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Examination of the microscopic definition for granular fluidity
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Recent work has used an introduced property, termed granular fluidity (defined as the
shear rate divided by the stress ratio), to help quantify and model nonlocal behavior within
granular flows. A so-called “microscopic” definition was subsequently proposed which
links this granular fluidity to the packing fraction, particle diameter, and the granular
temperature. This definition provides a physical basis on which the nature of granular
fluidity can be understood. Here we have examined the microscopic definition, first repli-
cating the previously demonstrated behavior using DEM simulations of shear cells and
then demonstrating that the relationship’s coefficients are dependent on the coefficient of
friction, the presence of tangential damping, and the presence of rolling resistance. When
the geometry is changed from a shear cell to a cylindrical hopper, the relationship shifts
away from the expected response, thus demonstrating that there are geometry dependent
effects that are not captured by the original formulation. This shows that granular fluidity
is more complex than previously thought and that the current microscopic definition is
insufficient.

DOI: 10.1103/PhysRevFluids.6.044302

I. INTRODUCTION

While granular flows are ubiquitous in both nature and industry, modeling such flows continues
to present significant challenges. One such challenge is that stress at a point within a granular
medium does not solely depend on the local properties, such as the shear rate, but also on behavior in
neighboring regions. It is thus “nonlocal” and difficult to describe as a continuum. The development
of models that can account for the nonlocality of granular flow is essential to predict large-scale,
complex granular systems using a continuum description [1]. One such model is the nonlocal
granular fluidity model [2,3]. The model introduces a property, termed granular fluidity, which
is defined based on the local stress and shear rate. The transport of granular fluidity is described
by a partial differential equation (PDE) that must be solved in order to model a system. While far
from the only nonlocal model developed [1], this model is of interest due to a recent attempt that
was made to develop a definition for the model’s version of granular fluidity based on measurable
state parameters of the flow, a so-called “microscopic definition” [4]. Here we investigate this
microscopic definition of granular fluidity further to test the limits of its validity for more complex
flow conditions.

The granular fluidity model is related to the earlier μ(I ) rheology [5,6], which is widely used to
describe granular flow. The μ(I ) rheology relates the inertial number to μ, the ratio of shear stress
and pressure. The inertial number I is considered as the ratio of an inertial timescale (defined as
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the square root of the particle density divided by the pressure, multiplied by the particle diameter)
and a shear dependent timescale (defined as the inverse of the shear rate). The relationship between
I and the μ is then typically described using fitted (empirical) equations. The μ(I ) rheology is a
local rheology, and so stress is a function of the local shear rate and pressure only and is not directly
influenced by nearby flow features. The μ(I ) rheology has been successful at capturing the behavior
of simple granular systems, such as flow down a pile [6], column collapse [7], or hopper flows [8].
However, because it is a local model it cannot capture nonlocal effects, such as creeping flow in
regions where μ is less than the static yield value, μs [9–11], or jamming in regions where local
rheology predicts flow [12]. The inability of local rheology to capture these effects necessitates
the use of a nonlocal rheology. Kinetic theory is one such nonlocal rheology, which has been well
validated for dilute granular flows [13] but is not readily applicable to dense granular flows [14]. The
nonlocal granular fluidity model [3] and the gradient model [1] are both examples of newer models
developed for dense granular flows. These models have been shown to be capable of capturing
nonlocal effects that cannot be described by the μ(I ) rheology [15], demonstrating the advantages
of these new models over the older rheology.

The nonlocal rheology model developed by Kamrin and Koval [2] defines granular fluidity (g) as

g = |γ̇ |
μ

. (1)

In Eq. (1) |γ̇ | is the equivalent shear rate, and μ is the bulk granular friction defined as the ratio of
the equivalent shear stress (|σ |) to the pressure (P) (see Appendix A 2 for full definitions of these
properties). In the continuum model, the granular fluidity is described by a PDE that characterizes
the transportation, generation, and dissipation of the fluidity throughout the system. The model has
successfully captured a variety of nonlocal flow features in systems such as annular flow [2,3] and
inclined plane flow [16,17].

One significant issue with the concept of granular fluidity is that its physical meaning is unclear.
Additionally, Bouzid et al. [1] noted that the granular fluidity, as originally defined, is not a state
variable, which is necessary for its use in continuum modeling. Recently, in order to provide a
physical basis for granular fluidity by linking it to state variables, Zhang and Kamrin [4] proposed
the following relationship to define fluidity:

gd

δv
= F (φ). (2)

Here d is the local average particle diameter and δv is the square root of the local granular
temperature, which is a measure of the fluctuations in particle velocity (see Appendix A 2 for a
full definition of δv as well as the average diameter).

The definition in Eq. (2) links granular fluidity to the velocity fluctuations and defines the
resulting dimensionless number, termed here as the dimensionless granular fluidity (or gd/δv), as
solely a function of the packing fraction (φ). To examine this relationship Zhang and Kamrin [4]
ran multiple discrete element method (DEM) simulations of shear cells (varying the gravity, the
top surface velocity, and the confining pressure) and chute flows (varying the inclination angle and
either the confining pressure or the volume). The results of these simulations all collapsed onto a
single curve when gd/δv was plotted against φ, providing a justification for their chosen definition.
They defined the empirical relationship

F (φ) = 2 − (φ − 0.58) +
√

(φ − 0.58)2 + 1.54 × 10−4

0.048
, (3)

to describe the collapse that they observed. Later works examining shear cell simulations recovered
a similar dependence on the solid fraction [18,19], though did not attempt to confirm that Eq. (3)
is recovered. An analysis of 2D hopper flow also produced a similar functional relationship [20],
though it was not quantitatively similar due to the different packing fractions possible in 2D flow.
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Other models have been developed which capture nonlocal behavior with varying degrees of
success. Aside from the gradient model and kinetic theory, other models include partial fluidization
theory [21] and the eddy viscosity model [22]. These models, and others, have been reviewed
comprehensively [1,23]. These models each suggest their own mechanisms underlying nonlocality.
Recent work shows that additional parameters, such as force chain fluctuations [24], may also be
relevant. The nonlocal granular fluidity model is well established for dense granular flows, having
been proved capable of handling various different geometries. The addition of the microscopic
definition allows a clear linking between the overarching model and the underlying mechanism of
the nonlocal response. Thus, in this work focus is restricted to the nonlocal granular fluidity model
and the microscopic definition of granular fluidity.

The aim of this work is to examine the microscopic definition of granular fluidity in depth
to determine how it behaves under different conditions and whether it can be extended beyond
the simple systems originally examined. If a consistent collapse can be demonstrated, it would
provide evidence for the universality of the definition. This would reinforce its validity as a physical
description of granular fluidity. DEM simulations were first run in a shear cell geometry, to replicate
the prior results [4]. Additional shear cell simulations were then run with a variety of simulation
parameters, including changing the interparticle friction. Finally, DEM simulations were run for a
number of different hopper configurations. From these simulations gd/δv and φ have been extracted
to allow for comparison with Eq. (3).

II. METHODS

The DEM simulations used to produce the data discussed in this paper were run using the open
source DEM software LIGGGHTS [25]. Simulations were run using a soft sphere, Hookean contact
model. The forces involved in a collision between two particles (α and β) are modeled as

Fαβ = (Knδnαβ − γnvn,αβ ) + (Ktδtαβ − γt vt,αβ ), (4)

where the first bracketed term accounts for the normal force (between the two particle centers), while
the second accounts for the tangential force (perpendicular to the normal force). The tangential
force (Ft ) is truncated such that Ft � Fnμp (where μp is the interparticle friction coefficient and
Fn is the normal force). δnαβ and δtαβ are the normal and tangential overlap, respectively, vn,αβ

and vt,αβ are the relative normal and tangential particle velocities, γn and γt the normal and
tangential damping coefficients, and Kn and Kt the normal and tangential spring constants. The
torque generated on particle α during a collision was described by T = rα,c × Ft + Tr f , where Tr f

is an additional torque contribution due to rolling friction, typically set to 0 unless otherwise stated,
and rα,c is the vector running from the center of α to the point of contact. The contact force and
subsequently the torque were used to solve the equations of motion for each particle. Further details
on the underlying equations, and how the coefficients in Eq. (4) were defined based on particle
properties are detailed in the LIGGGHTS documentation [26] and more briefly in Appendix A 1.

The shear cell simulations were run using the properties outlined in Table I. These properties
were set to match those used by Zhang and Kamrin [4]. In the case of the Young’s modulus,
Possion’s ratio and characteristic velocity, which in our implementation act as scaling coefficients to
the spring constant Kn, these values were not explicitly stated so they were instead chosen to ensure
that Kn meets a stiffness criteria necessary to ensure rigid particles [4], that is

Kn

Pd
> 104. (5)

Finally, the tangential spring constant was set as 2Kn/7. For the hopper simulations identical
properties were used, except that the mean particle diameter was increased to 1.2 mm to align with
ongoing experimental work.

In all simulations a particle size distribution was used to prevent crystallization. A polydispersity
of ±20% is widely used in the literature [2,4,8,11,27,28]; however, the definition of this size
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TABLE I. List of particle properties used in the base shear cell DEM simulation.

Coefficient of restitution er 0.1
Tangential damping coefficient γt 0
Coefficient of friction μp 0.4
Particle density ρ 2500 kg m−3

Mean particle diameter d 0.8 mm
Young’s modulus E 1 × 109 Pa
Poisson’s ratio v 0.5
Characteristic velocity uc 1 m s−1

distribution is not made explicit. Previously it has been shown that a uniform size distribution greater
than ±15% of the particle diameter is sufficient to prevent crystallization [29]. Other works utilizing
DEM simulations have also implemented uniform size distributions about a mean particle diameter
[30–32]. Based on these works a uniform particle size distribution ranging from 0.8–1.2 times the
mean particle diameter was implemented for all simulations. It was assumed that this aligned with
the definition of ±20% polydispersity used in prior works. LIGGGHTS cannot directly generate a
uniform particle size distribution. Instead, the distribution was approximated by using 100 discrete
particle diameters linearly spaced between 0.8 and 1.2 times the mean particle diameter.

The simulations were run with a time step (δt ) of approximately 0.2
√

m/Kn (see Appendix A 3
for exact values). This falls below the critical time step (above which instabilities propagate) defined
by Tsuji emphet al. [33] (δtcrit = 0.63

√
m/Kn) which is sufficient for mildly polydisperse systems

with low coordination numbers [34]. Additional simulations (not shown), were run at reduced time
steps to confirm minimal variation occurred.

The properties outlined so far represent the default settings used unless otherwise stated. As
noted in later sections, a number of simulations were run varying one or more of these properties to
examine how they would affect the results obtained.

The geometries we examined were 3D shear cells and hoppers. The basic shear cell geometry
is shown in Fig. 1(a). The shear cell was filled with 7400 particles. The pressure applied to top
of the cell (Pw, defined as 4 × 10−6Pf Kn/d) and the velocity of the top layer (Vw, defined as
0.01Vf

√
Kn/dρ) were fixed for each simulation. The shear cell was periodic along the x and y

axis with the top and bottom walls made of densely packed particles with a diameter of 0.8 mm
and identical properties to the bulk particles. For the shear cells, the gravitational acceleration along
the z axis (G, defined as 4 × 10−7G f Knd/m) was typically implemented with G f = 1, although
shear cell simulations were also run without gravity (G f = 0). The hopper geometry evaluated is

20.42d

7.92d(a) (b)
12d

θ

Vw
Pw

x
z

GG

FIG. 1. Two-dimensional representations of the 3D geometries being simulated showing the x and z axes.
The y axis is not shown. Panel (a) is a simple shear cell, and (b) is a cylindrical hopper. These figures are not
to scale. The shear cell’s width equaled its length. The height of the shear cell is not given as this was adjusted
to maintain Pw . However, the height was typically around 50d .
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shown in Fig. 1(b). It was filled with 63 750 particles to a height of roughly 167d . Three different
hopper geometries were simulated using θ values of 90◦, 60◦, and 30◦, respectively. The hopper was
cylindrically symmetric and was periodic along the z axis, such that particles a short distance below
the outlet of the hopper were returned to above the top surface. The hopper had smooth, frictional
walls with otherwise identical properties to the particles. The hopper simulations had gravitational
acceleration set with G f = 1.5.

In order to extract bulk flow properties from the simulations, coarse graining was used. Prior
works cover coarse graining in depth [35–37], so only a brief description of our implementation is
included here. Packing fraction (φ) was defined as

φ =
∑

α

VαW (x − xα ), (6)

and coarse-grained velocity (u) as

u =
∑

α VαuαW (x − xα )∑
α VαW (x − xα )

. (7)

Here W is the coarse-graining weighting function and x is the current position. α denotes a particular
particle and so uα is the particle’s velocity, xα the particle’s position, and Vα the particle’s volume.
Shear rates were calculated from Eq. (7) using central differencing.

The stress consisted of a collisional stress associated with particle contacts (the first term), and a
kinetic stress associated with the motion of the particles (the second term), and was calculated from

σi j = −
∑

α

∑
β,β �=α

Fαβ,iaαβ, j

∫ 1

0
W (x − xα + saαβ ) ds −

∑
α

mαu′
α,iu

′
α, jW (x − xα ). (8)

Fαβ are the contact forces on particle α due to the collision with particle β, mα is the mass of particle
α, and aαβ is the difference between xα and the point of contact between the two particles (cαβ). u′

α

is the difference between uα and the coarse-grained velocity at xα . In Eq. (8) u must be evaluated at
the position of each particle, however using Eq. (7) for this is computationally demanding. Instead
u was obtained by interpolation of the coarse-grained temporally and spatially averaged velocity
field.

For our coarse graining a Lucy function was used as the weighting function:

W (r) = 105

16πc3

[
−3

( |r|
c

)4

+ 8

( |r|
c

)3

− 6

( |r|
c

)2

+ 1

]
if |r| < c, else 0, (9)

where r is a position vector and c is the cutoff. The coarse-grained properties were analyzed as a
function of the cutoff length. The properties were approximately constant for cutoff lengths around
3d (data not shown). Therefore, a cutoff length of 3d was used in all subsequent analysis. With this
cutoff length the standard deviation, or coarse-graining width (w), was equal to 1.5d , half c.

When evaluating the shear cell simulations, gd/δv and φ were calculated at discrete heights. At
each height the coarse-grained properties were spatially averaged over 16 points spaced across the
xy plane and then these were averaged across 100 time steps spaced 100 000 DEM time steps apart.
This averaging was deemed sufficient to minimise noise in the results (see Appendix A 6 for further
details). When gravity was present, a cutoff was imposed where the minimum height evaluated was
15d (though in a few cases where the systems were more or less agitated the cutoff was changed to
10d or 20d , respectively). The cutoff was necessary to remove data in the dense slow-moving region
of the flow, where granular temperature and equivalent shear rate approach 0 and so large errors can
occur when calculating gd/δv. The choice of cutoff is expanded upon in Appendix A 6. Additional
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FIG. 2. Examination of gd/δv vs φ for different shear cell simulations. Panel (a) has simulations where
Gf , Vf and Pf are varied from the default, and (b) has simulations where the simulation properties are altered
from the default while Gw , Vw , and Pw are kept constant. Simulations with Gf set to 0 are denoted by NG.

validation work was also carried out to confirm the expected stress profiles were recovered from the
shear cell simulations (see Appendix A 6).

For the hopper simulations two different methods of analysis were considered. First, gd/δv and φ

were calculated at a number of radial and vertical positions near the outlet. The results were averaged
spatially. In this case, for each specific radial and vertical position 10 different angles were averaged.
Spatial averages were calculated in cylindrical coordinates by calculating the Cartesian components
at each angle, then applying a transformation to cylindrical coordinates before averaging. Second,
gd/δv and φ were calculated at a series of discrete points located at different vertical positions
along the centerline of the hopper. Spatial averaging was not implemented and calculations were
done in Cartesian coordinates. For both methods the resulting values were averaged across 200
time steps recorded 50 000 DEM time steps apart. The number of time steps averaged across was
increased compared to the shear cell simulations to compensate for the lack of spatial averaging
when conducting the analysis along the centerline.

For both systems the points evaluated had the edge of the cutoff of the coarse-graining function
1.5 times the maximum particle radius from the walls to avoid any effects occurring due to particles
interacting with the walls. The systems were evaluated at steady state, determined to be when the
properties of interest appeared stable with time. Typical flow profiles for each system are provided
in the Appendix A 4.

III. RESULTS

A. Analysis of shear cell results

Figure 2(a) shows the results of simulations run with and without gravity where the values of
Vw and Pw were varied, to compare with the established results [4]. The packing fraction (φ) has
been plotted against the dimensionless granular fluidity defined by Eq. (2) (i.e., gd/δv). The curve
described by Eq. (3) is also shown. The base case for the shear cell was defined as Vf = 3, Pf =
3 and G f = 1; variations from the base case are noted in the legend. Figure 2(a) shows that for
these simulations, the dimensionless granular fluidity collapses onto a single curve for all applied
pressures and velocities. At low packing fractions the curve is approximately constant. It declines
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FIG. 3. gd/δv plotted against φ for shear cell simulations with μ being varied. Panel (a) shows results with
solely μp being varied, and (b) shows results where μp is varied with or without rolling friction (μr). The
lines represents the fitted Eq. (3) (fitted to all simulation except μp = 0.4). A dashed line is used for the cases
with μr .

steeply as it approaches higher packing fractions, the drop off beginning when φ is around 0.58. The
data obtained show good agreement with Eq. (3), confirming the expected result is recovered [4].

To further test the generality of the model, simulations were run varying a number of parameters,
while keeping Vw, Pw, and G as defined in the base case. Starting from the same base simulation as
in Fig. 2(a), the following variations were tested: increasing particle diameter to 1.2 mm, increasing
the spring constant (Kn) by increasing E to 2 × 109 Pa, decreasing Kn by decreasing E to 5 × 108

Pa, setting the tangential spring constant (Kt ) as equal to Kn and finally switching from a Hookean
contact model to a Hertzian model. While the variations in the spring constant were achieved by
changing the Young’s modulus, an equivalent effect could be achieved in our implementation by
varying the Poisson’s ratio or the characteristic velocity. For the low spring constant simulation,
some particles near the very base of the shear cell may not have met the stiffness criteria given
by Eq. (A21). These particles were excluded from the analysis. For the simulation run using a
Hertzian contact model, while identical properties were maintained, due to differences in how Kn

is defined Eq. (5) could not be applied. To ensure the particles were still rigid Kn was set such that
(kn/P)2/3 � 104 where Kn = 4E∗/3 (see Appendix A 1 for definition of E∗) [38].

Figure 2(b) summarizes the results of these variations through comparison of the obtained
dimensionless granular fluidity and packing fraction. The resultant curves collapse onto each other,
despite the different properties used. Hence the effect of each on the behavior of the system is
minimal. These results indicate that the microscopic definition of granular fluidity is valid over a
wide range of conditions.

In addition to the factors examined in Fig. 2(b), a few further properties were considered that did
not display the same collapse as observed previously. One of these factors was the particle friction,
as described by the coefficient of friction, μp. Figure 3(a) shows gd/δv plotted against φ for μp

values ranging from 0.1 to 0.8 (with μp for wall particles kept at 0.4). Overtop of these values a
fitted form of Eq. (3) has been plotted. Details of this fitting are given in the Appendix A 5. As μp

increases the resulting curve shifts left, with the system becoming more dilute, and down, as lower
values of gd/δv are obtained. This shift also means that the position where the system levels off
shifts to the left and the slope of the decline at high φ values becomes shallower as μp increases.
The figure shows that changing μp has a fairly consistent effect on the relationship between gd/δv
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FIG. 4. gd/δv plotted against φ for shear cell simulations run with (γt > 0) and without (γt = 0) tangential
damping. The green line represents Eq. (3) fitted for the case where γt > 0.

and φ, but as shown by the plotted lines, the underlying functional form is consistent with Eq. (3),
at least over the ranges evaluated here.

As well as looking at the particle friction coefficient, friction was also examined through
introducing rolling resistance into the DEM simulations. Rolling resistance was implemented using
a constant directional torque (CDT) model with rolling friction (μr) set to 0.05. Figure 3(b) shows
the result of introducing rolling resistance with various different values of μp. The figure shows
that introducing rolling resistance produces a clear shift in the curves to the left, with lower packing
fractions corresponding to similar gd/δv values. In DEM both the coefficient of friction and rolling
resistance manifest themselves in the tangential component of the force, with μs acting as a limiting
value, while μr represents an additional torque contribution.

Another factor that affects the tangential forces is the presence of tangential damping, which
accounts for the dissipation of energy by the tangential components of particle contacts. In prior
simulations, tangential damping was neglected by setting the tangential damping coefficient (γt )
to 0. Figure 4 shows the effect of including tangential damping. Here tangential damping was
implemented based on the spring constant and coefficient of restitution using a typical formula for
γt for a Hookean contact model [26]. This figure shows that there is a substantial downward shift
occurring with the introduction of tangential damping. Furthermore, insufficiently low φ values
were recovered to determine whether gd/δv eventually reaches a constant value, with the available
data showing it continuing to rise towards 1.8–1.9.

Overall these results demonstrate that we were able to successfully duplicate the relationship
recovered by Zhang and Kamrin [4] for shear cells with and without gravity. That this relationship
persisted when varying a number of simulation parameters, including changing the contact model
used, shows that the results are largely independent of these parameters, as would be expected if the
microscopic definition for granular fluidity holds true. However, we have demonstrated that notable
deviations to the relationship can occur when changing the coefficient of friction, when introducing
rolling resistance and when introducing tangential damping, though these deviations do not affect
the underlying functional form. As all three properties manifest themselves though the tangential
forces occurring during collisions, this further suggests that it is the frictional contacts between
particles that are responsible for the deviation from the expected behavior.
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FIG. 5. gd/δv plotted against φ for hoppers with different θ values.

B. Analysis of hopper results

Figure 5 shows the results produced for three hopper simulations where the hopper cone angle
(θ ) was set to 90◦, 60◦, and 30◦, respectively. These simulations were run with the same properties
as the base shear cell simulation though, as noted, the particle diameter is slightly larger. The
simulations did not include rolling resistance or tangential damping. The results show a roughly
linear relationship between φ and gd/δv. Further from the hopper outlet, where φ is high, there is
a great deal of scatter in the results, corresponding to the different radial positions analyzed, with
lower packing fractions observed towards the walls of the hopper. Nearer to the outlet, where φ

is low, the data appear to collapse onto a line. The majority of points appear to be shifted to the
right of Eq. (3), with similar gd/δv values associated with higher φ values. There is some degree of
variation between the different hopper geometries, particularly for the 30◦ hopper which appears to
show more pronounced curvature. For the other two hoppers, any possible curvature is minimal. In
all three cases, the values plotted are insufficient to determine whether gd/δv has leveled off. Thus
it appears that changing the geometry from simple shear flow to the more complex 2D flow of the
hopper geometry has affected the form of the gd/δv versus φ relationship.

The analysis in Fig. 5 covers a similar range of φ values to the shear cell analysis and is sufficient
to demonstrate that variations occur when changing to a hopper geometry. However, it was desirable
to see whether the levelling off of gd/δv at low φ values seen in the shear cell simulations, also
occurred in the hopper geometry. Therefore, an analysis of the system at low φ was performed
by coarse graining along the central axis of each hopper. Because of the limited space through
the outlet, multiple radial positions were not considered. Instead, for each height a single position
at a radial value of 0 (or alternatively x = 0 and y = 0) was evaluated along the central axis of
the hopper. To confirm that the trends in the data with this “centerline” analysis are consistent
with the earlier results, Fig. 6(a) shows a comparison between the regular analysis method, used
to produce Fig. 5, and the centerline analysis for the 60◦ hopper. The figure demonstrates that the
centerline analysis slightly underestimates gd/δv as φ decreases. However, the overall results of
both methods are in good agreement, providing confidence that the centerline analysis can be used
to examine the behavior over a wide range of φ values. Figure 6(b) shows the full centerline analysis
for each hopper. Equation 3 is also plotted down to φ = 0.5 as Zhang and Kamrin [4] don’t appear
to have considered φ < 0.5 when developing the equation. Figure 6(b) shows that dimensionless
granular fluidity levels off at φ = 0.55. There is a small φ region which corresponds to the
constant gd/δv section. For φ < 0.54 the packing fraction decreases as the outlet is approached,
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FIG. 6. gd/δv plotted against φ for simulations of flow in a hopper. Panel (a) compares the centerline
analysis with the regular analysis for a 60◦ hopper. Panel (b) uses the centerline analysis method to analyze
hoppers with different θ values. The heights analyzed using the centerline analysis in (b) do not correspond to
the same heights used for the regular analysis.

corresponding with a slight decline in gd/δv. The exact position of the outlet on this figure differs
for each hopper. The outlet is at around φ = 0.45 for the 90◦ hopper, φ = 0.46 for the 60◦ hopper
and φ = 0.49 for the 30◦ hopper. Below the outlet the particles are in freefall and the pressure drops
to approximately 0 Pa. The dimensionless granular fluidity is thus poorly resolved, leading to large
fluctuations in even the time-averaged value.

Curiously, Fig. 6(b) shows that the 30◦ hopper does not level off at φ = 0.58 as Fig. 5 potentially
suggests. Instead the behavior shown in Fig. 5 appears to be associated with a region approaching
the outlet where the packing fraction is roughly constant. This region is seen as a small cluster of
points at constant φ and gd/δv on Fig. 6(b). These points follow the same trend as the other points
shown for the 30◦ hopper, though their origin is unclear.

Figure 6(b) demonstrates that the hopper results have a constant gd/δv section, showing that their
form is similar to Eq. (3). However, the constant section occurs at a higher gd/δv value and a lower
φ value than Eq. (3) would suggest. Further, the subsequent decline in gd/δv towards the outlet may
indicate a flow regime transition from a dense intermediate granular flow to a dilute inertial granular
flow.

Both Fig. 5 and Fig. 6 make clear that, while we do recover a form similar to Eq. (3), the
hopper geometry presents clear deviations from the expected behavior. This in turn demonstrates
that changing from a shear cell to a hopper affects the relationship between gd/δv.

IV. DISCUSSION

Our results demonstrate that the relationship between the dimensionless granular fluidity and the
packing fraction is more complex than expected. The results in the shear cells demonstrate that the
rheological behavior is independent of external properties (e.g., pressure, shear rate), consistent with
previous work [4]. However, our simulations reveal a dependence on the frictional forces occurring
between particles and a potential geometric effect.

The results in Fig. 3 and Fig. 4 show that the coefficient of friction, rolling resistance, and
tangential damping all affect the apparent relationship between the gd/δv and φ. However, they
do not appear to affect the functional form of the relationship. All three of these factors influence
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FIG. 7. δv/dδω plotted against φ for, (a) shear cell simulations at different μp values and (b) for hoppers
with different θ values (with the base shear cell plotted for comparison).

the tangential forces and/or torque occurring between particles, and hence are related to frictional
effects in the granular flow. In their work Zhang and Kamrin [4] provided a justification for their
chosen microscopic definition, i.e., Eq. (3), based on the kinetic theory of granular flow as well
as an activated process model. The kinetic theory of granular flow they used did not include
any dependence on μp [39]. However, it has been shown that kinetic theory must incorporate a
dependence on friction when extended to model dense systems [14]. The activated process model
doesn’t include a direct dependence on friction. However, the probability that a perturbation causes
a forwards or backwards shear event is dependent on the parameters of a local μ(I ) response [40],
which are in turn dependent on μp [41]. The microscopic definition may also be justified directly
through the μ(I ) rheology, and the related scalings between φ and I , and δv/γ̇ d and I [8]. The
stress response, as characterized using the μ(I ) rheology, again, has been observed to display a
dependence on μp [41]. Furthermore, at least in regions of dense flow, the relationship between
δv/γ̇ d and I also shows dependence on μp [42,43]. Thus, the variation observed with coefficient of
friction is perhaps not surprising, indeed Zhang and Kamrin [4] themselves noted the dependence
on friction, though they did not directly include it in their form of the model.

The discussed justifications also provide insight into the mechanism underlying the observed
deviations. Extended kinetic theory indicates that variation with μp relates to additional energy
dissipation [14]. In dense, homogeneous flows this change in energy dissipation is further asso-
ciated with a regime transition between frictionless, frictional sliding, and rolling collisions, as
μp increases [42]. The relative importance of rotational and translational motion is examined in
Fig. 7(a), which plots the ratio δv/dδω against φ, where δω describes the rotational velocity
fluctuations (this choice in scaling is expanded upon in Appendix A 7) and d the local mean
diameter. Figure 7(a) demonstrates that as μp increases, the rotational velocity fluctuations increase
relative to the translational fluctuations (i.e., the curve shifts downwards). If the relative importance
of rotational velocity fluctuations increases, it implies relatively more energy is dissipated through
the rotational motion than the translational motion. The shifts in the modes of energy dissipation
may in turn lead to the observed shifts in gd/δv.

Given that tangential damping and rolling resistance also influence the tangential forces during
contacts, it is perhaps expected that they would also influence the gd/δv versus φ relationship,
though this has not been as clearly established. Additionally, Fig. 10 below shows that the tangential
spring constant (Kt ), which affects the tangential force, does not appear to directly impact the
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observed relationship. As the coefficient of friction and rolling resistance both appear to influence
the gd/δv versus φ relationship in a systematic manner, it should be possible to factor in their
dependence into the constants in Eq. (3). Accurately incorporating tangential damping into the
microscopic definition is more problematic, as it can be linked to a number of particle properties
[26]. However, in general our results indicate that any microscopic definition of granular fluidity
will be dependent on the parameters that characterize interparticle friction.

A comparison between the simulations of shear cells and hoppers indicates that the dimensionless
granular fluidity is not solely determined by the solid fraction, even for constant friction parameters.
The different behavior of these two systems suggests that geometry affects the relationship between
gd/δv and φ. Few other studies have investigated the microscopic definition of granular fluidity.
Bhateja and Khakhar [20] touched on the definition in their work simulating 2D hopper flows. A
quantitative comparison of their results with that of Zhang and Kamrin [4] was not possible, owing
to the simulations being 2D. However, their results do appear to show that the relationship between
gd/δv and φ has a slight dependence on the outlet size. Thus, there is some prior evidence for
geometry affecting the microscopic definition. The hopper is a 2D flow geometry, with properties of
the flow varying radially and vertically. While Zhang and Kamrin [4] ran 3D simulations, the flows
were inherently 1D (with flow properties varying along one axis only), being shear cells and chute
flows. It is possible that 2D granular flows may simply behave differently to 1D granular flows. For
example, 2D flows may become extensional [20], which could lead to differences in the generation
and transport of granular fluidity compared to 1D flows. There is also evidence that certain complex
heterogeneous flows can lead to a breakdown in fluidity as a continuous field [44], though whether
this could occur in a hopper is unknown. Figure 7(b) shows the ratio of linear versus rotational
velocity fluctuations in hoppers. The figure demonstrates that, in the hopper geometry, the nature
of energy dissipation between the translational and rotational modes differs with what is expected
based on the shear cell results, and that variation is observed with θ . This suggests that the geometric
effects may be related to, or perhaps cause, differences in energy dissipation, which could in turn
result in differences in the gd/δv versus φ response. However, the underlying physical cause remains
unclear.

The breakdown of the relationship between φ and gd/δv when certain DEM parameters are
varied is not unexpected, given the empirical nature of the relationship. The fact that we could
fit a form of Eq. (3) to each simulation indicates that the coefficients are particle dependent,
but that otherwise the result is relatively general. The general microscopic definition can still be
considered potentially valid. The evidence for geometric effects is more concerning as it shows that
the microscopic definition is failing to hold even when the particle properties remain unchanged.
These results suggest that other variables are affecting the relationship and so gd/δv is not solely
a function of φ. If gd/δv is a function of variables other than φ, it means the nature of granular
fluidity as a physical property and its definition as a state variable are once again uncertain.

V. CONCLUSION

In this work we have investigated a microscopic definition for granular fluidity, that links the
granular fluidity to the granular temperature and the packing fraction. We examined multiple DEM
simulations of shear cell and hopper geometries. Our results for shear cells match previous work
[4], confirming that the rheology of dense granular material collapses to a simple function of solid
fraction for a wide variety of changes in external conditions, including the effect of gravity, confining
pressure, and shear rate. However, the simulations also demonstrate that the proposed definition of
granular fluidity displays dependence on the friction coefficient, on the presence of rolling resistance
and on the presence of tangential damping. More importantly, it showed a complete breakdown
when applied to hoppers. This breakdown demonstrates that the property of granular fluidity is
not as well defined as previously thought and opens up the potential for further research into the
relationship.
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APPENDIX

1. DEM

The Hookean model was implemented as detailed in the LIGGGHTS documentation [25,26]; the
following is a brief summation of the model. For this model, collisions between spheres are modeled
by having the spheres overlap in space. Subsequently, a contact force (F) is exerted on each particle,
as described by the expression

Fαβ = (Knδnαβ − γnvn,αβ ) + (Ktδtαβ − γt vt,αβ ), (A1)

where the first bracketed term accounts for the normal force (between the two particle centers), while
the second accounts for the tangential force (perpindicular to the normal force). The tangential force
is truncated such that Ft � Fnμp. δnαβ and δtαβ are the normal and tangential overlap, respectively,
while vn,αβ and vt,αβ are the relative normal and tangential particle velocities. α and β are the two
particles involved in the collision.

The normal spring constant, Kn, is described by the equation

Kn = 16

15
(R∗)0.5E∗

[
15m∗u2

c

16(R∗)0.5E∗

]1/5

, (A2)

where E∗ is defined as

1

E∗ = 1 − v2
α

Eα

+ 1 − v2
β

Eβ

. (A3)

R∗ and m∗ are also defined based on the colliding particles’ radii (R) and masses (m) with R∗−1 =
R−1

α + R−1
β and m∗−1 = m−1

α + m−1
β . As stated in the main part of this paper, the tangential spring

constant, Kt , was typically defined as 2Kn/7.
The normal damping coefficient, γn was defined as

γn =
√

4m∗Kn

1 + [
π

ln(er )

]2 � 0, (A4)

and the tangential damping coefficient, γt , when not set to 0, was defined as equal to the normal
damping coefficient.

When rolling resistance was implemented, it was done so using the constant directional torque
model, which introduces the additional torque contribution

Tr f = μrKnR∗δnαβ

ωs,αβ

|ωs,αβ | , (A5)

where μr is the rolling friction coefficient and ωs,αβ is the projection of the relative rotational
velocity (ωαβ) onto the shear plane.

The above forces are used to solve the following expressions for each particle’s motion:

mα ẍα =
∑

β

(Fn,αβ + Ft,αβ ), (A6)
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which describes the linear (xyz) motion, and

Inαω̇α =
∑

β

(rα,c × Ft,αβ + Tr f ,αβ ) (A7)

describes the particle’s rotation. Here Inα is the particles inertia and rα,c the vector running from the
center of particle α to the point of contact.

2. Definitions of key properties

The following outlines the definitions that were used for the key properties.
The equivalent shear rate |γ̇ | is defined as

|γ̇ | =
(∑

i

∑
j

2D′
i jD

′
i j

)0.5

, (A8)

where D′ denotes the deviatoric component of the deformation tensor, D:

D = 1

2
[∇u + (∇u)T ], (A9)

where u is the macroscopic velocity, and

D′
i j = Di j − 1

n
Tr(D)δi j, (A10)

where n is the number of dimensions, δ is the Kronecker delta and Tr denotes the trace of a matrix.
The pressure P is defined as

P = −1

n
Tr(σ). (A11)

The equivalent shear stress |σ | is defined as

|σ | =
(∑

i

∑
j

0.5σ ′
i jσ

′
i j

)0.5

, (A12)

where σ is the Cauchy stress tensor and

σ ′
i j = σi j + Pδi j . (A13)

The granular temperature T is defined as

T = δv2 =
∑

i

(u′
i )

2, (A14)

where (u′)2 is the macroscopic square velocity deviation, a measure of the typical deviation between
the particle velocity and the bulk velocity. This was calculated via coarse graining using a similar
equation to Eq. (7):

(u′)2 =
∑

α Vα (u′
α )2W (x − xα )∑

α VαW (x − xα )
, (A15)

where uα has been replaced by (u′
α )2. u′

α is difference between uα and the coarse-grained velocity at
xα only in this case obtained by interpolation of the coarse-grained instantaneous spatially averaged
velocity field.

The rotational velocity and subsequently the rotational velocity fluctuations are defined in much
the same way as with the linear velocity and velocity fluctuations. The coarse-grained rotational
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TABLE II. List of Pf , Vf , and Gf values used for shear cell simulations
and the corresponding true values of VW , PW , and G used.

Vf = 5 Vw = 5 m s−1

Vf = 2 Vw = 2 m s−1

Vf = 1.5 Vw = 1.5 m s−1

Vf = 1 Vw = 1 m s−1

Pf = 4.9 Vw = 500 Pa
Pf = 3 Vw = 300 Pa
Pf = 1 Vw = 100 Pa
Gf = 0 G = 0 m s−1

Gf = 1 (d = 0.8 mm) G = 9.81 m s−2

Gf = 1.5 (d = 1.2 mm) G = 9.81 m s−2

velocity (ω) is defined as

ω =
∑

α VαωαW (x − xα )∑
α VαW (x − xα )

, (A16)

where ωα is the particle’s rotational velocity. The macroscopic square rotational velocity deviations,
(ω′)2 are thus defined identically to (u′

α )2:

(ω′)2 =
∑

α Vα (ω′
α )2W (x − xα )∑

α VαW (x − xα )
, (A17)

where ω′
α is the difference between ωα and the coarse-grained rotational velocity at xα , obtained via

interpolation of the coarse-grained instantaneous spatially averaged rotatational velocity field. The
value of δω is subsequently defined as

δω2 =
∑

i

(ω′
i )

2. (A18)

The average diameter used in Eq. (2) was calculated using the following formula:

d =
∑

α VαdαW (x − xα )∑
α VαW (x − xα )

, (A19)

where dα is the diameter of particle α. As with the granular temperature this is effectively Eq. (7)
only with the particle diameter replacing the particle velocity. This is essentially a volume weighted
average diameter with the addition of the weighting from the coarse-graining function. While there
are numerous other potentially valid ways to compute the average diameter [45], for the systems
evaluated here the different methods should not significantly shift the obtained result.

3. Simulation inputs

For the purposes of replicabilitity, Table II provides the exact values of G, Vw, and Pw used
for the shear cell simulations, along with the corresponding G f , Vf , and Pf values, which have been
rounded both here and in the text. For the purposes of applying the dimensionless scaling, Kn should
be computed with R∗ equal to R/2 and m∗ = m/2 where R and m are the particle radius and mass
defined using the systems overall numerical mean diameter.

Similarly, the shear cells had the exact dimensions of 9.6 mm × 9.6 mm along the x and y
dimensions, except in the case where d = 1.2 mm wherein the dimensions were 14.4 mm × 14.4
mm. The hopper had an exact diameter of 24.5 mm and an outlet diameter of 9.5 mm.

The shear cell simulations were run with δt = 0.174
√

m/Kn, which translated to an exact time
step of 1 μs. The output files were generated every 100 000 time steps or every 0.1 s. The hopper
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TABLE III. List of Pf , Vf , Gf , and δt values used for shear cell simulations where Kn or d were varied.

Vf Pf Gf δt/(
√

m/Kn)

E = 2 × 109 Pa 1.5 1.7 0.6 0.230
E = 5 × 108 Pa 2.6 5.2 1.8 0.132
d = 1.2 mm 2 3 1.5 0.116

simulations were run with δt = 0.232
√

m/Kn, translating to a time step of 2 μs. The output files
were generated every 50 000 time steps, or 0.1 s.

For the case of shear cells where particle properties were varied, as shown in Fig. 2(b), Pw, Vw,
Gw, and δt were set to the same values as were used for the default shear cell simulation. That is
Pw = 300 Pa, Vw = 2 m s−1, G = 9.81 m s−2, and δt = 1 μs. For the case where Kn or d was varied,
the corresponding dimensionless scaling parameters are given in Table III. For the case where the
Hertzian model was used, owing to differences in how this model defines the spring constant, the
scaling used throughout the text cannot be applied.

4. Velocity fields

In order to provide an improved understanding of the nature of the systems analyzed here, Fig. 8
shows a velocity map for the default shear cell and for the 30◦ hopper taken at a snapshot in time.
The colorbar shows the actual (not dimensionless) velocity, though the two values should be roughly
equivalent.

5. Fitting

In order to fit the microscopic definition of granular fluidity to the different simulations shown in
Figs. 3(a) and 3(b) and Fig. 4, the following general form of Eq. (3) was used:

F (φ) = A − (φ − B) +
√

(φ − B)2 + C

D
, (A20)

where the fitted parameters were A, B, C and D. The fitting was done in Matlab using the “lsqnonlin”
function. Table IV summarizes the fitted constants obtained. A fitting for the case where μp = 0.4
is included (the base case), though this was not plotted on Fig. 3. A general trend can be observed
across the different simulations, with A and B decreasing with increasing μp and D increasing.
Introducing rolling resistance produces a similar affect, as well as reducing C, though the general

FIG. 8. Plot of particle velocity magnitude (in m s−1) at an instant in time for (a) the default shear cell,
plotting the x velocity, and (b) the 30◦ hopper, plotting the z velocity. Walls/wall particles are shown in black.
The full hopper is not shown, and the two figures are not to scale with one another.
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TABLE IV. Values for the constants A, B, C, and D from fitting Eq. (A20) to different shear cell simulations.

A B C D

μp = 0.1 2.58 0.625 1.36 × 10−4 0.00719
μp = 0.1 with μr 2.43 0.608 1.32 × 10−4 0.0196
μp = 0.2 2.39 0.599 2.03 × 10−4 0.0293
μp = 0.4 2.00 0.584 0.845 × 10−4 0.0377
μp = 0.4 with μr 1.94 0.568 0.319 × 10−4 0.0565
μp = 0.6 1.96 0.578 3.30 × 10−4 0.0449
μp = 0.8 1.83 0.570 1.53 × 10−4 0.0537
μp = 0.8 with μr 1.75 0.554 0.319 × 10−4 0.0732
γt �= 0 1.90 0.605 7.27 × 10−4 0.0215

trend with C is not clear. Fitting while keeping C constant, produced only slightly worse curves
while the trends in the other properties remained consistent, suggesting C is handling some of the
variation occurring due to the noise in the data set.

6. Shear cell validity, stationarity, and basal cutoff

As part of validating the results obtained, two simulations were examined. These were the shear
cell run with (G f = 1) and without (G f = 0) gravity, at the default wall velocity and pressure, so
Pf = 3 and with the wall velocity set with Vf = 2. For a shear cell simulation with gravity, the xz
stress (σxz) should be constant over the height of the shear cell, while the negative of the zz stress
(−σzz) should follow a roughly linear trend dropping in value to be equal to the applied pressure at
the position of the wall. For a system without gravity both σxz and −σzz should be constant, with
−σzz equaling the applied pressure [4].

Figures 9(a) and 9(b) show σxz and −σzz for the shear cell with and without gravity. Two cases
are presented, one averaged over 100 time steps, as was typically done, and one averaged over 1000
time steps. The second case was used to determine the effect of number of time steps averaged

FIG. 9. Examination of a shear cell with and without gravity averaging values over 100 and 1000 time steps
(ts), respectively. Panel (a) shows σxz and −σzz for the case with gravity, (b) shows σxz and −σzz for the case
without gravity. For (a) and (b) the stresses are normalized by the set wall pressure. Height is normalized by
the overall system diameter (not the local mean).
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FIG. 10. Examination of a shear cell with and without gravity averaging values over 100 and 1000 time
steps (ts) respectively. Panel (a) shows gd/δv plotted against height, and (b) shows gd/δv plotted against φ.
The symbols in (a) are the same as shown in the legend for (b).

on reducing the temporal “noise” due to the inherent fluctuations present at steady state. While
the sampling time could also factor into this, we found increasing it had a minimal affect on the
apparent noise, suggesting sufficient strain occurred between each sampling to render each result
independent. To help make the results clearer, for the stresses that should be uniform the mean value
has been plotted from the base up to the average height of the top wall. For −σzz in the shear cell
with gravity, the stress in this case should be described by

(∂σzz )

∂z
= −ρφG. (A21)

To produce the curves shown in Fig. 9, Eq. (A21) was numerically integrated over the range of
heights evaluated and shifted upwards by the constant that produced the minimum least squares
error. The solid fraction could not be obtained close to the walls as coarse graining in the vicinity of
the walls is not well defined. As such, linear extrapolation was used to extend the obtained integral
to the system boundaries, though these boundary values are obviously only approximations.

Figure 9(a) shows that, in the case with gravity, −σzz over 100 time steps appears to have a
slightly steeper angle compared with the integral while σxz appears to curve above the mean near
the base and curve below near the top of the shear cell. When averaging over 1000 time steps, the
expected stress responses are more clearly recovered. For Fig. 9(b) there are no apparent trends or
major deviations when averaging over 100 time steps or 1000 time steps. The mean value of σzz is
slightly high, but is within 4% of the desired value and so the difference was deemed negligible.

Figure 9 thus shows that, provided sufficient time steps are considered, the expected trends for
the stresses are recovered, effectively validating the setup.

As evaluating 1000 time steps for all simulations would have been computationally expensive,
in practice only 100 time steps were considered. Figure 10(a) shows the typical profiles of the
dimensionless granular fluidity across the height of the shear cell in the case with and without
gravity, averaging over 100 and 1000 time steps. Figure 10(b) shows the same values plotted against
the packing fraction. Figures 10(a) and 10(b) show that in the case without gravity, the results when
averaging over 100 time steps and 1000 time steps are functionally identical. In the case with gravity,
gd/δv is slightly higher near the top of the shear cell, when averaging 1000 time steps rather than
100, however, the deviation here is minimal. As such it was determined that averaging over 1000
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FIG. 11. Strain in a shear cell with gravity over 100 and 1000 time steps. The green line shows the chosen
cutoff at a height of 15d .

time steps was unnecessary and using 100 time steps would be sufficient to capture the behavior of
the systems.

Figure 11 shows the strain obtained for the simulation with gravity. The strain was calculated by
numerically integrating the instantaneous xz shear rate over time. The figure shows that the basal
regions correspond to regions of minimal strain (strain � 1). Particles in this region would not
displace far from their initial position as the local velocity was low and hence the particles were
nearly static. This lack of motion leads to an increased error in the calculations as both granular
temperature and equivalent shear rate approaches zero. This error can be seen in Fig. 10, which
includes includes values obtained throughout the shear cell, including in the dense region near
the base of the shear cell. This error is, to an extent, mitigated by running longer simulations and
considering more time steps. However, the region of interest was not this dense region, but instead
the faster flowing regions where the system is at lower packing fractions and the key features of
Eq. (3) are observed. As such, the nearly static dense region was removed by imposing a cutoff
where the minimum height evaluated was taken as 15d above the base. The exact choice of where
to place this cutoff is somewhat arbitrary. It was increased to 20d in one case where the system was
less agitated and lowered to 10d for a few cases where the systems were more agitated. In all cases
the aim was simply to resolve a sufficient region of the curve while avoiding any large errors. The
cutoff was only imposed for simulations with gravity as those run without gravity did not show a
large region of nearly static particles.

7. Rotational granular fluidity

In Fig. 7 the ratio δv/dδω has been plotted against the packing fraction φ in order to evaluate the
relevance of differences in energy dissipation on the response of the system. The choice to represent
these quantities in this way arises naturally out of the definition for dimensionless granular fluidity.
We can define an rotational granular temperature as in Ref. [46]:

 = Inδω
2

m
, (A22)

where In is the moment of inertia (2md2/20 for solid spheres). Thus the expression collapses to

 = 1

10
d2δω2. (A23)
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FIG. 12. g/ω plotted against φ for different shear cell simulations where (a) Vw , Pw , and G are varied from
the base conditions (Vf = 2, Pf = 300, Gf = 1) and (b) where Vw , Pw , and G are kept constant (as defined for
the base shear cell) and different particle properties are varied.

The dimensionless granular fluidity can be redefined, replacing the square root of the linear granular
temperature with the square root of the rotational granular temperature:

gd√
1

10 d2δω2
= g√

1
10δω

. (A24)

Thus, ignoring the constant terms, we define the rotational form of the dimensionless granular
fluidity as g/δω. This value has been plotted against φ in Fig. 12 for the same simulations previously
shown in Fig. 2. Figure 2 shows that, in the same way that the linear dimensionless granular fluidity

FIG. 13. δv/dδω plotted against φ for different shear cell simulations where (a) Vw , Pw , and G are varied
from the base conditions (Vf = 2, Pf = 3, Gf = 1) and (b) where Vw , Pw , and G are kept constant (as defined
for the base shear cell) and different particle properties are varied.
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collapses onto a single function of φ, at least for these simulations, the rotational dimensionless
granular fluidity displays a similar collapse. This suggests that, we can define Fω(φ) to describe the
expected collapse of the rotational dimensionless granular fluidity against φ (though we have not
explored the form of this expression here).

The scaling used in Fig. 7 is derived by taking the ratio of the linear and rotational dimensionless
granular fluidity:

g/δω

gd/δv
= δv

dδω
= Fω(φ)

F (φ)
= FR(φ), (A25)

where FR(φ) is the function of φ that describes the ratio δv/dδω. From the above, the choice to
plot δv/dδω against φ arises, since any deviation from the results obtained for the base shear cell
are indicative of deviations in the dimensionless linear and rotational granular fluidity, while also
providing a natural way of understanding how the relationship between linear and rotational velocity
fluctuations is connected to the differing responses observed. Figure 13 shows the expected collapse
for different shear cell simulations.
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