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Sedimentation of inertial monodisperse suspensions of cubes and spheres
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Particle-resolved direct numerical simulations of monodisperse settling suspensions of
cubes and spheres are performed for Galileo numbers Ga = 70 and Ga = 160, and solid
volume fractions in the range 0.01 � φ � 0.2. The solid-to-fluid density ratio m = ρs/ρ f

is taken to be fixed at 2, representing liquid-solid suspensions. Strong columnar clustering
is observed for Ga = 160 and φ = 0.01 in a sphere suspension, whereas similar vertical
structures are not present as prominently in a cube suspension. We find that in all cases,
cube suspensions tend to be more homogeneous compared to sphere suspensions, as
indicated by both their microstructure and momentum transfer properties. The enhanced
homogeneity is associated with the pronounced angular velocities of cubes and the result-
ing orientation- and rotation-induced lift forces, which promote transverse motions and the
likelihood of escaping from clusters. Higher rotation rates of cubes thus play a major role
in the transfer of momentum from the gravity to the transverse direction, demonstrated by
the lower anisotropy of particle velocity fluctuations in cube suspensions. In more dilute
cases, cubes induce significantly stronger pseudoturbulence in the flow, especially in the
transverse direction. The drag of dynamic cube suspensions is found to be generally similar
to static beds of cubes, the reason for which is speculated to be relevant to their motion
freedom and the more homogeneous microstructure.
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I. INTRODUCTION

The gravity-driven motion of sedimenting particles is one of the most commonly occurring
phenomena in numerous natural and industrial processes. Rain formation and precipitation, sed-
iment transport in rivers, and particle settling in fluidized beds and waste-water treatment tanks
are examples of situations where collective sedimentation of suspended particles plays a central
role. Settling suspensions are complex systems that are rife with rich dynamics stemming from
various factors. While a large number of governing parameters are typically involved (e.g., mass and
volume loading, flow regime, particle shape and rigidity, configuration), there is also a wide range
of spatial and temporal scales associated with the occurring physical phenomena. In liquid-solid
suspensions, which are the focus of this study, the timescale of particle collisions is generally an
order of magnitude smaller than that of the flow evolution. Moreover, flow disturbances on the scale
of particle dimensions are known to influence overall hydrodynamics of suspensions and collective
behavior of particles. For example, clusters that form as a result of wake interactions may span
several particle diameters and persist over relatively long periods of time [1,2].
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The most idealized picture of particle settling has emerged from the pioneering work of Stokes
[3], giving the drag force acting on a single rigid sphere settling in an unbounded quiescent
fluid to be 3πμDVz,s, where μ and D are the dynamic viscosity of the fluid and the particle
diameter, respectively, whereas Vz,s denotes the particle settling velocity. This relation is valid
under the assumption of vanishing inertia or Re → 0, with Re being the Reynolds number defined
as Re = ρ f Vz,sD/μ and ρ f the density of the fluid. For a particle cluster in an infinite domain,
the settling velocity would always be greater than that of a single settling particle as a result of
hydrodynamic cooperation between the particles [4]. When particles settle in a container with a
fixed bottom wall, however, the motion is hindered since the downward flux of the solid particles and
the adjoining fluid needs to be compensated for by an upward fluid flux (also called “back-flow”),
thus making the mixture average velocity vanish over the entire suspension. A general theoretical
treatment of settling suspensions has been beyond reach due to the complexity of Navier-Stokes
equations given the presence of nonlinear inertial terms. Even if inertia is ignored (i.e., Stokes flow)
and the governing equations consequently become linear, superposition of velocity disturbances of
individual spheres leads to a diverging integral due to the slow decay of perturbations in Stokes flow.
Using probability arguments, Batchelor [5] circumvented the divergence problem and showed that
the hindered settling velocity of a dilute suspension of rigid spheres for Re � 1 is given by

Vz

Vz,s
= 1 − 6.55φ, (1)

where Vz denotes the ensemble average of the suspension settling velocity, Vz,s the terminal settling
velocity of an isolated sphere and φ the solid volume fraction. For higher solid volume fractions and
Reynolds numbers, empiricism is inevitable for obtaining the settling velocity as a function of the
solid volume fraction. The most widely known formula is the power-law relation of Richardson and
Zaki [6] given as

Vz

Vz,s
= (1 − φ)n, (2)

which was obtained from experimental data of sedimentation and fluidization of dense suspensions
(i.e., φ � 0.1), and is believed to be accurate for Re � 25 [7] and concentrations up to φ = 0.25
[8]. Based on extensive experimental data [6], values of the exponent n were shown to depend on
the flow regime, having a constant value for both very low (Stokes regime) and very high (Newton
regime) Reynolds numbers, and a transition region for intermediate values of Re. A compact form
of the dependence of n on Re was given by Garside and Al-Dibouni [9] as the logistic curve

5.1 − n

n − 2.7
= 0.1Re0.9, (3)

which improves the accuracy of Eq. (2) for higher Reynolds numbers. Later Di Felice [10] showed
through settling experiments that the exponent n in dilute suspensions with φ � 0.05 is approx-
imately 1.5 times larger than that for denser suspensions, although having a similar functional
dependence on Re. Di Felice [10] also noted that with n being higher for dilute suspensions, the
hindrance function in Eq. (2) needs a correction prefactor k for concentrated suspensions, values
of which were suggested to be between 0.8 and 0.9. The rapid decay of the settling velocity for
Re > 1 especially at low concentrations was later confirmed by Yin and Koch [11] and Hamid
et al. [12] through numerical simulations. The departure from the power-law relation of Eq. (2) was
observed to be more pronounced for higher Re. Consequently, this was attributed to the formation
of inhomogeneous structures in the suspensions as a result of enhanced wake interaction between
spheres in more inertial flows [11,12], hinting that a power-law form for the hindrance function is
possibly associated with a hard-sphere (i.e., random) distribution of the particles.

In Stokes regime, the flow field produced around a settling sphere has fore-aft symmetry [13].
Additionally, two nearby settling particles will maintain their relative orientation and separation, and
will always fall faster than an isolated particle according to symmetry and reversibility properties of
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Stokes flow [4]. As the flow becomes inertial upon increasing the Reynolds number, the symmetry
is lost and a low-pressure wake region develops downstream of the sphere. A particle that happens
to be in the wake of another experiences less drag compared to an isolated one, which consequently
causes it to accelerate (“drafting” phase) towards the leading particle. The trailing particle is also
subject to a lift force due to the shear flow in the wake region and is hence pushed outwards at
the same time [14]. If the induced lift force is not sufficiently strong, the trailing particle touches
(“kissing” phase) the leading one. Since the vertical arrangement of the pair is unstable, the particles
rotates into a horizontal orientation (“tumbling” phase) and then they repel each other due to the
source flow pushing the fluid away from the particles. This robust sequence of Drafting, Kissing,
and Tumbling (DKT) [15] has been identified in several investigations in the past [1,2,11,12,16–20]
as the principal mechanism underlying the emergence and evolution of anisotropic, inhomogeneous
particle configurations in sedimenting suspensions. The aforementioned deviation of the settling
velocity from Eq. (2) in inertial suspensions is in fact explained by the frequent occurrence of the
DKT phenomenon [11,12]. Wake attraction and the ensuing horizontal arrangements, also known as
“rafts” [21], effectively reduce the likelihood of particles being in the wake of others. Horizontally
arranged particles in cross-stream configuration experience higher drag [22] and reduced settling
velocity as a result. The prevalence of horizontal structure of particle clusters has been reported by
Yin and Koch [11] at low Reynolds numbers and recently observed by Willen and Prosperetti [16]
in moderately dense suspensions with φ = 0.087 and Reynolds numbers as high as Re � 111.

The forgoing scenario of settling rate reduction resulting from DKT-induced dispersion has
turned out to be entirely different for dilute suspensions when the Reynolds number is increased
to Re = O(100). On the one hand, the combination of stronger wakes in higher Re and low particle
concentration allows particles to interact over longer distances without being interrupted by other
particles. On the other hand, the occurrence of wake instabilities and resulting lateral motions in
highly inertial regimes increases the probability of particles crossing paths. The wake of an isolated
sphere first undergoes a transition from an axisymmetric to a double-threaded plane-symmetric
wake at Re � 210 [23,24], inducing a steady side force. The subsequent transition at Re � 275
initiates periodic vortex shedding and oscillating transverse forces. These wake instabilities give
rise to a variety of different path geometries for a freely settling particle. In the case of a freely
moving particle, the regimes of motion are characterized by two dimensionless numbers: namely,
the density ratio m = ρs/ρ f , and the Galileo number Ga =

√
(m − 1)gD3/ν, with ρs showing

the solid density, g the gravitational acceleration, and ν the kinematic viscosity of the fluid. As
a result of wake transitions, a vertically settling sphere switches to a steady oblique path for
Re � 210 [25] or equivalently for Ga � 150 [26], while various patterns of oblique-oscillating
paths for 185 � Ga � 215 emerge depending on the density ratio m [27]. Chaotic paths are usually
observed for settling spheres beyond Ga � 250 [26–28]. The collective behavior of particles in
such highly inertial regimes was first investigated numerically by Kajishima and Takiguchi [20].
Through their particle-resolved direct numerical simulations (PR-DNS) of dilute (i.e., φ = 0.002)
sphere suspensions, they evidenced strong particle accumulation and increased settling velocities for
Re � 300, for which wake attraction was identified as the responsible mechanism. More recently,
PR-DNS of Uhlmann and Doychev [1] showed that in dilute suspensions (φ = 0.005), settling
velocity is enhanced by up to 12% at Ga = 178, while no significant changes were seen for a
similar suspension at Ga = 121. This was explained by the fact that at Ga = 178, spheres settle
in oblique paths, increasing the probability of getting trapped in the wake of another sphere and
consequently undergoing DKT-type interactions. Frequent DKT between spheres results in the
formation of sizable clusters which settle considerably faster than an isolated sphere, or compared to
the other simulated case at a lower Galileo number of Ga = 121. This enhancement of settling rate is
clearly in stark contrast with the aforementioned reduction of settling rate in dilute suspensions with
Re = O(10). Similar wake-induced clustering and increased settling rates for highly inertial dilute
suspensions were also consistently reported by Zaidi et al. [2] and experimentally confirmed later
by Huisman et al. [18]. Interestingly, the authors of the latter study reported less enhanced settling
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velocities for Ga = 310 compared to Ga = 170. They suspected the observed behavior to be owing
to the chaotic wakes of the particles in the Ga = 310 case, which might increase the likelihood of
particles to break free from clusters.

Another level of complexity in studying suspension flows originates from the introduction of
nonspherical particles. While a general understanding of suspensions of spheres has been progres-
sively accumulating over the past years, especially concerning low to moderate Reynolds numbers
(i.e., Re � 50), no such knowledge is currently available for suspensions of nonspherical particles.
Freely moving nonspherical objects exhibit various path geometries due to both the anisotropy of
added-mass tensor and wake instabilities [29]. Moreover, their nature of hydrodynamic interactions
in multiparticle systems can be greatly different from spheres. The orientation of a nonspherical
particle also plays an important role in its overall dynamics, not only by affecting hydrodynamic
forces but also through inducing hydrodynamic torques that would otherwise be either negligible
or absent [30–32]. The introduced torques promote particle rotations, which in turn, give rise
to additional hydrodynamic loads such as the Magnus force [28]. While the dynamics of a free
sphere is reasonably well fleshed out for various regimes [25–27,33], fewer studies have been
dedicated to the characterization of motion regimes for isolated nonspherical particles in the
existing body of literature. Thus far, free motion of objects such as disks [34–36], short cylinders
[37], long cylinders [38,39], oblate and prolate spheroids [40], and angular objects such as cubes
and tetrahedrons [28,41] have been investigated. Expectedly, the motion and flow characteristics
associated with nonspherical particles bear significant implications for their corresponding settling
suspensions. This is exemplified, for instance, through the recent work of Ardekani et al. [40] on free
settling of oblate and prolate spheroids. They showed that since oblate particles have considerably
wider wake regions compared to spheres, they become drawn into the wake of one another over
considerably larger horizontal separations. The higher susceptibility for wake attraction was shown
to be translated into the remarkable formation of columnar clusters in dilute suspensions of oblate
spheroids at Ga = 60 [7]. Consequently, the settling speed was reported to be �30% larger than that
of a single oblate particle. As for other shapes, there are a limited number of studies that consider
suspensions of nonspherical particles such as the settling of particles shaped like red blood cells with
Re � 1 and high volume fractions [42], cylindrical particles with 1 � Re � 10 and 0.1 � φ � 0.48
[43], rodlike objects with Re = 0.07 and 0.01 � φ � 0.1 [44], long fibers with Re � 10−4 [45],
and flexible long fibers at Ga = 160 in dilute and semidilute regimes [46]. Evidently, most of the
available works on nonspherical particle suspensions are carried out for systems at low Reynolds
numbers with the exception of a few.

Polyhedral solids are commonly encountered in soil, rock, and mining engineering processes as
well as powder metallurgy applications. In particular, metal powders made of cubic particles can be
produced by electrolysis of solid metal oxide particles in molten salts [47]. Moreover, cubic particles
also find use as catalysts, absorbents, and ferro-fluids in the form of metal colloids [48]. Considering
its rich dynamics [41], the cube is an interesting shape for studying effects of nonsphericity on the
behavior of suspensions. The cube belongs to a class of regular polyhedrons known as Platonic
solids, shown in Fig. 1, which are highly symmetrical convex shapes constructed from flat polygonal
faces of the same size. Similar to the case of a sphere, only one parameter needs to be prescribed to
fully define the geometry of a cube. This feature makes the exploration of the parameter space for
any one of the five regular polyhedrons considerably easier compared to other nonspherical shapes,
e.g., cylinders or spheroids. The existence of sharp edges and rapid variation of hydrodynamic
loads upon changes in its orientation make the cube prone to strong translational and rotational
displacements and velocity fluctuations. In fact, we have recently provided a comprehensive flow
map of the free motion of a cube [41], complementing a previous study by our group on the motion
of isolated angular particles [28]. Along with identifying a robust regime of helical motion for 140 �
Ga � 170, we found that while a settling sphere is still in the oblique regime at Ga = 180 [25,49],
the cube already moves chaotically with large velocity fluctuations at the same Ga. Moreover, a cube
acquires angular velocities that are at least an order of magnitude larger than that of a sphere for
Ga � 160, which induce significant Magnus forces normal to the direction of motion. Additionally,
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Tetrahedron Hexahedron (Cube) Octahedron Dodecahedron Icosahedron

Increasing angularity Increasing sphericity

FIG. 1. The five regular convex polyhedrons, also known as Platonic solids, in the order of increasing
number of faces.

the magnitude of lateral forces caused by intense vortex shedding rises to about 25% of the net
buoyancy force driving the motion. Motivated by the aforementioned remarkable features, we are
especially curious to find out whether the more agitated motion character of a cube could promote
mixing and alter momentum transfer properties in suspensions of cubes, and the extent to which
these properties might differ from that of sphere suspensions. To this end, we study suspensions
of cubes for two different Galileo numbers: namely, Ga = 70 and Ga = 160, and solid volume
fractions in the range of 0.01 � φ � 0.2. In order to establish grounds for comparison, we also
simulate suspensions of spheres for the same set of values of Ga and φ. It should be stressed that
there is not anything specific about the shape of a cube compared to other Platonic polyhedrons;
however, given that performing simulations for all such shapes is computationally not possible at
present, we have selected the cube as a representative for convex polyhedrons in general.

In what follows, first the numerical methodology implemented in our PR-DNS tool and the
setup of the simulations are described in Sec. II. We then proceed to the simulation results in
Sec. III, beginning with particle dynamics in Secs. III A to III C in terms of settling rates, velocity
fluctuations, and angular velocities of the particles. Subsequently, detailed description of suspension
microstructure is presented in Sec. III D, followed by drag force analysis in Sec. III E. Finally, we
conclude the article in Sec. IV with a summary of our findings in the present work, along with a
discussion of possible mechanisms for the observed differences between suspensions of cubes and
spheres.

II. COMPUTATIONAL METHODOLOGY

A. Governing equations

The conservation of momentum and mass for an incompressible Newtonian fluid is described
through Navier-Stokes equations, which are given as

∂u
∂t

+ u · ∇u = −∇p + 1

Ga
∇2u, (4)

∇·u = 0, (5)

where u and p are the fluid velocity vector and pressure, respectively. In Eq. (4) Ga may be thought
of as a Reynolds number based on the gravitational velocity scale ug, the definitions of which are

Ga = ρ f ugD

μ
, (6)

ug =
√

(m − 1)gD, (7)

with D being the volume-equivalent diameter of a particle. Based on ug, a gravitational timescale
tg = D/ug may also be defined. The solid-to-fluid density ratio m together with the Galileo number
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Ga and solid volume fraction φ are the three governing parameters for the problem of gravity-driven
evolution of a monodisperse suspension of particles. Furthermore, the rigid-body motion of each
particle is described by the Newton-Euler equations, which in the body frame of reference may be
written as

mvp
dV
dt

= Fh + Fc + (m − 1)vpg, (8)

mIp
d�

dt
+ � × (Ip · �) = Th + Tc, (9)

where V, �, vp, and Ip stand for the translational and angular velocity vectors, volume, and inertia
tensor of the particle, respectively, whereas g shows the gravitational acceleration vector. Note that
Ip is a scalar matrix for spheres and cubes, hence � × (Ip · �) = 0. In Eq. (8) Fc and Tc show forces
and torques arising from collisions between the particles, the computation of which is handled by
contact mechanics approaches and will be presented in the next section. The hydrodynamic force
and torque exerted on a particle are denoted by Fh and Th and given as

Fh =
∫

S

[
−pI + 1

Ga
(∇u + ∇uT )

]
· n dS, (10)

Th =
∫

S
r ×

[
−pI + 1

Ga
(∇u + ∇uT )

]
· n dS, (11)

with I being the identity matrix, n the unit vector normal to the boundary of the solid, S the surface
enclosing the solid, ( · )T the matrix transpose, and r the position vector relative to the solid center
of mass.

B. Numerical method

Our PR-DNS tool PeliGRIFF (Parallel efficient library for GRains in Fluid Flow) incorporates
a finite-volume variant of the distributed Lagrange multiplier-fictitious domain (DLM-FD) formu-
lation proposed by Glowinski et al. [50] for fluid-solid coupling, while the interparticle collisions
are handled by an efficient Discrete Element Method (DEM) granular solver. In the framework of
the DLM-FD method, the fluid domain is extended to the solid region where rigid-body motions are
enforced in the fictitious fluid inside the particles through a set of collocated Lagrange multipliers.
Here we present a brief description of the method, and refer the interested reader to [51–54] where
the details of our implementation have been elaborated. In a nonvariational form, the combined
momentum and continuity equations are given as

∂u
∂t

+ u · ∇u = −∇p + 1

Ga
∇2u − λ in D, (12)

(m − 1)vp
dV
dt

−
∫
P

λdx =
∑

j

Fc j + (m − 1)vpg in P , (13)

(m − 1)Ip
d�

dt
−

∫
P

r × λdx =
∑

j

r j × Fc j in P , (14)

u − (V + � × r) = 0 in P , (15)

∇ · u = 0 in D, (16)

where the solid domain and combined fluid/particle domain are denoted by P and D, respectively.
Also, λ shows the distributed Lagrange multiplier vector which is used to enforce the rigid-body
motion constraint shown in Eq. (15). With the DLM-FD method, the Lagrange multiplier λ can be
directly used to obtain the hydrodynamic force and torque exerted on a particle P as follows:

Fh =
∫
P

λdx + vp
dV
dt

, (17)
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Th =
∫
P

r × λdx + Ip
d�

dt
. (18)

The time-marching algorithm employed for the solution of Eqs. (12) to (16) is described in the
Appendix. In order to handle interparticle collisions, we consider the total contact force to be the
sum of three contributions: namely, a normal Hookean elastic restoring force, a normal dissipative
force, and a tangential friction force. The elastic restoring force is given as

Fe = knδni j, (19)

where kn represents the equivalent spring stiffness, δ the overlap between particles i and j, and ni j

the normal unit vector at the contact point. Furthermore, the viscous dissipative force is defined as

Fdn = −2γnMi jVn, (20)

where γn denotes the normal damping coefficient, and Mi j = (mimj )/(mi + mj ) the reduced mass of
particles i and j having masses mi and mj , respectively. In Eq. (20) Vn shows the normal component
of the relative velocity between particles i and j. γn can be related to kn through the restitution
coefficient en defined as the postcollisional to precollisional velocity ratio in the normal direction.
In the case of a purely normal collision between two spherical particles in a zero gravity space, we
can solve analytically the contact problem and establish the following relationship [52,55]:

γn = −
√

kn

Mi j

ln en√
π2 + (ln en)2

. (21)

The tangential friction force is given as

Ft = −min{μc|Fn|, |Fdt |}ti j (22)

with Fn = Fe + Fdn being the total normal force and Fdt the tangential dissipative force defined as

Fdt = −2γt Mi jVt . (23)

In Eqs. (22) and (23), μc is the Coulomb friction coefficient, Vt the tangential component of the
relative velocity between particles i and j, ti j the unit vector along Vt , and γt the tangential damping
coefficient. The sum of the three contributions introduced above yields the contact force experienced
by particle i from collision with a single particle j:

Fc j = Fe + Fdn + Ft . (24)

When multiple particles make contact with particle i, the total contact force is simply the sum of
forces exerted on particle i by each neighbor j:

Fc =
∑

j

Fc j. (25)

To summarize, the contact force model features four parameters: two physical parameters en [or
γn through Eq. (21)] and μc, and two numerical parameters kn and μt . μc is a material property
and is reliably measurable for any real material or couple of real materials. en is straightforward
to measure for spheres, and more challenging to measure and interpret for cubes. kn controls the
maximum geometric overlap between two colliding particles. Finally, γt is most likely the most
challenging parameter to assign a value to, and we simply take γt = γn. For more details regarding
our DEM granular solver, i.e., Grains3D, the interested reader is referred to [52].

C. Simulations setup

For our particle-resolved simulations of cubes and spheres, we have selected two values of the
Galileo number: namely, Ga = 70 and Ga = 160, and a single value of the density ratio m = 2.
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TABLE I. Summary of the parameters used for PR-DNS of suspensions of cubes and spheres.

φ Ga D/
x L/D AR Np

0.01 70 20 15 2 128
0.05 70 24 15 2 644
0.10 70 32 10 2 381
0.20 70 32 10 1 381
0.01 160 24 15 2 128
0.05 160 24 15 2 644
0.10 160 32 10 2 381
0.20 160 32 10 1 381

These chosen values correspond to steady oblique and steady vertical settling of a single cube and
a single sphere at Ga = 70, respectively. At Ga = 160, on the other hand, a single cube settles in a
helical path [41], while a single sphere settles obliquely [27,56]. A summary of the simulated cases
together with their parameters are presented in Table I.

The simulations in the present study are performed in tri-periodic rectangular computational
domains with horizontal edge lengths Lx = Ly = L and vertical extents of Lz = {L, 2L}, depictions
of which are provided in Fig. 2. The mean volumetric flux of the suspension in the z (i.e.,
gravity) direction is kept zero via a dynamically adjusted pressure drop at each time step. With Np

particles each occupying a volume of vp = π/6, the corresponding solid volume fraction is given

FIG. 2. Computational domains used for PR-DNS of cube and sphere suspensions with different volume
fractions.
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as φ = Npvp/(L3AR), where AR = Lz/Lx denotes the aspect ratio of the domain. The length L and
aspect ratio AR are chosen such that a balance is achieved between the sufficiency of the number of
particles Np for statistical analysis and the computational cost of the simulations. Another important
consideration is the divergence of velocity fluctuations with the domain size [57]. At low Re,
fluctuations grow linearly due to long-range hydrodynamic interactions. In contrast, it was shown
that velocity fluctuations follow a much weaker logarithmic trend in randomly distributed dilute
suspensions at finite Re [58] and in fact saturate to finite levels for Re = O(10) [19]. This saturation
is attributed to the inertial screening effect due to the formation of nonrandom microstructure in the
suspensions [19,58]. For a dilute concentration of φ = 0.01 at Re = 50, particle and fluid velocity
fluctuations were reported to be insensitive to the domain size beyond 10 particle diameters [59].
Nevertheless, Uhlmann and Doychev [1] indicated in their analysis that while spatial autocorrelation
values decline substantially for moderate separation distances (e.g., 20D–40D), full decorrelation
of vertical velocity signals is not achieved even for domain extensions as large as Lz = 680D in
sphere suspensions with φ = 0.005 and Ga = {121, 178}. Considering the preceding discussion,
for the cases with φ = {0.01, 0.05} the domain edge lengths are chosen to be 15D in the horizontal
direction and elongated twice as much in the vertical direction. This is done in order to account
for the particle wake anisotropy such that any spurious effects due to periodicity conditions are
minimized.

Initial particle positions are obtained using a random number generation algorithm with a
condition to prevent the occurrence of overlaps. We use the same set of contact force model
parameter values for spheres and cubes. In all simulations, we set the restitution coefficient en

to 0.75 and the Coulomb friction coefficient μc to 0.5, and we adjust the stiffness kn so that the
maximum dimensionless overlap between the particles, δmax/D, is always less than 0.1%. Moreover,
the granular time step is chosen such that δt = (1/20)Tc, with Tc being the contact duration [52],
whereas the fluid time step is set to 
t = (1/500)tg. The chosen 
t satisfies the Courant-Friedrichs-
Lewy (CFL) condition of CFL < 0.2 for the grid resolutions listed in Table I. While in cases with
φ = {0.10, 0.20}, a pseudostationary state is attained and sustained long enough by running the
simulations up to 1000tg, the less concentrated cases with φ = {0.01, 0.05} and Ga = 160 required
to be run up to ≈2000tg to reach and maintain a pseudosteady state for sufficiently long duration of
time, such that reliable statistics could be collected.

III. RESULTS

In the following sections, all particle-related quantities are presented as ensemble-averaged
values unless stated otherwise. Therefore, no particular notation is used for averaging operation
over particles in the system. Time averaging, on the other hand, is denoted by angular brackets
shown as 〈 · 〉. Additionally, red lines and square symbols and black lines and circles in all plots are
reserved for the data of cube and sphere suspensions, respectively.

A. Settling velocity

As discussed earlier in the Introduction, the settling velocity of a suspension is hindered mainly
as a result of the upward flux of the fluid compensating for the downward motion of the particles.
The Reynolds numbers based on the pseudosteady hindered settling rates are reported in Table II.
Furthermore, Figs. 3(a) and 3(b) show hindered settling rates of cube and sphere suspensions, 〈Vz〉,
normalized by the terminal velocity of the corresponding isolated particle, 〈Vz,s〉. For an isolated
sphere, 〈Vz,s〉 is computed using the empirical relation available for Ga and Ret given in [11], and
for a cube, we use the results from our previous study on the motion of a single cube [41]. As
can be seen, the dependence of settling rate on the solid volume fraction for sphere suspensions is
well described by Eqs. (2) and (3) when φ � 0.05 in both Figs. 3(a) and 3(b). Note that in using
Fig. 2, we have also incorporated the prefactor proposed by Di Felice [10] in Fig. 2 with a value of
k = 0.85.
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TABLE II. Terminal Reynolds numbers based on ensemble- and time-averaged settling velocities for all
cases presented in Table I.

Re = ρ f 〈Vz〉D/μ φ = 0.01 φ = 0.05 φ = 0.1 φ = 0.2

Ga = 70 Spheres 64.7 53.7 43.3 30.0
Cubes 56.8 44.4 35.6 23.8

Ga = 160 Spheres 228.1 160.9 127.9 89.7
Cubes 172.1 123.3 98.9 68.1

For Ga = 70, both cube and sphere suspensions settle slower than an isolated particle at the
same Ga as shown in Fig. 3(a), while cube suspensions are always somewhat slower than sphere
suspensions. The situation is, however, different for Ga = 160. In the case of spheres, we find
that the suspension with the lowest φ settles faster than an isolated sphere. Such a behavior has
also been observed by Uhlmann and Doychev [1], where the settling velocity of the suspension
with (Ga, φ) = (178, 0.005) was reported to be 12% higher than a single sphere. In our case with
(Ga, φ) = (160, 0.01), the relative enhancement of settling velocity turns out to be approximately
7%. For cube suspensions, the choice of velocity scale for normalization of the settling rate affects
the interpretation of the results, owing to the different dynamics of a single cube compared to
a single sphere. Figure 3(c) shows three stages in the time evolution of the settling of a single
cube in an unbounded fluid at Ga = 160 and m = 2. The cube initially settles at a relatively high
velocity in a vertical path [denoted as “initial” in Fig. 3(c)], which is followed by the appearance of
vortex shedding and rotational motion leading to significant deceleration (denoted as “transient” in
Fig. 3(c)). Eventually, the cube establishes a sustained helical motion. If 〈Vz〉 for cube suspensions is
normalized using 〈Vz,s〉 obtained from the initial stage of Fig. 3(c), we essentially see a trend similar
to figure 3(a) at Ga = 160 [i.e., red squares in Fig. 3(b)]. On the other hand, using the final stage
〈Vz,s〉 of Fig. 3(c) results in higher values of 〈Vz〉/〈Vz,s〉 for cubes compared to spheres [i.e., orange
squares in Fig. 3(b)]. Moreover, the cube suspension with φ = 0.01 is now seen to settle faster than
a single cube at its final stage of motion. The reason for such a trend for φ = 0.01 is twofold. First,
the helical motion of a single cube, which requires a delicate balance of forces and torques acting on
the cube, cannot be established and sustained in the presence of perturbations from nearby cubes.
Consequently, such effective deceleration of the cube as in Fig. 3(c) does not conceivably occur.

(a) (b) (c)

Final
Transient

Initial

FIG. 3. Suspension settling velocities normalized by the terminal velocity of an isolated particle as a
function of solid volume fraction for the two Galileo numbers of Ga = 70 and Ga = 160. The dashed lines
in (a) and (b) show the Richardson and Zaki [6] formula presented in Fig. 2, with the prefactor k = 0.85.
(c) The vertical velocity of an isolated cube as a function of time at Ga = 160 normalized by the gravitational
velocity scale.
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(a) (b)

FIG. 4. Velocity fluctuations (a) in the gravity direction and (b) normal to the gravity direction. The particle
and fluid data are shown by solid and open symbols, respectively, whereas red and black lines and symbols
demonstrate the results for cube and sphere suspensions, respectively. The inset of each plot shows the same
data on a linear scale.

Second, even though cubes are significantly more likely to break free from clusters compared to
spheres as will be discussed in Sec. III D, there is still a considerable probability of finding a cube
in the wake of another, which acts towards reducing the overall drag force experienced by the cube
suspension.

B. Velocity fluctuations

Time-averaged values of particle and fluid velocity fluctuations of the cube and sphere suspen-
sions, represented by velocity variance σ 2, are given in Fig. 4. Fluid fluctuations are obtained by
computing the fluid velocity variance in a cubic control volume centered around each particle with
an edge length of 4D, excluding grid points lying inside the solids. Figures 4(a) and 4(b) show
fluctuations in the gravity and normal directions, respectively. Moreover, time evolution of the same
quantities are presented in Figs. 5 and 6. The variance values in all cases are normalized by the
square of the corresponding settling rate of each suspension, which is the reason that the resulting
quantity is occasionally referred to as “relative fluctuation” in the literature [19,60].

Overall, we find that the velocities of cube fluctuate with higher magnitude compared to spheres
particularly in the transverse direction, and that the differences between cube and sphere suspensions
in terms of particle fluctuation levels diminish as φ increases. In Fig. 4(a), particle fluctuations
pertaining to the regime where (Ga, φ) = (160, 0.01) appear to be higher than might be expected.
As will be highlighted in Sec. III D, strong columnar clustering occurs for both cube and sphere
suspensions at this regime, which underlies the high values of vertical particle fluctuations as a result
of prevalent DKT-type interactions. In Fig. 5, we observe more clearly that fluctuations of spheres in
both directions remain almost the same upon increasing Ga, except for the most dilute of φ = 0.01.
For cubes, however, enhancement of fluctuations with Ga are seen up to φ = 0.05, particularly
in the horizontal direction. Moreover, cube suspensions at (Ga, φ) = (160, 0.01) and (Ga, φ) =
(160, 0.05) exhibit long periods of high vertical velocity fluctuation, reminiscent of those observed
by Willen and Prosperetti [16] for sphere suspensions. As particles interact more frequently at higher
solid volume fractions, the magnitude of fluctuations increases with concentration for both types of
particles, as seen in Fig. 4. While hydrodynamic interactions are mainly responsible for this increase
at lower solid volume fractions, contact and collision between particles become more pronounced
at higher φ, thus contributing greatly to the increase of particle velocity fluctuations.

For both types of particles, fluid velocity variances (shown with open symbols in Fig. 4) are
significantly larger than that of particles for φ � 0.05. For φ = 0.01, the differences are smaller
since particles are expected to better follow large-scale fluid motions in dilute regimes. In more
concentrated cases, particles fail to adapt to smaller flow structures with length scales approximately
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(a) (b)

FIG. 5. Time evolution of (a) vertical and (b) horizontal particle velocity fluctuations. In these plots, red
and black lines demonstrate the results for cube and sphere suspensions, respectively. Additionally, solid lines
represent simulations with Ga = 160, whereas dotted lines show data for simulations with Ga = 70. In order
to enhance visual representation of the plots, darker lines show a filtered version of the data, while the original
data are plotted with a lighter color.

equal to D [58]. In general, the fluid pseudoturbulence induced by cubes is seen to be considerably
higher than that of spheres. That is, on average, σ 2

uz
/〈Vz〉2 is 41% higher for cubes for both Galileo

numbers, whereas σ 2
ux

/〈Vz〉2 is 52% and 72% higher for Ga = 70 and Ga = 160, respectively. For
φ � 0.05, vertical fluctuations are quite similar in their average values when Ga increases from
70 to 160 for both cubes and spheres. In contrast, cubes manifest large differences in the fluid
velocity variance in the horizontal direction between Ga = 70 and Ga = 160 for all solid volume
fractions, except φ = 0.2. Sphere suspensions, on the other hand, do not experience such a dramatic
amplification of fluctuations upon increasing Ga, except for the most dilute case.

Figure 7 shows the anisotropy of particle and fluid velocity fluctuations obtained from the ratio
of vertical to horizontal components of velocity variance. The amplification of velocity fluctuations
with solid volume fraction shown in Fig. 4 is also accompanied by a reduction in the level of
anisotropy in all suspensions, consistent with results obtained for sphere suspensions in the literature
[16,58,61]. More importantly, it is remarkable that the anisotropy of fluctuations in cube suspensions
is always smaller than in sphere suspensions, whether it be for particle [Fig. 7(a)] or fluid [Fig. 7(b)]
velocity fluctuations. This indicates that in cube suspensions, particle momentum and energy is more
effectively transferred from the gravity to the transverse direction, thus making these suspensions
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(a) (b)

FIG. 6. Time evolution of (a) vertical and (b) horizontal fluid velocity fluctuations. Interpretation of line
styles and colors is given in the caption of Fig. 5.

more isotropic. For the most dilute case with Ga = 70 in Fig. 7(a), anisotropy of particle velocity
fluctuations is quite high for spheres due to the limited lateral motions at this regime, whereas the
cube suspension is ≈50% more isotropic. The value of anisotropy in our sphere suspension is ≈12,
which is close to the value of 12.96 reported by Yin and Koch [58] obtained for a suspension with

(a) (b)

FIG. 7. Anisotropy of (a) particle and (b) fluid velocity fluctuations indicated by the ratio of the vertical to
horizontal velocity variance. The insets show extended ranges of values on the vertical axis.
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FIG. 8. Distribution of the horizontal component of particle angular velocities for different solid volume
fractions. The insets show the same data with the y axis scaled logarithmically, while the mean value of each
distribution is shown using short vertical lines on each plot. Interpretation of line styles and colors is given in
the caption of Fig. 5.

Re = 10. We also observe that increasing Ga renders almost all suspensions more isotropic due to
the emergence and enhancement of transverse fluctuations. Furthermore, the differences between
cube and sphere suspensions vanish for φ = 0.2, meaning that both types of particles begin to
behave similarly in terms of velocity fluctuations. Finally, studies that report values pertaining to
the anisotropy of particle velocity fluctuations for sphere suspensions in regimes relevant to the
present work are scarce. While Zaidi [61] obtained values of 〈σ 2

Vz
〉/〈σ 2

Vx
〉 in the range of ≈5.7–6.76

for 0.05 � φ � 0.2, Willen and Prosperetti [16] report ≈1.2–1.7 for 0.087 � φ � 0.262. As it
turns out, there is a large discrepancy between these two sets of values. Nevertheless, our results
in Fig. 7(a) lie between those reported by others, albeit quite closer to the results of Willen and
Prosperetti [16].

C. Angular velocities

In our previous study of the motion of an isolated cube [41], we found out that a cube rotates
much more vigorously than a sphere at high Galileo numbers. This is due to the existence of sharp
edges which induce strong hydrodynamic torques as the cube changes its orientation relative to
the surrounding flow. In Fig. 8 distributions of horizontal angular velocities of particles, defined
as �h =

√
�2

x + �2
y , are plotted for the simulated suspensions. We choose to demonstrate the

horizontal components, since it is this component that together with the vertical velocity of the
particles generates the major contribution to the Magnus force in the horizontal direction. It is
immediately obvious that in all cases, cubes not only exhibit higher angular velocities on average
[e.g., up to ≈3 times higher for (Ga, φ) = (160, 0.01)], but are also more likely to experience more
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(a) (b) (c)

FIG. 9. Joint probability distribution functions of (a) cube and (b) sphere suspensions obtained for
(Ga, φ) = (160, 0.05), (c) Variation of Pearson’s correlation coefficient as a function of the solid volume
fraction for the simulated cases. Interpretation of line styles and colors is given in the caption of Fig. 5.

extreme values. Similar to velocity fluctuations, the differences become less pronounced with the
increase in solid volume fraction, as interparticle contact and collisions begin to dominate particle
kinematics. We can see that for φ = 0.01 in Fig. 8, the distribution of angular velocities of spheres
remains almost identical between Ga = 70 and Ga = 160, whereas for cubes there is a substantial
shift towards higher �h. This is similar to the case of an isolated cube, with the difference that
an isolated cube at Ga = 70 shows only negligible oscillations, while in a suspension of cubes the
collective effect of the wake of the surrounding cubes induces considerable rotational motions. It
can also be seen in Fig. 8 that the average magnitude of horizontal angular velocities for spheres turn
out to be somewhat higher at Ga = 70 compared to Ga = 160, which might seem counterintuitive.
However, the suspensions simulated here are by no means homogeneous, and as we will see in
Sec. III D, the level of inhomogeneity increases with Ga. It leads us to presume that the reduction of
angular velocities from Ga = 70 to Ga = 160 is a consequence of the stronger clustering of spheres
at the higher Ga. One possible reason could be that since spheres at Ga = 160 settle in larger groups,
it is more probable for a sphere to be surrounded horizontally by neighboring spheres. It is thus more
likely that the net microstructure-induced hydrodynamic torque attains smaller values at Ga = 160
compared to Ga = 70.

To further elucidate the influence of rotation on transverse forces and subsequent lateral mo-
tions, we present the joint probability distribution functions (JPDFs) of horizontal rotational and
translational particle velocities in Fig. 9. Since the Magnus force is by definition directed along
Vslip × � = (u − V) × �, the rotational velocity �x is expected to give rise to a Magnus force
and consequently a translational velocity in the positive y direction. Therefore, we consider JPDFs
of �x and Vy in Fig. 9, but similar information can also be equivalently obtained with �y and
Vx, with the only difference of the appearance of a negative correlation. In Fig. 9, ρ denotes
the Pearson’s correlation coefficient [62] defined as ρX,Y = cov(X, Y)/σX σY , which shows the
covariance between two variables X and Y normalized by their standard deviations. The variation
of ρ for both cube and sphere suspensions is given as a function of the solid volume fraction for
Ga = 70 and Ga = 160 in Fig. 9(c). In all cases, ρ is expectedly found to be ≈0 for rotational and
translational velocities in the same direction, e.g., �x and Vx. We immediately notice in Fig. 9(c)
that the normalized covariance is always stronger at Ga = 160 than in Ga = 70 for both types
of suspensions, though more strongly so for spheres. Moreover, ρ is found to be consistently
greater for spheres compared to cubes. We attribute this finding to the fact that unlike the case
of a sphere, the rotation of a cube creates both a Magnus (i.e., rotation-induced) force and an
orientation-induced lateral force [63]. Since the rotation of a cube is also accompanied by a change
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in its orientation, a constant rotation would create a lateral force that periodically changes sign.
Therefore, even in the absence of the Magnus force, the rotation of a cube causes a sign-changing
lateral force resulting in zero average covariance with velocity components. We speculate that this
underlies the weaker correlation between rotational and translational velocity of cubes compared
to spheres in Fig. 9(c). Additionally, the wider distribution of velocities in Fig. 9(a) compared to
Fig. 9(b) is notable, implying that larger horizontal velocities are more frequently encountered in
cube suspensions despite their weaker correlation with their rotational velocities. As signified by
the less than perfect covariance of variables shown in Fig. 9(c), it should be emphasized that the
rotational velocity of a particle and the corresponding forces are only partly responsible for its
lateral motions. The other contributions include shear and vortex-induced as well as microstructure-
induced lateral forces, which we investigated thoroughly in a previous work [22]. While rotation-,
shear-, and vortex-induced forces are more influential in dilute regimes, microstructure-induced
loads become increasingly more important in denser suspensions. An indication of this shift in
relative importance is reflected by the decreasing covariance of rotational and translational velocities
with solid volume fraction as shown in Fig. 9(c). Esteghamatian et al. [64] recently highlighted this
point by demonstrating that in dense (e.g., φ � 0.4) liquid-solid fluidized beds, neither Magnus nor
Saffman forces contribute in any significant way to the lift force experienced by particles.

D. Microstructure

In order to characterize the microstructure of the simulated suspensions, we make use of the
pair distribution function P(r). This quantity shows the ratio of ρn(r), the number density of
neighboring particles in a volume 
V located at r, to ρn, the average number density in the bulk of
the suspension. In spherical coordinates, P(r) is given as [65]

P(r) = P(r, θ, ψ ) = 〈ρn(r, θ, ψ )〉
ρn

= 〈H (r, θ, ψ )〉
ρn
v

, (26)

where r is the pair separation vector pointing to the center of a neighboring particle given a
reference particle at the origin r = 0, θ the azimuthal angle measured from positive z axis, ψ

the polar angle measured from positive x axis, ρn the average number density of particles in the
computational domain, 
v = r2 sin θ
r
θ
ψ the volume element, and H (r, θ, ψ ) the histogram
of particle pairs. Since in our simulations, P(r, θ ) is axisymmetric about the gravity direction, we
compute only P(r, θ ), which is P(r) averaged over all values of ψ . To obtain P(r, θ, ψ ), the space
is first discretized with 
r = 0.1D and 
θ = π/60. At each sampling time, we create periodic and
multiperiodic images of the particle positions, followed by a loop for each particle and over the
surrounding space to count the number of neighbors happening to be in the subvolume 
v at any
given r and θ . The histogram H (r, θ ) is thus progressively constructed, and finally averaged over
at least 3000 time snapshots for each case. Another informative quantity can also be derived from
Eq. (26) by averaging P(r, θ ) over θ , yielding the radial distribution function

g(r) = 1

2

∫ π

0
P(r, θ ) sin θ dθ, (27)

which shows the ratio of the number density in a spherical shell with thickness 
r a distance r away
from the reference particle to the bulk number density, regardless of the relative orientation.

The pair and radial distribution functions are plotted for Ga = 160 and Ga = 70 in Figs. 10 and
11, respectively. The color bars have been set to represent the same range of values for all cases so
that direct comparisons can be made. The strong clustering of particles in the vertical direction for
the sphere suspension at (Ga, φ) = (160, 0.01) in the form of a columnar structure is the most re-
markable feature of the pair distribution functions in Fig. 10. Such a prominent vertical clustering of
spherical particles has also been reported by Uhlmann and Doychev [1] at (Ga, φ) = (178, 0.005),
and later confirmed experimentally by Huisman et al. [18]. In Fig. 10 we also note an increased
concentration of spheres in the horizontal direction relative to the reference particle. Interestingly,
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Cubes Spheres

FIG. 10. Pair and radial distribution functions obtained for microstructure characterization of suspensions
at Ga = 160. The leftmost and center columns in the figure pertain to cube and sphere suspensions, respectively.
On the rightmost plots, radial distribution functions of hard spheres [66] are also given as a reference in addition
to those obtained from the suspension simulations.

this was also observed by Uhlmann and Doychev [1], despite the fact that their simulated suspension
was more dilute and the Galileo number that they used was slightly higher. The formation of these
horizontal configurations was attributed to the tumbling phase of the well-known DKT phenomenon.
Conversely, while the cube suspension in the same regime, i.e., (Ga, φ) = (160, 0.01) also exhibits
increased concentration in the vertical direction, it is obvious that the intensity of clustering is
significantly smaller than what is seen for the sphere suspension. The pair distribution function for
the cube suspension at (Ga, φ) = (160, 0.01) is seen to be more uniformly distributed, sharing some
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Cubes Spheres

FIG. 11. Pair and radial distribution functions obtained for microstructure characterization of suspensions
at Ga = 70. The leftmost and center columns in the figure pertain to cube and sphere suspensions, respectively.
On the rightmost plots, radial distribution functions of hard spheres [66] are also given as a reference in addition
to those obtained from the suspension simulations.

similar qualities as well. For both suspensions, we find that the radial distribution function attains
significantly larger values compared to a hard-sphere distribution [66]. Furthermore, for all solid
volume fractions shown in Fig. 10, a sharp peak is persistently observed for sphere suspensions.
Inspection of pair distribution functions reveals the existence of a “contact rim,” i.e., a circular
high-density band, at r/D = 1 for all sphere suspensions (though somewhat weaker in the case of
φ = 0.05). This region exists as spheres spend a relatively long time in contact with each other
during the tumbling phase of DKT. Obviously, this point of contact is always located at r/D = 1
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for spheres which causes the sharp peak at r/D = 1, whereas for cubes, contact can occur at any
center-to-center distance in the range

√
π/6 � r/D �

√
π/2 due to its geometry. This is evident

from radial distribution functions of cubes appearing as approximately oblique lines about r/D = 1.
At higher solid volume fractions, the wakes of particles become much more frequently disrupted by
their neighbors. Additionally, the settling Reynolds number also decreases with increasing φ due to
the stronger hindrance effect for the same Ga (as noted in Table II), leading to weaker particle wakes.
This is why the prominent vertical configuration of particles at φ = 0.01 quickly fades away upon
increasing the suspension concentration, even though there still remains weak traces of vertical
accumulation for both cube and sphere suspensions at (Ga, φ) = (160, 0.05). Since the vertical
arrangement of particles is unstable, both spheres and cubes quickly tumble into stable horizontal
configurations, leading to a deficit in the vertical direction of the pair distribution functions. This is
reflected quite clearly for sphere suspensions in the form of high-density horizontal regions. In the
case of cubes, while the same horizontal structures can still be detected in almost all cases, not only
the pair distribution functions are much fainter, but also the horizontal extension of these regions
are significantly more limited. This observation is also confirmed by the reduced magnitude of the
radial distribution functions for cube suspensions compared to their sphere counterparts. Notably,
the pair distribution function of the cube suspension for (Ga, φ) = (160, 0.20) in Fig. 10 is almost
uniform except for r/D � 2, whereas the extended light blue and red regions and their margin is still
clearly discernible in the sphere suspension. We will demonstrate in Sec. III E that this particular
difference in microstructure is, at least partly, responsible for the differences observed in the drag
force experienced by cube and sphere suspensions. While at relatively low solid volume fractions
the suspensions are markedly inhomogeneous, the microstructure shows resemblance to random
distributions (i.e., hard-sphere distributions in the case of sphere suspensions, and their equivalent
for cube suspensions) at φ = 0.2, as many-body interactions begin to dominate the dynamics of the
suspensions.

At a lower Galileo number of Ga = 70, we conversely find a strong deficit of particles in the
vertical direction near the reference particle for both sphere and cube suspensions, especially in
the most dilute case. Comparison of radial distribution functions reveals that except for φ = 0.20,
this deficit is remarkably more pronounced compared to suspensions at Ga = 160. We also find
that the pair distribution functions for both sphere and cube suspensions at (Ga, φ) = (70, 0.01)
are starkly different from those obtained for (Ga, φ) = (160, 0.01). In Fig. 11, a slender vertical
region depleted of particles is visible for the sphere suspension at (Ga, φ) = (70, 0.01), which
is the complete opposite of our observation for (Ga, φ) = (160, 0.01). From Fig. 11, it can be
seen that this low concentration region is immediately adjacent to a higher concentration region.
More importantly, such a well-defined depletion zone cannot be detected in the case of the cube
suspension at (Ga, φ) = (70, 0.01), although weak signs of vertical voids are visible. Another
notable observation is that in contrast to sphere suspensions at Ga = 160, the contact rim does
not appear as strongly at Ga = 70. This means that while particles undergo DKT, they either do
not touch as frequently, or spend as much time in contact even if they do. Correspondingly, the
peaks of the radial distribution functions of sphere suspensions are higher and wider at Ga = 160
compared to Ga = 70. For the highest solid volume fraction of φ = 0.20, while cube suspensions
have an almost uniform pair distribution function for separation distances greater than r/D = 2, the
horizontal sector of higher particle concentration is still distinguishable in the sphere suspension at
Ga = 160 and φ = 0.20.

In order to demonstrate the microstructure evolution, we also present in Fig. 12 the ensemble-
averaged local solid volume fraction φloc. This quantity is obtained by considering a cubical control
volume of edge length 4D centered on the location of each particle, and then computing the ratio of
the number of grid points lying in the solid objects to the total number of points inside that control
volume, and then performing ensemble averaging at each time step. It is noted that although this
method inevitably results in a pixelated (i.e., stepwise) representation of the particles, it still yields
a reliable estimation of the local solid volume fraction for comparison purposes. Despite the overall
similarity of pair distribution functions of cubes and spheres for φ � 0.05 presented in Figs. 10 and
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FIG. 12. Time evolution of ensemble-averaged local solid volume fraction φloc. Interpretation of line styles
and colors is given in the caption of Fig. 5.

11, the local solid volume fraction in sphere suspensions undergoes several high peaks that last for
long periods of time, particularly at Ga = 160. In contrast, such noticeable peaks are not seen in the
values of φloc for cube suspensions. Moreover, the plots in Fig. 12 unequivocally show that spheres
are always locally closer to each other than cubes. For φ � 0.05, there is a distinctive change in
values of φloc in sphere suspensions when increasing Ga from 70 to 160, while for cubes the only
noticeable change appears to be in the most dilute case with φ = 0.01. We believe that the high
peaks seen for sphere suspensions correspond to the persistent contact rim seen in Figs. 10 and 11
(and equivalently the sharp peaks of the radial distribution functions), and hence exist due to the
fact that at Ga = 160 spheres spend a substantial amount of time in the kissing phase of DKT. Since
the contact rim also exists, although not as prominently, for Ga = 70 as well, we conclude that at
Ga = 160 a greater number of particles should be in direct contact to explain the appearance of high
values of local solid volume fraction shown in Fig. 12.

The preceding descriptions of the microstructure of simulated systems confirm that inertial
liquid-solid suspensions of spheres and cubes are nonrandom, particularly for lower solid volume
fractions. It also turns out that the hydrodynamics of dilute suspensions can be very different at
Ga = 70 and Ga = 160, an example of which is the narrow vertical depletion region of sphere
suspensions at (Ga, φ) = (70, 0.01) (Fig. 11) as opposed to the high concentration column of
spheres at (Ga, φ) = (160, 0.01) (Fig. 10). At the higher Galileo number of Ga = 160, the wake is
strong enough to attract particles from relatively long distances. As noted in [1], an isolated sphere
settles steadily along an oblique path at this Galileo number, which might be a contributing factor in
leading particles into the wake region of another particle. The trapped spheres spend a sufficiently
long time in the formed clusters such that a substantial imprint is left on the pair distribution function
of their corresponding suspension. These particles then collide with the leading particle, and tumble
into a horizontal position. At the lower Galileo number of Ga = 70 and for φ = 0.01, however,
spheres get repelled from the wake region. We suspect that due to the existence of shear in the
wake, particles experience a lift force that effectively pushes them away from the wake region.
Interestingly, Kurose and Komori [67] have shown that the lift force exerted on an isolated sphere
in shear flow acts towards the higher velocity region for Re < 60, and in the opposite direction for
Re > 60 due to flow separation at higher Re. Their finding seems to reinforce our conjecture of
particles getting repelled from the wake region by the shear-induced lift at Ga = 70, while being
attracted to the wake of another particle at Ga = 160. In both of these scenarios, cube suspensions
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are considerably more homogeneous. In our previous study of the free motion of an isolated cube
[41], we have shown that a cube experiences much larger rotation rates and transverse forces (e.g.,
Magnus force) due to its geometry compared to a sphere. A slight change in the orientation of
a cube can induce significant hydrodynamic torques and subsequent rotations. Even though the
helical motion of an isolated cube at Ga = 160 is unlikely to be sustained in the presence of other
cubes, the inherent susceptibility of cubes to rotation is still very likely to cause significant side
motions. This is why we suggest that the less pronounced clustering of cube suspensions originates
from high rotational velocities of cubes, which consequently enhances their chances of effectively
escaping clusters. This conclusion is also in line with the results of Kajishima [68] in PR-DNS
of dilute sphere suspensions at high Reynolds numbers, which indicated that irrotational spheres
maintain cluster structures whereas rotational spheres in contrast tend to cause periodic break-up of
clusters.

E. Drag force

Prior to presenting the numerical results, it is necessary to stress that in the literature, two differ-
ent quantities have been referred to as the drag force; namely, the total drag and the flow-induced
drag denoted by F and Fd , respectively. In a suspension system where a static macroscale pressure
gradient exists, the total drag force acting on a particle is the sum of a buoyancy-type force −vp∇P
(which is experienced even in the absence of a flow) and the flow-induced interaction force Fd . The
net drag force exerted on all particles is balanced by the pressure drop over the whole system such
that

−V ∇P = NpF = Np(−vp∇P + Fd ), (28)

where V is the total volume of the system. From the above equation, it follows that −vp(1 −
φ)∇P = φFd , and therefore

F = 1

1 − φ
Fd . (29)

In the present study, we have chosen to report the magnitude of the total drag force F for our
results, which is the quantity that is directly computed by integrating hydrodynamic stresses in the
simulations as in Fig. 10.

Several drag correlations have been proposed in the past for suspensions of spheres for varying
ranges of Re and φ. However, the systems from which these correlations have been extracted have
not always been similarly set up. The earliest drag correlation is the one proposed by Wen and Yu
[69] based on fluidization experiments with the following form:

F

Fs
= (1 − φ)−β−1, (30)

where Fs is the drag force of a single stationary sphere, for which reliable correlations exist [70,71].
Equation 30 is in fact the same relation that represents the dilute part of the drag correlation proposed
by Gidaspow [72]. Wen and Yu [69] suggested that the exponent β is constant with a value of
β = 3.7 over the entire range of Reynolds numbers, based on the observation that β turned out
to be almost the same for the extremities of the Reynolds number range. Based on the available
experimental data, Di Felice [73] later found that for the intermediate range of Re, β is a weak
function of the Reynolds number obeying the following relation:

β = 3.7 − 0.65 exp

[
− (1.5 − log10 Re)2

2

]
, (31)

where β goes through a minimum of β � 3 for 20 � Re � 80. Due to obvious practical limitations,
fixed-bed data such as those proposed by Ergun [74] can be obtained only for a highly concen-
trated system close to packing solid volume fractions. In recent years, the availability of massive
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FIG. 13. Drag force of the cube and sphere suspensions as a function of solid volume fraction for two
Galileo numbers of Ga = 70 and Ga = 160. Open and solid symbols represent data for dynamic suspensions
and static beds, respectively. Along with the data obtained from the present PR-DNS, we also show the drag
correlations proposed by Wen and Yu [69], Di Felice [73], and Bogner et al. [79] for spheres, and that of Chen
and Müller [81] for fixed beds of cubes.

computational power has provided the opportunity to model fluid flow in fixed arrays of spheres
over extended ranges of solid volume fractions and Reynolds numbers. The PR-DNS of Hill et al.
[75,76], Beetstra et al. [77], Tang et al. [78], and Bogner et al. [79] based on lattice-Boltzmann
method and that of Tenneti et al. [80] based on the immersed boundary method have provided
correlations for drag force over stationary arrangement of spheres for dense systems (i.e., φ � 0.1)
and Reynolds numbers mostly up to Re = 300. Of particular relevance to the present work is the
PR-DNS study of Chen and Müller [81] on the drag force of assemblies of cubic particles. In their
study, super-quadric cubes were used (having relatively round corners and edges) to obtain a drag
correlation for 0 � Re � 200 and 0.1 � φ � 0.45.

The drag force data collected from the present simulations are shown in Fig. 13, where the
values are normalized by the Stokes drag relation FSt = 3πμD〈Vz〉. On the same graphs in Fig. 13,
we also show values of drag computed using correlations reported in the literature for spheres, and
using the aforementioned correlation proposed for cubes [81] with parameters corresponding to
our simulations. It should be pointed out that while the correlation of Bogner et al. [79] gives the
total drag as given in Eq. (29), those proposed by Wen and Yu [69], Di Felice [73], and Chen and
Müller [81] originally provide the flow-induced drag only, hence necessitating the multiplication
by a factor of 1/(1 − φ) in order for comparisons to be made with our drag data in Fig. 13.
Since these correlations require the Reynolds number (instead of the Galileo number) as an input,
we use the Reynolds number based on the pseudosteady settling rate of the suspension in each
simulation shown in Table II. In doing so, it should be noted that for correlations derived from
fixed-bed systems, the Reynolds number based on superficial velocity is equivalent to the Reynolds
number computed with the average settling velocity of the particles (relative to a fixed container) in
sedimenting suspensions [11].

From Fig. 13, we can immediately recognize a number of distinct features. The most notable is
the atypically lower drag experienced by both spheres and cubes at (Ga, φ) = (160, 0.01) compared
to their fixed-bed counterparts. As illustrated in Sec. III D, this is due to the formation of fast-settling
clusters in this particular regime. In addition to the lower drag compared to fixed beds owing to
the inhomogeneous microstructure, it turns out that both suspensions at (Ga, φ) = (160, 0.01) on
average settle faster even than an isolated particle according to the data in Table II. At this Galileo
number and density ratio, a single sphere settles rectilinearly with a terminal Reynolds number of
Re � 213, while a single cube significantly decelerates after an initial vertical motion and eventually
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settles in a helical path at Re � 155 [41] [see also Fig. 3(c)]. While the higher-than-normal settling
rate or equivalently the lower drag in dilute sphere suspensions have been lately reported by other
researchers [1,18], we find that to be also true for a cube suspension at (Ga, φ) = (160, 0.01),
which appears to experience less drag compared to a fixed bed of cubes. Remarkably, no such
drag reduction is observed for the similar solid volume fraction at Ga = 70. Another feature of
Fig. 13 is that while the drag of sphere suspensions is higher than fixed beds of spheres except for
(Ga, φ) = (160, 0.01), the drag curve of cube suspensions closely follows the drag data of fixed
beds of cubes in all cases, with the only exception of the case with (Ga, φ) = (160, 0.01). Note that
Fig. 13 shows two sets of drag data for fixed beds of cubes. One set, shown by solid gray squares,
pertains to the simulations we performed with random cube arrangements at the same Reynolds
numbers as the dynamic cases. The other set, represented by solid red squares, shows the drag of
fixed beds of rounded super-quadric cubes obtained by Chen and Müller [81]. As can be seen, our
drag values lie well above those reported in [81]. This discrepancy might have appeared at least
partly owing to the fact that the cubes in our simulations are represented with sharp edges and
corners, while the super-quadric cubes in [81] have a fair degree of roundness.

The similarity between the drag values of stationary and moving cube suspensions is rather
surprising. One might expect moving cubes to experience a larger overall drag due to stronger
velocity fluctuations, as is the case for an isolated moving cube compared to a fixed one. However,
we believe that this trend may be justified by realizing that the relative magnitudes of factors
contributing to the alteration of drag may be different for cubes and spheres. In general, the
drag acting on mobile particles in a dynamic suspension would be different compared to the drag
obtained from a stationary array (i.e., a fixed bed) of particles. The effect of particle motion on
drag in suspensions has been a long-standing challenge for developing accurate drag correlations,
as touched upon in the review article by Di Felice [82], and investigated by Tang et al. [83] and
recently by Tavanashad et al. [21].

The difference between the drag of dynamic versus static suspensions stems from three factors;
namely, suspension microstructure, velocity fluctuations and particle mobility. First, when particles
are free to move, they show a preference for particular arrangements that are markedly different from
a random (i.e., hard-sphere) distribution, as discussed previously in Sec. III D. These nonrandom
structures develop as a result of interparticle hydrodynamic interactions such as DKT, leading either
to clustering or dispersion [1,11,16], whereas dynamic gas-solid systems retain their random particle
distributions on length scales of the order of the particle diameter [83,84]. Since cubes are found to
be less likely to remain in clusters, the extended horizontal accumulation that enhances drag in the
case of spheres is extremely weak in cube suspensions, if detectable at all (e.g., see Fig. 10). In order
to demonstrate this point more clearly, we present broader views (i.e., up to r/D = 8) of the pair
distribution functions in Fig. 14 for two solid volume fractions of φ = 0.1 and φ = 0.2, respectively.
As evident in Figs. 14(a) and 14(b), high-density sectorial regions between π/3 � θ � π/2 can be
found in sphere suspensions at Ga = 160 even in the densest suspension, extending all the way
up to r/D = Lx. In cube suspensions, though, any horizontal accumulation of neighbors is hardly
seen beyond r/D = 2. These observations indicate that in cube suspensions, there is a considerably
lower probability of finding neighbors oriented horizontally compared to sphere suspensions. The
sharp peaks in radial distribution functions, together with high-density horizontal regions in cases
with φ � 0.05 and both Galileo numbers (evident in Figs. 10 and 11), and consequently the time
evolution of local solid volume fraction in Fig. 12, overall point to the fact that spheres cling to one
another horizontally for long periods of time. This behavior, which is not observed as prominently
in cube suspensions, significantly amplifies the drag experienced by spheres.

Second, particle velocity fluctuations create additional shear in the flow and also introduce
unsteady effects such as history and added-mass forces, which would otherwise be absent in a
suspension with frozen particles. In Sec. III B, we presented particle velocity fluctuations for the
present simulations. Even though the velocity variances are generally higher for cubes compared
to spheres, the differences are most striking in the transverse direction and for more dilute cases.
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(a) φ = 0.1

(b) φ = 0.2

FIG. 14. Pair distribution functions of cube and sphere suspensions with extended ranges of the radial
distance compared to Fig. 10 and Fig. 11. The plots pertain to cases with Galileo numbers of Ga = 70 and
Ga = 160 and solid volume fractions of φ = 0.1 and φ = 0.2.

Moreover, Tavanashad et al. [21] noted that while in homogeneous suspensions higher fluctuations
enhance the drag, this is not necessarily true for clustered suspensions.

Third, the ability of particles to adapt to flow changes is found to reduce drag in sphere
suspensions, as demonstrated by Rubinstein et al. [85] for Stokes regime and Tavanashad et al.
[21] for high Reynolds numbers. The mobility of particles is usually characterized in terms of the
Stokes number given as St = mRe/18, which is the ratio of particle momentum response time to
the flow characteristic time. Two limiting cases of St → 0 and St → ∞ thus correspond to tracer
particles adapting instantaneously to the flow and stationary particles in fixed beds, respectively.
For the present liquid-solid suspensions, the Stokes number lies in the ranges of 10 � St � 25 for
spheres and 8 � St � 18 for cubes. Although we did not study the effect of mobility of cubes
on their drag, we speculate that the freedom of cubes to translate and rotate in response to the
flow field variations should have a greater influence towards the reduction of drag compared to
similar mobility effects in sphere suspensions [21], hence explaining the lower-than-expected drag
of dynamic cube suspensions. The lower drag might also be linked to the orientation of each
individual cube, which can on average be such that a nearly face-normal orientation occurs more
frequently in a dynamic suspension than a completely random orientation in a fixed bed of cubes.
Nevertheless, mobility and its ensuing effects in cube suspensions certainly need further specifically
targeted investigations in order to firmly establish the mechanisms underlying the drag data trend
seen in the results of this section.

IV. DISCUSSION AND FINAL REMARKS

In this investigation, we have simulated monodisperse liquid-solid suspensions of cubes and
spheres with a solid-to-fluid density ratio of m = 2, for two Galileo numbers of Ga = 70 and
Ga = 160 and a range of solid volume fractions of 0.01 � φ � 0.2. Through detailed microstructure
analysis, we have found that while suspensions of cubes bear qualitative structural similarity to
sphere suspensions, cubes appear to be less likely to stay in clusters. In line with this observation, we
have shown that horizontal particle velocity fluctuations are significantly higher in cube suspensions
due mainly to their susceptibility to stronger transverse forces; namely, orientation-induced forces
and Magnus effects resulting from comparably high angular velocities. At the highest Galileo
number of Ga = 160 and the most dilute case of φ = 0.01, we found long vertically aligned particle
clusters standing out remarkably in sphere suspensions, but less conspicuously in cube suspensions.
These columnar structures as well as the observed horizontal clusters arise due to the occurrence
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of the DKT mechanism. While the columnar arrangement quickly fades away with the increase of
solid volume fraction owing to frequent wake disruptions by nearby neighbors, horizontal clusters
persist in all concentrations. In contrast, there is a remarkable depletion of spheres in the wake of
a reference sphere for Ga = 70 and φ = 0.01, which we attribute to a repelling lift force induced
by the wake shear region [67]. In all cases, preferential concentration is unanimously less intense
in cube suspensions, whether it be an accumulation or a deficit of particles in a certain region. In a
sense, one may conclude that cube suspensions remain more homogeneous or better mixed. Such a
conclusion bears important practical implications in real-life applications of particle-laden flows. As
an example, in situations where particle agglomeration is to be avoided in order to enhance mixing
or maximize surface transfer properties, angular shapes for the dispersed phase would be a better
choice.

The effect of particle rotation on characteristics of sphere suspensions was first investigated by
Kajishima [68], where it was shown that irrotational spheres develop and maintain clusters, whereas
rotational spheres tend to break up clusters frequently as a result of the Magnus lift force and the
ensuing horizontal fluctuations. Our observations with cube suspensions appear to be well aligned
with the conclusions drawn by Kajishima [68]. We have demonstrated that compared to spheres,
cubes on average rotate with considerably higher angular velocities, specifically at lower solid
volume fractions and higher Galileo numbers [e.g., �h up to three times higher in cube suspensions
versus sphere suspensions for (Ga, φ) = (160, 0.01)]. Such high rotation rates are accompanied by
similarly high values of horizontal particle velocity fluctuations, conceivably resulting from both
orientation- and rotation-induced (Magnus) lift forces. The existence of stronger transverse forces
promotes the chances of escaping clusters for cubes, which we believe is the underlying reason
for the remarkably more homogeneous structure of cube suspensions in comparison with sphere
suspensions. Furthermore, we also find that cubes are more effective in transferring momentum from
the gravity to the horizontal direction, as shown by the ratio of vertical to horizontal particle velocity
fluctuations. The strong transverse motions of cubes not only homogenize the suspension structure
but also make particle momentum properties more isotropic compared to sphere suspensions.

It is well established in the literature that microstructure undoubtedly affects the average drag
force experienced by particles in a suspension. We confirmed in the present study that the drag
on sphere suspensions can be even lower than their fixed-bed counterparts, [e.g., for (Ga, φ) =
(160, 0.01)] due to the shielding effect caused by strong vertical clustering, whereas it can also
be higher than fixed beds when particles aggregate horizontally. Except for (Ga, φ) = (160, 0.01),
however, drag of cube suspensions appears to closely follow that obtained from fixed-bed sim-
ulations with the same parameters and random particle distributions. The greater homogeneity
of cube suspensions is certainly an important factor responsible for this interesting and rather
unexpected behavior. We have depicted in Figs. 14(a) and 14(b) the marked presence of wide
horizontal accumulation of spheres especially at Ga = 160, while such regions can be hardly
detected in cube suspensions. Nonetheless, one might still anticipate higher drag for dynamic cube
suspensions compared to fixed beds of cubes, given the higher velocity fluctuations and that the
microstructure is still nonrandom. However, it was recently shown in [21] that velocity fluctuations
do not necessarily increase the drag in clustered suspensions. Another factor that needs to be taken
into account is the motion freedom of cubes in response to the flow in dynamic cube suspensions.
Similar to the findings of Rubinstein et al. [85] in Stokes conditions, Tavanashad et al. [21] have
reported that mobility of spheres always decreases the drag also at high Reynolds numbers. For
cubes, mobility might also result in the more frequent occurrence of certain orientations that could
cause less resistance to the flow around the cubes. Consequently, since the effect of horizontal
clustering and higher velocity variance is to enhance the drag, we suggest that the effect of motion
freedom for cubes should have a stronger influence in drag reduction in dynamic cube suspensions
compared to sphere suspensions. This matter, along with several others that have not been addressed
in the present study, such as, e.g., (1) the competing effect of orientation-induced lift force and
rotation-induced Magnus force, (2) the significance of the orientation angle of cubes in suspensions
on drag, and whether or not cubes have a distribution of orientation angles that differs from

044306-25



ARMAN SEYED-AHMADI AND ANTHONY WACHS

that arising by randomly assigning orientations in a fixed-bed simulation, or (3) the relationship
between long periods of high-velocity fluctuations and the suspension microstructure for cubes
with Ga = 160 and φ = 0.01, 0.05, need to be considered in future works concerning suspensions
of cubes.
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APPENDIX: TIME-MARCHING ALGORITHM

The numerical time-marching algorithm in our DLM-FD method consists of a four-step classical
operator-splitting scheme. For each time t n+1, we solve

(1) A classical L2-projection scheme for the solution of the Navier-Stokes problem: Find un+1/2

and pn+1 such that

ũn+1/2 − un


t
− 1

2Ga
∇2ũn+1/2 = −∇pn + 1

2Ga
∇2un

− 1

2
(3un · ∇un − un−1 · ∇un−1) − λn, (A1a)

∇2ψn+1 = 1


t
∇ · ũn+1/2,

∂ψn+1

∂n
= 0 on ∂D, (A1b)

un+1/2 = ũn+1/2 − 
t∇ψn+1, (A1c)

pn+1 = pn + ψn+1 − 
t

2Ga
∇2ψn+1. (A1d)

(2) A purely granular problem, predictor step: Find Vn+1/3 and �n+1/3 such that

(m − 1)vp
Vn+1/3 − Vn


t
= (m − 1)vpg +

∑
j

Fc j, (A2)

(m − 1)Ip
�n+1/3 − �n


t
=

∑
j

r j × Fc j − (m − 1)�n × Ip · �n, (A3)

and update particle position Xn+1/3.
(3) A fictitious domain problem: Find un+1, Vn+2/3, �n+2/3 and λn+1 such that

un+1 − un+1/2


t
+ λn+1 = λn, (A4)

(m − 1)vp
Vn+2/3 − Vn+1/3


t
−

∫
P

λn+1dx = 0, (A5)

(m − 1)Ip
�n+2/3 − �n+1/3


t
−

∫
P

r × λn+1dx = 0, (A6)

un+1 − (Vn+2/3 + �n+2/3 × r) = 0 in P . (A7)
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(4) A purely granular problem, corrector step: Set Xn+2/3 = Xn, and find Vn+1 and �n+1 such
that

(m − 1)vp
Vn+1 − Vn+2/3


t
=

∑
j

Fc j, (A8)

(m − 1)Ip
�n+1 − �n+2/3


t
=

∑
j

r j × Fc j, (A9)

and update particle position Xn+1.
In the above equations, 
t denotes the time step, ψ the pseudopressure and ∂D the do-

main boundary. In Eq. (A1a) we use Crank-Nicolson and Adams-Bashforth schemes which are
second-order accurate in time to discretize the viscous and advective terms, respectively, while the
saddle-point problem in step 3 is handled by an Uzawa algorithm [51]. Considering the high-order
correction of the pressure, the projection scheme in step 1 is also second-order accurate in time.
However, the first-order time discretization of the fictitious domain sub-problem in step 3, and
the overall first-order Marchuk-Yanenko operator-splitting method reduce the global time accuracy
of our algorithm to first order only. Equations presented in step 1 are spatially discretized with a
second-order central scheme for the diffusion term, whereas the advective term is treated with a
total variation diminishing scheme combined with a Superbee flux limiter. Despite the second-order
discretization of the flow equations, the accuracy of our method is between first and second order
due to the presence of rigid bodies immersed within the computational domain.
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