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Flow structure and loads over inclined cylindrical rodlike particles and fibers
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The flow past a fixed finite-length circular cylinder, the axis of which makes a nonzero
angle with the incoming stream, is studied through fully resolved simulations, from
creeping-flow conditions to strongly inertial regimes. The investigation focuses on the way
the body aspect ratio χ (defined as as the length-to-diameter ratio), the inclination angle
θ with respect to the incoming flow, and the Reynolds number Re (based on the cylinder
diameter) affect the flow structure past the body and therefore the hydrodynamic loads
acting on it. The configuration θ = 0◦ (where the cylinder is aligned with the flow) is
first considered from creeping-flow conditions up to Re = 400, with aspect ratios up to 20
(10) for Re � 10 (Re � 10). In the low-to-moderate Reynolds-number regime (Re � 5),
influence or the aspect ratio, inclination (from 0◦ to 30◦), and inertial effects are examined
by comparing numerical results for the axial and transverse force components and the
spanwise torque with theoretical predictions based on the slender-body approximation,
possibly incorporating finite-Reynolds-number corrections. Semiempirical models based
on these predictions and incorporating finite-length and inertial corrections extracted
from the numerical data are derived. For large enough Reynolds numbers (Re � 102),
separation takes place along the upstream part of the lateral surface of the cylinder, deeply
influencing the surface stress distribution. Numerical results are used to build empirical
models for the force components and the torque, valid for moderately inclined cylinders
(|θ | � 30◦) of arbitrary aspect ratio up to Re ≈ 300 and matching those obtained at
low-to-moderate Reynolds number.

DOI: 10.1103/PhysRevFluids.6.044308

I. INTRODUCTION

The flow past rodlike cylindrical particles or cylindrical fibers with circular cross section is
involved in many industrial and natural processes such as bubbling fluidized beds, pulp and paper-
making, or the sedimentation of ice crystals in clouds. Despite the large number of studies devoted
to the flow past a circular cylinder held perpendicular to the incoming flow in the laminar and
transitional regimes, much less is known when the body is arbitrarily inclined or even aligned with
this incoming flow. Three dimensionless parameters then govern the problem when the upstream
flow is steady and uniform: the aspect ratio χ = L/D where L is the length of the cylinder and D
its diameter, the inclination angle θ (pitch or yaw angle) which is the angle between the cylinder
axis and the incoming velocity, and the Reynolds number Re = ρUD

μ
, where U is the norm of the

upstream velocity, and ρ and μ are the fluid density and dynamic viscosity, respectively.
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Up to now, the flow past long rigid cylinders and the loads acting upon them have been inves-
tigated in two markedly different contexts. The first of them is the dynamics of dilute suspensions
of slender particles, the theoretical study of which was pioneered by Batchelor [1] and Cox [2] in
the creeping-flow limit. The corresponding results for the force and torque acting on an isolated
fiber (see also [3]), based on the slender-body theory, were extended to low-but-finite Reynolds
numbers by Khayat and Cox [4]. Since then, these various predictions have been extensively used in
numerical simulations, be it to study the influence of hydrodynamic interactions and concentration
on the sedimentation of a fiber suspension [5,6] or to reveal the dispersion properties of such
suspensions in isotropic [7] or wall-bounded [8] turbulence; see [9] for a review.

The second stream of investigations, often motivated by vortex-induced vibrations and applica-
tions to fluid-structure interactions, has focused on larger Reynolds numbers. Ramberg [10] studied
experimentally the flow past long inclined cylinders with various end shapes for Reynolds numbers
in the range 1.5 × 102–103. His experiments provide a qualitative map of the wake topology and
shedding process as a function of the inclination angle. In particular, they show that, unlike the
classical vortex patterns observed when the cylinder is held perpendicular to the flow [11], the wake
is dominated by a pair of counter-rotating vortices emanating from the ends when the inclination
angle is small enough. Numerical studies of the flow past an inclined cylinder in inertia-dominated
regimes have also been reported [12,13]. Based on the numerical data, these investigations proposed
empirical expressions for the drag and lift forces valid throughout the considered range of χ and Re
for arbitrary inclinations. Both studies examined the applicability and limitations of the so-called
Independence Principle [10,14,15]. This “principle,” which states that the perpendicular force on a
long cylinder depends solely on the normal velocity component of the incoming flow, was shown
to apply only to large inclinations θ � 45◦. Pierson et al. [13] also considered the possibility to
extend trigonometric relations valid under Stokes flow conditions to obtain the drag and lift forces
at an arbitrary θ through simple linear combinations of the drag forces corresponding to the two
extreme cases θ = 0◦ and 90◦, an approach that has proved successful for prolate spheroids over a
wide range of Reynolds numbers [16].

In this paper, we expand on available studies by considering the flow past finite-length cylinders
with flat ends, from creeping-flow conditions up to Re � 300 for moderate inclinations, namely,
0◦ � θ � 30◦. The cylinder aspect ratio is varied from 2 to 20 in the reference case θ = 0◦, and from
3 to 10 in inclined configurations. By considering this wide range of Reynolds number, we aim at
bridging the gap between conditions typical of submillimeter-diameter fibers relevant, for instance,
to paper making (for which D stands typically in the range 15–30 μm) and millimeter-diameter
rodlike particles relevant to fluidized beds (which have aspect ratios typically in the range 2–10). The
reason why we concentrate on low-to-moderate inclinations is twofold. First, as already mentioned,
the current knowledge of the flow structure and drag variations with Re over a slender circular
cylinder aligned with the flow is still far from complete. To the best of our knowledge, no study
has considered this configuration from creeping-flow conditions up to Reynolds number of some
hundreds which are easily reached in some of the applications mentioned above. Similar to the
case of a finite-length cylinder held perpendicular to the flow, a more complete description of this
reference configuration is mandatory to improve the predictions of the trajectories of sedimenting
rodlike particles and fibers spanning all possible orientations with respect to their path. Then,
with the same final objective in mind, an important question in inertia-dominated regimes is to
understand how the flow structure and the loads on the body are affected by the loss of axial
symmetry encountered as soon as the inclination angle becomes nonzero. In particular, given
the three-dimensional nature of the flow past an inclined cylinder, it is not clear how far the
trigonometric approach mentioned above can be used to predict realistically the loads acting on
it, based only on results for the axisymmetric geometry corresponding to θ = 0◦ and the nearly
two-dimensional geometry (for large χ ) corresponding to θ = 90◦. These are the main objectives
of the present investigation.

The paper is organized as follows. We first present the numerical approach in Sec. II and, in
Appendix A, provide a validation of this approach by comparing some of the results obtained
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FIG. 1. Scheme of the computational domain in an azimuthal plane (not to scale).

at moderate Reynolds number with those of [13]. In Sec. III, we specifically examine the case
of a finite-length cylinder aligned with the incoming flow. We first consider (Sec. III A) low-
to-moderate Reynolds numbers, for which we use numerical results to improve over available
drag predictions provided by the slender-body approximation (in Appendix B, we extend the
available theoretical prediction in the creeping-flow limit by computing explicitly the next-order
finite-aspect-ratio correction). Then (Sec. III B), we consider Reynolds numbers in the range 20–400
and use numerical predictions for the pressure and viscous contributions to the drag to obtain
an empirical drag law valid whatever χ throughout this range of Re. The inclined configuration
is examined in Sec. IV in the low-to-moderate Reynolds number range. We compare numerical
findings with available theoretical predictions and make use of results established in Sec. III A to
provide semiempirical laws for the drag, lift, and torque as a function of the control parameters
(since the law for the transverse force involves the drag on a cylinder held perpendicular to the flow,
we discuss slender-body predictions in this specific configuration and extend them empirically in
Appendix C). In Sec. V, we proceed with the flow past an inclined cylinder in the moderate-to-large
Reynolds number range 10 � Re � 300. We analyze the structure of the steady nonaxisymmetric
flow and its connection with the observed, sometimes nonintuitive, variations of the loads with
Re, θ , and χ . We finally provide empirical fits capable of reproducing these complex variations
throughout the explored range of parameters. A summary of the main results and a discussion of
some open issues are provided in Sec. VI.

II. NUMERICAL METHODOLOGY

We consider the uniform incompressible steady flow of a Newtonian fluid past a finite-length
circular cylinder. Computations are carried out with the JADIM code developed at IMFT. This
code was used in the past to investigate various problems involved in the local dynamics of
particle-laden and bubbly flows, among which the hydrodynamic forces acting on spheres in
uniform or accelerated flows [17], the transition in the wake of spheres, disks and short cylinders
[18,19], and the path instabilities of freely falling disks and light spheres [20,21]. The code solves
the three-dimensional unsteady Navier-Stokes equations using a finite volume discretization on
a staggered grid. Centered schemes are used to discretize spatial derivatives in the momentum
equation. Time advancement is achieved by combining a third-order Runge-Kutta algorithm for
advective terms with a Crank-Nicolson scheme for viscous terms. The divergence-free condition is
satisfied to machine accuracy at the end of each time step using a projection method. More details
on the numerical methodology may be found in [17,22].

The present investigation makes use of a cylindrical computational domain with length L
and radius R (Fig. 1). The length L may be decomposed as L = Lup + L + Ldown, where Lup

(respectively Ldown) is the distance between the domain inlet (outlet) and the upstream (downstream)
end of the cylinder. In what follows, for moderate-to-large Reynolds numbers (say Re > 5), we
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select Lup = 12Dχ1/3 and Ldown = 20Dχ1/3. The reason why Lup and Ldown are defined based
on Dχ1/3, a length scale proportional to the diameter of the equivalent sphere, i.e., the sphere
with the same volume as the cylinder, is that this choice makes the size of the domain vary
with the body aspect ratio while keeping the computational cost reasonable [13]. With the above
choice, Ldown is larger than 15D even for χ = O(1), which guarantees that the near wake is
properly resolved for short-length cylinders [23]. The radius of the numerical domain is chosen
as R = 0.5D + 20Dχ1/3(1 + 0.8 sin θ ) (Fig. 1). It increases with the inclination angle to make sure
that the wake is correctly captured whatever the body inclination. At low Reynolds number, care
must be taken of artificial confinement effects inherent to the 1/r decay of the disturbance (with r the
distance to the body center). For this reason, in the low-to-moderate Re regime Re � 5, we increase
Lup and Ldown by a factor of at least 2, and increase R by a factor of at least 3 compared to the
above values. A uniform fluid velocity making an angle θ with the body axis is specified on the inlet
plane (Fig. 1). A no-slip boundary condition is imposed on the body, while a nonreflecting boundary
condition is imposed on both the outlet plane and the lateral boundary [17]. We define a Cartesian
coordinate system (x, y, z) centered at the body geometrical center, with x parallel to the body
symmetry axis and z perpendicular to the plane containing the direction of the upstream flow and the
body axis. In this coordinate system, the incoming velocity is U = (U cos θ,U sin θ, 0). Simulations
are performed with an axisymmetric cylindrical grid involving regions with uniform and nonuniform
cell distributions. In the cross-sectional plane z = 0, a refined uniform distribution is used near the
corners of the body, to properly capture the local flow (see [20] for details). A slightly nonuniform
distribution is imposed in a rectangular region extending up to 0.5D outside of the body in each
direction (dashed line in Fig. 1). In this flow region, the cell aspect ratio is maintained below 4
everywhere. Nonuniform cell distributions are used around the symmetry axis y = z = 0 and near
the body symmetry plane x = 0. In the low-to-moderate Reynolds-number regime Re � 5, we select
a grid with 20 cells per body diameter (earlier computations were performed with only 12 cells per
body diameter and minimal changes were noticed between the two resolutions). For larger Reynolds
numbers, we assume that the boundary-layer thickness scales as D Re−1/2 and make sure that at least
8 cells stand within it. The characteristic grid size in this region is thus � ≈ D/(8 Re1/2). Whatever
the Reynolds number, the grid is nonuniform in the outer region (i.e., beyond the dashed rectangle
in Fig. 1), with cell sizes following a geometric law. For Re > 5, the growth of the cells along
the domain axis is controlled to guarantee that the wake is adequately resolved. In the azimuthal
direction, 32 to 128 planes are used, depending on the Reynolds number. No discernible difference
in the solutions returned by the 32 and the 64 azimuthal resolutions was noticed up to Re = 5.
The highest azimuthal resolution ensures that the cells closest to the body have approximatively
the same size in all three directions. Although the code has been extensively validated in the past,
an additional validation involving a grid convergence analysis is reported in Appendix A. Present
results are found to agree well with those of [13] obtained with a distinct numerical methodology.

III. CYLINDER ALIGNED WITH THE UPSTREAM FLOW

In this section we investigate the flow past a finite-length cylinder aligned with the incoming
velocity. Our main purpose is to provide drag laws for cylinders of arbitrary aspect ratio beyond 2
over a wide range of Reynolds number (0.05 � Re � 400). We consider aspect ratios up to 20 and
discuss the results in ascending order of Reynolds number.

A. From creeping-flow conditions to O(10) Reynolds numbers

No exact results for the stress distribution on a finite-length cylinder exists in the Stokes regime.
Clift et al. [24] reported a detailed comparison of numerical and experimental results with empirical
laws from the literature aimed at estimating the drag force on a cylinder aligned with the upstream
flow. Approximating the cylinder geometry with a prolate spheroid of same volume yields a relative
error up to 15% on the drag for small aspect ratios (χ ≈ 2). To provide a drag law valid for χ � 2,
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FIG. 2. Drag on a finite-length cylinder aligned with the flow direction, normalized by the drag Fds of a
sphere of same volume. Dotted, dashed-dotted, and dashed lines: predictions of second-, third-, and fourth-
order slender-body approximations, respectively; solid line: semiempirical formula (1); •: numerical results of
[26]; �: experimental results of [27]; �: present numerical results for Re = 0.05.

we start from the slender-body theory. This theory provides a convenient framework to compute
the forces on a slender body under creeping-flow conditions through an expansion with respect to
the small parameter 1/ ln(2χ ) for χ � 1 [1,2]. The solution corresponding to a a straight circular
fiber was obtained to third order by Batchelor [1] and Keller and Rubinow [25]. In Appendix B, we
improve over these predictions by computing explicitly the fourth-order term. In what follows, we
compare this improved prediction with several sources, namely, the numerical results of Youngren
and Acrivos [26], present numerical results obtained for Re = 0.05, and experimental results by
Heiss and Coull [27].

Figure 2 displays the drag force Fd ≡ F · ex on the body, normalized by the force Fds on a sphere
of same volume [i.e., with diameter D/D = ( 3

2χ )1/3)], as a function of χ . Clearly, the second-order
slender-body approximation (see Appendix B) is quite inaccurate, even for large aspect ratios. The
third-order approximation provides a better agreement, but significant deviations (>5%) still exist
for χ = 20. The fourth-order approximation computed in Appendix B approaches the experimental
and numerical results down to χ ≈ 10 significantly better. However, all slender-body approxi-
mations inherently diverge when χ → 1

2 . Actually, Fig. 2 indicates that they are all inaccurate
for χ � 5; the higher the order of the expansion, the larger the aspect ratio below which the
slender-body approximation becomes inaccurate. To extend the domain of validity of the theoretical
approximation towards short cylinders, we empirically correct the fourth-order approximation by
introducing an ad hoc additional term. This term must attenuate the divergence of the slender-body
approximation for χ → 1

2 and become negligible for χ = O(10). Therefore, we sought it in the form
χ1/3(χ − 1

2 )−p, in such a way that only a (χ − 1
2 )−p correction is introduced in the normalized force

Fd/Fds. The best fit with experimental and numerical data in the range 2 � χ � 10 is obtained with
p = 1.75, a ±3% difference on p leading to a significantly poorer agreement.

The full expression for the drag force incorporating this empirical term then reads as

F Re=0
d ≈ 2πμLU

(
a(1)

ln(2χ )
+ a(2)

[ln(2χ )]2
+ a(3)

[ln(2χ )]3
+ a(4)

[ln(2χ )]4
− 2.4

χ2/3
(
χ − 1

2

)1.75

)
, (1)

with U = U · ex and the expressions for the a(i) as provided in Appendix B. As Fig. 2 shows, the
modified drag law fits the numerical and experimental results well for χ � 2. It still diverges for
lower χ , but the drag is then close to that experienced by the equivalent sphere (Fd/Fds � 1.05).
Present numerical predictions in the range 3 � χ � 10 are also seen to agree well with results
available in the literature. The slight deviation observed for χ = 20 is not unexpected. Indeed, the
Reynolds number based on the body length is of O(1) in this case, making inertial corrections to
the drag significant (see below). The pressure component to the drag Fd p results from the difference
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FIG. 3. Radial pressure distribution on the upstream end of the cylinder for Re = 0.05. •: χ = 3; �: χ = 5;
+: χ = 7; �: χ = 10; �: χ = 20. The pressure is assumed to be zero in the far field.

between the pressure distributions on the upstream and downstream ends of the cylinder. Owing to
the fore and aft symmetry of the flow in the Stokes regime, these two distributions only differ by the
sign of the corresponding pressure since p(r, x = L/2) = −p(r, x = −L/2). Figure 3 displays the
radial pressure distribution on the upstream end. For each χ , the pressure is seen to increase with
the distance r to the symmetry axis. At a given radial position, pressure variations are only mildly
influenced by the aspect ratio, but this influence becomes larger as the lateral surface is approached.

Figure 4(a) indicates that Fd p only varies weakly with χ . It consistently decreases with the aspect
ratio but its variation is less than 20% from χ = 3 to 20. Figure 4(b) shows the ratio of the pressure
contribution to the viscous stress contribution to the drag as a function of χ . This ratio is close to 1

3
for χ = 3. Then it decreases gradually as χ increases, and becomes less than 1

10 for χ = 20. Hence,
as expected from purely geometrical considerations, Fd p becomes negligible with respect to Fdμ for
large χ . It is of some interest to compare this variation with that found for prolate spheroids, namely
[28],

Fd p

Fdμ

= χ ln[χ + (χ2 − 1)1/2] − (χ2 − 1)1/2

χ2(χ2 − 1)1/2 − χ ln[χ + (χ2 − 1)1/2]
. (2)

As Fig. 4(b) indicates, the pressure drag decreases much more slowly with the aspect ratio in the
case of a cylindrical body with flat ends. This difference underlines the importance of end effects
even for long cylindrical bodies.

Next, we consider the influence of inertial effects at low-to-moderate Reynolds number. The
slender-body theory initially derived under Stokes flow conditions was extended to small-but-finite
Reynolds numbers in [4], still assuming Re � 1 but considering that the Reynolds number based
on the body length, χRe, may be arbitrarily large. Lopez and Guazzelli [29] and Roy et al. [30]
provided experimental confirmations of the relevance of the finite-Re corrections derived in [4] by
examining the settling of long fibers (10 � χ � 35) in a Taylor-Green–type vortical flow and the

FIG. 4. Contributions to the drag force. (a) Pressure contribution; (b) ratio of the pressure to the shear stress
contributions. �: numerical results for Re = 0.05; solid line: low-Re prediction (2) for a prolate spheroid.
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(a) (b)

(c) (d)

FIG. 5. Influence of inertial effects on the drag of finite-length cylinders aligned with the upstream flow.
The drag is normalized by that of a sphere of same volume. �: numerical results; solid line: semiempirical
prediction (5); dashed line: theoretical prediction (3); dotted line: predictions (1) (upper line) and (3) with
Re = 0 (lower line).

sedimentation of isolated fibers with χ = 20 and 100 in a fluid at rest, respectively. Nevertheless,
we are not aware of any detailed validation of the finite-Re theory of [4] in the case of a body
aligned with the upstream flow. According to this theory (see also [29,30]), the drag force on a long
cylindrical body aligned with the flow, disregarding terms of O[(1/ ln χ )3] and higher, reads as

FχRe=O(1)
d ≈ 2πμLU

(
a(1)

ln χ
+ a(2) − ln 2 + f‖

(ln χ )2

)
, (3)

where

f‖ = 1

2

(
E1(χRe) + ln(χRe) − e−χRe + γ + 1

χRe
+ E1(χRe) + ln(χRe) + γ − 2

)
, (4)

with E1(X ) = ∫ +∞
X

e−t

t dt [related to the exponential integral Ei(X ) through E1(X ) = −Ei(−X )],
and γ the Euler constant. In the limit of small χRe, the inertial correction factor reduces to f‖ ≈
1
8χRe. Note that in (1) and throughout the rest of the paper, the slender-body solution is expanded
with respect to 1/ ln(2χ ), similar to [1,3,25]. In contrast, an expansion with respect to 1/ ln(χ ) was
used in [4]. Once truncated at the same order, the two formulations are of course equivalent for
χ � 2, but significant differences exist for moderate aspect ratios. This is why we keep the original
formulation in (3) and in similar expressions of Sec. IV involving the inertial corrections derived in
[4].

The main shortcoming of (3) is obviously the truncation at second order with respect to 1/ ln χ .
This limitation is confirmed in Fig. 5, where the influence of inertial effects on the drag force is
shown for cylindrical bodies with different aspect ratios. Significant deviations between numerical
results and predictions of (3) are observed whatever Re and χ . It is thus desirable to include higher-
order corrections with respect to 1/ ln(2χ ) to improve the validity of (3). The analysis of [4] was
recently extended to third order in [31] using the reciprocal theorem. However, the prefactor of
the third-order term is found in the form of a volume integral to be evaluated in Fourier space. To
obtain a more straightforward formula accounting for small-but-finite inertial effects, we use present
numerical results to empirically modify (3) by taking advantage of the higher-order corrections

044308-7



KHARROUBA, PIERSON, AND MAGNAUDET

FIG. 6. Streamlines pattern for χ = 2 colored with the magnitude of the axial velocity (from −0.25 to 1).
(a) Re = 140; (b) Re = 300.

present in (1). The best agreement with the numerical results is obtained with the expression

FχRe=O(1)
d ≈ 2πμLU

[
a(1)

ln(2χ )
+ a(2) + f‖

[ln(2χ )]2
+ a(3) + f3 f‖

[ln(2χ )]3
+ a(4) + f4 f‖

[ln(2χ )]4
− 2.4

χ2/3
(
χ − 1

2

)1.75

]
,

(5)
with f3 = (χRe)0.07χ0.5

and f4 = (χRe)0.03χ0.9
. Predictions of (5) are compared with numerical

results in Fig. 5. The agreement is found to be good up to Re ≈ 1 whatever the aspect ratio. This is
quite remarkable since the derivation of (5) assumes Re � 1 (but possibly χRe � 1 since χ � 1).
Khair and Chisholm [31] also found that their analytical prediction agrees well with the numerically
computed drag on a long prolate spheroid up to Re ≈ 2 for χ = 10.

B. From O(10) to O(4 × 102) Reynolds numbers

Increasing the Reynolds number, we considered 6 aspect ratios ranging from 2 to 10 and 20
Reynolds numbers from Re = 20 to 400. The flow past the cylinder was found to reach a steady state
in all cases. Nevertheless, the flow structure revealed new features as the Reynolds number increases.
Figure 6(a) displays the streamlines around a cylinder with χ = 2 for Re = 140. In this regime, the
flow is attached to the body all along the lateral surface but the separation of the boundary layer
at the downstream edge results in the generation of a toroidal eddy in the near wake. Simulations
indicate that this standing eddy sets in for Re ≈ 10 for χ = 2 and Re ≈ 20 for χ = 7. The length
of the standing eddy is plotted in Fig. 7 as a function of the Reynolds number. Remarkably, it is
found to be almost independent of χ and grows approximately as the square root of the Reynolds
number.

As the Reynolds number increases, a thin secondary annular eddy sets in along the upstream part
of the lateral surface of the body [Fig. 6(b)], owing to the detachment of the boundary layer along

FIG. 7. Variation of the length lr of the toroidal eddy vs the Reynolds number past cylinders with different
aspect ratios; lr is measured along the symmetry axis, from the downstream end of the cylinder to the point
at which the axial velocity changes sign. �: χ = 1 from [23]; �: χ = 2; •: χ = 3; ×: χ = 4; �: χ = 5; +:
χ = 7; solid line: lr (Re) = 0.083Re1/2.
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(a) (b) (c)

FIG. 8. Pressure drag coefficient Cp as a function of Re for different aspect ratios. (a) Upstream end;
(b) downstream end; (c) sum of the two contributions. �: χ = 2; ×: χ = 4; +: χ = 7; �: χ = 10; solid
line in (a): empirical fit (6); solid line in (b): empirical fit (7); solid line in (c): sum (6)+(7) for χ = 2 (upper
line) and χ = 10 (lower line).

the upstream edge. The critical Reynolds number Rec0 beyond which this flow pattern is detected
is a slowly increasing function of the aspect ratio: from Rec0 ≈ 180 for χ = 2, to Rec0 ≈ 200 for
χ = 5, Rec0 ≈ 220 for χ = 7, until Rec0 ≈ 240 for χ = 10. It will be seen later that this secondary
eddy has a strong influence on the viscous friction experienced by the cylinder. Figures 8(a) and 8(b)
display the variation with Re of the pressure drag coefficient Cp = 8Fd p/(πρD2U 2) on the upstream
and downstream ends of the body for various χ . For each aspect ratio, both contributions decrease
monotonically with Re. The pressure coefficient on the downstream end (Cpdown ) is three to four times
smaller than that on the upstream end (Cpup ) for Re ≈ 100 and becomes only a small fraction of the
latter for Re ≈ 400. Moreover, Cpup is almost independent of χ (except for the shortest cylinder),
while Cpdown gradually decreases as the aspect ratio increases. Last, for χ > 2 and Re � 300, Cpup

is seen to tend toward an almost constant value slightly larger than 0.6. Based on these remarks,
approximate expressions for the two contributions take the form

Cpup (χ, Re) ≈ 0.62 + 11.7

Re0.9(1 + 0.004Re0.9)
, (6)

Cpdown (χ, Re) ≈ 2.05χ−1/4Re−1/2. (7)

As Fig. 8(c) confirms, numerical data for the total pressure drag coefficient Cp = Cpup + Cpdown

are accurately fitted by the sum of (6) and (7). Figure 9(a) displays the variation of the viscous
drag coefficient Cμ(χ, Re). This contribution is seen to be an increasing function of χ . Indeed, the
area of the lateral surface of the body may be expressed in the form πD2χ . Hence, the normalized
viscous force Cμ = 8Fdμ/(πρD2U 2) is expected to increase almost linearly with the aspect ratio. As

(a) (b)

FIG. 9. Drag coefficient as a function of Re for different aspect ratios. (a) Viscous contribution Cμ; (b) total
drag coefficient Cd . �: χ = 2; ×: χ = 4; +: χ = 7; �: χ = 10; for each aspect ratio, the solid lines in (a) and
(b) represent the fits (8) and (9), respectively.
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usual, Cμ is also a decreasing function of the Reynolds number. However, the observed decrease is
much steeper than the classical Re−1/2 behavior expected on the basis of the boundary-layer theory.
The reason for this stands in the presence of the secondary annular eddy along the lateral surface.
The corresponding backflow generates a negative local shear stress which lowers the overall viscous
drag. For sufficiently short cylinders and large enough Reynolds numbers, this negative contribution
may exceed the positive contribution of the shear stress on the rest of the lateral surface, yielding an
overall negative viscous drag. This change of sign takes place at Re ≈ 420 for χ = 2. Based on the
previous findings, a simple fit for Cμ is found to be

Cμ(χ, Re) ≈ 16.45χ0.7Re−0.8 + (a1χ − a2)Re , with a1 = 4.1 × 10−5 and a2 = 6 × 10−4.

(8)
As Fig. 9(a) shows, the above fit describes the variations of Cμ well throughout the entire range of
aspect ratios and Reynolds numbers explored numerically. The last term in the right-hand side of
(8) accounts for the influence of the annular eddy. Note that according to (8), the dependence of
Cμ with respect to χ is slightly weaker than expected on the basis of the above simple geometrical
argument.

As Figs. 8 and 9 evidence, pressure effects contribute less to the drag than viscous friction for
Re � 100. For Reynolds numbers in the range 100 � Re � 300 and short cylinders (χ � 4), both
contributions have a comparable magnitude. However, due to the sharp decrease of the viscous
contribution for Re � 400 for such short cylinders, the latter eventually becomes smaller than the
pressure contribution in the upper part of the Re range covered by present computations. Adding
the approximate expressions (6), (7), and (8), the total drag coefficient is approached as

Cd (χ, Re) ≈ Cpup (χ, Re) + Cpdown (χ, Re) + Cμ(χ, Re). (9)

As Fig. 9(b) indicates, this fit is in good agreement with the numerically predicted drag throughout
the range of χ and Re covered by the simulations. Note that the upper limit of validity of this
fit is presumably Remax ≈ 400. In particular, the linear variation of Cμ with Re predicted by (8)
cannot continue at very large Reynolds number, as the drag coefficient is expected to decrease
with Re for Re > Remax and become Re independent in the limit Re → ∞. Conversely, it may be
checked that the above fit properly matches the modified low-but-finite Re prediction (5). Consider
for instance a cylinder with χ = 7 and Re = 5. On the one hand, (6)–(9) predict Cd ≈ 21.6 for
this set of parameters. On the other hand, according to Fig. 5, the ratio Fd/Fds predicted by (5)
is approximately 1.85. Keeping in mind that the diameter D of the equivalent sphere is related to
D through D/D = ( 3

2χ )1/3, one has Cd = 24 Re−1( 3
2χ )1/3Fd/Fds ≈ 21.9. Similarly, for the same

Reynolds number but χ = 20, one has Cd ≈ 40.7 from (6)–(9) and Cd ≈ 40.3 from Fig. 5 where
Fd/Fds ≈ 2.70. This agreement, which is confirmed with other sets of parameters, allows us to
conclude that combining (5) for Reynolds numbers less than a few units with (6)–(9) for larger Re
provides an accurate description of drag variations from Re = 0 up to Re = 400.

IV. FORCES AND TORQUE ON A MODERATELY INCLINED CYLINDER AT
LOW-TO-MODERATE REYNOLDS NUMBER

We now move to the more general configuration in which the cylinder is inclined with respect
to the incoming flow by a nonzero angle. For reasons discussed in Sec. I, we limit ourselves to
maximum inclinations of 30◦. The present section focuses on the low-to-moderate Reynolds number
range [0.1–5]. Higher Reynolds numbers are considered in the next section.

The nonzero inclination breaks the flow axial symmetry. Therefore, in addition to the force
component F‖ parallel to the cylinder axis, a perpendicular force component (F⊥) takes place,
together with a spanwise torque (T ) (Fig. 10). The above force components are linearly related
to the drag and lift forces Fd and Fl , respectively parallel and perpendicular to the incoming velocity
U, via the geometric relations

F‖(χ, θ, Re) = Fd (χ, θ, Re) cos θ − Fl (χ, θ, Re) sin θ, (10)
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FIG. 10. Schematic of the force components on an inclined cylinder. In this configuration, the inertial
torque is negative, tending to rotate the cylinder clockwise.

F⊥(χ, θ, Re) = Fl (χ, θ, Re) cos θ + Fd (χ, θ, Re) sin θ. (11)

In the Stokes regime, the linearity of the loads with respect to the boundary conditions implies
that the force acting on the inclined cylinder is linearly related to the drag acting on the same body
in the two extreme configurations θ = 0◦ and 90◦ through

F‖(χ, θ ) = F θ=0◦
‖ (χ ) cos θ, (12)

F⊥(χ, θ ) = F θ=90◦
⊥ (χ ) sin θ. (13)

These simple “Stokes laws” are not expected to remain valid when inertial effects become signifi-
cant. To assess and possibly extend their validity, an approximate expression for F θ=90◦

⊥ , similar to
(5) for F‖, is required. In Appendix C, we establish the fourth-order slender-body approximation
of F θ=90◦

⊥ (χ, Re = 0), and modify it empirically to extend its validity toward aspect ratios and
Reynolds numbers of O(1). To get some insight into the way inertial effects alter (12) and (13),
it is informative to consider the finite-Reynolds-number approximate expressions for Fd and Fl

established for arbitrary inclinations by [4]. Evaluating these expressions in the limit χRe � 1 and
making use of (10) and (11) yields

F‖(χ, θ, χRe � 1)

2πμUL
≈

(
F ∗θ=0◦

‖ (χ, χRe � 1) − 1

16
sin2 θ

χRe

(ln χ )2

)
cos θ, (14)

F⊥(χ, θ, χRe � 1)

4πμUL
≈

(
F ∗θ=90◦

⊥ (χ, χRe � 1) + 1

16
cos2 θ

χRe

(ln χ )2

)
sin θ, (15)

where F ∗
‖ and F ∗

⊥ stand for the dimensionless second-order expansion of the corresponding force
with respect to 1/ ln χ in the limit of low-but-finite χRe, as provided by (3) and (C3), respectively.
According to (3) and the asymptotic form of the inertial correction f‖ in the limit χRe → 0, one
has F ∗θ=0◦

‖ (χ, χRe � 1) = [lnχ ]−1 + ( 3
2 − 2 ln2 + 1

8χRe)[lnχ ]−2. Similarly, (C3) and the asymp-

totic form of f⊥ yield F ∗θ=0◦
⊥ (χ, χRe � 1) = [lnχ ]−1 + ( 1

2 − 2 ln2 + 1
4χRe)[lnχ ]−2. Expressions

(14) and (15) indicate that the angular dependence of F‖ and F⊥ becomes more complex in the
presence of inertial effects, involving higher-order harmonics of θ . Moreover, they suggest that the
θ -dependent inertial corrections tend to decrease F‖ and increase F⊥, compared to the prediction of
the extrapolated “Stokes law” based on the finite-Re drag forces F ∗θ=0◦

‖ and F ∗θ=90◦
⊥ .

Still in the Stokes regime, the spanwise torque is zero whatever θ , owing to the geometrical
symmetries of the cylinder and the reversibility of Stokes equations. However, nonlinearities
inherent to inertial effects result in a finite torque. In the limit Reχ � 1, the finite-Reynolds-number
expression for this torque obtained in [4] reduces to

T (χ, θ, χRe � 1)

μU (L/2)2
≈ −5π

12

χRe

(ln χ )2
sin 2θ. (16)

This negative torque tends to rotate the cylinder perpendicular to the flow direction.
In what follows, we make use of the numerical results to examine the validity of Stokes laws (12)

and (13) and of the predictions of [4] for low-to-moderate Reynolds numbers. Figure 11 displays
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(a) (b) (c)

FIG. 11. Parallel force component F‖ vs the inclination angle θ for •: χ = 3, �: χ = 5, �: χ = 10.
Dashed line: prediction (12) based on the numerical value of F θ=0◦

‖ ; solid line: prediction (12) based on the
semiempirical approximation (5) for F θ=0◦

‖ .

the parallel force component F‖ for three Reynolds numbers and aspect ratios χ = 3, 5, and 10,
respectively. At the lower two Re, variations of F‖ closely follow the cos θ behavior predicted by
(12) whatever the aspect ratio. This implies that the sin2 θ inertial correction in (14) has only a
marginal influence at moderate inclinations for χRe � 5. Indeed, for θ = 30◦, this correction is less
that 2% of F ∗θ=0◦

‖ whatever the aspect ratio. However, the inertial correction included in F ∗
‖ reaches

16% for χ = 10, indicating that inertial effects are already significant. In other words, in the range
of moderate inclinations considered here, the Stokes law still accurately predicts F‖(χ, θ, Re) for
Re � 1, provided the prediction makes use of the inertia-corrected drag F θ=0◦

‖ (χ, Re).
At Re = 5, influence of inertial effects has become dominant. Since the magnitude of θ -

dependent inertial correction also increases with Reχ , the larger the aspect ratio the stronger
these effects at a given Re. This may be appreciated in Fig. 11(c), where the difference between
the computed force and the prediction of the Stokes law is seen to increase significantly with χ

for θ > 10◦, from less than 2% for χ = 3 at θ = 30◦ to 9% for χ = 10 at the same inclination.
Interestingly, the underprediction of F‖ by the Stokes law is at odds with the low-χRe prediction
(14) which suggests that this “law” should overestimate F‖ since it ignores the negative sin2 θ inertial
contribution. This contradiction emphasizes the fact that the θ dependencies of inertial effects in the
low-χRe range and in the range 10 � χRe � 102 are drastically different.

Figure 12 shows the variations of the perpendicular force component in the same low-to-
moderate Re range. At Re = 0.1 [Fig. 12(a)], F⊥ is accurately approximated for the two cylinders
with χ = 3 and 5 by the Stokes law based on the creeping-flow prediction (C2) for F θ=90◦

⊥ (χ ). This
is no longer the case for χ = 10, where a significant underestimate may be noticed. In this case, the
length-based Reynolds number χRe is unity, implying that inertial effects are already significant.
This is why the Stokes law based on the composite expression (C4) for F θ=90◦

⊥ , which incorporates

(a) (b) (c)

FIG. 12. Perpendicular force component F⊥ as a function of θ for •: χ = 3, �: χ = 5, �: χ = 10. Solid
line: Stokes law (13) based on the semiempirical creeping-flow estimate (C2) for F θ=90◦

⊥ (χ ); dashed line: same
with F θ=90◦

⊥ based on the semiempirical finite-Re estimate (C4). In (a), the two estimates overlap for χ = 3; in
(b), the prediction for χ = 10 based on (C2) overlaps with that for χ = 5 based on (C4).
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(a) (b) (c)

FIG. 13. Torque as a function of θ for •: χ = 3, �: χ = 5, �: χ = 10. Solid line: asymptotic prediction
(17) for low-but-finite Re; dashed line: approximate fit (18) for χ = 5 and 10.

the inertial correction derived in [4], closely approaches the entire numerical data set. The validity
of the Stokes law based on (C4) is maintained for Re = 0.5 whatever the aspect ratio. For Re = 5
[Fig. 12(c)], predictions of the same law are found to deviate significantly from numerical results,
overestimating F⊥ by more than 10% for χ = 3 and underestimating it by a similar percentage for
χ = 10. This is no surprise since the inertial corrections involved in (C4) are based on the finite-Re
theory of [4] which assumes Re � 1. In this respect, the deviations observed in Fig. 12(c) may even
be considered as surprisingly small.

Variations of the spanwise torque with χ, θ , and Re are displayed in Fig. 13. As expected,
the torque is negative, tending to orient the cylinder broadside on. Variations with the cylinder
inclination closely follow the sin 2θ dependence predicted in the low-χRe limit by (16). The
magnitude of the torque increases with the Reynolds number, in line with its inertial nature. For
a given Re, the shorter the cylinder, the stronger the normalized torque. Numerical results are
compared with the full theoretical prediction of [4], namely,

T (χ, θ, Re � 1)

μU (L/2)2
= 2π

(ln χ )2

{
cos θ

[
Z (X ) − E1(X ) + ln X + γ

X
+ Z (Y ) − E1(Y ) + ln Y + γ

Y

]

+Z (Y ) − Z (X )

}
sin θ + O

(
1

(ln χ )3

)
, (17)

where Z (X ) = 2
X (1 + e−X −1

X ), X = 1
2χRe(1 − cos θ ), Y = 1

2χRe(1 + cos θ ), and E1 and γ as de-
fined in (4). According to Fig. 13, this prediction closely approaches the numerical results for the
longest cylinder up to Re=0.5, together with those for the intermediate cylinder at Re = 0.1. It is
no surprise that the low-but-finite Re theory is unable to provide a reasonable prediction for any of
the three cylinders at Re = 5. In their experiments, Roy et al. [30] considered cylindrical fibers with
Re ≈ 0.15. With χ = 20 they found the theory of [4] to overpredict the torque by more than 20% for
χ = 20 at θ = 30◦, and to slightly underpredict it (by 7%–8%) for χ = 100. Present results provide
a stronger support to the theory since the difference observed in Fig. 13(a) is only of the order of
5% for χ = 10 and clearly decreases with increasing χ . The fact that the asymptotic prediction,
in which terms of O[(ln χ )−3] are neglected, correctly estimates the torque on a χ = 5 cylinder at
Re = 0.1 but not at Re = 0.5, while it still provides an accurate prediction at the same Reynolds
number for χ = 10 is noticeable. It suggests that the conditions Re � 1 and χ � 1 on which the
asymptotic prediction is grounded must rather been understood as Re � 1 and Re/χ2 � 1. Indeed,
the ratio Re/χ2 stands below 0.005 in all three configurations correctly predicted by (17), while it is
beyond 0.01 in all other cases. For practical purposes, we sought an empirical fit of the torque valid
for long enough cylinders and reducing to (16) [the limit form of (17)] for χRe → 0. As all three
panels in Fig. 13 indicate, numerical data corresponding to χ = 10 and 5 are accurately approached
by the formula

T (χ � 1, θ, Re)

μU (L/2)2
≈ −5π

12

Re

(1 + χRe1.1)0.5

{
χ

(ln χ )2
+ 13.5 − 30 Re1/2

χ (ln χ )3
e−0.7Re

}
sin 2θ. (18)
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The O[χ−1(ln χ )−3]-term only provides a marginal contribution for χ = 10. Consequently, the
leading-order O[χ (ln χ )−2] truncation of (18) is sufficient to correctly estimate the torque on
cylindrical fibers with χ � 10 up to Re = 5. A correction proportional to (ln χ )−4 may certainly
be incorporated in (18) to properly estimate the torque on very short cylinders.

V. FULLY INERTIAL STATIONARY REGIME

As pointed out in Sec. III B, the flow past a cylinder aligned with the incoming velocity is
stationary and axisymmetric within the full range of Re investigated here. Although the axial
symmetry breaks down when θ is nonzero, the flow remains stationary up to a critical Reynolds
number Rec(χ, θ ) larger than 300. Details on the first unsteady regimes that take place beyond
this threshold are provided as Supplemental Material [32]. Here we concentrate on the stationary
nonaxisymmetric regime extending from Reynolds numbers of O(10) up to Rec. To limit the
computational cost, simulations in this regime were only carried out for cylinders with aspect
ratios χ = 3, 5, and 7. However, the results to be discussed hereinafter suggest that the flow
structure and loads are only weakly affected by short-length effects beyond χ ≈ 5 in this range of
Reynolds number, although the inertial load coefficients defined below may well continue to depend
on χ , even for χ � 1. Consequently, the physical phenomena involved and the simulation-based
approximate expressions for the loads provided below are expected to apply without significant
changes to cylinders with χ � 1, which makes them relevant to analyze the motion of long
cylindrical fibers in inertia-dominated regimes.

In Sec. III B, we showed that, for Reynolds numbers of O(102), the flow structure past a cylinder
aligned with the incoming velocity exhibits the presence of a thin annular standing eddy along the
upstream part of the lateral surface. This feature was found to significantly influence the drag force,
being able to change the sign of the viscous drag for sufficiently short cylinders and large Reynolds
numbers. The situation is qualitatively similar in the (θ, Re) range considered hereinafter since,
for large enough inclinations and Reynolds numbers, the flow field exhibits specific features which
directly affect the loads on the body. Consequently, it is relevant to examine first how the flow
close to the body varies with the control parameters, which is the purpose of Sec. V A. Then, the
possibility to use numerical data to derive simple laws for the force components is considered in
Sec. V B, before empirical fits for the axial force and spanwise torque are built in Sec. V C.

A. Flow structure

Throughout the regime under consideration, the flow field exhibits a mirror symmetry with
respect to the (x, y) plane which contains both the body axis and the incoming velocity. Figure 14
helps to understand how the flow structure past the cylinder varies with the inclination angle.
Several generic features emerge. First, the front stagnation point standing in the symmetry plane
z = 0 is seen to move downward (i.e., toward negative y) as θ increases, almost reaching the
bottom generatrix (y = −D/2) for θ = 30◦ whatever Re. At the back of the body, the fluid that
has passed over the upper part of the lateral surface is entrained downwards. It recirculates toward
the downstream end within a region whose length in the streamwise (x) direction is typically of the
order of the cylinder radius for Re = 140. Examination of this recirculating region at other Reynolds
numbers (not shown) indicates that its length increases gradually with Re, becoming of the order of
D for Re = 300. Unlike the standing eddy existing in the axisymmetric configuration (Sec. III B),
this recirculating zone is no longer a closed toroid. Indeed, once the fluid entrained downward
gets very close to the lowest generatrix [point S− in Fig. 14(a)], it is expelled downstream in the
main flow, just above the open streamline f s− emanating from S−. Out of the symmetry plane,
the three-dimensional streamlines displayed in Fig. 15 (for Re = 300, to magnify the regions in
which the fluid recirculates) reveal that fluid particles entrapped in the recirculating region describe
successive loops before being sucked into the wake and advected downstream. This scenario is
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(a) (b)

(c) (d)

(e) (f)

FIG. 14. Streamlines in the symmetry plane z = 0 (left) and in the plane y = D/2 tangent to the lateral
surface along the top generatrix (right) for a cylinder with χ = 5 at Re = 140. Streamlines are colored
according to the magnitude and sign of the axial velocity from −0.25 (deep blue) to +1 (deep red). (a), (b)
θ = 5◦; (c), (d) θ = 15◦; (e), (f) θ = 30◦.

similar to that observed in [33] at the back of a sphere in the first (steady) nonaxisymmetric wake
regime.

For Re = 140 and θ = 5◦ [Fig. 14(a)], the flow along the body remains attached everywhere to
the lateral surface. The lower (respectively higher) the Reynolds number, the larger (respectively
smaller) the critical inclination at which separation occurs along the upper part of this surface. For

FIG. 15. Three-dimensional streamlines past an inclined cylinder with χ = 5, θ = 15◦, and Re = 300.
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instance, the flow is still unseparated at θ = 15◦ for Re = 40 but is already separated at θ = 5◦ for
Re = 300. Separation starts at the intersection of the upstream end and the upper generatrix [point
S+ in Figs. 14(c)–14(f)]. Beyond the corresponding critical θ and/or Re, separation takes place over
an open surface of finite extent, the most downstream point of which [point A in Figs. 14(c)–14(f)]
stands on the symmetry plane. Still in the plane y = D/2, the separating line starting at A develops
upstream on the sides of the cylinder [regions Rb and R f in Figs. 14(d) and (f)] before joining
the incoming flow. Not visible in Fig. 14, the lower part of the separation surface (y < D/2) on
the sides of the cylinder exhibits a structure qualitatively similar to that of regions Rb and R f and
ends in some intermediate plane 0 < y < D/2, the position of which depends on θ and Re. Moving
away from the lateral surface above the upper generatrix (y > D/2), the extent of the separation
surface in the spanwise direction decreases gradually until its trace reduces to a single point some
distance above the cylinder. This apex [point E in Figs. 14(c) and 14(e)] looks like the “eye of
the storm” of the separated region. The larger θ and Re, the larger the distance between points S+
and E in both the x and y directions. Fluid is brought in the neighborhood of E from both sides
of the cylinder in a way similar to that observed in Figs. 14(d) and 14(f) in the plane y = D/2
(see Fig. 15). Then it is sent back toward the upstream end in-between the “eye” and the cylinder.
The dividing streamline joining the region of the “eye” to point A gets very close to the uppermost
point S+ of the upstream end. There, fluid particles are deviated by the “fresh” fluid flowing along
the free streamline f s+ and advected downstream, just below this free streamline. Streamlines that
pass closer to to the eye stay further away from the cylinder surface within the recirculating region.
Consequently, they also stay further away from f s+ once they escape this region, the corresponding
fluid filling the intermediate region in between f s+ and the cylinder at the back of the separation
surface. Overall, the flow past the cylinder looks massively separated in-between the free streamlines
f s− and f s+, the position of the eye governing the flow structure in the intermediate region. A
similar open separation configuration was recently observed over inclined prolate spheroids in the
range 5 � Re � 100 in [34].

B. Are Stokes laws valid for inclined cylinders at moderate-to-large Reynolds number?

We now make use of the numerical results to build approximate force and torque laws valid
for |θ | � 30◦ and Re � 10 in the stationary nonaxisymmetric flow regime. For this purpose, we
characterize the force components through the parallel and perpendicular force coefficients defined
via the identify (F⊥, F‖) ≡ (C⊥,C‖)ρU 2LD/2. Similarly, we introduce the torque coefficient Ct

related to the spanwise torque T through T ≡ CtρU 2L2D.
To assess the validity of the “Stokes laws” in this regime, we inject the numerical results in

(10) and (11) and compare the resulting C‖(χ, θ, Re) and C⊥(χ, θ, Re) with the predictions of
(12) and (13) at the relevant Reynolds number and aspect ratio. To achieve this comparison, the
two coefficients Cθ=0◦

‖ and Cθ=90◦
⊥ are required for every value of χ and Re. Cθ=0◦

‖ (χ, Re) is
directly related to the drag determined in Sec. III up to a normalization factor. More specifically,
in the Re range considered in Sec. III B, C‖ and the drag coefficient Cd resulting from (6)–(9)
are linked through the relation Cθ=0◦

‖ (χ, Re) = π
4 χ−1Cd (χ, Re). At lower Reynolds number, Cθ=0◦

‖
is readily obtained through the approximate expression (5) as Cθ=0◦

‖ (χ, Re) = 4π Re−1F (χ, Re),
where F (χ, Re) denotes the quantity within brackets in (5). A direct graphical estimate of F (χ, Re)
is provided for several aspect ratios in Fig. 5, noting that the relation between F (χ, Re) and the
normalized drag Fd/Fds is F (χ, Re) = ( 81

16χ−2)
1/3

Fd/Fds. Since we did not compute the loads on a
cylinder held perpendicular to the flow, we use data from the literature to estimate Cθ=90◦

⊥ (χ, Re).
A large number of experimental data obtained with long cylinders were compiled in [35]. The

corresponding curves for the drag per unit length were fitted in [24] in the form

Cθ=90◦
⊥ (χ � 1, Re) ≈ 9.69 Re−0.78(1 + a Ren), (19)
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(a) (b)

(c) (d)

(e) (f)

FIG. 16. Parallel and perpendicular force coefficients (C‖,C⊥) vs θ for •: χ = 3, �: χ = 5, +: χ = 7.
Dashed lines: Stokes laws (12) and (13) based on the value of Cθ=0◦

‖ (χ = 3) and Cθ=90◦
⊥ (χ � 1) at the relevant

Reynolds number; solid line: approximate fit (20). The yellow bullets in (c), (d) and (e), (f) refer to the results
of [13] for χ = 3 at Re = 75 and 250, respectively.

with a = 0.227 and n = 0.55 for 5 < Re � 40, and a = 0.084 and n = 0.82 for 40 < Re � 400,
respectively. Comparisons between predictions of (19) and experimental results from [36] for finite-
length cylinders falling perpendicular to their axis indicate that the drag is only marginally affected
by end effects as soon as χ � 2 and Re � 10 [24]. This is why we consider that (19) provides a
relevant estimate of Cθ=90◦

⊥ (χ, Re) throughout the range of aspect ratios and Reynolds numbers of
interest here.

The resulting comparison between numerical results and predictions of (12) and (13) is presented
in Fig. 16. The parallel force coefficients are seen to decrease significantly as χ increases. In
Sec. III, where the drag was normalized using the frontal area πD2/4, we found that the pressure
contribution to the drag in the configuration θ = 0◦ is almost independent of χ . For this reason,
the corresponding contribution to Cθ=0◦

‖ (χ, Re), which involves a normalization by LD, behaves as
χ−1 and is responsible for the most part of the large variations of C‖(χ, θ, Re) with χ observed in
Figs. 16(a), 16(c), and 16(e). Variations of C‖ with θ are remarkable in that they clearly contradict
the Stokes law. Indeed, it is seen that C‖ is almost independent of θ for Re = 20 (apart from a modest
decrease at θ = 30◦ for χ = 3), while it increases with the cylinder inclination for larger Reynolds
numbers. Still modest for Re = 80, this increase makes C‖ 40%–50% larger for θ = 30◦ than for
θ = 0◦ at Re = 300. Clearly the Stokes law (12) is unable to reproduce the observed trends.
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The situation is markedly different with the perpendicular force coefficient, which is found to
follow closely the sin θ dependence predicted by (13) throughout the entire range of θ and Re.
Moreover, C⊥ only mildly varies with the aspect ratio, with less than 20% differences between the
shortest and longest cylinders whatever Re [Figs. 16(b), 16(d), and 16(f)]. However, it is also clear
from these panels that the predictions of (13) based on the expression (19) for Cθ=90◦

⊥ (χ � 1, Re)
overpredict C⊥(χ, θ, Re) for the highest two Reynolds numbers, the overestimate increasing with
Re. This is actually no surprise since in the Re range considered here, the flow structure past
an inclined cylinder with 0◦ � θ � 30◦ has little in common with that past a cylinder held per-
pendicular to the incoming velocity. While the wake of the latter becomes unsteady for Re ≈ 47
and three-dimensional for Re ≈ 180 [11], all inclined configurations considered here are station-
ary and inherently three-dimensional. Therefore, the connection between the two configurations
becomes loose beyond Reynolds numbers of a few tens. Nevertheless, to keep the advantage
of (13) which is asymptotically correct in the creeping-flow limit, we sought an empirical Re-
dependent correction capable of properly approaching the numerical results while vanishing for
both Re → 0 and θ = 90◦. We sought another correction to account for the dependence of C⊥
with respect to the aspect ratio, requesting that this correction also vanishes for θ = 90◦ for the
aforementioned reasons. Ideally, one would like this correction to recover the proper behavior
C⊥ ∝ Re−1(ln χ )−1 for Re → 0. However, due to the singular nature of the problem in the limit
Re → 0, χ → ∞ (Stokes paradox), it is known that Cθ=90◦

⊥ (χ � 1, Re → 0) ∝ −(Re log Re)−1

[37], which makes the ratio C⊥/Cθ≈90◦
⊥ ill-defined in this limit. Consequently, we merely built

the finite-length correction on the basis of present numerical data. We found this correction to be
almost Re independent, and eventually obtained the approximate expression for C⊥(χ, θ, Re) in the
form

C⊥(χ, θ, Re) = Cθ≈90◦
⊥ (χ � 1, Re)

1 + 1.15e−0.45χ cos θ

1 + 0.04 Re1/2 cos θ
sin θ. (20)

Figures 16(b), 16(d), and 16(f) show that the main trends of the numerical data are properly
captured by the above fit. Additional improvements could easily be introduced, such as a sin 6θ

correction to compensate for the slight overestimates noticed at intermediate inclinations (θ ≈ 15◦)
as χ and Re increase. The finite-length correction suggests that the transverse force is virtually
proportional to the cylinder length beyond χ ≈ 10. For shorter cylinders, the increase of C⊥ as
χ decreases is qualitatively reminiscent of the (ln χ )−1 low-Re behavior. However, finite-length
effects are much weaker in the inertial regime. For instance, Fig. 24 indicates that Cθ=90◦

⊥ is 60%
larger for χ = 3 than for χ = 10 in the creeping-flow regime, a difference reduced to 25% in the
fully inertial regime according to (20). From (19) (see also Fig. 3 in [36]), it may be inferred that
Cθ=90◦

⊥ (χ � 1, Re) only weakly decreases with the Reynolds number for Re � 100. Therefore,
the fit (20) indicates that C⊥(χ, θ, Re) is almost proportional to Re−1/2 in this range of Re,
suggesting that the dominant contribution to the perpendicular force arises from boundary-layer
effects. Although (20) correctly reduces to C⊥(χ, θ, Re) = Cθ=90◦

⊥ (χ � 1, Re) when θ = 90◦, it
is not clear up to which maximum inclination this expression provides a reliable approxima-
tion of the actual transverse force. The numerical results of [13] for χ = 3 suggest that this
maximum is close to 50◦. Computations with higher inclinations are required to clarify this
issue.

Interestingly, Sanjeevi and Padding [16] recently concluded that Stokes laws, especially the
sine-squared drag law Cd (χ, θ ) = Cθ=0◦

‖ (χ ) + [Cθ=90◦
⊥ (χ ) − Cθ=0◦

‖ (χ )] sin2 θ which results from
the combination of (10), (11) and (12), (13), hold for prolate spheroids (and moderately oblate
spheroids) up to Reynolds numbers (based on the diameter of the equivalent sphere) of O(103).
They argued that the reason for this surprising agreement is due to a partial compensation between
contributions to the pressure drag arising from the regions close to the two stagnation points, in such
a way that the overall pressure drag follows a sine-squared law, while the viscous contribution to
the drag is almost insensitive to the inclination. Clearly, this scenario does not hold for cylinders
with flat ends. In the present case, wake effects are strong, with massive separation at the back of
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(a) (b)

(c) (d)

FIG. 17. Contributions to C⊥(χ, θ, Re) at Re = 20 (blue) and Re = 300 (red) for •: χ = 3, �: χ = 5, +:
χ = 7. (a) Pressure on the lateral surface; (b) viscous stress on the lateral surface; (c), (d) viscous stress on the
upstream and downstream ends, respectively.

the cylinder, even for θ = 0◦, as soon as Re exceeds some tens (see Fig. 6). These effects are deeply
influenced by the body inclination (see Fig. 14) and, as Fig. 16 reveals, result in nonmonotonic
variations of C‖(χ, θ, Re) with χ and Re which cannot be reduced to a simple trigonometric law.
Therefore, it must be concluded that the scenario suggested in [16] to explain the validity of the
sine-squared drag law applies only to streamlined bodies for which wake effects weakly affect the
surface stress distribution.

To better understand why the perpendicular force follows the approximate law (20) throughout
the parameter range explored here, it is useful to isolate the contributions to C⊥ provided by the
various parts of the body surface, and split each of them into a pressure and a viscous stress term.
Since the body ends are flat and we are focusing here on the perpendicular force, no pressure
contribution arises from the ends. Figure 17 displays the variations of the remaining four nonzero
terms with θ for two markedly different Reynolds numbers. The viscous contribution arising from
the downstream end (C⊥μdown ) is seen to be negligibly small in all cases [note the 103 magnification
factor in Fig. 17(d)]. Hence, virtually no contribution to C⊥ is provided by this part of the body
surface, on which wake effects concentrate in the range of θ and Re relevant here. Examining
Figs. 17(a)–17(c) makes it clear that the various contributions to C⊥ exhibit little dependence with
respect to χ , apart from the viscous stress on the upstream end (C⊥μup ) at Re = 20. Nevertheless, this
term is one order of magnitude smaller than the total (pressure+viscous stress) contribution from
the lateral surface. Consequently, the behavior of C⊥ is essentially dictated by the latter. Among
the corresponding two terms, the viscous contribution (C⊥μlat ) is virtually independent of χ at large
Re, while some finite-length influence subsists in C⊥plat . This weak dependence with respect to the
aspect ratio implies that the perpendicular force increases almost linearly with the body length,
given the chosen normalization factor ρU 2LD/2.

The quasilinearity of the two dominant contributions to C⊥ with respect to the inclination angle
and their weak χ dependence for Re � 1 imply that, for Re � 100, the dimensional transverse force
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(a) (b) (c)

FIG. 18. Contributions to C‖(χ, θ, Re) at Re = 20 (blue), Re = 80 (green), and Re = 300 (red) for •:
χ = 3, �: χ = 5, +: χ = 7. (a), (b) Pressure on the upstream and downstream ends, respectively; (c) viscous
stress on the lateral surface.

behaves approximately as

F⊥(χ, θ, Re) ≈ C⊥θ≈90◦ (χ � 1, Re)

1 + 0.04Re1/2 cos θ
ρLD

||U||U⊥
2

, (21)

where U⊥ = ||U|| sin θ is the component of the upstream velocity normal to the lateral surface and
the Reynolds number Re is based on the norm of the upstream velocity. In this Reynolds number
range, Cθ=90◦

⊥ is almost constant according to (19), so that (21) indicates that the perpendicular
force is approximately proportional to the power three-half of the incoming velocity, while it still
varies almost linearly with θ . In contrast, the Independence Principle frequently invoked in the
area of vortex-induced vibrations [10,15] suggests that the perpendicular force on a long cylinder
should only depend on the normal component U⊥ of the incoming flow, which would imply
F⊥ = 1

2Cθ=90◦
⊥ (χ � 1, Re⊥)ρLD||U⊥||U⊥, with Re⊥ = ρ||U⊥||D/μ. If this were true in the present

situation, a sin2 θ dependence of C⊥ would be observed for Re⊥ = O(102) (i.e., Re = 300 here in
practice), and the force would vary as the square of the incoming velocity. As Fig. 16(f) indicates,
no quadratic dependence with respect to the inclination angle is noticed, which implies that the
Independence Principle does not apply to the flow configurations under consideration. This is in line
with the conclusions of [12] where it was observed at somewhat lower Reynolds numbers that this
principle only holds for inclinations larger than 70◦ but overestimates the force by more than 50%
for θ � 30◦, even for long cylinders with χ = 15. In other words, this principle is approximately
valid when the upstream flow is almost normal to the cylinder lateral surface but can by no means
be used to approximate the transverse force when the cylinder inclination is moderate.

C. Approximate laws for the parallel force and spanwise torque

Figure 18 shows the main contributions to C‖(χ, θ, Re) arising from pressure and viscous stress
distributions over the various parts of the cylinder surface. On both ends, the latter (not shown)
are found to be more than one order of magnitude smaller than the former. Therefore, C‖ is
essentially controlled by the viscous stress acting on the lateral surface and the pressure distribution
on both ends. All contributions are seen to decrease for increasing aspect ratios, similar to what
happens when the body is aligned with the incoming flow. This influence weakens significantly
as Re increases, again in line with the observations reported for θ = 0◦. In particular, the viscous
contribution arising from the lateral surface [Fig. 18(c)] is found to be virtually independent of χ for
Re = 300. That these features subsist for all inclinations considered here suggests that seeking an
empirical expression relating C‖(χ, θ, Re) to C‖θ=0◦ (χ, Re) is reasonable. Variations with θ follow
different and sometimes opposite trends on the various surfaces. For instance, Fig. 18(a) indicates
that C‖pup decreases as the inclination increases, an effect weakening at large Reynolds number. In
contrast, C‖pdown [Fig. 18(b)] increases gradually with θ . This is because the recirculating region at
the back of the cylinder tends to shrink when θ increases, as noticed in Sec. V A. A significant
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(a) (b) (c)

FIG. 19. Parallel force coefficient C‖(χ, θ, Re) vs θ for •: χ = 3, �: χ = 5, +: χ = 7. Solid line: empirical
fit (22).

increase of C‖μlat is also noticed at Re = 300 [Fig. 18(c)], but this trend weakens as Re decreases
and is no longer present at Re = 20.

To approximate the variations of C‖ with χ, θ , and Re, we started from the fits (6)–(8) established
for θ = 0◦ in Sec. III B. We took into account the constraint that C‖ cannot depend on the sign of
θ and must change sign for θ = 90◦, although this configuration is well beyond the maximum
inclination considered in the simulations. This led us to assume that the leading-order angular
dependence of the correction to the Stokes law is proportional to sin2 θ cos θ . Then, we first
considered the case χ = 7 for which finite-length effects are the weakest, and started to fit the
dependence with respect to Re for θ = 30◦, the maximum inclination. The behavior of C‖ at median
inclinations suggests that the angular dependence also involves a secondary contribution that may
be approached by a term proportional to sin2 6θ cos θ . Last, we considered finite-length effects,
starting with χ = 3 for which they are most severe. All empirical prefactors were constrained to
vanish for Re → 0, so that C‖ reduces to its low-Re form in this limit. The whole process was carried
out iteratively, to optimize the prefactors and exponents for the three aspect ratios over the whole
range of Re and θ . Keeping in mind that the drag coefficient Cd (χ, Re) determined in Sec. III B by
summing (6)–(8) has to be multiplied by a factor π

4 χ−1 to be used in the prediction of C‖, the final
fit takes the form

C‖(χ, θ, Re) ≈ π

4
χ−1Cd (χ, Re){1 + [(0.7 − 6.3χ−2)(1 − e−0.15 Re) + 0.01 Re0.95] sin2 θ

+ 2 × 10−3Re0.8 sin2 6θ} cos θ. (22)

As Fig. 19 shows, this fit provides a correct estimate of C‖ throughout the range of parameters
explored in the present investigation. Expression (22) highlights the fact that inertial effects act to
increase C‖ and counteract the cos θ decrease associated with viscous effects, and even overtake
them for high enough Re [for large χ and Re � 10, the dominant contribution to the term within
curly brackets is 1 + (0.7 + 0.01Re0.95) sin2 θ ]. Obviously, the above fit is not expected to be valid
for Reynolds numbers significantly larger than the upper bound considered in the simulations, as
it predicts a diverging drag in the limit Re → ∞. Similarly, (22) is not expected to hold for larger
inclinations: in [13] it was observed that, for χ = 3 and Re = 250, C‖ sharply decreases in the range
30◦ < θ < 45◦, a trend that the above fit is clearly unable to reproduce.

Figure 20 shows the variations of the torque coefficient as a function of θ . Similar to the low-to-
moderate Re regime, the torque is always negative, tending to orient the cylinder axis perpendicular
to the upstream flow. The torque coefficient exhibits a quasilinear increase with the inclination angle
for χ = 5 and 7. This may be seen as a natural extension of the sin 2θ variation characterizing the Ct

variations at low Re. |Ct | is also found to decrease for increasing χ at Re = 20 and 80. The behavior
observed at Re = 300 is more complex, especially in the case of the shortest cylinder for which
the angular dependence is strongly nonlinear for θ � 15◦. Moreover, while the corresponding |Ct |
is larger than those of the other two cylinders at Re = 20 and 80, the situation is reversed at Re =
300. Some additional insight into these variations may again be obtained by splitting the torque
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(a) (b) (c)

FIG. 20. Torque coefficient vs θ for •: χ = 3, �: χ = 5, +: χ = 7. The yellow bullets in (b) and (c) refer
to the results of [13] for χ = 3 at Re = 75 and 250, respectively.

into pressure and viscous contributions provided by each part of the cylinder surface. The main
contributions resulting from this decomposition are displayed in Fig. 21. The two dominant terms
are seen to result from the pressure distribution on the lateral surface (Ct plat

) and the viscous stress
on the upstream end (Ctμup

). Both terms decrease in magnitude with increasing χ and Re, keeping a
negative sign in all cases. The third and fourth contributors, Ct pup

and Ctμlat
, result from the pressure

and viscous stress distributions on the same surfaces. The contributions of the downstream end (not
shown) are one order of magnitude smaller than the dominant terms in all cases. In contrast to its
viscous counterpart (Ctμup

), Ct pup
is seen to keep a positive sign in all cases. The three contributions

Ct plat
, Ct pup

, and Ctμup
vary almost linearly with θ whatever χ and Re. The viscous contribution

associated with the lateral surface Ctμlat
[Fig. 21(d)], reveals a more complex behavior. First, its

sign changes with χ and Re. It stays positive whatever θ for the shortest cylinder, increasing in
magnitude as Re increases. Conversely, it is negative for the longest two cylinders at Re = 20,
gradually decreasing until changing sign at all inclinations for Re = 300. Second, variations of Ctμlat

(a) (b)

(c) (d)

FIG. 21. Contributions to Ct (χ, θ, Re) at Re = 20 (blue), Re = 80 (green), and Re = 300 (red) for •: χ =
3, �: χ = 5, +: χ = 7. (a), (b) Pressure on the upstream end and the lateral surface, respectively; (c), (d) viscous
stress on the upstream end and the lateral surface, respectively.
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(a) (b) (c)

FIG. 22. Torque coefficient Ct (χ, θ, Re) vs θ for •: χ = 3, �: χ = 5, +: χ = 7. Solid line: empirical
fit (23).

with θ become increasingly nonlinear as χ decreases and/or Re increases. This complex behavior
is responsible for the markedly nonlinear variations of Ct with θ noticed above for the shortest
cylinder at Re = 300. The open separation process discussed in Sec. V A is responsible for these
features. Indeed, the dominant local viscous contribution to the spanwise torque provided by the
lateral surface is, in dimensional form, −μD

2
r·ey

||r|| (n · ∇)u‖, where u‖ is the fluid velocity component
parallel to this surface (along the x direction), n is the unit normal directed into the fluid, and r is the
local position with respect to the cylinder geometrical center. As far as the fluid does not recirculate,
this term is positive on the lower part of the surface (r · ey < 0) and negative on the upper part
(r · ey > 0). However, when separation takes place, u‖ is negative in the corresponding region of
the upper part, which then provides a positive viscous contribution, making Ctμlat

positive if the
recirculation is strong enough. The larger the area percentage of the lateral surface corresponding
to the separated region, the larger the positive value of Ctμlat

.
Following a fitting procedure similar to that described for C‖, we approached the behaviors

observed in Fig. 20 with the empirical expression

Ct (χ, θ, Re) ≈ χ−0.47{−0.69 Re−0.35−b1(Re/χ )3.1
sin 2θ + 1 × 10−4 Re0.8+b2(Re/χ )3.1

sin 6θ}, (23)

with b1 = 7 × 10−8 and b2 = 5 × 10−8. As Fig. 22 shows, the above fit provides a correct estimate
of Ct throughout the range of parameters explored in the present investigation. For large enough
aspect ratios, the dominant contribution to Ct is still proportional to sin 2θ , similar to the low-Re
regime, and its magnitude varies as χ−0.47Re−0.35. The torque coefficient is seen to be approximately
proportional to χ−1/2 whatever Re, which suggests that the dimensional torque behaves roughly like
L3/2 for long enough cylinders. Finite-length high-Re effects associated with the open separation are
translated into the above fit through the slight but sharp (Re/χ )3.1 increase of the Reynolds-number
exponent. Similar to the case of C‖, the above fit is not expected to be valid for Reynolds numbers
significantly larger than the upper bound considered in the simulations. Moreover, although (23)
respects the constraint that the torque changes sign for θ = 90◦, the results of [13] for a cylinder
with χ = 3 indicate that the behavior of Ct changes significantly for θ � 45◦, suggesting that the
present fit is appropriate only below this inclination.

VI. SUMMARY AND CONCLUDING REMARKS

With the practical objective of providing approximate laws for predicting the translation-induced
drag, lift, and torque acting on long cylindrical rods and fibers, we employed fully resolved
simulations to investigate the flow around a finite-length circular cylinder held fixed in a uniform
stream making some angle with the body axis.

We first focused on the specific case where the cylinder is aligned with the incoming flow.
Considering the Stokes regime and the weakly inertial regime corresponding to Re � 1, we com-
bined numerical results with available predictions from the slender-body theory [which we slightly
improved by computing the next-order term in the expansion with respect to the small parameter
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1/ ln(2χ )] to build the approximate drag laws (1) and (5). The former is valid down to χ ≈ 1.5,
while the inertial corrections contained in the latter allow an accurate estimate of the drag up to
Re = O(1), and even up to Re = O(10) for χ � 20. For larger Reynolds numbers (up to Re = 400),
the flow structure becomes more complex, although it remains stationary and axisymmetric. Beyond
a χ -dependent critical Reynolds number of the order of 200, a second recirculating region emerges
along the upstream part of the lateral surface. Being associated with local negative shear stresses,
this lateral eddy acts to reduce the friction drag, which may even become negative if Re is large
enough and the cylinder is short enough. We used the numerical data to build approximate fits for
this friction drag and for the pressure drag contribution of the upstream and downstream ends. With
this procedure, we obtained the empirical law (9) which approximates the drag well for χ � 2 in
the range 20 � Re � 400 and properly matches (5) for Re = O(1). The friction drag still represents
a substantial part of the total drag at Reynolds numbers of several hundreds if the body aspect ratio
is large enough (45% at Re = 400 for a cylinder with χ = 10).

In the next step, we examined the case of moderately inclined cylinders (θ � 30◦) in the low-
to-moderate Reynolds-number regime (Re � 5). For Reynolds numbers less than unity and aspect
ratios up to 10, we observed that the force component parallel to the cylinder axis closely follows the
cos θ variation predicted under creeping-flow conditions. The agreement deteriorates as the length-
based Reynolds number χRe exceeds values of O(10). Under more inertial conditions, the cos θ

law underpredicts the actual parallel force, the difference increasing with both χRe and θ . The
force component perpendicular to the cylinder axis was found to closely follow the sin θ variation
typical of creeping-flow conditions up to Re = 5, irrespective of χ . However, the corresponding
prefactor deviates from the creeping-flow prediction as soon as χRe � 0.5, beyond which inertial
effects become significant. Accurate predictions are obtained up to χRe ≈ 10 by estimating the
prefactor of the sin θ law through the semiempirical formula (C4) which provides a finite-Reynolds-
number approximation of F θ=90◦

⊥ . Throughout the low-to-moderate Reynolds-number range, the
inertial torque follows the sin 2θ variation predicted by the asymptotic theory of Khayat and Cox
[4] in the limit χRe � 1. However, the magnitude of the torque is correctly predicted by this theory
only up to Re = O(1) and provided Re/χ2 � 0.01. To obtain a correct estimate of the torque over
a broader range of conditions, we derived the semiempirical law (18) which correctly reduces to
the theoretical prediction in the limit χRe � 1, χ � 1 and closely approaches numerical data for
cylinders with χ � 5 up to Re = 5.

Last, we considered the three-dimensional flow past moderately inclined cylinders with aspect
ratios in the range 3–7 for 20 � Re � 300. For θ � 30◦, the flow remains stationary irrespective of
the inclination and preserves a symmetry with respect to the plane containing the body axis and the
incoming velocity. For sufficiently low inclinations and Reynolds numbers, the flow separates only
at the back of the body, the recirculating region looking like an open toroid. In contrast, beyond a
critical inclination decreasing as Re increases, an open separated region emerges on the “extrados”
of the lateral surface, near its “leading edge.” In such configurations, the flow past the cylinder
looks massively separated in-between the two free streamlines emanating from its “trailing”’and
“leading” edges.

We used numerical data collected in this fully inertial regime to obtain approximate laws for
the loads acting on the cylinder. Similar to the low-Re behavior, the perpendicular force obeys
essentially a sin θ variation with a mild dependence with respect to the aspect ratio. We found
that the corresponding force coefficient C⊥ may be related to the drag coefficient of a cylinder
held perpendicular to the incoming flow through the empirical law (20) which involves two simple
independent corrections, one proportional to Re−1/2 accounting for inertial effects, the other for
finite-length effects. In contrast, variations of the parallel force do not follow the cos θ law prevailing
in the low-Re regime. Instead, the force coefficient C‖ barely varies with θ in the moderate-Re
regime and even increases with the inclination at large Reynolds number. A fitting procedure with
respect to the three control parameters allowed us to mimic the influence of inertial and finite-length
effects on C‖ through the empirical law (22) which reproduces all observed trends well. Variations
of the spanwise torque at moderate Reynolds number are qualitatively similar to those observed
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(a) (b) (c)

FIG. 23. Extrapolated predictions at Re = 5 of fits derived in the fully inertial regime for •: χ = 3, �:
χ = 5, +: χ = 7. (a) C‖ and fit (22); (b) C⊥ and fit (20); (c) Ct and fit (23).

for Re � 5. However, strong finite-length effects manifest themselves at high Reynolds number,
in connection with the separation process affecting the upstream part of the lateral surface in this
regime. A fitting approach similar to that employed for C‖ yielded the empirical law (23) which
correctly approximates Ct throughout the explored range of χ and θ in the fully inertial regime.
For application purposes, it is of course of interest to know how robust these fits determined from
data in the range 20 � Re � 300 are when the Reynolds number is decreased to the upper limit of
the low-to-moderate Re regime considered in Sec. IV. The results of this test are summarized in
Fig. 23. It turns out that the empirical formula established in the fully inertial regime still perform
quite well for Re = 5. Predictions depart from numerical data by less than 5% for C‖, 10% for C⊥,
and 15% for Ct . Therefore, the semiempirical predictions derived in Sec. IV combined with the fits
established in Sec. V offer a complete and almost smooth description of load variations from the
creeping-flow regime up to Re = 300.

Most computations only considered aspect ratios below 10 or even 7 for Re � 20, owing to the
rapid increase of computational costs with χ . However, finite-length effects were found to decrease
monotonically and sharply as χ increases, making us confident that the various empirical laws
derived in the course of this study remain valid for cylindrical particles with larger aspect ratios,
and therefore apply to long fibers. Obviously, this does not mean that the load coefficients become
independent of χ for χ � 1, but simply that their asymptotic dependence with respect to χ in the
limit of large aspect ratios is already captured by considering O(10) aspect ratios as we did. The
situation is less clear regarding their range of validity with respect to the inclination angle. All of
them were calibrated in the range |θ | � 30◦ and satisfy the required geometrical constraints for
|θ | = 90◦ and the associated symmetry conditions. Nevertheless, as soon as the Reynolds number
exceeds a few tens, the dynamics of the flow past a cylinder in the configuration θ = 90◦ drastically
differs from that past the same cylinder for θ = 0◦. Hence, physical features that are not present in
the low-to-moderate inclination range considered here take place in the near-body flow when the
inclination exceeds 45◦ or so, which is likely to make the empirical laws proposed here invalid for
such large inclinations.

The present investigation leaves several important configurations and parameter ranges unex-
plored. First, for Reynolds numbers similar to those considered in Secs. IV and V, the above
discussion calls for a specific study focused on large inclinations, say 45◦ � |θ | � 90◦, for which the
flow past the cylinder is expected to be massively separated and most of the time unsteady. Another
series of questions arises when the cylinder is allowed to rotate about an axis perpendicular to its
symmetry axis and passing through its geometrical center, as rodlike particles and fibers customarily
do. The torque on a slender rotating cylinder was predicted in the creeping-flow limit in [1,2] but
no theoretical attempt to derive inertial corrections in this configuration has been reported so far.
This is even more true for the general situation in which the cylinder undergoes both a translation
and a rotation. In such a case, inertial effects couple the two types of motion, yielding specific
contributions to the loads, which are for instance responsible for the well-known Magnus effect
on a spinning sphere. To the best of our knowledge, such couplings have not been considered
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TABLE I. Drag coefficient obtained with three different grids (with 5, 8, and 10 cells across the boundary
layer, respectively), in three different flow configurations, all with χ = 3. The relative error is based on the
most refined grid.

Number of cells across the boundary layer Cd Error %

Re = 100, θ = 5◦ 5 0.478 0.62
8 0.479 0.4
10 0.481

Re = 100, θ = 15◦ 5 0.546 2.2
8 0.534 0.37
10 0.532

Re = 200, θ = 15◦ 5 0.416 1.4
8 0.411 0.2
10 0.410

for slender cylinders. We are currently investigating numerically the configuration in which the
cylinder undergoes an imposed rotation, and plan to apply the same methodology to the combined
translation+rotation case in the near future.
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APPENDIX A: SPECIFIC NUMERICAL VALIDATIONS

As mentioned in Sec. II, the JADIM code was extensively used in the past to compute flows past
axisymmetric bodies. In particular, transitional flows past disks and short cylinders were considered
in [18–20]. Nevertheless, we performed additional validations relevant to the present physical
configuration by considering the flow past an inclined cylinder of aspect ratio χ = 3 for different
Reynolds numbers and inclination angles.

We first performed runs with an increasing number of cells across the boundary layer, the
thickness of which is estimated as D Re−1/2. Table I shows the effect of the grid refinement on
the drag coefficient (here defined as the drag force normalized byLDρU 2/2) for three different
configurations. Clearly, eight cells across the boundary layer suffice to properly capture viscous
effects since the relative difference with the drag obtained on the most refined grid is less than 1%
in each configuration.

Then, we checked present results obtained with eight cells across the boundary layer against those
of [13] based on the PELIGRIFF code [38]. Table II shows how the two sets of results compare for six
different flow configurations. The drag coefficients are seen to differ by less than 1.5% in all cases.

APPENDIX B: HIGHER-ORDER ZERO-REYNOLDS-NUMBER SLENDER-BODY PREDICTION
FOR THE DRAG ON A FINITE-LENGTH CYLINDER ALIGNED WITH THE FLOW

The hydrodynamic force experienced by a slender body immersed in a nonuniform flow was
derived independently by Batchelor [1], Cox [2], and Keller and Rubinow [25] in the form of an
expansion with respect to the small parameter 1/ ln(2χ ) for χ � 1. References [1,25] provide an
expansion up to order 3 in this small parameter. However, the logarithmic dependence of the force
with respect to χ makes higher-order contributions significant as soon as χ becomes of O(10) or
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TABLE II. Comparison of the drag coefficient obtained with the present numerical methodology with
results of [13] for 5◦ � θ � 30◦ and two moderate Reynolds numbers. E (Cd ) is the relative difference between
the drag coefficients provided by the two sources.

Re θ Cd E (Cd )%
[13] Present results

100 5◦ 0.472 0.479 1.4
10◦ 0.499 0.501 0.4
15◦ 0.536 0.534 0.3
30◦ 0.693 0.680 1.4

200 10◦ 0.350 0.345 1.4
15◦ 0.405 0.411 1.5

less. This is why a higher-order prediction is desirable to obtain a more accurate evaluation of the
force on moderately long cylinders. In this Appendix, restricting ourselves to the case where the
cylinder is aligned with the incoming flow, we provide the expression for the drag valid up to order
4, based on the expansion carried out in [25].

The total force experienced by a slender fiber of length L immersed in a viscous flow may be
expressed in the form

F = −8πμL
∫ 1

0
f (s)ds, (B1)

where f (s) is the density of the Stokeslet distribution along the body centerline and s denotes the
arc length. The density f is obtained through a matched asymptotic procedure, the details of which
may be found in [25]. If the body is a circular cylinder aligned with the flow direction, one has
f (s) = fx(x)ex with

fx(x) = − 1

2 ln (2χ )

(
Ux

2
+ fx(x){ln[4x(1 − x)] − 1} +

∫ 1−x

−x

fx(x + t ) − fx(x)

|t | dt

)
, (B2)

where Ux = U · ex. An approximate solution of (B2) may be obtained by successive approxima-
tions. Setting fx = 0 in the right-hand side, the first-order approximation is found to be f (1)

x =
−Ux/[4 ln(2χ )]. The iterative solution was obtained in [25] up to order 3 in the form

f (3)
x (x) = − Ux

4 ln (2χ )

(
1 − 1

2 ln (2χ )
{ln[4x(1 − x)] − 1} + 1

[2 ln (2χ )]2
{ln[4x(1 − x)] − 1}2

+ 1

[2 ln (2χ )]2

∫ 1−x

−x

ln[(x + t )(1 − x − t )] − ln[x(1 − x)]

|t | dt

)
. (B3)

Integrating the last term in (B3), we obtain

F (3)
x = − 8πμL

∫ 1

0
f (3)
x (x)dx = 2πμLUx

(
a(1)

x

ln(2χ )
+ a(2)

x

[ln(2χ )]2
+ a(3)

x

[ln(2χ )]3

)
, (B4)

with a(1)
x = 1, a(2)

x = 3/2 − ln 2 ≈ 0.806 85, and a(3)
x = 13/4 − π2/12 + ln 2(ln 2 − 3) ≈

0.828 54. This result agrees with those of [1] and [25]. At next order, the force density may
be obtained by inserting (B3) in the right-hand side of (B2), yielding

f (4)
x (x) = − Ux

4 ln (2χ )

{
1 − 1

2 ln (2χ )
{ln[4x(1 − x)] − 1} + 1

[2 ln (2χ )]2
{ln[4x(1 − x)] − 1}2

− 1

[2 ln (2χ )]3

[
{ln[4x(1 − x)] − 1}3 + {ln[4x(1 − x)] − 1}
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×
∫ 1−x

−x

ln[(x + t )(1 − x − t )] − ln[x(1 − x)]

|t | dt

]

− 1

[2 ln (2χ )]3

∫ 1−x

−x

f (3)
x (x + t ) − f (3)

x (x)

|t | dt

}
. (B5)

The drag acting on the body is eventually obtained by making use of the previous expression in (B1)
and integrating along the body centerline. Since the last term in (B5) does not contribute to the force
[25], one is left with

F (4)
x = F (3)

x + 2πμLUx

(
a(4)

x

[ln(2χ )]4

)
, (B6)

with a(4)
x = [−10ζ (3) + 79 + π2(ln 4 − 3) − ln 4[39 + (ln 4)2 − 9 ln 4]]/8 ≈ 1.452 43, ζ denot-

ing the Riemann zeta function. The main difficulty in the integration required to obtain a(4) results
from the first integral in the right-hand side of (B5). A formal computation using Mathematica
indicates that this term provides a contribution of 2ζ (3).

APPENDIX C: DRAG FORCE ON A CYLINDER HELD PERPENDICULAR TO THE FLOW:
SLENDER-BODY APPROXIMATION AND SEMIEMPIRICAL LAWS AT ZERO AND

LOW-BUT-FINITE REYNOLDS NUMBER

Due to the linearity of the Stokes equation, the force acting on an arbitrarily inclined cylinder in
the low-Re regime may be obtained by suitably combining linearly the drag forces corresponding to
the aligned (θ = 0◦) and perpendicular (θ = 90◦) configurations. This is why an accurate estimate
of the zero-Re drag force on a finite-length cylinder held perpendicular to the incoming flow is
desirable. To our surprise, such an estimate does not seem to be available in the literature. Clift
et al. [24] proposed an empirical relationship accurate for moderate aspect ratios but did not match
it with the prediction of the slender-body theory in the limit of large aspect ratios. In this Appendix,
we first use the methodology employed in Appendix B to establish the fourth-order slender-body
approximation of the corresponding drag force at Re = 0. Then we modify the corresponding
expression in an ad hoc manner to extend its validity to short cylinders, before incorporating the
finite-Re correction derived in [4].

Duplicating the technique used in Appendix B, the density of the Stokeslet distribution fy

required to obtain the force Fy on the cylinder is obtained by replacing ln[4x(1 − x)] − 1 everywhere
with ln[4x(1 − x)] + 1, and Ux with 2Uy in (B5) [25]. Then the total force is found to be

F (4)
y = − 8πμL

∫ 1

0
f (4)
y (x)dx = 4πμLUy

(
a(1)

y

ln(2χ )
+ a(2)

y

[ln(2χ )]2
+ a(3)

y

[ln(2χ )]3
+ a(4)

y

[ln(2χ )]4

)
,

(C1)

with a(1)
y = 1, a(2)

y = 1/2 − ln 2 ≈ −0.193 15, a(3)
y = 5/4 − π2/12 + ln 2(ln 2 − 1) ≈ 0.214 84,

and a(4)
y = {−10ζ (3) + 29 + π2(ln 4 − 1) − ln 4[15 + (ln 4)2 − 3 ln 4]}/8 ≈ 0.387 35.

Figure 24 displays the corresponding successive predictions and compares them with exper-
imental and numerical data. The third-order approximation provides a fairly good agreement
for small-to-moderate aspect ratios. However, neither the second-order nor the third-order ap-
proximation properly matches available data in the limit of high aspect ratios. The fourth-order
approximation provides a better prediction at high χ but quickly diverges as χ becomes less
than ≈4. Based on these observations, we empirically modify (C1) by weighting the third- and
fourth-order terms with a prefactor that quickly varies from 1 for moderate-to-large χ to 0 for
χ → 1

2 , in such a way that the behavior of the third-order expansion is recovered for moderate
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FIG. 24. Drag on a finite-length cylinder held perpendicular to the flow direction, normalized by the drag
Fds of a sphere of same volume. Dotted, long-dashed, and dashed lines: slender-body approximation (C1)
truncated at second, third, and fourth order, respectively; solid line: semiempirical formula (C2); •: numerical
results of [39]; �: experimental results of [27]; �: experimental results of [40].

aspect ratios. The corresponding modified drag law reads as

F (4)
y = −8πμL

∫ 1

0
f (4)
y (x)dx = 4πμLUy

[
a(1)

y

ln(2χ )
+ a(2)

y

[ln(2χ )]2

+ (1 − e−c1χ
c2 )

(
a(3)

y

[ln(2χ )]3
+ a(4)

y

[ln(2χ )]4

)]
, (C2)

with c1 = 0.01 and c2 = 2.5. As Fig. 24 shows, (C2) properly approximates available experimental
and numerical results down to χ ≈ 2.

A second step is to capture the drag increase due to finite-Re effects. Khayat and Cox [4]
computed such effects up to second order with respect to 1/ln(2χ ) and obtained (see also [29,30])

FχRe=O(1)
y ≈ 4πμLU

(
a(1)

y

ln χ
+ a(2)

y − ln 2 + f⊥
(ln χ )2

)
, (C3)

(a) (b) (c)

FIG. 25. Influence of inertial effects on the drag of finite-length cylinders held perpendicular to the
upstream flow. The drag is normalized by that of a sphere of same volume. Solid line: semiempirical prediction
(C4); dashed line: prediction (C2); •: numerical results of [12].
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with

f⊥ = E1

(
χRe

2

)
+ ln

(
χRe

2

)
− 2

(
e−χRe/2 − 1

χRe

)
+ γ − 1,

so that f⊥ → 1
4χRe when χRe → 0. As in the θ = 0◦ case, the main shortcoming of (C3) is

the second-order truncation with respect to 1/ln(χ ). To partly alleviate this limitation, we take
advantage of the higher-order corrections present in (C2) and merely add the second-order finite-
Re correction while leaving higher-order terms unchanged. This yields the empirical composite
approximation

FχRe=O(1)
y ≈ 4πμLUy

[
a(1)

y

ln(2χ )
+ a(2)

y + f⊥
[ln(2χ )]2

+ (
1 − ec1χ

c2
)( a(3)

y

[ln(2χ )]3
+ a(4)

y

[ln(2χ )]4

)]
. (C4)

As Fig. 25 indicates, predictions from (C4) almost match the numerical results of [12] for Re = 1.
Not surprisingly, they increasingly deviate from these results as Re increases beyond this point,
overpredicting (underpredicting) the actual drag for χ = 2 (χ = 5, 10).
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