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Front-back asymmetry controls the impact of viscoelasticity
on helical swimming
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We conduct experiments with force-free magnetically driven rigid helical swimmers
in Newtonian and viscoelastic (Boger) fluids. By varying the sizes of the swimmer body
and its helical tail, we show that the impact of viscoelasticity strongly depends on the
swimmer geometry: it can lead to a significant increase of the swimming speed (up to a
factor of 5), a similar decrease (also up to a factor of 5), or it can have approximately
no impact. Using an analysis of our data along with theoretical modeling we suggest that
the influence of viscoelasticity on helical propulsion is controlled by an asymmetry effect,
previously reported for dumbbell swimmers, wherein the front-back size mismatch leads
to a non-Newtonian elastic force that can either enhance or hinder locomotion.

DOI: 10.1103/PhysRevFluids.6.043102

I. INTRODUCTION

There are several methods exploited by microorganisms to cope with fluid environments dom-
inated by viscous effects [1]. In particular, the majority of motile bacteria use helical flagellar
filaments in order to achieve locomotion [2]. These semirigid filaments can be used either in
isolation (monotrichous bacteria) or by cells with several helical filaments (peritrichous bacteria), in
which case filaments can bundle together to form a single helical structure. Propulsion of the cell is
then enabled by the rotation of a helix in the viscous fluid: since a helix is chiral, a rotation around
the helical axis bypasses the constraints of Purcell’s scallop theorem [3] leading to a viscous thrust
along its axis.

The mechanics of helical swimming is well understood in the case of Newtonian flows [4].
However, many of the fluids in which microorganisms move are not Newtonian, ranging from
mucus and complex suspensions to biological tissues. As with most flows in which such fluids are
involved, the dynamics of swimming microorganisms are significantly affected by viscoelasticity,
the presence of shear-dependent stresses, or both. Numerous studies have been devoted to the subject
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[5–13] with some results which appear to be in contradiction with each other, and thus a number of
fundamental issues remain open.

One possible starting point to capture the effect of viscoelasticity is the theoretical study in
Ref. [5] which extended the classical Taylor waving sheet result to the case of viscoelastic Oldroyd-
like fluids. The swimming speed of the sheet normalized by its Newtonian value, UNN/UN , was
calculated at leading order in the waving amplitude to be a decreasing function of the Deborah
number. This parameter, which quantifies the relative importance of viscoelasticity in a given flow, is
defined as De = τω where τ is the fluid relaxation time and ω is the angular frequency of the wave.
That model predicted that the swimming speed in a viscoelastic fluid is smaller than its Newtonian
equivalent for any value of De. While this result reignited interest in the field, its validity is restricted
to the case of small wave amplitude and to the case in which the wave is not affected by the nature
of the surrounding fluid (the so-called fixed-kinematics limit). In that limit, both experiments [7]
and numerical simulations [11] have shown this prediction to be correct.

In contrast with the result above, numerical computations found that when the amplitude of
oscillation was not small the swimming speed in the viscoelastic fluid could be larger than that in
the Newtonian fluid [14]. Several experimental studies have subsequently confirmed that a faster
speed in viscoelastic media was indeed possible [6,9]. The possibility of obtaining both a decrease
and an increase in swimming was reported in Ref. [13] where experimental measurements for the
ratio of swimming speeds for three different swimming strategies at fixed De number showed that
the swimming ratio could be smaller than, larger than, or close to 1 depending on the swimming
kinematics. In other words, the swimming speed in a viscoelastic fluid does not depend solely on
the value of the De number. A recent analysis of the effect of the swimming gait on locomotion in
non-Newtonian media obtained theoretical predictions in good agreement with experiments so far
[15].

Given the complexity that arises from swimming in which the waving shape of the appendages
might depend on the flow itself via mechanical feedback, it is simpler to focus first on the case
for which the kinematics are fixed. A fundamental biological example where the shape is known
to be essentially rigid and unchanged by the fluids is the rotating helical filaments of swimming
bacteria. The work in Refs. [16,17] extended the Taylor swimming sheet result from Ref. [5] to
the case of a helix in the limiting case of a small pitch angle θ (i.e., the angle between the helix
axis and the local tangent along the helix center line). They obtained the same decreasing trend of
the normalized swimming speed with Deborah number as in Ref. [5]. Subsequent experiments with
force-free helices driven in rotation showed, in contrast, that the helical swimming speed could be
larger than that in the Newtonian case [6]. Specifically, the swimming speed was shown to depend
on both the value of the Deborah number and the shape of the helix; in particular, helices with larger
pitch angles produced a more pronounced increase in swimming. However, only two values of the
pitch angles were tested experimentally [6]. Subsequent numerical simulations confirmed that the
normalized swimming speed could be smaller or larger than 1, depending on both Deborah number
and the geometry of the helix [11].

It is therefore clear that, in addition to the expected dependence on the value of the Deborah
number, the geometrical properties of a helix impact its free-swimming speed in non-Newtonian
fluid. In this paper, we conduct experiments with force-free magnetically driven rigid helical
swimmers in Newtonian and viscoelastic (Boger) fluids. We measure the swimming speeds for
helices with many different geometries and head sizes. In agreement with previous studies, we find
that depending on the helical geometry their swimming speeds can either increase significantly
(up to a factor of 5), decrease (also up to a factor of 5), or remain approximately unchanged. The
increasing vs decreasing nature of the normalized swimming speed appears in all our experiments
to be correlated with the front-back asymmetry in size of the swimmer: when the helix has a
larger diameter than the head, a swimming speed larger than the Newtonian value is observed,
and vice versa. The impact of viscoelasticity on helical swimming seems thus to be controlled by
an asymmetry effect, previously proposed theoretically [18] and corroborated experimentally [19],
wherein an elastic force driven by normal stress differences is induced in the viscoelastic fluid by the
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FIG. 1. Sketch of the design parameters of the magnetically driven rigid helical swimmers with a cylin-
drical head and helical tail. Helix parameters: R is the radius, λ is the wavelength (pitch), LT is the projected
length, d is the diameter of the helical filament. Head: length LH and diameter DH .

rotation of the swimmer. Adapting past modeling [18], we show, in agreement with our experiments,
that this elastic force can then either hinder or enhance propulsion depending on the ratio between
the size of the swimmer’s body and that of its helical tail.

The paper is organized as follows. In Sec. II we summarize our experimental setup and parame-
ters. We next present our experimental results in Sec. III. The physical interpretation of our results
in light of the asymmetric mechanism is then proposed in Sec. IV.

II. EXPERIMENTAL SETUP

A. Helical swimmers

The experimental design is similar to that previously used in Ref. [20]. Different magnetically
actuated force-free swimmers consisting of a tubular plastic head with a rigid helix tail are placed
inside a test fluid. By inserting a small permanent magnet inside the head, the swimmers can be made
to rotate under the action of an external rotating magnetic field [21]. The shape of the swimmers
is depicted schematically in Fig. 1. A right-handed rigid helix is placed at the other end of the
cylindrical head. In all cases, both the size of the head (length LH and diameter DH ) and the helix
(contour length L, projected length LT , radius R, wavelength λ, and filament diameter d) are varied
in order to explore the effect of geometry and a total of ten different swimmer geometries are tested.
The geometrical parameters are shown in Table I for all swimmers used in this paper. The first
five swimmers (F1 and R1 to R4) had tails made of steel wire (Young’s modulus E ≈ 207 GPa).
The second set of swimmers (A1 to A5) was three-dimensionally printed with tails fabricated with a
polymeric resin. The pitch angle of the helix, θ , defined as tan θ = 2πR/λ varies in our experiments
from 29◦ to 77◦.

B. Rotation

The rotation of the head leads to the rotation of the helical tail, which in turn produces the thrust
force that propels the swimmer through the fluid. The rotation frequency of the external magnetic
field, measured with a digital tachometer, ranged from 0.41 to 5.8 Hz, with a different range for each
swimmer. All experiments were conducted below the step-out frequency so that swimmers always
rotate with the external frequency.

Note that the swimmers studied here do not capture one important aspect of helically propelled
organisms. In our case, the head and the helix swimmer rotate in the same direction. In contrast, in a
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TABLE I. Dimensions of the ten helical swimmers used in this paper; all lengths are in millimeters. Here
L is the total contour length of the tail, θ is the pitch angle in radians (degrees), and all other symbols are
defined in Fig. 1. The empty and solid symbols represent experiments conducted in Newtonian and Boger
fluids, respectively.

Swimmer

swimming bacterium, due to the torque-free constraint the helical flagellar filament counter-rotates
relative to the cell body [2], a case that is not addressed in our paper.

C. Test fluids

Two types of fluids were used, namely, Newtonian and viscoelastic (Boger). We tested two
Newtonian (N1, N2) and two viscoelastic fluids (B1, B2). All fluids were glucose-based: either
industrial-grade glucose syrup (series 1) or commercial corn syrup (Karo brand) was used (series
2). While the properties of the industrial-grade syrup varied from batch to batch, commercial corn
syrup was found to consistently have the same properties. The viscoelastic fluids (B1, B2) were
prepared with glucose, water, and a small amount of polyacrylamide (PAAM), molecular weight
5 × 106 g/mol from Sigma-Aldrich); they were fabricated by slowly dissolving the polyacrylamide
in nonionic water for 24 h. Afterwards, the polymeric solution was added to the glucose and the
mixture was mixed slowly for four days. We show in Table II the material and rheological properties
of the two pairs of test fluids used in this paper. The Newtonian liquids were fabricated by adding
water to glucose until the fluid had similar viscosity to that of the viscoelastic fluid, for each case.

TABLE II. Composition and physical properties of the four fluids studied: composition [from glucose (G),
water (W), and PAAM], mass density (ρ), dynamic viscosity (μ), power index (n), and mean relaxation time
(τ ). Note that for N1 and B1 industrial grade glucose syrup was used, while for N2 and B2 commercial corn
syrup (Karo brand) was used.

Fluid G/W/PAAM ρ μ n τ

(%) kg/m3 Pa s s

N1 89/11/0 1390 3.5 1.0 0.0
B1 84.96/15/0.04 1340 3.8 0.98 1.23
N2 89/11/0 1385 1.64 1.0 0.0
B2 84.96/15/0.04 1366 1.64 0.98 1.63
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FIG. 2. Measured swimming speed, U , as a function of rotational frequency, ω/2π , for three representative
swimmers (F1, R1, and R4 from Table I). Empty and filled symbols show the results for Newtonian and
viscoelastic fluids, respectively (fluids N1 and B1 from Table II).

The rheological properties of the fluids in Table II were determined using a parallel-plate
rheometer with 40-mm diameter and 1-mm gap (TA Instruments, ARES-G2). Both steady and
oscillatory tests were conducted to measure the dynamic viscosity, μ, as well as the storage and
loss moduli, G′ and G′′, respectively. The mean relaxation time τ is calculated by fitting G′ and G′′
to a generalized Maxwell model [9]. The power index, n, was determined by fitting a power-law
model to the steady shear viscosity tests. Finally, the density of the fluids ρ is obtained using a
25-ml pycnometer.

D. Measurements

The motion of the swimmers in both Newtonian and viscoelastic (Boger) fluid was filmed with
a digital camera at 60 frames per second. The images were processed digitally with the software
Tracker. Each experiment was repeated at least three times to ensure repeatability. The temperature
in the experiment ranged between 23 and 24 ◦C.

III. EXPERIMENTAL RESULTS

Each swimmer was tested in a pair of fluids and its swimming speed was measured as a function
of the rotational frequency to compare directly the Newtonian and viscoelastic results. We show
in Fig. 2 three selected experimental results illustrating the three possible qualitative results. The
swimming speed is plotted as a function of rotational frequency for swimmers F1, R1, and R4
from Table I for the first fluid pair N1 and B1 (see Table II). We see that for a helical swimmer three
different behaviors are possible: the swimmer can swim faster in a viscoelastic fluid compared to the
Newtonian case (green rhombus), it can go slower (red circles), or it can swim with approximately
the same speed (gray triangles). The three swimmers are propelled by the same helical mechanism
and the most notable differences between them are their geometrical parameters, specifically the
value of their pitch angle, θ , and tail-to-head size ratios, D∗ = 2R/DH . The angles range from 29◦
(slower swimming) to 52◦ (same speed) to 75◦ (faster swimming) while the size ratios are D∗ = 0.6
(slower swimming), 0.88 (same speed), and 3.93 (faster swimming).

To quantify the influence of viscoelasticity on the locomotion, we next calculate the ratio between
the swimming speeds, UNN/UN , where UNN and UN are the measured mean speeds in the non-
Newtonian and Newtonian fluids, respectively. To assess the relative importance of viscoelastic
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FIG. 3. Ratio of viscoelastic to Newtonian swimming speeds, UNN/UN , as a function of the Deborah
number, De (left), and Weissenberg number, Wi (right). Symbols refer to the swimmers listed in Table I.

effects, we calculate the Deborah number as De = ωτ , where τ is the fluid relaxation time. The
ratio UNN/UN is then plotted in Fig. 3 (left) as a function of De for all the swimmers from Table I.
Despite the large range of Deborah numbers in our experiments (from below 1 to above 20), a clear
trend is not apparent in the data.

Instead of the Deborah number, one could argue that the relevant dimensionless parameter to
interpret the data is the Weissenberg number, Wi, which, instead of comparing the relaxation time
of the fluid with the rotation rate of the swimmer, compares it to the relative rate of deformation in
the flow. Hence, we can define this number as Wi = γ̇ τ , where γ̇ is the characteristic shear rate.
For a rotating helix, the shear rate scales as Rω/λ; therefore, we have Wi ∼ (R/λ)De. We plot in
Fig. 3 (right) the normalized mean speed UNN/UN as a function of the Weissenberg number, for all
experiments. Similar to the previous case, the data do not show a clear dependence on Wi. These two
dimensionless numbers can therefore not be used alone to characterize the changes in swimming
speed when viscoelastic effects are present.

Contrasting our data with the experimental results from Ref. [6], we notice that in this work
also the dependence of the swimming speeds with De of helices with different pitch angles did not
collapse into a single curve. The follow-up numerical study in Ref. [11] showed also that the ratio
UNN/UN was affected by both the Deborah number and the helix pitch angle. Guided by these
studies, we replot our data in Fig. 4 (left) with the swimming speed increase now shown as a
function of R/λ = tan θ/(2π ). Displayed in this manner, we see a remarkably consistent increase
of swimming enhancement with R/λ (i.e., with the helix angle, θ ) regardless of the value of the
Deborah number. A value of R/λ ≈ 0.213, corresponding to a helix angle of θ ≈ 53.3◦, appears to
mark the transition from a decrease to an increase in swimming speed. We have also included the
data from Ref. [6] in Fig. 4 (left) (∗ and × symbols); the small number of data points in that study
appear to fit within the uncertainty of our experiments. Note, however, that the increase in UNN/UN

found by these authors was very modest in comparison to the present data where we obtain increases
of up to a factor of 5.

One important aspect of the swimmer geometries shown in Table I is that the size of the head, DH ,
remains relatively constant for all swimmers; however, to achieve different pitch angles, the size of
the helix, 2R, varies significantly. Therefore, the helix-to-head size ratio, D∗ = 2R/DH , varies from
0.6 to 3.9. The helix diameter can therefore be smaller than, similar to, or larger than the diameter of
the head. To explore the way in which this change in geometry affects the swimming speed, we plot
in Fig. 4 (right) the normalized swimming speed, UNN/UN , as a function of the size ratio D∗, for all
our experiments. Clearly, and similarly to the results in Fig. 4 (left), a correlation can be identified;
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FIG. 4. Left: Ratio of viscoelastic to Newtonian swimming speeds, UNN/UN , as a function of the helix
aspect ratio, R/λ; the (∗) and (×) symbols show the data from Ref. [6] for R/λ = 0.40 and 0.18, respectively.
Right: Ratio of viscoelastic to Newtonian swimming speeds, UNN/UN , as a function of helix to head diameter
ratio D∗(= 2R/DH ). All filled experimental symbols follow Table I.

when the head is smaller than the helix, the swimming speed in the viscoelastic fluid is larger than
the Newtonian one, and when the head is larger then the opposite happens.

IV. PHYSICAL INTERPRETATION

How can we explain theoretically the influence of viscoelasticity on the swimming speed ratio,
UNN/UN ? While viscoelastic effects are undoubtedly important, the values of the Deborah or
Weissenberg numbers alone are not able to quantify the impact of elastic stresses on the swimming
speed. As shown above, both the helix angle and the helix-to-head size ratio appear to play a role
in the balance between thrust and drag on the swimmer. We consider them both separately in what
follows.

A. Local resistive model

Using the observation, shown in Fig. 2, that the swimming speed increases approximately linearly
with the rotational frequency in all cases, we can first attempt to rationalize the impact of the helical
slope using resistive-force theory for low-Reynolds number swimmers [22]. This is known to be
valid in the Newtonian case for slender swimmers, and thus should remain approximately valid
at small Deborah numbers in the viscoelastic case. The swimming speed of a force-free helix is
predicted by the resistive-force theory framework to be given by

( U

ωR

)
N

= (ξ − 1) tan θ

1 + ξ tan2 θ+ξ0
, (1)

where ξ = c⊥/c‖ is the ratio between the drag coefficient for local portions of the slender helix
moving perpendicularly and parallel to the local tangent [22], tan θ is the tangent of the helix angle,
and ξ0 = (LH cH sec θ )/(LT c‖) is related to the ratio between the head drag coefficient, cH , and the
parallel helix drag coefficient, c‖, and where LH and LT are the head and projected tail length,
respectively. Assuming the swimmer to only move in the horizontal direction, the value of the
resistant coefficient for the cylindrical head is similar to that for the slender body and cH ∼ c‖. For
the swimmers considered here, ξ0 is then O(10−1).
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Assuming that a similar local hydrodynamic analysis can be conducted for a viscoelastic Boger
fluid at small De, the helix swimming speed would then be given by( U

ωR

)
NN

= (ξNN − 1) tan θ

1 + ξNN tan2 θ+ξNN
0

, (2)

where ξNN = cNN
⊥ /cNN

‖ is the drag coefficient ratio and ξNN
0 = LH cNN

H sec θ/(LT cNN
‖ ) is the resis-

tance coefficient ratio in a viscoelastic liquid. In contrast to the Newtonian case, ξNN
0 is expected to

depend on the value of the translational Weissenberg numbers, Ŵi = τU/2R [23]. For the range of
speeds tested in the current experiments, Ŵi = O(1), for which cNN

H ∼ cH . Therefore, we can expect
the value of ξNN

0 to also be small.
Now, assuming that ξ ≈ 2 in the Newtonian case [22], we obtain

UNN

UN
= (ξNN − 1)

(
1 + 2 tan2 θ + ξ0

1 + ξNN tan2 θ + ξNN
0

)
, (3)

which can, theoretically, be smaller or larger than 1 depending on the value of θ , ξNN, ξ0, and ξNN
0 .

Our experimental results from Fig. 4 (left) show that UNN/UN < 1 for small pitch angles (small
R/λ). With small values of ξ0 and ξNN

0 , Eq. (3) can predict UNN/UN < 1 for small angles if 1 <

ξNN < 2, i.e., for a perpendicular drag that remains larger than the parallel one but less so than
in the Newtonian case. In contrast, for large pitch angles (large R/λ), the experiments show that
UNN/UN > 1. With small values of ξ0 and ξNN

0 , this would be consistent with the model in Eq. (3)
only if the drag ratio satisfied ξNN > 2.

There is therefore a contradiction. Of course, such a local resistive-force theory approach could
very well not be valid in a viscoelastic fluid, for example, if nonlocal effects (i.e., hydrodynamic
interactions) played an important role. Alternatively, if the local theory was valid, the ratio of drag
coefficients ξNN would have to depend on the value of the angle θ , i.e., the local orientation of the
helix relative to the fluid in which it moves. While recent numerical work reported that the elastic
stresses in the wake of rigid cylinders depend on the orientation of the cylinder relative to its velocity
[24], the dependence of the drag coefficient ratio for different angles in viscoelastic flows has not
been reported to date. This resistive-force theory approach does not appear, therefore, to explain the
results from Fig. 4 (left) in a physically intuitive way.

B. The asymmetry effect

We can instead provide a physical mechanism for the change in swimming shown in Fig. 4 (right)
by turning to past work that addressed the effect of asymmetry for rotating swimmers in viscoelastic
fluids. These theoretical [18] and experimental [19] studies showed that a rigid particle in the shape
of a snowman, i.e., a dumbbell composed of two spheres of different diameters, would swim in a
viscoelastic fluid when rotating about its symmetry axis. The physical origin of the propulsion lies
in the secondary flows generated in elastic fluids by normal-stress differences that, for a rotating
sphere, lead to fluid flows directed away from the sphere along its rotation axis. A dumbbell made
of two spheres of different sizes experiences therefore an imbalance of drag due to these two elastic
flows, resulting in swimming. This viscoelastic propulsion force is directed in the direction from the
largest to the smallest sphere [18,19].

Our data in Fig. 4 (right) clearly indicate that the front-back asymmetry of the helical swimmers
does control the normalized swimming speed. We conjecture therefore that it is the size asymmetry
between the head and the tail that leads to an additional viscoelastic force affecting the swimming
speed, similarly to the one governing the locomotion of snowman particles. If this mechanism is
correct, for locomotion that takes place head-first (the case in our experiments), a swimmer with a
head smaller than the helix should swim faster due to this viscoelastic asymmetry effect; conversely,
if the head is larger than the tail the swimming speed should decrease. This dependance is indeed
what we see in our experiments.
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To test this idea quantitatively, we can compare the magnitude of this viscoelastic asymmetry
force with the other relevant forces acting on the swimmer. We consider the theoretical expression
derived in Ref. [18] to estimate the viscoelastic force resulting from the difference in size between
the head and helix. Assuming as a first approximation that this additional viscoelastic force is
generated regardless of the detailed shape of the head or helix, and identifying the diameters of
the spheres in Ref. [18] with the diameters of the head and helix in our experiment, the asymmetry
propulsive force predicted theoretically, Pasym, is given by

Pasym = cSω
(DH

2

)2

De
D∗3(D∗ − 1)

(1 + D∗)5
, (4)

where cS is a viscous drag coefficient (cS = kμ where k is a dimensionless shape factor), D∗ =
2R/DH is the size ratio, and De = ωτ is the Deborah number. Next, we assume for simplicity that
the helical propulsive force, Phelix, and the viscous drag force on the helix, Dhelix, are similar to those
given by the Newtonian resistive-force theory, and so is the drag force on the head of the swimmer,
Dhead. The steady force balance on the swimmer in a viscoelastic fluid is now given by

Phelix + Pasym = Dhelix + Dhead. (5)

Using the classical expressions for Phelix, Dhelix, and Dhead from Ref. [4] and combining them with
Eq. (4), the force balance can now be written as

ωR(c⊥ − c‖) sin θ LT + cSω
(DH

2

)2

De
D∗3(D∗ − 1)

(1 + D∗)5

= UNN(c⊥ sin2 θ + c‖ cos2 θ )
LT

cos θ
+ UNN LH cH . (6)

Solving for UNN we can write

UNN = UN + Uasym, (7)

where UN is the Newtonian swimming velocity given by

UN = ωR

(
(ξ − 1) tan θ

1 + ξ tan2 θ + ξ0

)
, (8)

where L∗ = LH/LT and ξ0 = (cH/c‖)L∗ sec θ is the normalized head drag coefficient. The additional
speed due to asymmetry, Uasym, is given by

Uasym =
(

ωR

1 + ξ tan2 θ + ξ0

)
× ξS

D∗
H

2 cos θ
De

D∗2(D∗ − 1)

(1 + D∗)5
, (9)

with ξS = cS/c‖ and D∗
H = DH/LT . Using this model, the additional viscoelastic thrust resulting

from the front-back asymmetry leads to the normalized swimming speed written as a sum:

UNN

UN
= 1 + Uasym

UN
, (10)

where

Uasym

UN
= ξsDe

2(ξ − 1)

D∗
H

sin θ

D∗2(D∗ − 1)

(1 + D∗)5
. (11)

This final expression indicates that the viscoelastic contribution due to the asymmetry of the swim-
mer depends on many factors, including the Deborah number and the size ratio D∗. Importantly, the
ratio Uasym/UN can be positive or negative depending on the value of D∗ relative to 1. Since ξ > 1,
swimmers with D∗ > 1 will swim faster than in the Newtonian fluid while those with D∗ < 1 will
slow down.
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FIG. 5. Modified extra swimming speed, U ∗
asym, as defined in Eq. (12), as a function of helix to head

diameter ratio D∗(= 2R/DH ), for De ≈ 6.8. The symbols are the experimental values while the lines show
the theoretical predictions of the model in Eq. (12) with values ξs = 20 (solid line), 40 (dashed line), and 80
(dash-dotted line).

To show that Eq. (11) can reproduce the experiment we define U ∗
asym as

U ∗
asym = Uasym

UN

sin θ

D∗
H

= ξsDe

2(ξ − 1)

D∗2(D∗ − 1)

(1 + D∗)5
. (12)

Since both sin θ and D∗
H are known quantities in our experiments, the result in Eq. (12) can then be

plotted as a function of D∗ for given values of De and ξs. To do so, we extract data from Fig. 3 (left)
for an approximately constant value of De ≈ 6.8 from which, using Eq. (10), experimental values
of U ∗

asym can be calculated. We show in Fig. 5 the comparison between the model, Eq. (12), and the
experimental values using three possible values for the dimensionless factor ξs. The model is able to
reproduce the experimental trend and shows a clear transition for US/UN from negative to positive
values, thus rationalizing the transition from slower to faster than Newtonian when the helix to tail
size ratio goes from smaller to larger than unity.

V. CONCLUSION

In summary, we have carried out experiments on the locomotion of free-swimming magnetically
driven rigid helices in Newtonian and viscoelastic (Boger) fluids. We varied the sizes of the
swimmer’s body and its helical tail and showed that the impact of viscoelasticity depends critically
on the geometry of the swimmer: it can lead to a large increase of the swimming speed, a decrease,
or it can have approximately no impact. We proposed that the influence of viscoelasticity on helical
propulsion is controlled by a viscoelastic effect, previously reported for snowmanlike dumbbell
swimmers, wherein the front-back asymmetry of the swimmer generates a non-Newtonian elastic
propulsion force that can either enhance or hinder locomotion. A simple theoretical model was then
formulated to account for this viscoelastic-asymmetry force. It was found that its effect can indeed
increase or decrease the swimming speed depending on the head-to-tail size ratio and the Deborah
number, in agreement with our experiments.

The obvious next step in this investigation would be to address a similar question for biological
swimmers propelled by helical flagellar filaments. The cell body of a swimming bacterium such
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as E. coli has a width DH ≈ 0.88 μm while the diameters of the helical flagella are 2R ≈ 0.4 μm.
The dimensionless ratio, in that case, is therefore given by D∗ = 2R/DH ≈ 0.45. Since this is less
than 1, our results suggest therefore that bacteria self-propelling in similar fluids would have their
swimming speed decreased by elastic stresses.
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