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Draining and spreading along geometries that cause converging flows:
Viscous gravity currents on a downward-pointing cone

and a bowl-shaped hemisphere
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Princeton, New Jersey 08544, USA
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When a viscous liquid is released on an inclined solvophilic substrate, it spreads
downwards by gravity and tends to coat the substrate. Here we report the gravitational
axisymmetric spreading of a viscous liquid with a fixed volume on inclined geometries that
cause converging flows, for example, on the inside of a downward-pointing hollow cone
(funnel) and the lower part of a sphere (bowl). For the limit that the effect of surface tension
is negligible, we analytically determine the thickness profile as well as the time-dependent
position of the front of the spreading liquid. In the typical scenario that a liquid spreads
on a geometry such as an inclined plate, the thickness of the front of the spreading
liquid monotonically decreases in time throughout the spreading and a fingering instability
occurs while the liquid film thins. However, we show that on an inclined geometry, where
convergence of the flow occurs, the thickness of the spreading front first decreases in time
and then increases. We also predict a critical volume Vc such that a fingering instability
occurs if the volume of the spreading liquid is less than Vc. Experiments of axisymmetric
spreading on a downward-pointing cone (funnel) are then performed and the measured
position of the front and the critical liquid volume of the fingering instability agree with
our theoretical predictions. This study highlights the effect of a geometry that focuses and
thickens a thin film.

DOI: 10.1103/PhysRevFluids.6.043801

I. INTRODUCTION

A thin liquid film on an inclined substrate naturally drains and flows downwards due to the action
of gravity. As a result, the liquid spreads on the substrate. These spreading flows are ubiquitous
in industry and nature: for example, chocolate coating on a sphere [1], lava spreading over the
surface of the Earth [2,3], or industrial wastewater slumping into a river [4]. Many examples of
gravity currents are turbulent, especially when the liquid is of low viscosity (for example, water)
and the scale of flow is large (for example, the breaking of a dam) [4–7]. However, in other
common scenarios where the liquid is viscous or the scale of flow is sufficiently small, viscous
effects dominate while inertial effects are often negligible, and lubrication theory can be applied
to describe the spreading of the thin liquid film. Also, when the scale of the flow is much larger
than the capillary length scale (usually of the order of magnitude of millimeters), the Bond number,
which is the ratio of the gravitational forcing to the surface tension effects, is large, and the effect
of surface tension on the macroscopic spreading is negligible.

Here we consider the gravitational spreading of a liquid in air. Note that for the system such
as liquid spreading in another liquid, to describe the dynamics of the spreading, the gravitational
acceleration g can be replaced by the reduced gravity g′ = (1 − ρ2/ρ1)g, where ρ1 and ρ2 are,
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respectively, the densities of the two liquids. One typical configuration of gravitational draining and
spreading is the flow of a viscous gravity current on a two-dimensional slope (a flat inclined plate
with infinite width) [8]. The thin film in air drains under the action of gravity, and the draining film
thickness profile is self-similar as a function of position and time, which was first recognized by
Jeffreys [9]. In particular, by balancing gravitational forcing and viscous effects, the thickness of
the draining thin film is given by Jeffreys’ solution

hJ (x, t ) =
(

νx

gtsinα

)1/2

, (1)

where ν ≡ μ/ρ is the kinematic viscosity of the liquid (μ is the dynamic viscosity of the liquid and
ρ the density of the liquid), x the position along the film, t the time that the film drains, and α the
inclination angle of the slope from the horizontal [8,9]. Note that Jeffreys considered the draining of
a prewetted film, and Huppert appears to have been the first to recognize that, away from the contact
line, the macroscopic film thickness profile of a gravitational spreading liquid on an inclined slope
is identical to Jeffreys’ solution [8]. For the case that the total volume of the liquid V is constant,
the position of the front of the spreading film can be derived as

xF (t ) =
(

9A2
0gtsinα

4ν

)1/3

, (2)

where A0 = V/w is the cross-sectional area of the liquid (w is the width of the liquid film on
the inclined plate) and is conserved during the spreading according to the two-dimensional model.
Substituting Eq. (2) into Eq. (1) shows that the film thickness of the spreading front hF (t ) ∝ t−1/3

[8] (to be concise, we denote the front of the spreading film as the spreading front). hF (t ) decreases
monotonically in time throughout the spreading.

In reality, the geometries of many substrates are complex. Besides the preceding example of
spreading on an inclined plane, spreading on different geometries has been studied and reported: for
example, spreading of a liquid on an upward-pointing cone [10], the top of a cylinder and a sphere
[11], or a flexible beam [12]. In the former two cases, the spreading film drains similar to Jeffreys’
solution, i.e., the film thickness h ∝ t−1/2. However, the film thickness as a function of the position
h(x, t ), as well as the position of the spreading front as a function of time xF (t ), are different in
the different geometries. Table I provides a summary of the gravitationally driven film thickness
profile and the position of the spreading front in the different geometries. Note that the gravitational
spreading that we consider in this article is due to an inclined substrate, and the additional driving
force from the variation of the film thickness is negligible, i.e., ρgsinα � ρg|∇h|cosα. In contrast,
in other scenarios such as spreading on a horizontal substrate, the variation of the film thickness ∇h
induces a pressure gradient in the liquid and thus drives the flow. Also, gravitational spreading can
cause a flow to converge on horizontal geometries, for example, a liquid ring spreading inward on
a horizontal plate. Often these gravity currents are self-similar, the spreading fronts are stable, and
the film thickness monotonically decreases in time throughout the spreading [5,13–16].

When describing the gravitational spreading, the Bond number, which is the ratio of the grav-
itational forcing to the surface tension effects, is usually large, and therefore surface tension is
negligible over much of the spreading film. However, typically, on millimeter or smaller length
scales (the capillary length), surface tension plays a significant role connecting the front of the
spreading film to the substrate. In the large Bond number limit, the macroscopic film thickness
profile of the spreading liquid is determined by the gravitational drainage, except on the scale of the
capillary length near the moving contact line. We denote the thickness of the spreading front, hF , as
the thickness of the spreading film at the end of the macroscopic gravitational draining region.
Therefore, in the model below, the spreading film shape is governed by gravitational drainage
until the film thickness h = hF near the spreading front, x = xF , where surface tension becomes
important and the film thickness becomes zero at the contact line. In addition, due to the effect
of the surface tension near an advancing contact line, a fingering instability may occur when the
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FIG. 1. Sketches of the gravitational spreading of a viscous liquid on inclined, converging geometries.
(a) Spreading on a downward-pointing cone (funnel). (b) Spreading on the lower part of a sphere (bowl).

liquid spreads and thins, and the spreading front becomes unstable and splits into a series of rivulets
[8,11,17–19]. The onset of the fingering instability is complex and has drawn significant attention.
Generally, at the level of a scaling argument, on those geometries where the scale of the flow is
larger than the capillary length �c (and the Bond number is large), a fingering instability occurs
when the thickness of the spreading front hF decreases to the order of magnitude of the capillary
length �c [11,19–21]. At early times in many gravitationally driven thin film flows, the thickness of
the spreading front is usually much thicker than the capillary length, and the spreading is stable; the
film thins as it spreads, and during the late time, the thickness of the spreading front decreases in
time and approaches to �c, and the spreading front becomes unstable and splits into many rivulets.

In this study, we report the gravitational spreading of a viscous Newtonian liquid with a fixed
volume on inclined, geometries that cause a convergence, or focusing, of the flow, for example, on
a downward-pointing cone (funnel) and on a bowl shape such as the lower half of a sphere; see the
sketches in Fig. 1. Note that we consider the spreading on top of the geometries rather than under the
geometries, where Rayleigh-Taylor instabilities (dripping) may occur [22–25]. For simplicity, we
consider axisymmetric spreading, i.e., an axisymmetric ring of the liquid is released on the cone or
the hemisphere and spreads. Breaking the symmetry will induce a new dimension into the problem
[26,27], which is complex and we do not pursue it in this article. Starting with the lubrication
theory, we derive the expressions for the characteristic features of the spreading thin film, such
as the film thickness profile, the position of the spreading front, and the thickness of the spreading
front. Typically, in the large Bond number limit of the previous studies (Table I), the thickness of the
spreading front always monotonically decreases in time while the liquid spreads on the geometries.
In contrast, in Secs. II, III, and IV, we show that for spreading over inclined, geometries where
convergence of the flow occurs, there is the possibility to thicken the film height in time at the front
so that the thickness of the spreading front first decreases in time and then increases during the
spreading. This indicates that there is a minimum value of the thickness of the spreading front hF,min

during the spreading. hF,min is also correlated to the critical volume of the liquid Vc that determines
whether a fingering instability will occur on a given geometry, and we also estimate Vc. Finally,
experiments of axisymmetric spreading on a downward-pointing cone are performed. The position
of the spreading front as a function of time as well as the critical liquid volume Vc for fingering to
occur are measured, and the results are in agreement with our predictions.

II. AXISYMMETRIC SPREADING ON A DOWNWARD-POINTING CONE

In this section, we consider the axisymmetric gravitational spreading of a viscous Newtonian
liquid on a downward-pointing cone (funnel), with the cone angle α; see the sketch in Fig. 1(a).
Initially, at time t = 0, an axisymmetric ring of the liquid with a total volume of V is released on
the cone, where the distance between the liquid ring and the vertex of the cone along the generatrix
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is L. The released liquid then spreads toward the vertex of the cone under the action of gravity. We
denote the direction along the generatrix of the cone as x and the direction orthogonal to the surface
of the cone as z, where x = 0 represents the initial position of the liquid that is released and z = 0
represents the surface of the cone. We assume that the top contact line at x = 0 remains pinned
throughout the spreading, the spreading of the liquid is axisymmetric, and the spreading front is
stable (no fingering instability occurs). The thickness profile of the spreading thin film is denoted as
h(x, t ). The position of the spreading front is denoted as xF (t ) and the film thickness at the spreading
front is denoted as hF (xF ) or hF (t ).

In the setup of the mathematical model, the liquid with a total volume of V is released from x = 0
at time t = 0, which indicates that all the liquid is accumulated at a singular position (at a singular
circle on the cone) and the film thickness profile behaves like a singular δ-function shape. We note
that this initial setup in the model is for theoretical convenience of the mathematical derivation but is
not applicable in real experiments. In the experiments, the liquid is released on the geometry at time
τ (τ denotes the time in the experiments, while t denotes the time in the model) and already occupies
a certain amount of area on the geometry. As a result, unlike the singular film shape in the model,
there is an effect of the initial shape of the liquid film in the experiments. Note that in this article, as
with many studies of film spreading, we focus on the asymptotic properties of the spreading film,
when the spreading time of the liquid film is so long that the film has no record/memory of its initial
shape. In this limit, the correlation between the time τ in the experiment and the time t in the model
can be given as t = τ + ts, where ts is the shift of time (due to the effect of the initial film shape)
between the experiment and the model. The property of ts will be further discussed in Sec. IV C.
In the modeling sections below (Secs. II and III), we consider that t � ts, i.e., the initial effect is
negligible, and we will only use t throughout the model.

A. Film thickness profile

We first study the thickness profile of the spreading film h(x, t ). Generally, the spreading of the
thin film is affected by the gravitational forcing and the surface tension. In the lubrication approach,
the mean curvature of the interface of the thin film is approximately

κ = 1

2

(
∂2h

∂x2
+ 1

(L − x)tanα

)
. (3)

Note that ∂2h
∂x2 and 1

(L−x)tanα
are, respectively, the two principal curvatures of the thin film on the

cone. This estimate breaks down where h ≈ (L − x)tanα (when the spreading front approaches to
the vertex of the cone). The mean curvature of the interface κ generates a pressure difference, i.e.,
the Laplace pressure pγ = −2γ κ , across the interface of the thin film to the atmosphere, where γ

is the surface tension of the liquid.
To describe the incompressible flow, we assume that the velocity is approximately unidirectional,

i.e., u ≈ uex. The equation of the velocity u along the viscous thin film flow is

μ
∂2u

∂z2
+ ρgcosα + ρgsinα

∂h

∂x
+ γ

∂

∂x

(
∂2h

∂x2
+ 1

(L − x)tanα

)
= 0. (4)

We consider the scenario that the effect of surface tension is negligible when macroscopically
describing the gravitational spreading (the effect of surface tension will be discussed in Sec. II C),
i.e., the Bond number,

Bo ≡ ρgV/γ L � 1. (5)

We also consider that ρgcosα � ρgsinα| ∂h
∂x |, i.e., the gravitational driving force from the variation

of the film thickness is negligible. Note that approximately |∂h/∂x| = O(10−2) � 1 in the exper-
iments presented in Sec. IV. In these limits, the pressure is uniform along the flow direction and
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Eq. (4) becomes

μ
∂2u

∂z2
+ ρgcosα = 0. (6)

Applying the boundary conditions that u = 0 at z = 0 (no slip) and ∂u/∂z = 0 at z = h (stress-free
interface), the velocity profile along the film is

u = gcosα

ν

(
hz − 1

2
z2

)
. (7)

Note that the perimeter of a ring of the liquid at x is 2π (L − x)sinα and is one of the key features
of the geometry [Fig. 1(a)]. With the velocity profile, the flow rate of the liquid ring is

q(x, t ) = 2π (L − x)sinα

∫ h

0
udz = 2πgsinαcosα

3ν
h3(L − x). (8)

The variation in time of the film thickness h is directly induced by the gradient of the flow rate
∂q/∂x, i.e., for this geometry the continuity equation has the form

2π (L − x)sinα
∂h

∂t
= −∂q

∂x
= −2πgsinαcosα

3ν

∂[h3(L − x)]

∂x
. (9)

Equation (9) is a first-order partial differential equation (PDE) for h(x, t ), and can be simplified as

∂h

∂t
= − gcosα

3ν(L − x)

∂[h3(L − x)]

∂x
. (10)

Note that close to the initial position of release, in the limit of x � L, the film has no knowledge of
the geometry of the cone and the dynamics is identical to the spreading on a 2D slope [8,9]. In this
limit, Eq. (10) has a self-similar solution identical to Eq. (1). However, beyond this limit, there is a
given length scale L in this cone geometry and thus the solution of Eq. (10) would not be the same
as Eq. (1). To make the equations nondimensional [7], it is convenient to introduce the scales of the
film thickness, the flow velocity, and the time of spreading as

h0 = V

πL2sinα
, u0 = gh2

0cosα

3ν
= gV 2cosα

3π2νL4sin2α
, t0 = L

u0
= 3π2νL5sin2α

gV 2cosα
, (11)

where h0 is the scale of the spreading film thickness (note that πL2sinα is the lateral surface area of
the cone), u0 is the scale of the flow velocity in the film, and t0 is the scale of the spreading time of
the film. Note that the Reynolds number

Re = u0h0

ν
= gV 3cosα

3π3ν2L6sin3α
. (12)

Substituting the characteristic parameters in our experiments (Sec. IV), V = 300 cm3, α =
30 degrees, μ = 40 Pa s, ρ = 1.4 × 103 kg/m3, and L = 25 cm, the estimated Re = O(10−4) � 1.
The effect of inertia is therefore negligible. Moreover, in lubrication situations, the effective
Reynolds number comparing inertial to viscous terms in the Navier-Stokes equation is Reeff =
Reh0/L, which is even smaller than Re. Note that to estimate the Reynolds number at the be-
ginning of the spreading, rather than using h0, it is more reasonable to estimate a length � =
[V/(2πLsinα)]1/2, and the corresponding Reynolds number Re = g�3cosα

3ν2 = O(10−2).
With the typical scales identified here [Eq. (11)], the corresponding dimensionless expression for

the (film) length, film thickness, and the time of spreading are, respectively,

X = x

L
, H = h

h0
, T = t

t0
. (13)
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Substituting Eqs. (11) and (13) into the PDE for h(x, t ) [Eq. (10)], the dimensionless expression for
the governing equation of the film thickness is

∂H

∂T
= − 1

1 − X

∂[H3(1 − X )]

∂X
. (14)

We focus on the long-time features of the spreading film, when the effect of the initial shape of the
liquid film is negligible, i.e., t � ts. Note that in the governing equation [Eq. (14)], time T only
enters through a time derivative, and therefore there is a freedom to shift the origin of time, i.e., to
apply t = τ + ts. This shift of time will be further discussed in Sec. IV C. We assume that the film
thickness profile h(x, t ) [or H (X, T )] is self-similar with time t (or T ), so that Eq. (14) admits a
solution

H (X, T ) = H(X )T −1/2, (15)

where H(X ) is a function that describes the film thickness profile and is only dependent on the
independent variable X . Substituting Eq. (15) into Eq. (14), the PDE for H (X, T ) becomes an ODE
for H(X ),

1

2
(1 − X )H = d

dX
[(1 − X )H3]. (16)

The boundary condition for Eq. (16) is H(0) = 0 (the film thickness is zero at the contact line, i.e.,
h = 0 at x = 0).

The general solutions of Eq. (16) are

H = 0 or H = ±
[

c

(1 − X )2/3
+ X

5
− 1

5

]1/2

, (17)

where c is a constant and the desired solution is positive. Applying the boundary condition, the
constant c = 1

5 . Therefore, the solution of Eq. (16) is

H(X ) = 1√
5

[
1

(1 − X )2/3
+ X − 1

]1/2

. (18)

Note that for small X (close to X = 0),

H(X ) = 1√
3

X 1/2 + O(X 3/2). (19)

This asymptotic property of H(X ) close to X = 0 agrees with Jeffreys’ solution hJ ∝ x1/2, as noted
above.

Substituting Eq. (18) into Eq. (15), the dimensionless expression for the film thickness is

H (X, T ) = 1√
5

[
1

(1 − X )2/3
+ X − 1

]1/2

T −1/2. (20)

The corresponding dimensional expression for the film thickness h(x, t ) is

h(x, t ) =
(

3νL

5gcosα

)1/2
[

1(
1 − x

L

)2/3 −
(

1 − x

L

)]1/2

t−1/2, (21)

which highlights the features of the film thickness profile: (1) at a fixed position, the thickness of the
thin film decreases in time while spreading and draining, following the power law h ∝ t−1/2, similar
to Jeffreys’ solution; and (2) at a given time, within the spreading film (x � xF ), the film is thicker
away from the initial position of release; see H(X ) in Fig. 2(a). Close to X = 0, the initial position
where the liquid is released, H(X ) is close to the film structure on a 2D slope. However, away from
the top contact line X = 0, H increases more rapidly than on a 2D slope or on an upward-pointing

043801-7



NAN XUE AND HOWARD A. STONE

FIG. 2. (a) The dimensionless film thickness profile function H as a function of X ; Eq. (18). The inset
shows H(X ) with logarithmic axes. The blue, red, and yellow lines shows the film shape function H of
spreading on a 2D slope, an upward-pointing cone, and a downward-pointing cone, respectively. To compare,
we set a length scale L and a timescale t0 according to Eq. (11) in all these geometries to find H(X ) so that the
film thickness profile satisfies Eq. (15). (b) The time development of the film thickness profile while the liquid
spreads on a downward-pointing cone. The scaled film thickness H as a function of the scaled position X is
displayed. The solid lines show the thickness profile of the spreading film with different times, from t/tc = 0.05
to 1 [tc is the amount of time that the film spreads from the initial position of release xF = 0 to the vertex of the
cone xF = L; see the definition of tc in Eq. (25)]. The dashed line shows the thickness of the spreading front
HF as a function of the position of the spreading front XF .

cone (see the derivations in the Appendix A). These different properties of the film structure H
on the downward-pointing cone are due to the converging flow: as the thin film gets closer to the
vertex of the cone, the perimeter of the liquid ring becomes smaller, and therefore the draining liquid
converges and thickens. Note that near the vertex of the cone X = 1, the opposite sides of the liquid
interface will collide as H sharply increases.

The rapid increase of H with X indicates that the thickness of the front of the spreading film
may also increase as the spreading front approaches the vertex of the cone. Our next goal is to find
expressions for the position as well as the thickness of the spreading front.

B. Front of the thin film

While the thin film spreads on the downward-pointing cone, the film thickness profile is given
by Eq. (21) from the top contact line (initial position where the liquid is released, x = 0) to the end
of the spreading front x = xF (t ), where the film thickness profile steeply changes from the global
profile [Eq. (21)] to zero at the contact line under the action of surface tension. In the limit of large
Bond number, this capillary region of steep transition is much smaller than the macroscopic scale
of the spreading film and we neglect its contribution to the volume of the film [8,20]. A scaling
argument for the scale of this capillary region will be given in the next section (Sec. II C). The total
volume of the liquid V is constant throughout the spreading, thus∫ xF (t )

0
2πsinα(L − x)h(x, t )dx = V. (22)

Substituting the expression for h(x, t ) [Eq. (21)] into Eq. (22), we can derive the position of the
spreading front as a function of time. The result is

xF (t )

L
= 1 −

[
1 −

(
125gV 2cosα

48π2νL5sin2α

)1/3

t1/3

]3/5

, (23)
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and the dimensionless expression for XF (T ) is

XF (T ) = 1 −
[

1 −
(

125T

16

)1/3]3/5

, (24)

where XF ≡ xF /L, and is the dimensionless position of the spreading front. The expression for xF (t )
[Eq. (23)] indicates that the timescale of the liquid spreading is

tc = 48π2νL5sin2α

125gV 2cosα
. (25)

Here tc is the time to spread from the initial position of release (x = 0) to the vertex of the cone
(x = L). The dimensionless expression for the spreading time tc is

Tc ≡ tc
t0

= 16

125
. (26)

It is also straightforward to substitute the expression for xF (t ) [Eq. (23)] into the film thickness
profile h(x, t ) [Eq. (21)] to obtain the thickness of the front of the spreading film. As a result,

hF (xF ) = 5V

4πsinα

1

(L − xF )1/3[L5/3 − (L − xF )5/3]
. (27)

The dimensionless expression for hF is

HF (XF ) = 5

4(1 − XF )1/3[1 − (1 − XF )5/3]
, (28)

where HF ≡ hF /h0, and is the dimensionless thickness of the spreading front.
With the knowledge of xF (t ) [Eq. (23)], the structure of the film thickness profile throughout

the spreading can be constructed; see the time development of the scaled film thickness profile as a
function of the scaled position plotted in Fig. 2(b). Throughout the spreading, the film thickness
profile follows the expression for h(x, t ) [Eq. (21)] from the top of the contact line (x = 0) to
the spreading front (x = xF ). As a result, the film thickness at a fixed position monotonically
decreases in time due to the gravitational drainage. However, unlike the spreading on a 2D slope
(hF ∝ x−1

F ) or on an upward-pointing cone (hF ∝ x−2
F ), the thickness of the spreading front hF does

not monotonically decrease in time during the spreading on a downward-pointing cone: hF first
decreases and then increases with xF [the dashed line in Fig. 2(b); see also the yellow solid line in
Fig. 3(a)] due to the converging flow. In addition, we note that when the spreading liquid approaches
the vertex of the cone (xF /L → 1), the spreading front is so thick [hF ∼ (L − xF )tanα] that opposite
sides collide and the whole film is expected to coalesce. Also, when the slope of the spreading front
interface is too steep, lubrication theory breaks down and the expression for xF (t ) [Eq. (23)] is no
longer valid. This breakdown only occurs when the spreading front is very close to the vertex of the
cone, but this is not the major topic in our model.

Another signature of the spreading is the position of the spreading front as a function of time,
xF (t ) [Eq. (23)]; see the yellow line in Fig. 3(b). Note that scaled by tc [Eq. (25)], the relationships of
the position of the spreading front as a function of time are simply xF /L = 3

5 (t/tc)1/3 on a 2D slope
[the blue line in Fig. 3(b); note that we set A = V/(2πLsinα)] and xF /L = (t/tc)1/5 on an upward-
pointing cone [the red line in Fig. 3(b)]. For the spreading on a 2D slope or on an upward-pointing
cone, the speed of the spreading front monotonically decreases in time as the liquid spreads; for the
spreading on a downward-pointing cone, the speed of the spreading front decreases initially (t/tc �
0.2), but then remains approximately constant (0.2 � t/tc � 0.8), which is due the fact that the
spreading liquid is focused by the geometry. Measuring and comparing xF (t ) with these predictions
will be the focus of our experiments. It is also interesting but not intuitive that the spreading of
a ring of liquid to the vertex on a downward-pointing cone takes the same period of time as the
spreading of the same amount of liquid from the vertex to the ring on an upward-pointing cone
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FIG. 3. (a) The scaled thickness of the spreading front HF as a function of the scaled spreading distance
XF . The blue, red and yellow lines, respectively, show the spreading on a 2D slope, an upward-pointing cone
and a downward-pointing cone. (b) The scaled spreading distance of the film XF as a function of the scaled
time t/tc.

[the red line and the yellow line in Fig. 3(b) meet at xF /L = 1 and t/tc = 1]. The position of the
spreading front as a function of time xF (t ) will be examined later in the experiments of spreading
on a downward-pointing cone in Sec. IV.

C. A capillary region where surface tension matters

In the preceding Sec. II B, we described that near x = xF (t ) the film thickness steeply changes
from hF (xF ) to zero due to the action of surface tension. Here we make a scaling argument to
estimate the scale of this capillary region where surface tension is significant (e.g., see Ref. [8]). We
start from Eq. (4), the equation for the velocity u along the viscous thin film flow. We consider that
ρgcosα � ρgsinα| ∂h

∂x |, and the equation of the velocity u is

μ
∂2u

∂z2
+ ρgcosα + γ

∂

∂x

(
∂2h

∂x2
+ 1

(L − x)tanα

)
= 0. (29)

Applying the boundary conditions (u = 0 at z = 0 and ∂u/∂z = 0 at z = h), the velocity profile is

u = 1

μ

(
hz − 1

2
z2

)[
ρgcosα + γ

∂

∂x

(
∂2h

∂x2
+ 1

(L − x)tanα

)]
. (30)

With this velocity profile, the flow rate at x is

q(x, t ) = 2πsinα

3μ
h3(L − x)

[
ρgcosα + γ

∂

∂x

(
∂2h

∂x2
+ 1

(L − x)tanα

)]
, (31)

and the continuity equation becomes

3μ
∂h

∂t
+ 1

L − x

∂

∂x

{
h3(L − x)

[
ρgcosα + γ

∂

∂x

(
∂2h

∂x2
+ 1

(L − x)tanα

)]}
= 0. (32)

Equation (32) is the PDE for the film thickness h(x, t ) where the effect of surface tension is con-
sidered. The three terms in Eq. (32) are, respectively, the viscous term, the gravitational spreading
term, and the surface tension term. A complete form of the governing equation of the film thickness
profile can be found in Ref. [19]. Note that near the spreading front, we assume that the mean
curvature of the thin film is much larger than the curvature of geometry, i.e., |κ| � 1

(L−x)tanα
. In this
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limit, κ = 1
2

∂2h
∂x2 . Eq. (32) becomes

3μ
∂h

∂t
+ 1

L − x

∂

∂x

[
h3(L − x)

(
ρgcosα + γ

∂3h

∂x3

)]
= 0. (33)

Rather than fully solving Eq. (33) analytically or numerically, we are interested in a scaling
argument for the length scale of the region where surface tension is significant. We denote the length
scale of this boundary-layer-type region as ξ0. Near the spreading front, the viscous term ∂h/∂t is
assumed to be negligible and the surface tension term balances with the gravitational spreading
term. In this capillary region, the film thickness steeply changes from hF to zero, and therefore

ρgcosα ∼ γ
∂3h

∂x3
∼ γ

hF

ξ 3
0

. (34)

Thus, the length scale of this capillary region is

ξ0 =
(

γ hF

ρgcosα

)1/3

. (35)

This expression for ξ0(hF ) is the same as reported by Huppert [8]. In particular, substituting the
characteristic parameters in our experiments (Sec. IV), γ = 86 mN/m, hF = 5 mm, ρ = 1.4 ×
103 kg/m3, and α = 30 degrees, the resulting ξ0 = 3.3 mm and is much smaller than the size of
the geometry (tens of centimeters in our experiments). Also, when the fingering instability occurs,
hF ∼ �c = 2.5 mm, and the corresponding ξ0 = 2.6 mm.

Note that the thickness of the spreading front hF scales with h0, and according to the scaling
argument [Eq. (11)],

ξ0 ∼
(

γV

πρgL2sinαcosα

)1/3

. (36)

A more detailed discussion about the capillary region and the fingering instability of a viscous
liquid film spreading on a funnel can be found in Ref. [19].

D. Critical liquid volume of fingering instabilities

While the liquid spreads on a downward-pointing cone under the action of gravity, the thickness
of the spreading front first decreases and then increases in time [Fig. 3(a), Eqs. (23) and (27)]. This
indicates that there is a minimum value of the thickness of the spreading front during the spreading.
From Eq. (27), the minimum value of the spreading front thickness is

hF,min = 3 5
√

6V

2πL2sinα
, (37)

and the corresponding position of the spreading front where the minimum occurs is

xF,min = (
1 − 6−3/5)L ≈ 0.6587L. (38)

As a result, during the spreading, the thickness of the spreading front monotonically decreases
in time until it reaches the minimum hF,min at xF = xF,min and then monotonically increases in
time. Further, hF,min is related to whether the fingering instability would occur during the spreading.
Using a scaling argument described in the introduction, the spreading front becomes unstable and
splits into a series of rivulets when the thickness of the spreading front hF decreases to the order
of magnitude of the capillary length �c, i.e., hF ∼ �c [11,20,21]. Following this argument, for the
spreading on a downward-pointing cone, we expect that the spreading front is stable for hF,min � �c

and a fingering instability is predicted for hF,min � �c. According to Eq. (37), the corresponding
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critical total volume of the liquid is

Vc ∼ 2πL2�csinα

3 5
√

6
. (39)

When the total volume of the liquid V > Vc, the spreading front is stable throughout the spreading,
since the thickness of the spreading front in the gravitationally controlled region is always thicker
than the order of magnitude of �c; in contrast, when V < Vc, a fingering instability occurs when
the thickness of the spreading front decreases to the order of magnitude of �c. This critical liquid
volume for the fingering instability will be examined later in the experiments in Sec. IV.

III. AXISYMMETRIC SPREADING ON A BOWL-SHAPED HEMISPHERE

In this section, we consider the axisymmetric gravitational spreading of a viscous Newtonian
liquid inside and on a bowl, for example, as presented by the lower half of a hemisphere; see the
sketch in Fig. 1(b). The radius of the hemisphere is R. We denote the angle of the position on the
hemisphere to the axis of symmetry as θ . Initially, at t = 0, an axisymmetric ring of the liquid
with a volume of V is released on the hemisphere, from an angle of θ0, where θ = 0 represents the
bottom of the hemisphere. The released liquid spreads toward the bottom of the hemisphere due to
the action of gravity and we assume that the spreading is axisymmetric and no fingering instability
occurs. The top contact line at θ = θ0 is pinned throughout the spreading. The thickness profile of
the spreading thin film is denoted as h(θ, t ). The position of the spreading front is denoted as θF (t )
and the thickness of the spreading front is denoted as hF (θF ). Our goal is to find the expressions for
h(θ, t ), θF (t ) and hF (θF ); the derivations are similar to those in the preceding section.

A. Film thickness profile

We consider that the thickness of the film is much smaller than the scale of the hemisphere,
h � R. The lubrication approximation means that the flow profile is unidirectional and parabolic.
The velocity profile along the film is

u = gsinθ

ν

(
hz − 1

2
z2

)
. (40)

Here z is orthogonal to the surface of the sphere and directed to the center of the sphere. This velocity
profile is also identical to the velocity profile along the spreading film on an upper hemisphere [11].

The perimeter of a liquid ring at θ is 2πRsinθ [Fig. 1(b)]. The corresponding flow rate of the
liquid ring at θ is

q(θ, t ) = 2πRsinθ

∫ h

0
udz = 2πgR

3ν
h3sin2θ. (41)

Applying the continuity equation, the PDE of the film thickness h(θ, t ) is

∂h

∂t
= g

3νRsinθ

∂ (h3sin2θ )

∂θ
. (42)

As for a scaling argument [7], similar to Sec. II A, it is convenient to introduce the scales of the
film thickness, the flow velocity, and the time of spreading as

h0 = V

2πR2
, u0 = gh2

0

3ν
= gV 2

12π2νR4
, t0 = R

u0
= 12π2νR5

gV 2
. (43)

The corresponding dimensionless expression for the film thickness and the time of the spreading
are, respectively,

H = h

h0
, T = t

t0
. (44)
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Substituting Eqs. (43) and (44) into the PDE for h(θ, t ) [Eq. (42)], the dimensionless expression for
governing equation of the film thickness is

∂H

∂T
= 1

sinθ

∂ (H3sin2θ )

∂θ
. (45)

Neglecting the effect of the initial shape of the liquid, i.e., t � ts, we can convert Eq. (45) from
a time-dependent PDE to an ODE by assuming

H (θ, T ) = H(θ )T −1/2, (46)

which is similar to Eq. (15). Here H(θ ) describes the film thickness profile and is only dependent on
θ . Substituting Eq. (46) into Eq. (45), we get a dimensionless form of the ODE for the film thickness
profile,

1

2
Hsinθ + d

dθ
(H3sin2θ ) = 0. (47)

The boundary condition for Eq. (47) is H(θ0) = 0, i.e., the film thickness h is zero at θ = θ0

(the initial position of release). The solutions of Eq. (47) are (we use Mathematica and follow their
notation for the generalized hypergeometric function pFq)

H = 0 or H = ±1

2

[
c

sin
4
3 θ

− 2F1

(
1

2
,

2

3
;

5

3
; sin2 θ

)]1/2

≡ ±1

2

[
c

sin
4
3 θ

− ϕ(θ )

]1/2

, (48)

where c is a constant, and we introduce a notation ϕ(θ ) ≡ 2F1( 1
2 , 2

3 ; 5
3 ; sin2θ ) for simplification. We

seek a positive solution for the film thickness. Applying the boundary condition, the constant is

c = sin
4
3 θ0ϕ(θ0). (49)

Therefore,

H(θ ) = 1

2

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

. (50)

Note that for small θ0 − θ ,

H(θ ) =
(

θ0 − θ

3 sin θ0

)1/2

+ O
[
(θ0 − θ )3/2]. (51)

This asymptotic property of H(θ ) agrees with Jeffreys’ solution [Eq. (1)]. Substituting Eq. (50) into
Eq. (46), the dimensionless form of the film thickness profile is

H (θ, T ) = 1

2

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

T −1/2. (52)

The corresponding dimensional form of the film thickness profile is

h(θ, t ) =
(

3νR

4g

)1/2
[

sin
4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

t−1/2. (53)

The structure of the film thickness profile H as a function of θ is shown in Fig. 4. The initial
position of release θ0 affects the value of H(θ ) [Fig. 4(a)], but the shape of H with different θ0

is similar: close to the initial position of release, the film thickness profile is similar to Jeffreys’
solution [Fig. 4(b)] and follows Eq. (51); the film thickness monotonically increases with θ0 − θ ,
and the increase becomes more rapid when approaching to the bottom of the hemisphere, since the
liquid is focused by the geometry while the perimeter of the liquid ring decreases. Note that the film
thickness becomes singular at θ = 0. We note that close to the bottom, the limit (1/R)|dh/dθ | � 1
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FIG. 4. Film thickness profile as a function of θ or θ0 − θ , with different initial angle θ0; Eq. (50).

breaks down so that the film thickness profile deviates from Eq. (53); this only occurs when the film
is very close to the bottom of the hemisphere.

B. Front of the thin film

The film thickness profile is Eq. (53) from θ = θ0 to θ = θF . Since the total volume of the liquid
V is constant during the spreading,

∫ θ0

θF (t )
2πR2 sin θh(θ, t )dθ = V. (54)

By substituting Eq. (53) into Eq. (54) and simplifying, we get

t = 3π2νR5

gV 2

{∫ θ0

θF (t )
sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

}2

, (55)

which provides an implicit solution for the position of the spreading front as a function of time
θF (t ). The dimensionless expression for Eq. (55) is

T = 1

4

{∫ θ0

θF (t )
sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

}2

. (56)

Note that according to Eq. (55), the total time that the film spreads from the initial position of release
to the bottom of the hemisphere is

tc = 3π2νR5

gV 2

{∫ θ0

0
sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

}2

, (57)

and is a function of the initial position of release θ0. The dimensionless expression for tc is

Tc ≡ tc
t0

= 1

4

{∫ θ0

0
sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

}2

. (58)
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As for the thickness of the spreading front, by substituting Eq. (55) into Eq. (53), we get

hF (θF ) = V

2πR2

[
sin

4
3 θ0

sin
4
3 θF

ϕ(θ0) − ϕ(θF )
]1/2

∫ θ0

θF

sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

. (59)

The corresponding dimensionless expression for the thickness of the spreading front is

HF (θF ) ≡ hF

h0
=

[
sin

4
3 θ0

sin
4
3 θF

ϕ(θ0) − ϕ(θF )
]1/2

∫ θ0

θF

sin θ

[
sin

4
3 θ0

sin
4
3 θ

ϕ(θ0) − ϕ(θ )

]1/2

dθ

. (60)

Figures 5(a) and 5(b), respectively, show HF (θF ) according to Eq. (60) and θF (T ) according to
Eq. (56).

Similar to the spreading on a downward-pointing cone, on a lower hemisphere, the film thickness
of the spreading front first decreases in time and then increases during the spreading [Fig. 5(a)], due
to that the liquid focusing as it flows along the geometry. As a result, there is a minimum of the
thickness of the spreading front during the spreading, hF,min. The corresponding position, where
the thickness of the spreading front is minimum, is denoted as θF,min. Note that both hF,min and
θF,min are dependent on θ0, the initial position where the liquid is released. The expressions for
hF,min(θ0), θF,min(θ0), and tc(θ0) are not explicit, but can be calculated numerically; see the results
of the numerical calculation in Fig. 6. Also, in the limit of small θ0 (the initial position of release
is close to the bottom), i.e., θ0 � 1, the timescale (note that we give both the dimensional and
dimensionless forms)

tc(θ0) ∼ 3π2νR5

4gV 2
θ4

0 , Tc(θ0) ∼ 1

16
θ4

0 , (61)

and the thickness of the spreading front

hF (θF ) ∼ V

πR2

1

(θF /θ0)2/3 − (θF /θ0)2 , HF (θF ) ∼ 2

(θF /θ0)2/3 − (θF /θ0)2 . (62)

FIG. 5. Gravitational spreading of a viscous thin film on the bottom of a sphere. (a) The scaled thickness
of the spreading film front HF as a function of the position of the spreading film front θF . (b) The position of
the spreading film front θF as a function of the scaled time T .
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FIG. 6. The characteristic features of spreading on the bottom of a sphere. (a) The scaled minimum value
of the film front thickness while spreading, (b) the position where the thickness of the film front is minimum,
and (c) the scaled time that the film spreads to the bottom of the sphere, as a function of initial film position
of release θ0. The blue dots and line denote the numerical results and the dashed lines denote the asymptotic
curves in the limit of small θ0, according to Eqs. (61), (63), and (64).

The corresponding position where the thickness of the spreading front is a minimum is

θF,min(θ0) ∼ 3−3/4θ0 ≈ 0.4387θ0, (63)

and the corresponding minimum value of the film thickness of the spreading front is

hF,min(θ0) ∼ 3
√

3V

2πR2
θ−2

0 , HF,min(θ0) ∼ 3
√

3θ−2
0 . (64)

These asymptotic properties of tc(θ0), θF,min(θ0), hF,min(θ0) for small θ0 agree well with our numer-
ical calculations; see Fig. 6. As for the fingering instability, similar to the scaling argument in the
preceding section, the spreading is predicted to be stable when hF,min � �c and is not stable when
hF,min � �c.

IV. EXPERIMENTS

In this section, we report the results of experiments of gravitational spreading on a downward-
pointing cone. We focus on measuring xF (t ), the position of the spreading front as a function of
time. We also examine the volumetric threshold of the liquid where the fingering instability occurs.
A sketch of the experiments is provided in Fig. 7.

A. Experimental setups

Golden syrup (Tate & Lyle) is viscous and approximately Newtonian, and was used in the
experiments. The density of the golden syrup ρ = (1.40 ± 0.02) × 103 kg/m3. We measured the
viscosity of the syrup using a rheometer (CP50-1, MCR 301, Anton Paar), which confirmed that
the syrup behavior is Newtonian and the viscosity μ = 40 ± 2 Pa s. We then measured the surface
tension of the syrup with a pendant droplet method [28] using an in-house Matlab code, yielding
surface tension of the syrup γ = 86 ± 5 mN/m. Note that our result for the surface tension of the
golden syrup is consistent with reported data that γ = 0.08 N/m [29]. Thus, the corresponding
capillary length of the syrup �c ≡ (γ /ρg)1/2 = 2.5 mm. We measured the material properties of the
liquid before and after the experiments and no notable change was observed.

To perform the experiments of gravitational spreading, the golden syrup was placed and released
on a funnel. Three funnels (McMaster-Carr) with different sizes were used: the top outer diameters
are 26.7, 16.5, and 24.1 cm with cone angles α = 30, 30, and 40 degrees, respectively. The axis
of symmetry of the cone was oriented vertically, parallel to gravity. In all of the images that are
displayed in this article [Figs. 7(c), 7(d), and 8], the top outer diameter of the funnel is 26.7 cm and
α = 30 degrees.
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FIG. 7. The sketch of the experiments of gravitational spreading on a funnel. (a) The sketch of the
initial condition of the experiments. The experiments start when the cylinder is lifted. (b) The sketch of the
experiments while the liquid is spreading. (c) The top view of the initial condition. (d) The top view of the
spreading liquid.

To achieve an axisymmetric initial condition, a cylinder was placed on the funnel. Two cylinders
(clear cast acrylic tube, McMaster-Carr) with different sizes were used, and the outer radius of the
cylinder R0 = 10.2 and 6.4 cm, respectively. The thickness of the tube (the wall of the cylinder) is
0.3 cm and is much smaller than the radius of the cylinder. The axis of symmetry of the cylinder and
that of the funnel were collinear. The bottom of the cylinder was in contact with the funnel. Then
the golden syrup with a volume of V was poured between the cylinder and the funnel [Fig. 7(a)].
After waiting for several minutes, the surface of the syrup became flat due to gravity and the syrup
resembled an axisymmetric liquid ring, which concluded the preparation of the experiment. To start
the experiment, at time τ = 0, the cylinder was lifted and the syrup started to spread downwards.
Note that τ denotes the time in the experiments. The differences between τ and t will be further
described in Sec. IV C. While the cylinder was lifted, there was always a thin liquid film (hanging)
between the cylinder and the cone [30], and this hanging film does not significantly affect the
spreading and is not the focus of this article. A camera was set on the top of the setup and the
images of the spreading were captured [Figs. 7(a) and 7(b)]; see the typical images in Figs. 7(c) and
7(d).
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FIG. 8. A time series of the images of spreading. (a) Spreading with no fingering. The total volume
of the liquid V = 314 cm3. (b) Spreading with fingering instabilities. V = 96 cm3. See the movies in the
Supplemental Material [31]. A scale bar is provided in panel (a).

B. Observations of spreading and instabilities

While spreading without a fingering instability occurring, the spreading front was approximately
a circle. We note that the spreading front was usually not perfectly a circle due to the fact that the
conditions of the experiment were not perfectly axisymmetric: the setup (funnel or the cylinder)
might be slightly tilted and initially there might be more liquid on one side instead of an even
axisymmetric distribution. The contact line might also slowly dewet during the spreading. These
small nonaxisymmetric effects got amplified during the spreading and therefore the shape of the
spreading front deviated from a circle. Nevertheless, this noncircular shape of the spreading front
mostly occurred when the spreading front was close to the spout of the funnel, and this effect was
not significant so long as we only seek an order-of-magnitude comparison of the measurements
to the theoretical predictions. In our measurements, regardless of the exact shape of the spreading
front, we calculated the area A that the spreading front enclosed, and then converted this area A to
an effective radius of the circle re, i.e., A = πr2

e , where re was the effective radius of the spreading
front and was then processed to estimate the position of the spreading front xF (t ) [in particular,
re = (L − xF )sinα]; see the sketch of A and re in Fig. 7(d).

A fingering instability might occur in the experiments when the volume of the liquid V was
relatively small; see the demonstrations in Fig. 8. When the total volume of the liquid V was
relatively large [e.g., V = 314 cm3, Fig. 8(a)], the front of the spreading film was stable throughout
the spreading and no fingering patterns were observed. In contrast, when V was relatively small
[e.g., V = 96 cm3, Fig. 8(b)], the patterns of the spreading film were clearly different: the front of
the spreading film became unstable and split into many rivulets. In the experiments, we measured the
total volume of the syrup and recorded whether fingering instability was observed on the geometry
during the spreading. See the list of the conditions of the experiments in Table II in Appendix B.

C. Measurements and discussions

Next, we focus on analyzing xF (t ), the position of the spreading front as a function of time. In
the experiments, we measured and estimated xF (τ ). Here we want to clarify that the notations of
time, t and τ , are different due to the differences between the initial conditions in the model and the
experiments: In particular, t is used in the model and t = 0 denotes the time when the film starts to
spread from the initial position of release, xF = 0. τ is used in the experiments and τ = 0 denotes
the time when the cylinder rises and the film starts to spread from the outer diameter of the cylinder,
and the initial position of the spreading front in the experiment xF0 = L − R0/sinα [Fig. 7(c)]. Note
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FIG. 9. Experiments for the position of the spreading front on a funnel. (a) The position of the spreading
front xF as a function of time t . (b) The scaled position of the spreading front XF as a function of the scaled time
t/tc. The angle of the funnel is α = 30 degrees and the outer radius of the cylinder R0 = 10.2 cm, unless labeled
otherwise. The solid lines (except the black solid line) denote the measurements while no fingering instability
was observed. The dashed lines denote the measurements where fingering instabilities were observed. The
black line in panel (b) denotes the theoretical prediction xF (t/tc )/L = 1 − [1 − (t/tc )1/3]3/5 [Eq. (23)]. The
inset shows XF (t∗/tc ), where t∗ = t + t̂ and |t̂ |/tc ≈ 0.05 is a fitting parameter. The initial conditions of the
experiments are displayed in Table II in Appendix B (Nos. 1–8).

that the liquid film already occupies a certain amount of the area on the funnel, i.e., from x = 0 to
xF0. Therefore, the time (or progress) of the spreading is different at t = 0 and τ = 0. We focus on
the long-time features of the spreading film, when the initial effect of the film shape is negligible. In
this limit, the correlation between the time in experiments and the time in the model can be written
as

t = τ + ts, (65)

where ts is the shift of time due to the initial occupation of the liquid film on the funnel. To estimate
the value of ts in the experiments, it can be approximated that the spreading liquid starts to spread
from xF = 0 at t = 0 and then reaches xF = xF0 at t = ts, which is the initial condition of the
experiment (and τ = 0). According to Eq. (23),

ts/tc = [
1 − (1 − xF0/L)5/3

]3≈
(

5xF0

3L

)3

, (66)

where the normalized initial length of the thin film, xF0/L, is small. Given that xF0/L ≈ 0.2 in the
experiments, Eq. (66) indicates that ts/tc = O(10−2) and is very small; see the values of xF0/L and
ts/tc in the experiments in Table II in Appendix B. tc is the timescale given by Eq. (25). According
to Eqs. (65) and (66), the measured xF (τ ) in the experiments can be converted to xF (t ).

In the experiments, we measured xF (t ) with different total volumes of the liquid V , different
sizes of the cylinder R0 and different cone angles α; see the results of (scaled and unscaled) xF (t )
in Fig. 9. As a result, though the unscaled xF varies significantly with t [Fig. 9(a)], the scaled xF /L
as a function of the scaled time t/tc collapses to the theoretical prediction Eq. (23) [black line in
Fig. 9(b)], which shows good agreement between the experiments and the model. It is also worth
pointing out that the averaged position of the spreading front follows the theoretical prediction
Eq. (23) even when fingering instabilities were observed (though the average speed of the spreading
front is slightly slower when fingering instability occurs).

We note that Eq. (66) is only an estimate of the shift of time ts since it does not consider the
initial thickness profile of the liquid film [for example, in our experiments, the initial thickness
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FIG. 10. Determining a critical volume of the fingering instability. The scaled volume of the liquid V/sinα

is displayed as a function of L. The angle of the funnel α = 30 or 40 degrees in the experiments. The solid
points denote the experiments where fingering was observed. The hollow points denote the experiments where
no fingering was observed. The dashed and solid lines denote the theoretical prediction [Eq. (67)] with c f = 1
and c f = 1.5, respectively. We expect the uncertainty of our measurements of the liquid volume V to be within
5%. The initial conditions of the experiments are displayed in Table II in Appendix B (Nos. 1–18).

profile is triangular; see Fig. 7(a)]. To determine ts requires numerically solving the PDE of the thin
film, and is sensitive to the initial condition of the film shape. Though we do not pursue it in this
article, further modeling and solving for ts (as a function of different initial film shapes) remains
an interesting topic for future investigations. Since Eq. (66) is only an approximation, we can also
apply a translation of t in XF (t/tc) in Fig. 9(b); see the inset in Fig. 9(b). A translation of t is applied
by t∗ = t + t̂ , where t̂ is a fitting parameter for the additional time shift. The average value of t̂
among the presented experiments is |t̂ |/tc ≈ 0.05. As a result, the experimental results agree with
the theoretical predictions.

Finally, we estimate the condition of the fingering instability while spreading. In the model, we
made a scaling argument for the critical volume of the liquid Vc [Eq. (39)] of the fingering instability.
According to the scaling argument,

Vc = c f
2πL2�csinα

3 5
√

6
, (67)

where c f is a constant. Both Eqs. (39) and (67) indicate that Vc ∝ L2. In the experiments, we
measured the volume of the liquid V , the distance between the top contact line and the vertex of
the funnel L (along the generatrix), and recorded whether the fingering instabilities were observed
during the spreading; see the results in Fig. 10. The solid points denote the experiments where
fingering was observed. The hollow points denote the experiments where no fingering was observed.
As a result, the fingering instabilities were observed when the volume of the liquid was relatively
small or the distance between the contact line and the vertex of the funnel was relatively large. In
practice, we find that Eq. (67) with c f = 1.5 provides a good estimate of the critical volume Vc

(the solid line in Fig. 10): fingering instability was observed below this critical volume while the
spreading was stable above this critical volume.
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V. CONCLUSION

In this article, we studied the gravitational axisymmetric spreading on inclined geometries where
the flow converges, in particular, on a downward-pointing cone and on a bowl-shaped hemisphere.
We derived expressions for the film thickness profile. At a fixed position, the film thickness
h ∝ t−1/2. Further, we studied the front of the spreading film and derived expressions for the position
as well as the thickness of the spreading front. While spreading, the thickness of the spreading
front first increases in time and then decreases due to the converging flow. Our major results are
summarized in Table I. Also, we calculated the minimum value of the thickness of the spreading
front and correlate this value to a fingering instability. Finally, we reported experiments of spreading
on an axisymmetric funnel. We measured the position of the spreading front and the critical volume
of the fingering instability, and the results are in good agreement with the theoretical predictions.
This work highlights the effect of a geometry that focuses the liquid, and provides guidelines for
coating on a cone or on a sphere: to achieve a coating without fingering instabilities or rivulets, the
total volume of the liquid needs to be larger than a critical value Vc, which depends on geometric
parameters, as given approximately by Eq. (67). The onset of the instabilities, the surface tension
effects on the spreading (for example, when the scale is as small as the capillary length), and
nonaxisymmetric spreading (for example, the spreading of a droplet on a funnel) are some possible
topics for future research.
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APPENDIX A: AXISYMMETRIC SPREADING ON AN UPWARD-POINTING CONE

Acheson describes the gravitational spreading on an upward-pointing cone, where the position
of the spreading front follows xF ∝ t1/5 [10]. Here we show the detailed derivations and the results
such as the film thickness profile. The derivations are similar to that of the spreading on a downward-
pointing cone.

We consider the axisymmetric gravitational spreading of a viscous Newtonian liquid on an
upward-pointing cone, with cone angle α; see the sketch in Fig. 11. Initially, at time t = 0, liquid
with a total volume of V is released on the vertex of the cone. The released liquid then spreads
downwards due to gravity, and the distance between the spreading front and the vertex along the

FIG. 11. A sketch of the gravitational spreading of a viscous liquid on an upward-pointing cone.
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generatrix is xF . Similar to the notation of modeling the spreading on a downward-pointing cone
[Fig. 1(a)], we denote the direction along the generatrix of the cone as x and the direction orthogonal
to the surface of the cone as z, where x = 0 represents the vertex of the cone and z = 0 represents
the surface of the cone. We assume that the spreading of the liquid is axisymmetric and no fingering
instability occurs while the liquid spreads.

The velocity profile along the film is parabolic and is the same as Eq. (7). In this geometry, the
perimeter of the liquid ring on the cone is 2πxsinα, and the flow rate is

q(x, t ) = 2πxsinα

∫ h

0
udz = 2πgsinαcosα

3ν
h3x. (A1)

The PDE for the film thickness h(x, t ) is

2πxsinα
∂h

∂t
= −∂q

∂x
= −2πgsinαcosα

3ν

∂ (h3x)

∂x
, (A2)

which can be simplified as

∂h

∂t
= −gcosα

3νx

∂ (h3x)

∂x
. (A3)

The solution of Eq. (A3) is similar to the Jeffreys’ solution [Eq. (1)],

h(x, t ) =
(

3ν

5gcosα

)1/2

x1/2t−1/2. (A4)

This is the expression for the film thickness profile h(x, t ); see the thickness profile in Fig. 2(a) (the
red line).

The total volume of the liquid V is constant throughout the spreading, thus∫ xF (t )

0
2πsinαxh(x, t )dx = V. (A5)

The position of the spreading front can be calculated by substituting Eq. (A4) into Eq. (A5). As a
result,

xF =
(

125gV 2cosα

48π2νsin2α

)1/5

t1/5, (A6)

and the thickness of the spreading front

hF =
(

9ν2V

20πg2sinαcos2α

)1/5

t−2/5 = 5V

4πsinα
x−2

F ; (A7)

see the scaled xF (t ) and hF (xF ) in Fig. 3 (the red lines). Throughout the spreading, the thickness as
well as the advancing speed of the spreading front monotonically decrease in time.

APPENDIX B: INITIAL CONDITIONS OF THE EXPERIMENTS

Table II lists the initial conditions and the observations of the experiments. The angle of the
funnel α and the outer radius of the cylinder R0 determined the geometry of the experiments. The
volume of the liquid V and the distance between the top contact line of the liquid film and the vertex
of the cone along the generatrix L were measured in the experiments. The normalized initial length
of the liquid film xF0/L was calculated by xF0/L = 1 − R0/(Lsinα). The timescale of spreading tc
was calculated by Eq. (25). The time shift between the experiments and the model ts was calculated
by Eq. (66). The values of the fitting parameter t̂/tc for the inset of Fig. 9(b) are also displayed. The
moderate magnitudes of the fitting parameter t̂/tc are due to the uncertainties in the experimental
measurements. Remarks on whether fingering instabilities were observed in the experiments are also
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TABLE II. The initial conditions of the experiments. The number of (the trial of) the experiments (No.), the
angle of the funnel α, the outer radius of the cylinder R0, the volume of the liquid V , the distance between the
top contact line of the liquid film and the vertex of the cone along the generatrix L, the normalized initial length
of the liquid film xF0/L, the timescale of spreading tc, the normalized time shift between the experiments and
the model ts, the normalized value of the fitting parameter t̂ , and the remarks on whether fingering instabilities
were observed in the experiments, are respectively displayed in the table. Experiment Nos. 1–8 were processed
and were used to construct Fig. 9. Experiment Nos. 1–18 were used to construct Fig. 10.

No. α (deg) R0 (cm) V (cm3) L (cm) xF0/L tc (s) ts/tc t̂/tc Remark

1 30 10.2 314 27.0 0.25 46 0.05 0.03 No fingering
2 30 10.2 311 26.7 0.24 44 0.05 0.07 No fingering
3 30 10.2 302 26.6 0.24 47 0.05 −0.02 No fingering
4 30 10.2 231 25.6 0.21 65 0.03 0.06 No fingering
5 30 10.2 150 24.2 0.16 118 0.02 0.00 Fingering
6 30 10.2 96 23.0 0.12 225 0.01 −0.02 Fingering
7 40 10.2 190 19.1 0.17 42 0.02 0.12 No fingering
8 30 6.4 87 15.7 0.19 41 0.03 −0.06 No fingering
9 30 10.2 309 26.5 – – – – No fingering
10 30 10.2 257 26.2 – – – – No fingering
11 40 10.2 243 20.1 – – – – No fingering
12 40 10.2 101 18.6 – – – – Fingering
13 40 10.2 84 18.2 – – – – Fingering
14 30 6.4 109 16.1 – – – – No fingering
15 30 6.4 98 15.9 – – – – No fingering
16 30 6.4 80 15.8 – – – – No fingering
17 30 6.4 54 15.0 – – – – Fingering
18 30 6.4 33 14.2 – – – – Fingering

given in Table II. Note that Experiment Nos. 1–8 were processed and were used to construct Fig. 9.
Experiment Nos. 1–18 were used to construct Fig. 10 [Experiment Nos. 9–18 were not processed to
track xF (t )].
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