poisson solver, we also implement a spectral
Fourier solver, as used in the spectral Ewald (SE) method [48]. As explained in Sec. III A, the SE
approach (and essentially all other Ewald methods) uses a Gaussian of standard deviation σ as the
kernel δes in Eqs. (35) and (36). This allows one to compute the electrostatic force between the two
Gaussian charge clouds analytically for an unbounded domain,10 giving the required local correction

F LC
Gaussian =

(
�r

r

)2[
erfc

( r

2σ

)
+ r

σ
√

π
exp

(
− r2

4σ 2

)]
(A2)

that decays exponentially with distance. However, achieving 3–4 digits of accuracy with Gaussian
kernels requires the support of the kernel to be on the order of 10–12 grid points in each dimension,
which is expensive. Therefore, to make a more fair comparison with the six-point Peskin kernel, here
we couple the spectral Poisson solver with a recently developed “exponential of a semicircle” (ES)
kernel [79] with width w = 6; we optimized the value of the parameter β = 1.8w for translational
and rotational invariance.11

Figure 10 shows numerical data for the radial component of the near-field correction to
the electrostatic force FLC

i j for several kernels and Poisson solvers, expressed in terms of the
dimensionless function F LC(x = r/�r) appearing in Eq. (41). To quantify the loss of translational
and rotational invariance, we randomly generate the position of many pairs of particles at a distance
r from each other. Note that if FLC

i j were purely radial and its magnitude were purely a function of
r, the local-correction approach used here could completely correct the electrostatic force computed
by the discrete solver to match the Coulomb force between point charges. Therefore, the main
cause of inaccuracy is the loss of translational and rotational invariance. In Fig. 10 we also show
the correction F LC(x = r/�r) for a pair of Gaussian charge clouds given in Eq. (A2). The value
of the Gaussian width σ was fitted to match the numerical results over the range 0 < x < 3,
giving σ ≈ 0.78�r for the four-point and σ ≈ 0.89�r for the six-point Peskin kernels with the
second-order Poisson solver. This can be thought of as an effective width of the charges similar to
the effective hydrodynamic radius aw for Stokes flow.

The spread in the symbols in Fig. 10 shows the loss of translational and rotational invariance. We
see in the top panel that the mean correction force decays algebraically rather than exponentially as it

10Note that the periodic boundaries are implemented by using a Fourier series instead of a Fourier sum.
11We point out again that this approach, while similar to the spectral Ewald method [48] based on the

nonuniform FFT [79] using the ES kernel, is different because we do use the same kernel to both smear the
charges and to communicate to the grid, rather than using two different kernel functions (Gaussian for smearing
and ES for grid transfers in the NUFFT).
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FIG. 10. Local correction function F LC(x = r/�r) computed from the radial component of the near-field
correction to the electrostatic force FLC

i j for the Peskin four-point kernel (left panel) and the Peskin six-point
kernel (right panel). Red circles are samples for different positions and orientations of the pair of ions, while
dashed blue lines indicate the continuum theoretical near-field correction F LC

Gaussian for Gaussian charges of
standard deviation σ indicated in the legend [see Eq. (A2)]. The black solid line in the left panel indicates
the empirical mean used to tabulate F LC in our method. The right panel includes results (black squares) for
a spectral Poisson solver with a six-point exponential of a semicircle (ES) kernel [79] with parameter β =
1.8 × 6.

does for Gaussian charges. We also see that the six-point kernel improves the invariance, especially
at short distances. Using a fourth-order isotropic Poisson solver further improves the invariance for
all distances (data not shown in Fig. 10), as does using a spectral Poisson solver with the six-point
ES kernel, as shown in the right panel of Fig. 10. For the four-point kernel, we see in the left panel
of the figure that truncating the local corrections for pairs of particles further than three-grid points
apart, ψ = 3�r, makes the error due to loss of invariance dominate the error due to truncation of
F LC(x = r/�r), and therefore there is no point in further increasing the cutoff distance ψ ; similarly,
for the six-point kernel ψ = 4�r is suitable.

We further quantify the amount of translational and rotational variance in Fig. 11. The left panel
shows the spread in the symbols in Fig. 10 for each distance r, measured as two standard deviations
of the samples. We normalize the spread by 1/x2 to obtain a measure of the invariance of the
radial component of the electrostatic force relative to the true Coulomb potential, and express the
error in percent; note that this is the error in the final answer for the electrostatic force between
two ions. The right panel shows the magnitude of the nonradial component of the electrostatic
force computed by the Poisson solver, FP

i j , relative to it’s radial component, again expressed as
percent error. The left panel of Fig. 11 shows that the second-order Poisson solver is translationally
and rotationally invariant to about 8% for the four-point kernel and about 6% for the six-point
Peskin kernel, with the six-point kernel being notably more accurate at short distances. The fact
that errors become comparable for large distances regardless of the width of the kernel suggests
that for large distances the error is dominated by the anisotropy of the discrete Green’s function
for the standard seven-point Laplacian. Switching to a fourth-order Laplacian drops the maximum
error down to 2% for the six-point kernel, while the spectral solver with the six-point ES kernel
drops the error below 0.5%. The right panel of the figure shows that all combinations of kernels
and solvers studied here achieve a central electrostatic force to within 1.5%, which is remarkably
good.

APPENDIX B: P3M CORRECTION TABLES

The numerical results in the main body of this work were computed using a four-point Peskin
kernel [25], additional analysis in Appendix A uses a six-point kernel [53]. As per Eqs. (40) and
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FIG. 11. Percent error due to loss of translational and rotational invariance in the immersed-boundary P3M
method based on data shown in Fig. 10. In addition to the method used in this work, we include for comparison
the improvement gained by using a fourth-order isotropic Poisson solver, as well as a spectral Poisson solver
with a six-point ES kernel. (Left panel) Percent error in the radial component of the total electrostatic force
due to loss of invariance. (Right panel) Magnitude of the nonradial component of the IB force F P expressed as
percent of the radial component. The symbols show the empirical mean over samples of pairs of points, while
the dashed lines show the maximum value over the samples.

(41), the P3M procedure uses precomputed tables to apply a near-field correction to electrostatic
forces. The values for each kernel are given in Table II. Note that for values of F P between the
tabulated positions, linear interpolation was used.

TABLE II. Tabulated values for P3M correction using four- and six-point Peskin kernels, as described in
Sec. III A. Note that data have been shown beyond the ideal cutoff range ψ ; see Appendix A.

Four-point Six-point Four-point Six-point Four-point Six-point Six-point
xi j

�r F P
( xi j

�r

)
F P
( xi j

�r

) xi j

�r F P
( xi j

�r

)
F P
( xi j

�r

) xi j

�r F P
( xi j

�r

)
F P
( xi j

�r

) xi j

�r F P
( xi j

�r

)
0 0 0 2.0 0.165755 0.133308 4.0 0.0627171 0.0616157 6.0 0.0275866
0.1 0.0191993 0.0130335 2.1 0.162663 0.130995 4.1 0.0591556 0.0586423 6.1 0.0267607
0.2 0.0384104 0.0259347 2.2 0.156037 0.129343 4.2 0.0561682 0.0561644 6.2 0.0259347
0.3 0.0561438 0.0384891 2.3 0.148626 0.126205 4.3 0.0539003 0.0535214 6.3 0.0251088
0.4 0.0745141 0.0507132 2.4 0.144648 0.122075 4.4 0.0511791 0.0513739 6.4 0.0242829
0.5 0.0914394 0.0624416 2.5 0.138100 0.118276 4.5 0.0492405 0.0487309 6.5 0.0236221
0.6 0.106869 0.0735093 2.6 0.131473 0.115137 4.6 0.0470903 0.0469138 6.6 0.0229613
0.7 0.121719 0.0837511 2.7 0.12615 0.110677 4.7 0.0453286 0.0450967 6.7 0.0221354
0.8 0.134211 0.0931669 2.8 0.120057 0.106547 4.8 0.043644 0.0431145 6.8 0.0214746
0.9 0.145262 0.101922 2.9 0.112581 0.102748 4.9 0.0417381 0.0414626 6.9 0.0209791
1.0 0.154958 0.109521 3.0 0.106808 0.0979574 5.0 0.0399759
1.1 0.162921 0.116293 3.1 0.100863 0.0936624 5.1 0.038324
1.2 0.168841 0.121745 3.2 0.0947845 0.0898631 5.2 0.0366721
1.3 0.173264 0.126535 3.3 0.0905315 0.0860637 5.3 0.0355157
1.4 0.176417 0.130335 3.4 0.0856055 0.0816036 5.4 0.034029
1.5 0.17854 0.132978 3.5 0.0818209 0.0782998 5.5 0.0328727
1.6 0.177695 0.134134 3.6 0.0768459 0.0745005 5.6 0.0317164
1.7 0.175969 0.135621 3.7 0.0728331 0.0707011 5.7 0.0307252
1.8 0.174664 0.13529 3.8 0.0694836 0.0680581 5.8 0.0295689
1.9 0.170830 0.134629 3.9 0.0650267 0.0645891 5.9 0.0285778
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FIG. 12. Left: comparison of cation molarity between DISCOS (red) and MD (black), for a channel with
dielectric boundaries and a wall normal electric field. All simulation parameters have been selected to match
those in Ref. [81]. Right: comparison of electro-osmotic flow between DISCOS and the continuum electrolyte
code described in Ref. [11]. The red circles and black crosses represent the DISCOS and continuum fluid
velocities a short time after the electric field has been applied. The red squares and black diamonds show the
flow at large time when the system has reached steady state.

APPENDIX C: COMMENTS ON NONPERIODIC BOUNDARIES

As mentioned in Secs. I and VI, one advantage of the DISCOS method is the ability to handle
nonperiodic, or confining, boundary conditions with relative ease. As the techniques used to do so
require some exposition, and a range of case studies are required to validate these techniques, we
defer a complete description to a future publication. However, here we give a brief outline of some
of the issues.

There are two major considerations when incorporating confining boundary conditions: (i)
boundary conditions for the P3M electrostatic interactions, and (ii) boundary interactions for the
dry component of the solvent. We now describe each of these in turn, then give several example
simulations. Nonperiodic boundary conditions can easily be incorporated in a finite volume dis-
cretization of Poisson’s equation. The short-range corrections adjacent to boundaries are included
using image particles [80]. In this case FLC

i j , Eq. (40), is trivial to calculate using the location of the
image particles.

For the wet component of the hydrodynamic interactions, no additional steps are required to
add confining boundaries; these are trivially incorporated into the GMRES method. In particular,
extensive discussion of no-slip walls in the context of the FIB method is given in Ref. [24].
An adjustment to the dry component of the particle mobility is required to account for nearby
boundaries. For some simple geometries there are analytic solutions, e.g., a formula is available
for a single infinite plane. For general geometries, the modification to the dry mobility must be
precomputed by solving Stokes’ equation on a grid corresponding to a fully wet simulation.

In Fig. 12 we give two examples of simulations performed using the above approaches. In each
case an infinite slit channel is used, i.e., periodic boundaries in two dimensions and confining
boundaries in the third. In the first we show the distribution of particles when homogeneous Dirichlet
and homogeneous Neumann boundary conditions are used for the hydrodynamic and electrostatic
solutions, respectively; this corresponds closely to a no-slip dielectric surface with a material of low
dielectric constant on the outside of the channel. Additionally, a constant potential drop has been
applied across the channel. The DISCOS solution is compared to a molecular dynamics result from
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Ref. [81], and excellent agreement is observed. In the second example, an electric field is applied
parallel to the channel walls, and an inhomogeneous Neumann condition is applied to the electrical
potential; this corresponds to a wall with surface charge. To ensure overall charge neutrality an
imbalance of positive and negative ions is present in the channel itself, inducing an electro-osmotic
flow. The resulting solvent velocity profile is compared to a deterministic version of the method
given in Ref. [11]. Reasonable agreement is observed; the 9% difference in the peak velocity is
possibly due to the absence of thermal fluctuations in the deterministic continuum solution.
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