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How a rotating magnetic field causes ferrofluid to rotate
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The article explores the various mechanisms by which a rotating magnetic field causes
to rotate a magnetic fluid contained in a cylinder (the so-called spin-up of ferrofluids).
It is shown first that the generally accepted theory of spin diffusion cannot explain this
phenomenon due to the extremely low spin viscosity η′: Our calculations give η′ ∼
10−14 g cm/s which is 11 orders of magnitude less than the most optimistic estimates. Then
we develop a theory linking the rotation of a free surface layer to the shape of the meniscus.
The latter, equally as the strength and frequency of the rotating field, determines both the
direction and the magnitude of the fluid velocity. However, the magnetic torque created on
the curved surface of the liquid captures only a thin subsurface layer and does not cause
rotation in the volume. As for the volumetric flow, we associate it with the release of heat
in microvortices that arise around rotating magnetic particles. In a vertical cylinder, such
heating forms a parabolic temperature profile, which makes the magnetization of the fluid
spatially inhomogeneous. As shown, this is sufficient to induce an observable bulk flow of
the ferrofluid. The influence of natural convection on this spin-up flow is also investigated.
In conclusion, it is shown that the stress tensor of a magnetic fluid can always be brought
to a symmetric form.

DOI: 10.1103/PhysRevFluids.6.043701

I. INTRODUCTION

Ferrofluids are colloidal suspensions of magnetic particles with a diameter of 10–20 nm. The
close interweaving of the magnetic and rotational degrees of freedom of particles gives rise to a
number of interesting hydrodynamic phenomena. They occur in a time-varying magnetic field H
where the fluid magnetization M due to its finite relaxation time turns out to be noncollinear to
H. As a consequence, the magnetic torque M × H takes on nonzero values. Oscillating magnetic
fields cause impressive effects in moving fluids, such as “negative viscosity” [1–3] and vortical-
magnetic resonance [4,5]. A rotating magnetic field can induce rotation in a stationary fluid. This
spin-up phenomenon has a 50-yr history; it was first studied by Moskowitz and Rosensweig [6]
experimentally and by Zaitsev and Shliomis [7] theoretically.

Spin-up occurs when a liquid placed in a vertical cylinder is exposed to a horizontal uniform
magnetic field rotating around the axis of the cylinder in its cross section. When the field rotates,
magnetic particles become centers of microscopic vortices (microeddies). The hydrodynamics of
fluids with such internal rotation (of “molecules with spin” in Frenkel’s terminology [8]) was
developed by Condiff and Dahler [9] and Shliomis [10] even before [6]. The equation of particles
rotation obtained in Ref. [10] formed the basis for “the theoretical discovery of purely vortex flows
in the work of Zaitsev and Shliomis, who presented this concept in an attempt to rationalize the
Moskowitz and Rosensweig swirl-flow experiment” (Brenner [11]).
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According to this concept, known as spin-diffusion theory, the spin of particles (latent rotation)
can be converted into angular momentum of macroscopic (hydrodynamic) flow. The decisive role in
this transformation is played by the kinetic coefficient η′ called spin viscosity. Its value is not known:
“We are left with a discrepancy between estimates of the spin viscosity spanning eight to ten orders
of magnitude,” wrote Finlayson in his in-depth review [12]. This leads to discrepancies between
theoretical predictions and experimental results on the spin-up flow velocity. Even the direction of
fluid rotation—the same as the rotating field or the opposite—is still debated. Shortly after the work
[6], Brown and Horsnell had reported [13] under the heading “The wrong way round” about the
field and fluid corotation at weak applied fields and their counter-rotation when the field strength
increased. Similar conclusions were obtained by Kagan et al. [14]. Later Rosensweig et al. found a
connection between the direction of rotation of the fluid and the shape of its free surface: The fluid
rotated in the same direction as the field when the meniscus was concave and opposite to the field
when the meniscus was convex [15].

Note that the velocity measurements in Refs. [6,13–15] were carried out on the free surface of
the fluid. Measurements in the bulk are complicated due to ferrofluid opacity. Rosenthal et al. [16]
measured the frictional torque acting on a cylinder, fully filled with a ferrofluid, and made sure that
“the torque exists: It does not need a free surface” (indeed, as will be shown, the torque requires
neither a free surface nor a flow of ferrofluid). Chaves and co-workers [17,18] and Torres-Diaz et al.
[19] used the ultrasonic techniques to measure the velocity in the bulk and found that the field and
fluid rotate in the same direction—as prescribed by spin-diffusion theory. On the contrary, Lebedev
and Pshenichnikov [20] clearly demonstrated the counter-rotation; they estimated the flow rate from
the angle of rotation of a wire frame suspended by a flexible thread in the middle of the cylinder.

In the present paper, we have revised the spin-up problem. In Sec. II, we determined the value
of the spin viscosity η′ , which turned out to be 11–12 orders of magnitude less than the highest
estimate, η′ � 10−3 g cm/s, performed in Ref. [19]. The reason for this smallness lies in the huge
difference between the total moment of inertia of microeddies and the moment of inertia of a
macroscopic vortex the size of a cylinder radius. For this reason, the entrainment of a ferrofluid by a
rotating magnetic field (if any!) cannot be explained on the basis of the theory of spin diffusion. This
inference cannot be better formulated than was performed by Rosensweig et al. [15]: “We have not
previously encountered a physical system in which so many experimental facts supported a theory
yet the theory [of spin diffusion] was inapplicable.”

Therefore, in what follows we put η′ = 0 and reconsider the surface coupling mechanism of
spin-up phenomenon in Sec. III. Then, in Sec. IV, we investigate the thermal effect associated with
the dissipation of the energy of a rotating field in microeddies. The heat generated in them makes the
temperature and, as a consequence, the fluid magnetization and the field spatially inhomogeneous.
The resulting ponderomotive forces cause the fluid to rotate. This mechanism is quite effective
since the heat release increases in proportion to the square of the field rotation frequency, thus, the
fluid velocity increases as a cube of this frequency. However, natural convection caused by internal
heating limits the temperature rise since when the fluid is stirred, it homogenizes the magnetization,
thereby eliminating the very cause of the spin-up effect. Some experimental results are discussed in
Sec. V. The problem of the symmetry of the stress tensor plays an important role in the theory of
fluids with internal rotation. In Appendix B, we demonstrate how you can always bring the stress
tensor of ferrofluids to a symmetric form.

II. SPIN-DIFFUSION THEORY

A. Preliminary estimates

The rotating magnetic field creates microeddies around magnetic particles (see Fig. 1). The
typical size of such vortices is approximately equal to the distance between particles. Some part
of the latent angular momentum of microeddies can transform into a visible (i.e., hydrodynamic)
form. It is easy to show, however, that this part is negligible.
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FIG. 1. Rotation of particles in a ferrofluid about their own axes in a rotating magnetic field. Each
nanoparticle rotates with the angular velocity ω, however, the macroscopic fluid velocity vanishes by symmetry.
The sketch depicts the configuration of streamlines. The circulation caused by the rotation of the particle
is precisely compensated by the oppositely directed circulation of its neighbors. Observe the existence of
stagnation points because of the closure of all streamlines upon themselves.

Let ω − � be an excess of the angular velocity of particles over half the vorticity, which is
the angular velocity of the fluid � = (∇ × v)/2. The total moment of inertia of microeddies is
Imic ∼ (μb2)N , where μ and b are the mass and diameter of microeddies, the total number of which
in the cylinder is N . The moment of inertia of a liquid cylinder of radius R is Icyl ∼ (μN )R2.

In a rotating magnetic field, the total angular momentum is the sum of the internal and hydro-
dynamic angular momenta Imic(ω − �) + Icyl�. After a sudden shutdown of the field, the particle
rotation speed ω immediately decreases to �, i.e., latent rotation disappears, becoming visible. This
transformation obeys the law of conservation of angular momentum, which in this case has the form

Imic(ω − �) + Icyl� = Icyl�
′,

where � and �′ are the angular velocities of the fluid before and after the field is turned off. This
equation determines the velocity gain,

δ� = �′ − � =
(

b

R

)2

(ω − �).

In ferrofluids, b does not exceed 50 nm, whereas R ∼ 1 cm. Therefore, (b/R)2 ∼ 10−11 and the
addition of δ� is vanishingly small.

The smallness of the internal angular momentum is aggravated by difficulties of converting it
into translational motion of the fluid. The point is that microeddies disappear due to symmetry upon
averaging, such as elementary electric currents of neighboring molecules in Ampere’s model of
ferromagnetism do that. All streamlines surrounding the particles turn out to be closed on them-
selves as shown in Fig. 1. Nevertheless, symmetry violations do exist. They are due to the boundary
conditions for the spin velocity ω on the cylinder wall. Thanks to them, the microeddies cease to
fully compensate each other, and some of their latent rotation transforms into a hydrodynamic form.
Only one key question remains: How large will the macroscopic vortex be?
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B. Equations of motion and spin viscosity value

In a uniform rotating magnetic field, equations of ferrofluid motion (1) and particle spin (2) are
[7,10]

ρ
du
dt

= −∇p + η∇2u + I

2τs
∇ × (ω − �), (1)

I
dω

dt
= M × H − I

τs
(ω − �) + η′∇2ω. (2)

Here I is the moment of inertia of the particles per unit volume of the ferrofluid (so S = Iω is the spin
density), τs is the spin-relaxation time, and η′ is the spin viscosity (the ratio η′/I is the spin-diffusion
coefficient). The cross term in these equations, caused by the magnetic torque M × H, provides the
transformation of the spin of particles I (ω − �) into a hydrodynamic linear momentum. The last
term in Eq. (2) plays a critical role in this transformation. If η′ = 0, then in the steay state we
arrive—excluding the cross term from (1)—to the equation,

η∇2u + 1
2∇ × (M × H) = ∇p. (3)

But curl(M × H) is zero as M and H are spatially uniform, so the fluid velocity is also zero.
After applying the curl operator to Eq. (1), rewrite it and Eq. (2) in the form

ρ
d�

dt
= η∇2� − I

4τs
∇2(ω − �), (4)

I
dω

dt
= η′∇2ω − I

τs
(ω − �) + M × H. (5)

If you turn off the rotating field, both angular velocities � and ω will decay. This decay occurs in
two stages: First, the spin velocity ω instantly drops to � (see Appendix A for details) after which
only the underlined terms remain in Eqs. (4) and (5). Replacing now ω by � in (5), we come to
equations,

ρ
d�

dt
= η∇2� and I

d�

dt
= η′∇2�,

describing the second stage of relaxation: the decay of a macroscopic vortex in macroscale time
∼ρR2/η. Comparison of these two equations gives the value of spin viscosity,

η′ = ηI/ρ. (6)

Commenting on this result, it is worth noting that this is a rare example when, based on simple
physical arguments, it is possible to express the unknown kinetic coefficient (η′) in terms of the
known (η).

Let us estimate the spin viscosity value. Magnetic particles in a ferrofluid are coated with a
surfactant layer to prevent them from coagulating due to their van der Waals and the magnetic
dipole attraction. Because of this, the hydrodynamic particle diameter dh is 2.0–2.5 times larger
than the diameter dm of its magnetic core [21] (see Fig. 2). The moment of inertia of such particles
contained in a unit volume of the colloid is

I = 1

10
ρ̂ φd2

h , ρ̂ = ρcoat

[
1 +

(
ρmag

ρcoat
− 1

)(
dm

dh

)5]
. (7)

Here φ = (dh/dm)3φm is the volume fraction of coated magnetic grains, and ρ̂ is their “effective”
average density. Because of high power of the ratio dm/dh in ρ̂, the latter turns out to be close to the
density of coating ρcoat and, therefore, differs little from the density ρ of the ferrofluid. Substitution
of I from (7) to (6) gives

η′ = 1
10 (ρ̂/ρ)ηφd2

h . (8)
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HOW A ROTATING MAGNETIC FIELD CAUSES …

FIG. 2. Ferrofluid particle model: magnetic core of diameter dm covered with a surfactant layer of the
thickness (dh − dm )/2.

The cobalt-ferrite ferrofluid used by Torres-Diaz et al. [19] to study the spin-up effect seems to
be most suitable for this purpose. The domain magnetization Md = 425 G of CoFe2O4 is slightly
lower than that of the popular magnetite, but the high magnetic anisotropy of Co-ferrite prevents
spontaneous reorientation of the magnetic moments of particles inside them (the Néel fluctuation
mechanism is “frozen” [22]). For a water-based ferrofluid designated in Ref. [19] as WBF-2,
where dm = 17, dh = 39 nm, η0 = 1.02 cP, in the case of magnetic volume fraction φm = 2%
[and, hence, hydrodynamic fraction φ = (39/17)3φm = 24%] the saturation magnetization Msat =
φmMd = 8.5 G and the Langevin parameter α = mH/kT = 1 in the field H = 37.5 Oe.

The viscosity of ferrofluids is quite satisfactory described by the relations,

η = η0

(
2 − φ

2 − 3φ

)E

, E = 2.5 + 1.5�(α), �(α) = αL(α)

2 + αL(α)
= α − tanh α

α + tanh α
, (9)

which in the case of dilute magnetic colloids turns into the formula η = η0(1 + Eφ) given in
Ref. [23]. As a result, for the indicated ferrofluid from (8) we find η′ = 8.7 × 10−15 g cm/s in the
absence of a magnetic field and η′ = 11.4 × 10−15 g cm/s in field 150 Oe (α = 4). A close estimate
of the spin viscosity—η′ = 6.4 × 10−15 g cm/s—was obtained in a different way by Schumacher
et al. [24]. Almost all of the previous estimates were based on dimensional analysis alone [7,25,26]:
The spin viscosity depends on the viscosity of the fluid and some internal length b equal to the
distance between the centers of neighboring microeddies, that is, η′ � ηb2. But b � dhφ

−1/3 and,
therefore, η′ tends to infinity in the limit of infinite dilution, which is clearly not true. Rinaldi and
Zahn [27] assumed that η′ ∝ φ2.

C. Magnetic torque that rotates the particles

To the equations of motion (1) and (2) it is necessary to add the equation of the ferrofluid
magnetization. As such, we use the so-called third magnetization equation [28],

dH
dt

= ω × H − 1

τ
(H − H), M = MsatL(α)

H
H , α = mH

kT
, (10)

which is easier than others, and almost as accurate even when far from equilibrium. It links the
real H and effective H magnetic fields. The latter fully determines the fluid magnetization by the
Langevin function L(α) = coth α − α−1. Both H and H rotate around polar axis z with the same
frequency γ , but the magnetization lags behind the applied magnetic field in phase by an angle
θ , which depends on the Brownian rotational diffusion time τ = 3ηV/kT where V = πd3

h /6. After
substituting dH/dt = γ × H in Eq. (10), we find H = H cos θ and the tangent of the angle losses
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tan θ = (γ − ω)τ so that the density of the magnetic torque acting on the particles takes the form

M × H = MHτ (γ − ω) = 2ζαL(α)(γ − ω), ζ = 3
2ηφ. (11)

In the next subsection, we will show that the direct transformation of microscopic vortices into
visible fluid motion does not actually occur due to the extremely low spin viscosity. However, there
are other effects that do not depend on the spin viscosity but in which the spin of the particles
manifests itself quite clearly.

Let us indicate the explicit expressions describing the friction forces acting on the cylinder
wall and the release of heat in microeddies. At η′ = 0, the steady-state equations corresponding
to Eqs. (1) and (2) have the solution u = � = 0 and (M × H) = 4ζω. Substituting the latter in
(11), we obtain

ω = γ �(α), M × H = 4ζγ �(α) = 6ηφω, tan θ = γ τ [1 − �(α)]. (12)

Consequently, the moment of viscous forces acting per unit length of the cylinder is equal to

N = πR2(M × H) = 4πR2ζ ω. (13)

It should be emphasized that macroscopic motion in the cylinder is not required for the existence of
viscous torque: The latter is the result of microeddies. The average rate of energy dissipation inside
these eddies, contained in a unit volume, is determined by the relation,

q ≡ −M · Ḣ = γ · (M × H) = 4ζγ ω. (14)

The release of heat in microvortices causes an increase in temperature, which makes the magnetiza-
tion of the fluid inhomogeneous over the cross section of the cylinder. The resulting ponderomotive
forces are capable of rotating the fluid as will be shown in Sec. IV so that spin viscosity becomes
unnecessary.

D. Effect of spin viscosity on ferrofluid rotation

The very concept of internal rotation implies an excess � = ω − � of the latent spin over the
apparent fluid rotation. In the case of equilibrium, ω = �, there is no internal rotation: Particles do
not rotate relative to the surrounding fluid. Therefore, on the inner wall of the cylinder it is natural
to set the boundary condition � = 0. Due to the axial symmetry of the problem, only z components
of Eqs. (4) and (5) are nontrivial in the steady state,

d

dr

(
r

d

dr

)
(η� − ζ�) = 0, (15)

η′

r

d

dr

(
r

dω

dr

)
− 4ζ� + [M × H]z = 0. (16)

From (15) it follows � = (ζ/η)� + C so that ω ≡ � + � = (1 + ζ/η)� + C, where C is a
constant. Substitution of this ω and [M × H]z from (11) into (16) gives

�′′ + �′/r − κ2� = −κ2
0 K (γ − C), κ2

0 = 4ζη

ηeη′ , κ2 = κ2
0

(
1 + ηe

η
K

)
, (17)

ηe = η + ζ , K = 1

2
αL(α) = �(α)

1 − �(α)
. (18)

The solution of this equation satisfying the condition �(R) = 0 is

�(r) = κ2
0

κ2
K (γ − C)

(
1 − I0(κr)

I0(κR)

)
, (19)
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where I0(κr) is the modified Bessel function. The azimuthal fluid velocity is determined by
integrating the vorticity 2� = (ru)′/r,

u(r) = 2

r

∫
�(r)r dr = 2

r

∫ (
ζ

η
�(r) + C

)
r dr,

and finding the constant C from the boundary condition u(R) = 0. The exact solution reads

u(r) = ζ

η
γ R�(α)

�

�

(
r

R
− I1(κr)

I1(κR)

)
, (20)

�(r) = ζ γ

η�
�(α)

(
� − I0(κr)

I0(κR)

)
, ω(r) = γ

�
�(α)

(
1 + ζ

η
� − ηe

η

I0(κr)

I0(κR)

)
, (21)

where

� = 1 + ζ

η
�(α)� = 1 + O(�), � = 2I1(κR)

κRI0(κR)
� 2

κR

(
1 − 1

2κR

)
for κR > 15 .

Thus, the fluid velocity is positive over the entire cross section of the cylinder so that the field and
fluid rotate in the same direction. The velocity value strongly depends on the diffusion length κ−1.
Substituting of η′ from (8) into (18) gives

κ2
0 = 60ρ

ρ̂(1 + 1.5φ)d2
h

, κ2 = κ2
0 [1 + (1 + 1.5φ)K].

For the indicated cobalt-ferrite ferrofluid with dh = 39 nm, φ = 24%, ρ̂/ρ = 1.2 at α = 4 [then
�(4) = 0.6] and the radius R = 2 cm, we get

κR = 10.6
( R

dh

)
= 5.4 × 106, � = 2

κR
= 3.7 × 10−7. (22)

So the argument of Bessel functions is huge. From their asymptotic for κR > κr � 1,

In(κr)

In(κR)
= exp[−κ (R − r)],

it follows that the gradients of u(r), �(r), and ω(r) are concentrated in a very narrow layer of
thickness R − rm adjacent to the cylinder wall,

rm = R(1 − δ), δ = ln(κR)

κR
	 1.

For κR ∼ 106 the thickness Rδ is a fraction of a micron. Velocity (20) has a maximum at r = rm

[29] and a linear profile almost to the wall itself (similar to that shown below in Fig. 4). As can be
seen from (21), both the spin velocity ω and vorticity � are positive over the entire section with the
exception of a thin layer of thickness 3φ/2κ at the wall cylinder where they are negative,

ω(R) = �(R) = −ζ γ

η�
�(α)(1 − �) ≈ −3

2
φγ�(α). (23)

However, this does not result in the reverse flow described in Ref. [30]. The spin velocity remains
constant equal to ω from (12) on the interval 0 < r < rm and then drops to the boundary value (23),
whereas the angular velocity of the fluid �(r) as well as its linear velocity u(r) are positive and
negligible across the entire section.

We also solved the problem by changing the boundary condition from ω(R) = �(R) to
ω(R) = 0. Let us compare the results. In the lowest approximation in �, expressions (20) and (21)
obtained for the previous boundary condition have the form

u(r) = ζ

η
γ R�(α)�

(
r

R
− I1(κr)

I1(κR)

)
, ω(r) = γ�(α)

(
1 − η + ζ

η

I0(κr)

I0(κR)

)
, (24)
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(a) (b)

FIG. 3. The (a) concave and (b) convex profiles of the free surface of the ferrofluid. The contact angles
are ψ = 45◦ and ψ = 135◦, correspondingly. (a) The concave shape produces counter-rotation, (b) convex—
corotation.

and for the last condition we find

u(r) = ζ

η + ζ
γ R�(α)�

(
r

R
− I1(κr)

I1(κR)

)
, ω(r) = γ�(α)

(
1 − I0(κr)

I0(κR)

)
. (25)

In the first case [see (24)], corresponding to boundary conditions (23), magnetic grains in a thin layer
near the cylinder wall revolve against the direction of rotation of the field and fluid: ω < 0. This
means that the particles roll along the cylinder wall in the direction of the fluid motion with almost
the same angular velocity since in this thin layer ω ≈ �. Such rotating particles do not impede the
fluid flow as stationary particles do under the boundary condition ω = 0. As a consequence, under
the first boundary condition, the fluid rotates slightly faster than under the second.

For the specified Co-ferrite ferrofluid in a field H = 150 Oe rotating at a frequency of γ /2π =
500 Hz, the maximum speed resulting from (24) is

u(rm) � 3φγ�(α)

κ
= 5.0 × 10−4 cm/s = 5 μm/s (sic !),

and period of rotation of the fluid in the cylinder of radius R = 2 cm is T = 2πR/u(rm) = 7 h.
Thus, if the fluid really rotates with a noticeable, i.e., � 1 cm/s, velocity, then this motion cannot
be described within the framework of the theory of spin diffusion due to the vanishingly low spin
viscosity.

III. THE ROLE OF FREE SURFACE SHAPE IN THE SPIN-UP PHENOMENON

Rosensweig et al. [15] wrote (authors italics): “When the surface is concave the fluid rotates
counter to the field; when the surface is flat rotation ceases; and when the surface is convex the fluid
rotates in the direction of the field. This observed behavior indicates that surface stress rather than
volumetric stress is responsible for the spin-up phenomenon.” More precisely, surface stresses are
responsible for spin-up in a thin surface layer, whereas volume stresses cause this phenomenon in
the bulk. That is, different mechanisms are involved here. The height h to which the fluid rises at
the hydrophilic wall of a cylinder or lowers at the hydrophobic one does not exceed 2 to 3 mm.
The absence of fluid rotation at h = 0 and a change in the direction of rotation with a change in the
sign of h indicates the rotation of a thin surface layer with a thickness of the order of h. Of course,
this layer involves the underlying fluid layers in rotation, but their velocity rapidly decreases with
distance z from the free surface. In this section, we will first estimate the azimuthal velocity of the
surface layer and then the rate of its deceleration as a function of z.

A. Spin-up on the free surface

In the gravity field, the shape of the liquid surface limited by a vertical wall depends on the
capillary constant a = √

2σ/ρg (here σ is the surface-tension coefficient) and the angle of contact
ψ between the fluid and the wall (Fig. 3). The problem to find the shape of the surface z = z(r) for
given values of a and ψ has an exact solution [31] from which it follows that h = a

√
1 − sin ψ and
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z′ = cot ψ at the surface of the wall. Nevertheless, the dependence z(r) does not exist in an explicit
form. For our needs, however, it suffices to use the plausible approximation of the free surface shape.
In the case of a concave meniscus, it will be fine that the function,

z(r) = h
cosh(r/h)

cosh(R/h)
, (26)

which at R � h decreases exponentially from its value h on the wall to 2h exp(−R/h) � 0 on
the cylinder axis. At r = R, function (26) satisfies the condition z′ = cot ψ = 1 for ψ = 45◦. This
situation is depicted in Fig. 3(a).

Below, we consider the concave profile as an excess of magnetic matter in the near-wall region.
This excess is distributed over a layer of thickness h in accordance with formula (26), which leads
(in a rotating field) to an additional magnetic torque acting on the fluid in the layer. Multiplying the
torque density (12) by z(r) and dividing by h, we obtain

M × H = 6ηφγ �(α)
cosh(r/h)

cosh(R/h)
. (27)

Physically, this result represents the r-dependent density of the magnetic torque acting on a layer of
a thickness of h and averaged over this thickness. Substituting torque (27) into Eq. (3), we get the
following equation for the azimuthal velocity component:

η

(
u′′ + u′

r
− u

r2

)
= 3ηφγ �(α)

(
cosh(r/h)

cosh(R/h)

)′
. (28)

For R � h, the curvature of the cylinder wall can be neglected. Keeping then only the highest
derivative of the velocity, we arrive at the equation,

u′′ = 3φγ �(α)

(
cosh(r/h)

cosh(R/h)

)′
.

Integrating it and satisfying the boundary conditions u(0) = u(R) = 0, we finally find

u(r) = −3φγ h�(α) tanh(R/h)

(
r

R
− sinh(r/h)

sinh(R/h)

)
, (29)

below tanh(R/h) ≈ 1 − 2 exp(−2R/h) is replaced by 1. The minus sign in front of the right-hand
side of (29) means the opposite rotation of the field and fluid. It is noteworthy that the rotational
speed of a thin surface layer of a ferrofluid does not depend on its viscosity.

In the case of the convex shape of the free surface, we replace (26) by the function,

z(r) = h

(
1 − cosh(r/h)

cosh(R/h)

)
, (30)

which satisfies the boundary condition z′ = cot 135◦ = −1 as shown in Fig. 3(b). This change in
sign of z′ (from cot 45◦ to cot 135◦) leads to a change in speed to the opposite. Consequently, a
ferrofluid with a convex free-surface profile rotates in the same direction as the applied field.

Rosensweig and his colleagues [15] placed a water-based magnetite ferrofluid (Md = 450 G)
with φm � 1% in an open cylindrical vessel with a radius R = 2.33 cm and applied to it a rotating
magnetic field with an amplitude of H = 100–200 Oe at a rotational speed γ /2π = 60 Hz. For pure
water the capillary constant a = 3.8 mm at 20 ◦C, but surfactants used to stabilize magnetic colloids
greatly reduce their surface tension [25]. Taking σ = 20 erg/cm2 (see Table 2.4 in Ref. [25]), we
obtain the capillary constant a ≈ 2 mm and the surface deformation h = a

√
1 − sin 45◦ ≈ 1 mm.

Due to the smallness of h, the velocity (29) reaches its maximum value u(r∗) in the immediate
vicinity of the cylinder wall,

r∗

R
= 1 − ln(R/h)

(R/h)
= 0.865, u(r∗) = −3φγ h�(α)

(
1 − ln(eR/h)

(R/h)

)
.
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FIG. 4. The azimuthal velocity of the ferrofluid surface in a cylinder of R = 2.33 cm, γ /2π = 60 Hz. The
symbols mark the experimental data: © − H = 100 Oe,

� −H = 200 Oe [15], and the solid line is described
by the expression (31). The maximum point on this curve has coordinates r∗/R = 0.865 and u(r∗)/u0 = 0.822.

The authors of Ref. [15] introduced the velocity u0 = −3φγ h�(α), the value of which follows
from u(r∗) in the limit h → 0, representing the result of linear extrapolation of u(r) up to the wall.
For the sample and field parameters indicated above, the ratio,

u(r)

u0
= r

R
− sinh(r/h)

sinh(R/h)
(31)

is presented in Fig. 4 where experimental velocity profiles [15] are shown by symbols for two field
amplitudes. Almost solid-body fluid rotation in the core and the thinness of the near-wall layer allow
us to interpret the ratio �0 = |u0|/R as the characteristic angular velocity of the fluid. In agreement
with the experimental data [15], �0 proves to be inverse to R.

Above, we neglected the curvature of the cylinder wall and kept only the highest-order derivative
on the left side of Eq. (29). It is worth noting that keeping all the terms in this equation, we arrive at
the same its solution with the replacement of cosh(r/h) and sinh(r/h) correspondingly by I0(r/h)
and I1(r/h). Then both velocity profiles determined by formula (29) before and after this change
are completely indistinguishable in Fig. 4. Amusingly, this replacement makes the expression (29)
similar to Eq. (21) with κ replaced by h−1. This similarity is nothing more than a consequence of
the cylindrical symmetry of both problems. Indeed, the velocity (29) was obtained for η′ = 0, that
is, outside the scope of the spin-diffusion theory. Note that even length scales are incommensurable:
h ∼ 10−1 versus κ−1 ∼ 10−7 cm.

B. How deep does the rotation of the surface penetrate into the bulk?

The rotation of the thin surface layer makes it rotate fluid that is below. The similar situation has
long been known as the Kármán problem (1921): An infinite disk rotates in an unbounded volume
of viscous fluid on the plane z = 0 about the z axis with the angular velocity �. Exact self-similar
solution of the problem determines the azimuthal velocity vϕ = r �G(ξ ) proportional to the distance
r from the axis of rotation—just as in Fig. 4—and depending on the dimensionless axial coordinate
ξ = z

√
(�/ν) where ν = η/ρ is the kinematic viscosity. Figure 5 demonstrates that the function

G(ξ ) is well approximated (especially for ξ > 1.5) by the exponent G(ξ ) = exp(−ξ/1.3).
We define the characteristic penetration length z∗ as the distance from the disk at which the

angular velocity of the fluid vϕ/r falls from � at z = 0 to 0.1 �. The equality exp(−ξ ∗/1.3) =
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FIG. 5. Nondimensional azimuthal velocity G in the Kármán problem as a function of ξ = z
√

�/ν. The
blue curve taken from Fig. 7 in Ref. [31] is the exact solution; the red curve—our approximation by the function
G = exp(−ξ/1.3).

0.1 determines the dimensionless distance ξ ∗ = 3, thus, z∗ = 3
√

ν/� (note that z∗ increases with
increasing fluid viscosity since it is the viscosity forces that transfer rotation from the upper layers
of the fluid to the lower ones). For a slowly rotating disk, � = 0.2π s−1 (i.e., � = 6 rpm) and
ν = 0.01 cm2/s (water) we get z∗ = 3.8 mm. In the experiment [15], there were �0 = 1.50 cm/s

2.33 cm =
0.644 s−1 = 6.15 rpm and ν = 0.03 cm2/s, that results in z∗ = 6.5 mm. This estimate is consistent
with measurements by Lebedev and Pshenichnikov [32]: “the fluid motion is concentrated in the
thin layer (∼R/4) adjoining the surface;” their cylinder had a diameter of 47 mm.

The above estimate is obtained without considering the edge effects: The radius R of cylinder is
finite, whereas the solution to the Kármán problem is obtained for an infinite disk. In our geometry,
one of the edge effects is the energy dissipation due to friction against the cylinder wall. Allowing
for this additional dissipation would only decrease the value of z∗. However, even without such a
correction, it is clear that the magnetic torque arising on a curved free surface cannot induce a flow
in the bulk.

IV. SPIN-UP CAUSED BY THE THERMAL EFFECT

The dissipation of energy in microvortices leads to heating of the ferrofluid. In a rapidly rotating
magnetic field, this heating may be sufficient to induce the spin-up phenomenon as was first
indicated in Ref. [33]. Then this topic was developed and investigated experimentally in a series
of works by Lebedev and Pshenichnikov [20], Pshenichnikov [34], and Pshenichnikov et al. [35].

A. Temperature profile and azimuthal velocity

The rotation of magnetic particles in a viscous fluid creates internal heat sources, the volumetric
density of which q is determined by the relation (14). The heat transfer equation, ∇2T = −q/λ,
predicts the parabolic temperature profile,

T (r) = T (R) + �

(
1 − r2

R2

)
, � = qR2

4λ
= 3

2λ
ηφγ 2R2�(α), (32)

where � is the temperature difference between the axis and the cylinder wall, λ is the heat
conductivity, and �(α) is defined in (9). Temperature inhomogeneity makes ρ, M, and H functions
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of r, so the Archimedes and Kelvin forces must be included in Eq. (3),

η∇2u + (M∇ )H + 1
2∇ × (M × H) − ρ gβT = ∇p, (33)

here g is the gravity acceleration, and β is the coefficient of thermal expansion. The magnetization
M = (M/H)H depends on the effective field H which lags behind the internal field H by an
angle θ :H = H cos θ (see Sec. II C). In a cylindrical frame of reference with unit vectors r̂, ϕ̂, ẑ,
which revolves around the z axis with the frequency γ of the magnetic field, direct r̂ along the
magnetization: H = Hr̂. Then the above equality, H = H/ cos θ , written as H2 = H2(1 + tan2 θ ),
can be expanded as H = Hr̂ ± H tan θ ϕ̂. The correct sign (minus) in front of the last term in
this expression is determined from Maxwell’s equation for a nonconductive material ∇ × H = 0.
Satisfying it, we put H = ∇� with the magnetic potential � = Hr cos ϕ , which in our case leads
to Hr = H cos θ = H and Hϕ = −H sin θ = −H tan θ . Substitution of the components M and H
into the density of the Kelvin force gives

(M∇)H = M∇H − ϕ̂M
d

dr
(H tan θ ).

The first term on the right side can be represented as the gradient of the r function and combined
with the pressure gradient. The second term together with

1

2
[∇ × (M × H)]ϕ = −1

2

d

dr
(MH sin θ ) = −1

2

d

dr
(MH tan θ )

gives the azimuthal component of the force density Fϕ (r), which exactly causes the spin-up flow,

η

(
u′′ + u′

r
− u

r2

)
+ Fϕ (r) = 0 where Fϕ = −1

2

d

dr
(MH tan θ ) − M

d

dr
(H tan θ ). (34)

Substituting here M = nmL(α), tan θ = 2γ τ/[2 + αL(α)], and τ = 3ηVh/kT , we obtain this
force in the form

Fϕ = −3ηφγ

[
∂

∂α

(
αL

2 + αL

)
+ 2L ∂

∂α

( α

2 + αL
)]

∂α

∂T

dT

dr
, (35)

where L ≡ L(α). Finally, substituting ∂α/∂T = −α/T and T ′ = −2�r/R2 in (35) gives

Fϕ = −18η2φ2γ 3

λT
f (α)r, f (α) = α2L

(2 + αL)3
[L + α(1 + L2) − α2L(1 − L2)]. (36)

Equation (34) with Fϕ from (36) has the solution,

u(r) = −u0
r

R

(
1 − r2

R2

)
, u0 = 9ηφ2γ 3R3

4λT
f (α). (37)

Here the minus before u0 means the opposite rotation of the field and fluid. The speed reaches its
maximum at r = R/

√
3; the linear and angular velocities at this point are

um ≡ |u(R/
√

3)| =
√

3ηφ2γ 3R3

2λT
f (α), �m ≡ �(R/

√
3) =

√
3um

2πR
. (38)

The dependencies of � and um on the Langevin parameter are shown in Fig. 6. The temperature
difference �(α) between the axis and the wall of the cylinder starts at α2/6 for small α and then
tends to saturation as (1 − 2/α). The dependence of um(α) is more interesting. On the initial portion
of the red curve, the velocity rises as α4/18. This result um ∝ H4 was obtained by Pshenichnikov
[34] without using any magnetization equation. In a weak magnetic field, M and H are related
by a simple linear equation through the complex dynamic susceptibility. Its real and imaginary
parts can be measured experimentally, so their temperature dependence is considered known. Such
an approach implemented in Refs. [34,35] brings um = 0.1 mm/s in agreement with experimental
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FIG. 6. Dependence on the Langevin parameter of the temperature difference � between the axis and
the cylinder wall, and the maximum speed um of fluid rotation; dashed line, relative magnetization L(α) =
M(α)/Msat .

results presented in Ref. [20]. As seen in Fig. 6, the fluid velocity remains insignificant at α � 0.8
[36] but at α � 2 takes quite observable values pointed in Table I.

The red curve reaches its maximum at α = 4.19 and then decreases as 2/α. This fall is a
consequence of the saturation of the fluid magnetization. For large α, when L(α) ≈ 1 − α−1,
the difference between the magnetization on the cylinder wall and its axis δM = M(R) − M(0)
decreases with the field growth,

δM

M
= L(αR) − L(α0)

L(α)
= α−1

0 − α−1
R = k�

mH = �/T

α
.

Thus, at α � 1, the magnetization becomes uniform across the entire section of the cylinder, which
means that the very reason for the spin-up effect disappears.

The left half of Table I shows the parameters of a Co-ferrite ferrofluid close in properties to
WBF-2 from Ref. [19] and the amplitude and frequency of the rotating field. The effects caused
by this field take up the right half of the table. They include the tangent of the loss angle (12), the
temperature difference � , the maximum linear (um), and angular (�m) velocities, and the Grashof
number (43), which characterizes the intensity of thermal convection.

TABLE I. Parameters of a Co-ferrite ferrofluid and the results of calculations.a

Msat (G) α γ /2π (Hz) R (cm) φ (%) η (cP) tan θ � (K) um (cm/s) �m (rpm) Gr

8.5 2.0 400 2.0 24 2.7 0.101 1.4 1.1 9.3 5470
8.5 2.5 400 2.0 24 2.8 0.091 1.8 1.4 12 6120
8.5 3.0 500 1.7 24 2.9 0.104 2.5 2.0 19 5190
10.6 3.0 300 2.0 30 3.7 0.079 2.0 1.4 12 4550
12.8 4.0 200 2.0 36 7.3 0.084 2.5 1.8 15 1630

aDomain magnetization Md = 425 G, Langevin parameter α = 2 for H = 70 Oe, particle magnetic core
dm = 17, dh = 39 nm, φ = (dh/dm )3φm = 12φm, thermal conductivity λ = 6 × 104 g cm s−3 K−1, thermal
expansion β = 3 × 10−4 K−1, viscosity was calculated by Eq. (9), Gr—the Grashof number (43).
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FIG. 7. Convective flow structure caused by internal heat sources in a long cylinder closed at the top and
bottom. The dashed line—the interface between ascending and descending flows.

B. Allowance for natural convection

Internal heating of the fluid causes gravitational convection. Substitution of T (r) from (32) into
Eq. (34) gives the following equation for the vertical component of the fluid velocity v(r):

ηv′′ + ρgβ�

(
1 − r2

R2

)
= d p

dz
= C, (39)

where C is the separation-of-variables constant. The velocity vanishes at the cylinder wall. In
addition, we assume that the cylinder is closed at the top and bottom, which means that the flow
through any cross section of the cylinder is zero,

v(R) = 0,

∫ R

0
v(r)r dr = 0. (40)

From (39) and (40) it follows:

v(r) = v0

(
1 − 4

r2

R2
+ 3

r4

R4

)
= v0

(
1 − r2

R2

)(
1 − 3

r2

R2

)
, v0 = gβ�R2

48ν
, (41)

where ν = η/ρ is the kinematic viscosity. The velocity profile is shown in Fig. 7. As seen, the
cylindrical interface r0 = R/

√
3 separates the ascending (axial) and descending (near-wall) flows.

In both of these sectors, due to the azimuthal component of the velocity, the trajectory of each fluid
element is a helix with a pitch L depending on r: the ratio (37) to (41) gives

L(r) = 2πr
v(r)

u(r)
= L0

(
1 − 3

r2

R2

)
, L0 = π

36

gβT R2�(α)

γ νφ f (α)
. (42)

In the points of maximum of v(r) in ascending (r↑ = 0) and descending (r↓ = R
√

2/3) flows, we
find the values L = ±L0, respectively. For the case presented in the second row of Table I, we get
L0 = 5.7 cm, and similarly L0 = 2.8 cm for the fifth row. As can be seen from these estimates, the
vertical and azimuthal velocity components are quite comparable with each other: v/u ∼ L0/R ∼ 1.
It is curious that at the interface r0 = R/

√
3 where the vertical velocity of the fluid is zero, its

azimuthal component has a maximum, u(r0) = um—see Eq. (38). If the field rotates clockwise,
then the streamlines are right-handed helices in the axial region r < r0, left-handed helices at the
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periphery r0 < r < R, and vice versa, if the field rotates counterclockwise. Only fluid elements
located at the interface between convective counter-currents move along circular paths.

It is important that the two-dimensional flow u = (0, u, v) preserves (due to the absence of the
r component of velocity) the temperature profile (32) and, therefore, does not in any way affect the
spin-up phenomenon. However, this situation arises only at subcritical values of the dimensionless
parameter—the Grashof number,

Gr ≡ gβ�R3

ν2
= gβqR5

4ν2λ
, (43)

which approximates the ratio of buoyancy to the force of viscosity acting on the fluid. It is analogous
to the Reynolds number Re = v0R/ν: Substitution of the velocity amplitude v0 from (41) into this
expression gives Re = Gr/48. As seen, for a given density q of internal heat sources, Gr strongly
depends on the radius of the cylinder.

The two-dimensional convective motion shown in Fig. 7 becomes unstable at some critical value
of Grc. The instability originates on the counterflow interface and develops at Gr > Grc in the
form of a system of vortices on the r-z plane of Fig. 7. Such vortices mix the liquid, smoothing
the temperature distribution (32) over the cylinder cross section and thereby decreasing the spin-up
speed. The stability of plane-parallel convective flow in a vertical slit due to internal heat sources
was studied by Gershuni et al. [37]. Using their results, we estimated the critical Grashof number
for the geometry under consideration; we found Grc ≈ 6800.

V. DISCUSSION AND CONCLUDING REMARKS

Returning to the theory of spin diffusion, we note that the spin viscosity determines the charac-
teristic diffusion length κ−1 ∼ √

η′/6ηφ, the value of which limits the applicability of this theory
to explain the spin-up phenomenon. This limit looks as κR � 30, that is, κ−1 should be comparable
with the radius of cylinder R. Probably, this condition is fulfilled when water flows through
nanotubes [38–40] in a rotating electric field. Hansen et al. [39] found the estimate κ−1 � 2 nm .
Thus, κR = 5 for R = 10 nm and κR = 20 for R = 40 nm. However, in the case of a ferrofluid, we
are dealing with macroscopic samples, R ∼ 1 cm when κR ∼ 106. For such huge values due to the
negligible η′, the theory predicts no flow.

Striking discrepancies in the spin viscosity estimates arise when trying to describe the exper-
imental velocity profiles u(r) by expression (20) using κ as a fitting parameter. According to
(22), the dimensionless quantity κR � 10R/dh, so for R = 2.5 cm and dh = 40 nm one obtains
κR � 6 × 106. This value is vary far from κR = 0.44 (Torres-Diaz et al. [19]), from κR = 1.319
(Felderhof [41]), and even from κR = 100 (Chaves et al. [17]). Because of this, the spin viscosity
coefficient, which is inversely proportional to κ2, turns out to be overestimated by many orders of
magnitude. Finlayson [12] gives many examples of this exaggeration of η′.

Brown and Horsnell [13] and Mailfert and Martinet [42] reported changing the direction of the
fluid rotation from positive (corotation with the field) to negative (counter-rotation) taking place with
growth of the magnetic field. Mailfert and Martinet note that a concave meniscus “corresponding to
an excess of [magnetic] grains on the outside [i.e., near the wall, such as in Fig. 3(a)] shows negative
rotation.” On the contrary, a convex meniscus corresponding to the deficit of particles at the wall
and their excess around the cylinder axis [such as in Fig. 3(b)] shows positive rotation. Mailfert
and Martinet [42] propose the following explanation of the transition from positive to negative
fluid rotation: “When there is an initial positive rotation, the centrifugal force tends to accumulate
the grains at the outside: This leads then to a negative rotation for the central part. This rotation
stabilizes itself because the centrifugal force maintains the same sign for the concentration gradient
which caused it.”

This explanation is unsatisfactory as can be seen from a simple estimate of the radial drift
velocity of particles v under the action of centrifugal and Stokes forces: μu2/R ∼ 3πηdhv, where μ

stands for the particle mass and u is its azimuthal velocity. For u ∼ 1 cm/s and dh = 40 nm we find
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v ∼ 10−10 cm/s: the centrifugal force is vanishingly small due to the small size of particles, so that
surface forces completely prevail over bulk forces.

Positive rotation of the surface layer in a weak magnetic field is observed only in the case of a
convex meniscus. The flow reversal with the field increase is most likely the result of the competition
between the above-mentioned surface effect and the volumetric heat release (see Sec. IV). The latter
provides counter-rotation, which sharply increases (∼α4) in the region of weak magnetic fields.

Rosenthal et al. [16] measured the friction torque acting on the plastic spindle completely filled
with ferrofluid (the absence of a free surface of the fluid is emphasized) and placed in a rotating field.
They came to conclusion, that “the measured torque arises due to shear stresses at the fluid/spindle
boundary and, hence, is a result of bulk flow in the fluid.” This is not exactly the way it is explained
below. The torque acting on particles from the field is balanced by the torque of the viscous friction
in the microscopic (not hydrodynamic!) vortices around the particles. As expected, in the frames of
the spin-diffusion theory, the bulk flow adds negligibly to the moment of friction forces (12). Recall
that this expression is obtained when η′ = 0, that is, when u and � are equal to zero. Substituting
u(r) from (24) and (25) in (B1) and using the conditions of continuity of Hϕ and Br on the cylinder
wall, we found the friction torque Nz = −2πR2σϕr [31]. Substituting here the ϕr component of the
stress tensor [see Eq. (B1) in Appendix B], we find

Nz = 4πR2ζγ
αL(α)

2 + αL(α)

[
1 − 2 I1(κR)

κRI0(κR)

]
. (44)

Noteworthy is the fact that both types of boundary conditions for the spin velocity ω(R) = �(R)
and ω(R) = 0, lead to the same result. The first term in square brackets (one) corresponds to
friction in microeddies, and the second corresponds to bulk flow. Since κR ∼ 106, the content of
the parentheses is indistinguishable from one. Thus, the measurement of the torque acting on the
vessel with the ferrofluid does not answer the question about the presence or absence of fluid motion
in the vessel.

The main property of the spin-up phenomenon is its high sensitivity to the free-surface defor-
mations as well as to any temperature and magnetic-field inhomogeneities. So, the change in the
sign of the surface deformation h ∼ ±1 mm from “plus” to “minus” leads to the replacement of the
corotation of the field and fluid with their counter-rotation. As we have shown in Sec. IV and Table I,
the typical values of the spin-up velocities u ∼ −1 cm/s might be due to the temperature difference
� � 2 K between the cylinder axis and its wall. According to Eqs. (38) and (39), the Langevin
parameter α ∼ H/T is the tuning parameter of the spin-up effect. Therefore, the same spin-up effect
can be achieved using the indicated temperature difference � ∼ 2 K or a slight inhomogeneity of
the magnetic field ∼2/300 ≈ 0.7%.

Torres-Diaz et al. [19] wrote that “nonuniformities in the magnetic field intensity were lower
than 5% in the radial direction in the midplane of the stator cavity,” which is seven times larger
then it is needed to induce the observable fluid rotation. It is logical to assume that the corotation
of the field and the fluid discovered in Ref. [19] arises due to the field inhomogeneities. Note that
the velocity profiles shown in Figs. 21–23 work [19] are well described by the expression (37)
with a distinct maximum at r/R = 0.58 (which is exactly 1/

√
3!). Lebedev and Pshenichnikov [20]

observed the counter-rotation of the field and fluid. As a source of the magnetic field, they used the
crossed Helmholtz coils with negligible (less than 1%) inhomogeneity within the working area.

Let us summarize the research results. First of all, the value of the spin viscosity η′ was deter-
mined. The latter turned out to be negligible as a result of which the spin-up phenomenon cannot be
explained within the framework of the concept of spin diffusion. So we set η′ = 0 and developed a
theory relating the rotational motion of the free-surface layer to the shape of the meniscus. Its height
(to which the fluid rises or falls at the wall) and the contact angle, together with the amplitude and
frequency of the field, determine the direction of fluid rotation, the magnitude of the velocity, and
its profile. The results are in good agreement with the experimental data of Rosensweig et al. [15].
As for the bulk flow of a ferrofluid, we associate it with the action of ponderomotive forces arising
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from inhomogeneities of the magnetic field and magnetization. The case of such inhomogeneities
caused by an increase in temperature due to heat release in microvortices is studied in detail.
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APPENDIX A: TO THE DERIVATION OF RELATION (6)

The difference between the spin velocity on the axis of the cylinder ω(0) and on its wall ω(R)
leads to the diffusion of ω(r, t ). (The diffusion is provided by internal friction between microeddies
of diameter ∼d .) Hydrodynamic equations (4) and (5) treat a ferrofluid as a continuous medium,
which implies R � d: In the problem, radius R is the characteristic length scale and, hence, the
Laplace operator in these equations ∇2 ∼ R−2.

After turning off the rotating field, Eqs. (4) and (5) take the form

d�

dt
= η

ρ
∇2� − I

4ρτs
∇2(ω − �), (A1)

dω

dt
= η′

I
∇2ω − 1

τs
(ω − �). (A2)

Both of them describe a two-stage decay of rotation of a ferrofluid. This rotation consists of microed-
dies around rotating particles with a spin velocity ω (their scale is d ∼ 10 nm) and macroscopic
vortices � of the size R ∼ 1 cm. Microeddies relax instantly: ω falls to � for the spin-relaxation
time τs = I/(6ηφ) = ρ̂d2/(60η) ∼ 10−11 s, and since then ω = �, the above equations take the
form

d�

dt
= η

ρ
∇2� and

d�

dt
= η′

I
∇2�. (A3)

Note that we arrived at (A3) under the assumption that the spin-relaxation time τs is much shorter
than the spin-diffusion time τD, the value of which can be easily estimated using Eq. (A2), where

η′

I
∇2ω ∼ η′

I

ω

R2
≡ ω

τD
, τD = IR2/η′. (A4)

The inequality τD � τs is reduced to

η′ 	 60ηI

ρ̂d2
R2, (A5)

which for any value of η′ can be satisfied by choosing a cylinder of sufficiently large radius R. Then
relation (6), which follows from (A3), holds: η′ = ηI/ρ. Substituting this η′ into inequality (A5),
we obtain the obvious

d2 	 (ρ/ρ̂ )60R2, (A6)

where ρ̂ and ρ are densities of the particles and suspension. Thus, relation (6) holds for R � d/8,
which is always true.

APPENDIX B: ON THE SYMMETRY OF THE FERROFLUID STRESS TENSOR

In a rare article on the spin-up effect, the reader does not face a discussion or, at least, mentioning
of the stress tensor asymmetry. Let us consider this question.
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The stress tensor of ferrofluids [23] and liquid paramagnets [43] consists of two viscous parts
(corresponding to macroscopic motion and latent rotation) and a magnetic part (the Maxwell tensor),

σik = −pδik + η

(
∂vi

∂xk
+ ∂vk

∂xi

)
+ 2ζ (ωik − �ik ) + 1

4π

(
HiBk − 1

2
H2δik

)
. (B1)

This form is not final yet: Eq. (2) gives a possibility to simplify it. The extreme smallness of the
spin-relaxation time indicated in Appendix A makes it possible to omit the inertial term in (2) and
then eliminate the excess (ω − �) from (B1),

σik = −
(

p + 1

8π
H2

)
δik + η

(
∂vi

∂xk
+ ∂vk

∂xi

)
+ 1

2
(MiHk + MkHi ) + 1

4π
HiHk + η′

2

∂2ωik

∂x2
l

. (B2)

In Sec. II, we showed how small the spin viscosity is so that the last antisymmetric term in (B2) can
be neglected. Nonetheless, we will show—it is important, in principle—that “if a spin viscosity is
included...and the stress tensor has an asymmetric portion” (Finlayson [12]), this tensor can always
be symmetrized. We emphasize that this is possible even for large η′.

“The proof is an exercise in arithmetic” (Martin et al. [44]). Let us replace σik from (B2) by

σ̃ik = σik + η′

2

∂

∂xl

(
∂ωkl

∂xi
+ ∂ωil

∂xk
− ∂ωik

∂xl

)
. (B3)

It is easy to see that the divergences ∂σik/∂xk and ∂σ̃ik/∂xk , which determine the force Fi , are
identical,

∂σ̃ik

∂xk
− ∂σik

∂xk
= η′

2

[
∂

∂xl

(
∂2ωkl

∂xk∂xl

)
+ ∂

∂xk

(
∂2ωil

∂xk∂xl

)
− ∂

∂xl

(
∂2ωik

∂xk∂xl

)]
≡ 0. (B4)

Indeed, when changing the order of differentiation in parentheses, the first term on the right-hand
side and the difference between the second and third ones change the sign. Thus, the symmetric
stress tensor is

σ̃ik = −
(

p + 1

8π
H2

)
δik + η

(
∂vi

∂xk
+ ∂vk

∂xi

)
+ 1

2
(MiHk + MkHi )

+ 1

4π
HiHk + η′

2

∂

∂xl

(
∂ωkl

∂xi
+ ∂ωil

∂xk

)
. (B5)

Let consider what kind of physics is behind of this arithmetic. The total force F acting on some
portion of the fluid represents the volume integral of the force density,

∫
F dV , reducible to an

integral over the surface of the portion. This conversion is performed automatically due to definition
of the stress tensor: Fi = ∂σik/∂xk . Hence,

Fi =
∫

Fi dV =
∫

∂σik/∂xk dV =
∮

σik dsk,

where dsk are the components of the surface element vector ds .
Similarly, the moment of the forces N = ∫

(F × r)dV applied to a fluid volume can be expressed
as an integral over its surface. Substituting the force components via σik , we find

Nik =
∮

(σil xk − σkl xi )dsl +
∫

(σki − σik )dV. (B6)

Here the volume integral vanishes either if σik is a symmetric tensor or the difference σik − σki

reduces to a divergence of a tensor of the rank three antisymmetric in first pair of indices [44]. The
latter is just the case under consideration: from (B2),

σik − σki = η′ ∂
2ωik

∂x2
l

= η′ ∂

∂xl
ωikl , where ωikl = −ωkil ≡ ∂ωik

∂xl
.
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Finally, we obtain

Nik =
∮ (

σil xk − σkl xi − η′ ∂ωik

∂xl

)
dsl =

∮
(σ̃il xk − σ̃kl xi )dsl . (B7)

Thus, the ferrofluid stress tensor can always be represented in symmetric form (B5). So the
frequent separation of some antisymmetric part from σ̃ik is analogous to the representation of an
even number as a sum of two odd ones.
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