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We report a linear scaling law for an electrical voltage as a function of the pressure drop
in capillary pipes and ducts. This voltage is generated by a process which is termed spin
hydrodynamic generation (SHDG), a result of the collective electron spin–coupling to the
vorticity field in the laminar flow in combination with an inverse spin-Hall effect. We study
this phenomenon in laminar duct flows with different width-to-height aspect ratios ranging
from 1 (square ducts) to infinite (two dimensional channels). First, we analytically solve
the governing Valet-Fert spin diffusion equations for the SHDG by means of the method of
small parameters together with proper boundary conditions for the set of inhomogeneous
elliptic partial differential equations. Second, the proposed linear scaling law is validated
through a series of experiments using capillary tubes with rectangular and square cross
sections. The experimental results show very good agreement to the analytically found
scaling law. A subsequent substitution of the bulk velocity of the laminar wall-bounded
flows by the pressure drop reveals a universal scaling law for the electrical voltage that
incorporates all pipe and duct geometries which we could study in our experiments. Finally,
the efficiency of the system is estimated for circular pipes, rectangular and square ducts.
This study shows that the efficiency of a spin hydrodynamic generator is the same for a
circular pipe and a square duct with the same diameter and height, respectively. Hence,
due to the ease of manufacturing and the possibility to scale the experiments up to parallel
settings in a compact form, micro-channels with a square cross section seem to be the
optimum for a spin hydrodynamic generator.

DOI: 10.1103/PhysRevFluids.6.043703

I. INTRODUCTION

Spintronics [1] and fluid mechanics, two seemingly unrelated disciplines of physics, have been
shown recently to be interconnected through the angular momentum exchange between the local
rotation in an electrically conducting fluid flow, which is quantified by the vorticity field, and
the internal quantum mechanical angular momentum of the electrons, the electron spin. In their
seminal work, Takahashi et al. [2] showed that the coupling between these two angular momenta
results in the generation of a charge current in the streamwise direction in a turbulent flow of
mercury through circular pipe capillaries. Later, Matsuo et al. [3] showed that the same phenomenon
occurs in laminar liquid metal flow in a circular pipe. They also proposed a universal scaling
law that describes the generated voltage as a linear function of the bulk flow velocity in such a
geometry. To describe this phenomenon, Takahashi et al. [2] coined the term spin hydrodynamic
generation (SHDG) in analogy to the magnetohydrodynamic generation which is a well-known
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conventional technique to convert the kinetic energy of electrically conducting fluids into electricity
based on the Lorentz force acting on charged particles in the presence of a magnetic field [4]. In
the case of the spin hydrodynamic counterpart, however, no external magnetic field is required
to generate electricity. This makes SHDG a very attractive technique for developing new devices
to harvest and directly convert the motion of an electrically conducting fluid into electricity or to
measure flow rates in opaque liquid metal flows, to mention two potential fields of technological
application.

The generated electricity is an indirect consequence of the spin current—the flow of electron
spins—which is induced by a nonequilibrium spin state as a result of the vorticity gradient
perpendicular to the flow direction. In the case of a nonvanishing spin current in the system
under consideration, the so-called inverse spin Hall effect (ISHE) [5] is responsible for a charge
current. Thus an electrical voltage in the submicrovolt range will be detectable along the streamwise
direction. This direction is perpendicular to that of the spin current. At the moment, experimental
studies of SHDG are still in its infancy and scaling laws that describe this generated electrical
voltage as a function of flow rates are only available for circular pipe flows [2,6,7]. In Ref. [6],
we reported an independent confirmation of the experimental results of Takahashi et al. [2] and
were able to extend the range of Reynolds numbers of the flow through circular capillaries with
circular cross sections to higher and lower values, 20 < Re < 21 500. These experiments have been
conducted with the liquid metal alloy galium-indium-tin (in short, GaInSn) as a working fluid.
Furthermore, an excellent agreement between the results of Ref. [6] and very recent investigations
of Takahashi et al. [7] could be found in the laminar flow regime. This regime is also in the focus of
our present paper, in which we vary the cross section geometry.

In the present paper, we extend these investigations and report an analytical universal scaling
law to predict the generated voltage as a function of the bulk velocity Ub (and thus of the
pressure drop �p) due to SHDG for the class of laminar rectangular duct flows. Therefore the
spin diffusion equation is solved, an inhomogeneous elliptical Helmholtz equation. The approx-
imate analytical solution is obtained by a series expansion with respect to a small parameter
that relates the (ab initio unknown) spin diffusion length to the duct half height b = H/2. We
also provide comprehensive experimental evidence for the reliability of the proposed scaling law
using rectangular capillary tubes with square and rectangular cross section of different aspect
ratio W/H (W is the width of the duct, H its height). The obtained measurement results are in
agreement with the analytical predictions for the electrical voltage VISHE and display the calculated
linear dependence, VISHE = const × Ub. Our investigations furthermore demonstrate a geometry
dependence of the spin voltage, despite the fact that all discussed laminar flows are the same
from a hydraulic perspective (which is usually quantified in a hydraulic diameter). The reason
is that the vorticity vector field in the present duct flow case has two nonvanishing components
that depend on the cross section coordinates x and y and is thus more complex than in a channel
or circular pipe. This results in different feedback on the spin diffusion equation and might
open doors to enhance the spin voltage in specific optimized geometries. Finally, we discuss the
efficiency of a spin hydrodynamic generator in case of using circular pipes, square and rectangular
ducts.

This paper is organized as follows. In the next section, we describe in brief the theoretical
foundations of the SHDG and show how the inhomogeneous version of the Valet-Fert equation
of spin diffusion can be used to explain the generated electricity in a liquid metal flow. Section III is
dedicated to the analytical solution of this equation for laminar rectangular duct flows. As a result,
the universal scaling law for the generated voltage in such geometries will be presented. Section IV
of the paper is devoted to the verification of the proposed scaling law by means of experiments
and also to estimating the SHDG efficiency of different capillary tubes using measured voltages
and mean flow velocities. We describe the setup and summarize the measurement results. A short
discussion of the efficiency of this method is also provided before we conclude and give a brief
outlook into future activities on this subject.
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TABLE I. Analogy of central physical quantities in electronics and spintronics. Indices k, l = 1, 2, 3.
Quantity σ0 is the electrical conductivity, h̄ = h/2π is the smallest unit of the angular momentum containing
Planck’s constant h, and e is the elementary charge. Spin up corresponds to sz = +h̄/2, spin down to
sz = −h̄/2. We list the definitions of both current densities by an Ohm’s law. Since the electron spin can
be considered as a vectorial quantity, the related current density has to be tensorial.

Electronics Spintronics

Transported quantity e− sz = ± h̄
2

Current density jC
k jS

kl

Voltage �C μS
k

Ohm’s law jC
k = −σ0

∂�C

∂xk
jS
kl = − h̄σ0

4e2
∂μS

l
∂xk

II. COLLECTIVE ELECTRON SPIN DIFFUSION

A. Spin current and spin voltage

We start with a brief overview on the basic principles that cause the SHDG in the liquid
metal flow. Table I relates central physical quantities such as current (density), voltage, and their
connection via Ohm’s law of electronics to corresponding ones in spintronics. Similar to the
vectorial charge current jC

k in electronics, the generation and control of the tensorial spin current
jS
kl are the main concern in spintronics [1,8]. However, these tasks are difficult as the latter is

not conserved in contrast to its electronic counterpart. Nevertheless, different methods have been
employed to induce a spin current based on an angular momentum exchange as will also be the
case for the present setting. We mention here the exchange between spins and light polarization
[9], a temperature gradient [10], or mechanical rotation of a material system [11]. Both current
densities are coupled by the ISHE, which converts a spin current into an electric current. Therefore
the electrons are deflected perpendicular to the direction of their flow depending on the sign of their
spin which leads to

jC
k = −2|e|

h̄
θSHE εklm jS

lm , (1)

where εklm is the fully antisymmetric third-rank Levi-Civita tensor and θSHE is the spin-Hall angle,
a material-dependent constant [5]. We apply the Einstein summation convention. The local rotation
in the fluid is quantified by the vorticity field ωk = εklm∂um/∂xl . The indices are always taken
as k, l, m = 1, 2, 3. The coupling of vorticity and spin voltage is established in a spin diffusion
equation which will be discussed in the next subsection.

B. Spin diffusion and the Valet-Fert equation

At the core of the theoretical modeling is a diffusion dynamics of the spin voltage which
contains an important length scale, the spin diffusion length λ. In analogy to rarified gases, one
can formulate a kinetic gas theory for the electron transport in solid and liquid conductors. Here, we
list a derivation for the one-dimensional case for simplicity that leads to a diffusion dynamics (see,
e.g., Refs. [12,13]). The Ohm’s law which we listed in Table I can be extended by a drift term if the
number density n of the electrons varies in space:

jC = −σ0
∂�

∂x
− eD

∂nC

∂x
= σ0

e

∂

∂x

[
−e� − e2D

σ0
nC

]
= σ0

e

∂μ

∂x
. (2)

Here, D is a diffusion constant and μ is denoted to as the electrochemical potential. Now we
decompose the electron ensemble into spin-up and spin-down fractions with n↑, j↑, μ↑, σ↑, D↑,
and n↓, j↓, μ↓, σ↓, D↓, and define the following number and currents densities, leaving aside the
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vectorial or tensorial character for the moment:

nC = n↑ + n↓ , nS = n↑ − n↓ , and jC = j↑ + j↓ , jS = j↑ − j↓ . (3)

Charge conservation is in line with a divergence-free electrical current density and thus with Eq. (2)
one gets

0 = ∂ jC

∂x
= σ↑

e

∂2μ↑
∂x2

+ σ↓
e

∂2μ↓
∂x2

. (4)

Spin flips from up to down or vice versa proceed on a timescale which is larger than a typical
relaxation time, τ↑↓ � τ↑, τ↓. The spin conservation is captured by the following relation, for which
we use j = envdrift in general:

∂ j↑
∂x

− ∂ j↓
∂x

= e

(
n↑ − n↓

τ↑↓

)
. (5)

A combination of Eqs. (3)–(5) leads to a relation for the electrochemical potentials of both fractions,

∂2μ↑
∂x2

= e2

2σ↑

(
n↑ − n↓

τ↑↓

)
,

∂2μ↓
∂x2

= − e2

2σ↓

(
n↑ − n↓

τ↑↓

)
, (6)

and thus to

∂2μ↑
∂x2

− ∂2μ↓
∂x2

=
(

e2

2σ↑
+ e2

2σ↓

)
2n↑
τ↑↓

. (7)

We have used the fact that a screening of charges is effective over microscopic lengths such that
nC = n↑ + n↓ ≈ 0. Together with the definition of electrochemical potential [first term in Eq. (2)
cancels], one gets

μ↑ − μ↓ =
(

e2D↑
σ↑

+ e2D↓
σ↓

)
n↑ . (8)

We can finally combine Eqs. (7) and (8) to a relation for the potential difference:

DF

(
∂2μ↑
∂x2

− ∂2μ↓
∂x2

)
=

(
μ↑ − μ↓

τ↑↓

)
, with DF = σ↑D↓ + σ↓D↑

σ↑ + σ↓
. (9)

Here DF is an effective diffusion constant composed of both subensembles. In analogy to the
classical diffusion, we can define a spin diffusion length—the characteristic length scale between
a spin flip by λ = √

DF τ↑↓ (similar to a mean-free path between two gas particle collisions).
The potential difference μS = μ↑ − μ↓ is denoted as spin voltage and Eq. (9) gets its final form
suggested first by Valet and Fert [12]:

∂2μS

∂x2
= 1

λ2
μS . (10)

This is a linear elliptic equation of second order. The coupling to the local vorticity field enters this
equation as an additional inhomogeneity on the right hand side and for three dimensions follows
[2,5]:

∇2μS
k = 1

λ2
μS

k − 4e2ξ

σ0 h̄
ωk . (11)

Here, ξ is defined by Takahashi et al. [2] as a parameter which represents the angular momentum
transfer from the fluid to the spins. Note also that μS

k is aligned with the flow vorticity—the quantity
that determines the magnitude of the spin voltage. Quantities λ, e, h̄, and σ0 are the spin diffusion
length, the elementary charge, the reduced Planck’s constant, and the electrical conductivity of the
working liquid metal, respectively. Equation (11) is solved analytically in the following section for
the laminar duct case to determine the measurable electrical voltage VISHE.
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FIG. 1. Schematic of the rectangular duct geometry with aspect ratio W/H = 3. Contour plots of the
streamwise velocity profile uz(x, y) and the in-plane spin voltages μx (x, y) and μy(x, y) are also indicated in the
figure. Due to the inverse spin Hall effect (ISHE), the in-plane spin current jS

xy induces a charge current jC
z in

the flow direction. Data are normalized with the maximum value of each quantity. Colormaps thus range from
−1 (dark blue) to +1 (dark red) for spin voltages and from 0 (dark blue) to +1 (dark red) for the streamwise
velocity field.

III. ANALYTICAL SOLUTION OF THE SPIN DIFFUSION EQUATION FOR DUCT FLOW

We now obtain the scaling law for the generated voltage VISHE from the Valet-Fert equation [12]
for a laminar pressure-driven rectangular duct flow with different aspect ratios W/H where the duct
width and height are presented as W = 2a and H = 2b in a Cartesian coordinate system with its
origin located at the center of the cross section and −a � x � a and −b � y � b (see Fig. 1). One
has to solve the Stokes flow problem for no-slip boundary conditions at the walls. Inlet and outlet
effects for a finite length of the duct are neglected in this derivation. The model is thus independent
of the streamwise direction. The vorticity components are taken from the analytical solution of the
streamwise velocity profile uz(x, y) in a rectangular duct which is given by (see, e.g., Ref. [14])

uz(x, y) = 1

μ

�p

L

∞∑
n=1,3,...

(−1)
n−1

2

(πn)3
16b2

[
1 − cosh

(
πnx
2b

)
cosh

(
πna
2b

)
]

cos

(
πny

2b

)
, (12)

and follow to

ωx(x, y) = ∂uz

∂y
= − 1

μ

�p

L

∞∑
n=1,3,...

(−1)
n−1

2

(πn)2
8b

[
1 − cosh

(
πnx
2b

)
cosh

(
πna
2b

)
]

sin
(πny

2b

)
, (13)

ωy(x, y) = −∂uz

∂x
= 1

μ

�p

L

∞∑
n=1,3,...

(−1)
n−1

2

(πn)2
8b

sinh
(

πnx
2b

)
cosh

(
πna
2b

) cos

(
πny

2b

)
. (14)

Using uz(x, y) and the flow rate Q, the bulk velocity Ub is given by

Ub = Q

A
= 1

4ab

∫ b

−b

∫ a

−a
uz(x, y)dxdy

= −32b2 1

μ

�p

L

∞∑
n=1,3,...

[
1

(πn)4
− 2

(πn)5

b

a
tanh

(πna

2b

)]
. (15)

For a � b, we use tanh(πna/2b) ≈ 1 and the series terms can be estimated using the Riemann Zeta
function ζ (s) [15]. Hence, the pressure drop �p and the flow bulk velocity Ub in a rectangular duct
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flow are related via the following approximation,

1

μ

�p

L
≈ 3Ub

b2

1

1 − 186
π5 ζ (5) b

a

with a � b . (16)

Using the above expression, Eqs. (12)–(14) can be rewritten on the basis of the flow bulk velocity Ub

which can be easily measured experimentally. With the known vorticity profiles for the rectangular
duct flow, we can now solve the inhomogeneous spin diffusion Eq. (11). For simplicity, we switch
to the dimensionless form of Eq. (11) using the following parameters: the half-height b for lengths,
the characteristic spin voltage μch, and the bulk velocity Ub for velocity. Utilizing these parameters
and defining

�2 = b2

λ2
and μch = Ub

4e2

σ0 h̄
ξb , (17)

Eq. (11) is converted to the following inhomogeneous elliptic equation:

∇2μS
k = �2μS

k − εklm
∂um

∂xl
. (18)

To solve Eq. (18) for a laminar rectangular duct flow, we employ the method of small parameter for
differential equations [16]. We check the reliability of the method first by considering the simple
case of SHDG in a steady laminar flow between two infinitely long parallel plates with a possible
analytical solution. The well-known velocity profile for a laminar Poiseuille channel flow reads
in dimensionless form as uz(y) = (3/2)(1 − y2). Thus ωx = −3y and ωy = 0 follow. Given the
physical fact that there is no spin current through the channel walls at top and bottom, i.e., jS

kl ∝
∂μS

k /∂xl = 0, and no spin voltage at the channel center due to the symmetry, μS
k (0) = 0, Eq. (18)

simplifies in the channel flow case to

∂2μS
x

∂y2
= �2μS

x + 3y, with
∂μS

x

∂y

∣∣∣∣
y=±1

= 0, μS
x (y = 0) = 0. (19)

The solution of this equation consists of a homogeneous and an inhomogeneous part, i.e., μS
x =

μS
x,h + μS

x,inh with μS
x,inh = −3y/�2 and μS

x,h = A sinh(�y) + B cosh(�y) where B = 0 due to the
second boundary condition at the center, i.e., μS

x (0) = 0. From the first boundary condition at the
walls one obtains A = 3/(�3 cosh(�)). Thus, the spin voltage distribution in a laminar channel flow
is given by

μS
x (y) = 3

�3

[
sinh(�y)

cosh(�)
− �y

]
. (20)

Now we consider the case of � � 1 and discuss an approximate solution which is obtained by an
expansion ansatz for Eq. (18) which is compared then to the analytical solution Eq. (20). It should
be noted that � � 1 is indeed a valid assumption as in practice the spin diffusion length λ ∼ 10−8 m
[17] is at least two orders of magnitude smaller than the capillary tube characteristic length b. The
ansatz for the solution reads as the following series expansion [16]:

μS
x,app(y) =

∞∑
i=0

μi

�2i
. (21)

This series expansion is plugged into the inhomogeneous ordinary differential Eq. (19) and will be
truncated after the first N terms (see below). Thus follows

μ′′
0

�2
+ μ′′

1

�4
+ · · · + μ′′

N

�2N+2
= μ0 + μ1

�2
+ · · · + μN

�2N
+ 3y

�2
. (22)
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Sorting with respect to powers of � and stopping at N = 2, one obtains the following equations

μ0 = 0,
μ′′

0

�2
= μ1 + 3y

�2
,

μ′′
1

�4
= μ2

�4
. (23)

Hence, the approximated solution follows to

μ1 = −3y, μ0 = μ2 = μ3 = · · · = 0 ⇒ μS
x,app(y) = − 3y

�2
, (24)

which implies that for � � 1, the first term in Eq. (20) converges to zero and both Eqns. (20) and
(24) agree. Next, we apply the same procedure to solve Eq. (18) for a laminar rectangular duct flow
with considering the proper boundary conditions:

∂2μS
k

∂x2
+ ∂2μS

k

∂y2
= �2μS

k − ωk, with
∂μS

k

∂x

∣∣∣∣
x=± a

b

= 0,
∂μS

k

∂y

∣∣∣∣
y=±1

= 0, μS
k (x = 0, y = 0)= 0.

(25)
It should be mentioned again that here the spin voltage is a vectorial quantity (and thus k = x, y)
and that Eq. (25) has to be solved for each component of the vorticity ωk as given by Eqs. (13) and
(14). Now the series expansion Eq. (21) is the only possible way to advance to an analytical solution
which we discuss in the following. The series expansion Eq. (21) is done again for each component
of the spin voltage and inserted in Eq. (25). Thus the voltages μk,i appear in the series expansion.
The following hierarchy of equations follows for i � N = 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μk,0 = 0

μk,1

�2
= ωk (x, y)

�2

∇2μk,1

�4
= μk,2

�4

∇2μk,2

�6
= μk,3

�6

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μk,1

�2
= ωk (x, y)

�2

μk,2

�4
= ∇2ωk (x, y)

�4
⇒ �−2iμk,i = �−2i(∇2)i−1ωk (x, y).

μk,3

�6
= ∇2 ∇2ωk (x, y)

�6

(26)

The vectorial spin voltage in a rectangular duct flow follows to [see also Eq. (21) for channel case]

μS
k � μk,0 + μk,1

�2
+ μk,2

�4
+ μk,3

�6
=

3∑
i=1

1

�2i
(∇2)i−1ωk (x, y) . (27)

Clearly, to consider more than one term in the above series solution, the vorticity profiles of Eqs. (13)
and (14) need to be differentiated in their nondimensional form as

∇2ωx = 6

1 − 186
π5 ζ (5) b

a

∞∑
n=1,3,...

(−1)
n−1

2 sin
(πny

2

)
,

∇2ωy = 0. (28)

We can see that μy,2 = ∇2ωy = 0 and μx,2 = ∇2ωx ≈ 0 for y = ±1. The latter approximate relation
is a consequence of � � 1 which assures that higher-order terms are subdominant. Hence, there
exists only one term (i = 1) in the approximate solution of Eq. (27) which can be expanded as

μS
x (x, y) ≈ �−2μx,1 = �−2ωx(x, y) and μS

y (x, y) = �−2μy,1 = �−2ωy(x, y) . (29)

This shows that the spin voltage in each direction is directly proportional to the corresponding flow
vorticity in that direction (see Fig. 1). Now, we estimate the generated in-plane spin ( jS

xy) and the
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streamwise electric ( jC
z ) currents in a laminar rectangular duct flow based on the ISHE [5],

jS
kl = − h̄σ0

4e2

∂μS
l

∂xk
, (30)

as we have listed in Table I already. Following Eq. (1), the induced electric current in the streamwise
direction, jC

z , follows to

jC
z (x, y) = σ0

2|e|θSHE
μch

b

(
∂μS

x

∂y
− ∂μS

y

∂x

)
. (31)

Differentiating Eqs. (29) and substituting them in the above expression, the excited electric current
in the system becomes

jC
z (x, y) = −σ0

|e|θSHE
μch

b

1

�2

6

1 − 186
π5 ζ (5) b

a

∞∑
n=1,3,...

(−1)
n−1

2

πn
cos

(πny

2

)
, (32)

where the series part converges to a constant value of 1/4. Therefore, the mean charge current 〈 jC
z 〉

follows to

〈
jC
z

〉 = b

4a

∫ a/b

−a/b

∫ 1

−1
jC
z (x, y) dydx = − σ0

2|e|θSHE
μch

b

1

�2

3

1 − 186
π5 ζ (5) b

a

. (33)

Considering the relation between electrical voltage and resistance, VISHE = R A 〈 jC
z 〉 with R =

L/(σ0A), the length L, and the cross section A:

b3VISHE

L
= 6|e|

h̄

θSHEλ2ξRec
lam

σ0

1

1 − 186
π5 ζ (5) b

a

Ub b. (34)

A similar relation can be derived for the pipe flow case (with different prefactors due to geometry)
which is given in Ref. [6] for the laminar flow case. We stress at the end of this section that the
spin diffusion length λ, the spin Hall angle θSHE, and the angular momentum transfer parameter ξlam

cannot be obtained by a macroscopic fluid dynamical consideration. They have to be determined
experimentally for the corresponding conductor (λ, θSHE) and estimated by linear response theory
(ξ ) assuming white-in-time vorticity fields. Here, the slope of VISHE = const × Ub is obtained
directly from the measurements and the product of the three unknowns θSHEλ2ξRec

lam is a free fit
parameter in the analytical model.

IV. MEASUREMENTS IN DUCTS OF DIFFERENT CROSS SECTIONS

A. Experimental setup and measurement results

We employ the same apparatus and working liquid—the eutectic alloy GaInSn—as in our
previous experimental study [6] where we also discussed in detail that thermoelectric effects remain
subdominant and that a dynamo action can be excluded for the voltage generation. Here, we measure
the generated voltage in capillary ducts with different aspect ratios of W/H = 1, 2.34, 10, 20 at
low Reynolds numbers Re = UbH/ν < 1400 where the flow is fully laminar. Figure 2 shows a
photo of the experimental setup. The flow is generated in the capillary tube (3) by pushing the
liquid metal in the top vessel (2) using pressurized Argon gas (1). Here, we use glass capillary
ducts (VitroCom and Hilgenberg GmbH) with 200-mm length L and sectional dimensions of
H × W = 0.2 × 0.2, 0.3 × 0.3, 0.149 × 0.334, 0.1 × 1, 0.05 × 1 mm2. The flow rate is estimated
by measuring the weight change of the collecting vessel (5) by means of an accurate weight scale
(6). The generated voltage and the working liquid temperature are monitored by the sensors imple-
mented in the top and the bottom vessels (4). Further detailed information about the experimental
procedure, data acquisition, and the working liquid properties can be found in Ref. [6].
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FIG. 2. Experimental setup for measuring the generated electrical voltage VISHE in a capillary pipe or duct
due to the spin hydrodynamic generation. The essential components of the experiment are indicated in the
photography and given in the legend.

Figure 3 shows the measured voltages for different square and rectangular cross sections with
respect to the flow Reynolds number Re. The linear evolution of the voltage can be clearly seen
for all cases presented in this figure. The rescaled data points based on Eq. (34) are presented in
Fig. 4(a) where all collapse into a single linear curve. Figure 4(b) shows the data points located in
the area indicated by the dashed lines in Fig. 4(a) where the same linear behavior can be seen for the

Re

V
IS

H
E

(V
)

FIG. 3. The generated electrical voltage VISHE versus the flow Reynolds number Re in square and rectan-
gular capillary tubes. The error bars show the standard deviation of at least five independent measurements.
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Casp (b Ub) (m2s−1) Casp (b Ub) (m2s−1)

(a) (b)

b3
V
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E
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FIG. 4. The generated voltage VISHE scaled based on Eq. (34) with respect to Casp (bUb) where Casp =
1/(1 − (186/π 5) × (ζ (5) b/a)) is the geometrical factor (a) the full measurement range, (b) data points in the
small area indicated by the dashed lines in (a). The solid lines in both panels are fits of the analytical solution
to the experimental data.

ducts with very small heights H and flows with very low bulk velocities and thus small Reynolds
numbers. Based on the slope, the parameter θSHEλ2ξRec

lam is estimated to be 1.046 × 10−24 Jsm−1,
which is almost half of that of the circular laminar pipe flow, θSHEλ2ξCirc

lam = 2.11 × 10−24 Jsm−1

[6]. This means that ξCirc
lam /ξRec

lam ≈ 2 when considering θSHE and λ to be independent of the flow and
thus a cross-section dependence.

In our previous study [6], we presented already one set of measured data points for the generated
voltages in a laminar rectangular duct flow (H × W = 0.149 × 0.334 mm2). There, we could show
that the generated voltages for this one duct case follow the same scaling law as for laminar circular
pipe flows when rescaled with the hydraulic radius of the duct. However, we argued that despite this
found agreement, the hydraulic diameter cannot be a universal geometrical scaling parameter for
capillaries with different cross-sectional shapes. Figure 5 brings us back to this point and replots all
duct data presented in Fig. 4(a) now based on the corresponding hydraulic radii by using the scaling

rhyd Ub (m2s−1)

r3 h
y
d
V

IS
H

E
/L

(V
m

2 )

FIG. 5. The generated electrical voltage VISHE is plotted versus rhydUb, where rhyd is hydraulic radius. The
same data are shown as in Fig. 4.
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FIG. 6. The generated voltage VISHE with respect to the imposed pressure �p in correspondence with
Eq. (35) and the corresponding counterpart for the pipe flow case that was analysed in Ref. [6].

law for the laminar circular pipe flows from Ref. [6]. The scattering of the data points for different
series clearly confirms our argument that the hydraulic radius rhyd as a scaling parameter for the
generated voltage due to the SHDG is not appropriate to capture for the geometry dependence of
the electrical voltage. It is actually seen in the figure that the two data sets with the large aspect
ratios follow a different slope in comparison to the other three data records. They can already be
considered as channels to a good approximation. Thus, the inhomogeneity in the spin diffusion
equation simplifies to ωx(y) and ωy ≈ 0, which results in a different slope of the linear law for the
voltage VISHE.

As shown in Refs. [6,7], it is also possible to relate the generated voltage to the pressure drop
�p of a laminar circular pipe flow (see Eq. (11) of Ref. [6]). Note that imposed pressure difference
and (major) pressure drop due to friction are basically the same. Additional pressure drop due to
sudden expansion and contraction remain subdominant in our experiment. The same analysis can be
performed for rectangular duct flows and is discussed now. This results in the following correlation
between the generated voltage and the pressure drop �p in such geometries:

VISHE = 2|e|
h̄

θSHEλ2ξRec
lam

μσ0
�p . (35)

where μ is the dynamic viscosity of the working liquid. The results show that the electrical output
of the system at the same imposed pressure is independent of the aspect ratio and extension of
the duct cross section in the range considered here. Figure 6 presents the generated voltage with
respect to the imposed pressure differences ranging from 1 to 6 bars. As expected, the same voltage
is generated at the same imposed pressure for different rectangular and square ducts. Interestingly,
Eq. (35) is the same as Eq. (11) of Ref. [6] for circular pipe flows considering the fact that ξCirc

lam ≈
2ξRec

lam . This is also indicated in Fig. 6, where the generated voltages in circular pipes with diameters
of D = 0.1, 0.2, and 0.4 mm are the same as in the rectangular ducts at the same pressure drop
suggesting a universal behavior in the accessible range.

B. Efficiency of spin hydrodynamic generation

Finally, following Takahashi et al. [7], we calculate the efficiency of the system η = Wout/Win

defined as the ratio of the electrical power output of the system Wout = Aσ0VISHE/L to the input
kinetic energy per unit time Win = AρU 3

b /2, where A is the duct cross-sectional area. Here, L is the
length of the capillary. In Fig. 7(a), the calculated efficiencies η are plotted versus the Reynolds
number Re in a log-log diagram for the sake of clarity. Obviously, the system efficiency is inversely
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η
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FIG. 7. The system efficiency η versus (a) the flow Reynolds number Re, (b) the imposed pressure �p for
circular pipes, square and rectangular ducts.

proportional to the capillary tube’s characteristic size and the flow Reynolds number. Using Eq. (34)
and η = Wout/Win, it can be shown that ηRec ∝ LC2

aspb−3Re−1 for laminar duct flows as follows:

ηRec = 144L

σ0μ
C2

asp

( |e|
h̄

(
θSHEλ2ξRec

lam

))2 1

b3

1

Re
. (36)

In the same manner, the efficiency of a laminar pipe flow would be

ηCirc = 256L

σ0μ

( |e|
h̄

(
θSHEλ2ξCirc

lam

))2 1

r3
0

1

Re
, (37)

where r0 is the pipe radius while the Reynolds number here is based on the pipe diameter D.
Figure 7(a) also contains the efficiency of three circular pipes with diameters of D = 0.1, 0.2,
and 0.4 mm. For a high aspect ratio rectangular duct where the geometrical coefficient Casp −→ 1,
the efficiency is less than a pipe with the same diameter as the duct height considering again
ξCirc

lam ≈ 2ξRec
lam . This can be seen from Fig. 7(a), where the efficiency for a pipe with D = 0.1 mm is

higher than the rectangular duct with H × W = 0.1 × 1 mm2 in the same Reynolds number range.
However, as the hydraulic diameters get close to each other, the efficiencies become closer at the
same Reynolds number. This is clear in Fig. 7(a) for a pipe with D = 0.1 mm and the rectangular
duct with H × W = 0.05 × 1 mm2 and a hydraulic diameter of Dhyd = 2rhyd = 2W H/(W + H ) =
0.095 mm. Similar behavior can be observed for a pipe with D = 0.2 mm and the square and rect-
angular ducts with H × W = 0.2 × 0.2 mm2 (Dhyd = 0.2 mm) and H × W = 0.149 × 0.334 mm2

(Dhyd = 0.2mm), respectively. The highest geometrical coefficient in Eq. (36) is Casp = 2.70 and
belongs to square ducts regardless of their height H . Hence, based on Eqs. (36), (37), and ξCirc

lam ≈
2ξRec

lam , the efficiency of a square duct is the same as a circular pipe with a diameter D equal to the
square duct height H . This can also be seen in Fig. 7(a) for the square duct W × H = 0.2 × 0.2 mm2

and circular pipe with D = 0.2 mm. Therefore, from the practical point of view and due to ease of
manufacturing and the possibility to scale up the process and the system output, small microchannels
with square cross sections are suggested for use as spin hydrodynamic generators.

It is also interesting to see the system efficiency based on the required imposed pressure for
generating the flow as indicated in Fig. 7(b). These results show that the highest efficiency is
achieved for the duct with smallest height W × H = 0.05 × 1 mm2 at the lowest imposed pressure
under investigation. There is no need to say that the efficiency in general is still too small for any
practical use at the current stage.
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V. CONCLUSIONS AND OUTLOOK

In the present paper, we first derived a scaling law for the spin hydrodynamic generated voltage
in a laminar duct flow by solving the spin diffusion equation analytically. It was shown that the
generated voltage in a laminar duct, similar to that in a laminar circular pipe flow, is linearly
proportional to the flow bulk velocity Ub with a different slope. Next, the proposed scaling law
was experimentally tested using different capillary tubes with square and rectangular cross sections.
The measured electrical voltages were found to be in very good agreement with the predicted linear
scaling law. A universal scaling for pipes and ducts in the accessible range can be obtained when we
convert the dependence on the bulk velocity to pressure drop. Moreover, we estimated the system
efficiency based on the kinetic energy of the flow and the electric output of the system. Similar to a
laminar pipe flow [7], the efficiency was shown to be inversely proportional to the duct characteristic
length, i.e., duct height, and the flow Reynolds number. We also showed that the SHDG efficiency
of a square duct is equal to a circular pipe when the duct height is the same as the pipe diameter.

As already said in the text, the voltages and efficiencies are still very small. The next question
would be if a further enhancement of the spin voltage into the microvolt range is possible by further
geometric modifications, such as curved channels that induce Dean vortices and nanostructured
surfaces. Another option is to construct devices in which the electricity generation by SHDG can
run in parallel. These studies are currently underway and will be reported elsewhere.
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