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Investigation of the behavior of various types of tsunami wave trains entering bays
is of practical importance for coastal hazard assessments. Furthermore, a mathematical
algorithm for quick analysis of the run-up in bays for a large number of incident wave
scenarios is also a practical need for tsunami hazard assessments. The linear shallow water
equations admit two types of solutions inside an inclined bay with parabolic cross sections:
energy-transmitting modes and modes with spatial decay towards the inland tip of the
bay. In the low-frequency limit there is only one mode susceptible of transmitting energy
to the inland tip. A full solution for the run-up requires taking into account these two
types of modes and the scattered field outside, leading to mathematical complications.
However, in the long wave limit, this complication can be avoided if one imposes the
free surface at the bay mouth being equal to twice the disturbance associated with the
incident wave in the open sea. The run-up produced by the solution obtained from this
Dirichlet boundary condition can be easily calculated using a series of images. In this
model no energy is allowed to escape from the bay; therefore the error arising from the
simplification of the boundary condition at the bay mouth grows with time. Nevertheless
the maximum run-up occurs before this error becomes significant. If the standard deviation
of a Gaussian-shaped incident wave is 8 times the square root of the width of the bay, then
this simple solution overestimates the first maximum of the run-up only by 12% compared
to the exact solution calculated by means of an integral equation. This overestimation is
partly due to the fact that the Dirichlet boundary conditions violate the continuity of the
fluxes at the bay mouth. The solution associated with the Dirichlet boundary condition is
perturbed in order to match fluxes inside and outside of the bay. The height of the first
maximum of the run-up coming from the perturbation theory is in excellent agreement
with the “exact” solution. This perturbation theory can also be applied to narrow bays
with an arbitrary cross section as long as their depth does not change significantly in the
longitudinal direction. The method developed here can also be used to calculate maximum
run-up in noninclined bays of arbitrary cross section.

DOI: 10.1103/PhysRevFluids.6.034803

I. INTRODUCTION

Waves grow as they approach a shoreline due to the decreasing water depth (see Ref. [1]). This
is valid for all shoaling bathymetries and is even more pronounced in converging bays. An early
relevant mathematical study of waves in bays of varying cross sections was done in Ref. [2] (see
article 185–186 in the book, pp. 275–278). More recently Ref. [3] used the WKB-based approach
to calculate transmission and reflection coefficients for a channel of variable cross section. The
behavior of waves in the vicinity of shoreline has been an active research topic for a long time [4–6].
Most of these analytical and numerical models consider a wave train of various shapes progressing
first over a flat ocean and then making a passage over a sloping bathymetry leading to a beach. Let
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us look at the one-dimensional version of the problem, which has important practical applications
in the context of tsunamis and storm surges. An obvious difficulty for both analytical and numerical
studies is the nature of the open boundary condition offshore. The reason that this is difficult is that
after a certain time the waves will start getting reflected from various features of bathymetry and the
shoreline itself. Since this reflecting wave field is unknown at the offshore boundary, it is not clear
how to pose the boundary value problem. To overcome this difficulty, Ref. [7] turned this into an
initial value problem where they imposed the value of the free surface at the offshore boundary
point in a particular way in which it remained equal to twice that of the vertical displacement
of the free surface generated by the incident wave arriving from the open sea. In the rest of this
article we will refer to this as the Dirichlet boundary condition. They also assumed an initially flat
and quiet free surface between the offshore boundary and the shoreline. They then calculated the
nonlinear wave evolution subject to this boundary condition at all times. In this, they observed a
strong resonant regime. Indeed, such a resonance has been confirmed in later studies [8–10] in the
presence of uneven bathymetries. These studies mentioned above used radiation conditions offshore,
implemented in various ways so that no prescription of a boundary condition at a particular point
was necessary to cast the problem. In this work, we will show that a boundary condition offshore
with the free surface itself being prescribed [7] at a single point can be used to calculate run-up,
at least for a limited timescale that characterizes tsunami phenomena for certain geometric settings
including narrow nonreflecting bays bordering a flat ocean bed. Waves near bay mouths often have
complex patterns, and they are often mathematically handled using conformal mappings provided
that the depth variation is small in this region [10–12]. Some nonreflecting geometries such as
sloping bays with a parabolic cross section cannot be approached by this class of analytical means.
This is because the depth spans all values along the mouth of the bay. In this study we will determine
the cases where a simple Dirichlet condition at a single point offshore is good enough to study
the run-up characteristics for tsunami-like incident waves for all bay geometries that we consider
in this work. The boundary value problem cast in this manner has the advantage of rendering the
problem one-dimensional within the bay. We will compare these one-dimensional solutions with full
two-dimensional ones featuring far-field radiation conditions. In the literature there are a number
of studies examining wave propagation and run-up in converging bays but none considering the
scattering of the incident wave by the mouth of the bay (see Refs. [13,14] and [15–18]) Furthermore
we investigate the perturbed version of the one-dimensional approach with the expansion parameter
being the width of the bay divided by the dominant wavelength of the incident wave. The purpose
of this asymptotic perturbation approach is to handle the radiation damping that stems from the
nonvanishing width of the bay. We show that it is possible to do this while keeping the computations
one-dimensional within the bay.

In the next section we will first start with a simple case where there is just a bathymetric step
with the domain having an infinite width. The reason we study this simple case is that the resulting
run-up shows all the main characteristics run-ups occurring in the bays. For this one-dimensional
case the solution of the linear shallow water equation for an arbitrary incident wave can simply be
written as a geometric series.

Next, we consider a nonsloping rectangular bay for which there is no closed form solution.
To remedy this we develop a solution based on an integral equation. All noninclined bays are
obviously nonreflecting. As a first nontrivial case of a nonreflecting inclined bay we consider the
case of parabolic cross section. We derive a dispersion relation (for both real and imaginary wave
vectors) valid for noninclined channels of parabolic cross section and use it to solve an integral
equation at the mouth of the inclined bays of the same type of cross section. The waves associated
with the purely complex wave vectors decay rapidly towards the tip of the bay, hence they are not
influenced by the slope. We use these decaying modes to solve the integral equation at the mouth of
the bay. The integral equation approach is numerically heavy, unlike the above-mentioned asymp-
totic method. The result from the integral equation is compared with those from the asymptotic
expansion.
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FIG. 1. The bathymetry of the laterally infinite case featuring a coastal wall, a shallow shelf connecting to
an infinite ocean with a flat bottom. Here x = 0 is the shoreline, and x = x0 is the position of the toe. The depth
of the shallow shelf is H1, and the depth of the open sea is H0.

II. INCIDENT WAVES APPROACHING AN INFINITELY WIDE SHELF
WITH STEPLIKE BATHYMETRY

When a normally incident wave approaches an infinitely wide shelf connecting to a deep ocean
with flat bathymetry, some energy gets transmitted onto the shallow shelf. According to linear
shallow water (LSW) equations the ratio between the transmitted energy and the incident wave’s
total energy is independent of the wavelength with the transmission coefficient being equal to
2

√
H0√

H0+
√

H1
(see Ref. [11], p. 119). Here H0 and H1 are the depths of the open ocean and shelf,

respectively (see Fig. 1). This transmitted wave gets completely reflected by the shoreline and

arrives at the toe and gets reflected from there again with the reflection coefficient
√

H1−
√

H0√
H1+

√
H0

, which
is negative. The resulting wave field over the shelf can be written as

η(t, x) = 2

√
H0√

H0 + √
H1

[ ∞∑
k=0

εkηinc

(
t − x0 − x√

gH1
− 2k

x0√
gH1

, x0

)

+ εkηinc

(
t − x√

gH1
− (2k + 1)

x0√
gH1

, x0

)]
, (1)

where g is acceleration due to gravity and ε is given as

ε =
√

H1 − √
H0√

H1 + √
H0

.

Here the wave field is expressed as a function of the value the incident wave takes at the toe. If we
take the limit H0 → +∞, the above series reduces to 2ηinc(t, x0) for x → x−

0 ; in other words, the
Dirichlet boundary condition as stated in Ref. [7] is satisfied.

When H0 is large but finite, the above-mentioned Dirichlet condition will remain valid only for
a limited amount of time. To calculate the length of time for which the Dirichlet condition is valid,
consider an incident wave of the following form:

I0θ [
√

gH0t + (x − x0)] sin

[
ω

(
t + x − x0√

gH0

)]
, (2)
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(a)

(b)

FIG. 2. Incident wave approaching a shallow shelf of infinite width. (a) The continuous curve is the
normalized free surface disturbance at x = x0 (the toe of the slope) for an incident wave given by (2). The
frequency, ω, of the incident wave is

√
gH1π/(2x0) and x0/H0 = 20. The ratio, H0/H1, is 200. The broken

curve is twice the amplitude of the incident wave at the toe. (b) The continuous curve is the time evolution of
the normalized run-up for an incident wave of Gaussian shape given by I0 exp [−4 gH1

x2
0

(t + x−x0√
gH0

)
2
] for the same

bathymety as (a). The dashed curve is the decay envelope given by (rmax/I0 ) exp [−|Imωk |(t − tmax)], where ωk

is a natural frequency of the radiating mode given in Eq. (5). Note that the imaginary part of the frequencies of
all modes is equal. For both panels the width is infinite.

where θ is the step function (θ (x) = 1 if x > 0 and else it is zero. Note that this incident wave
reaches the toe at t = 0. If we substitute (2) in Eq. (1) we obtain the time evolution of the wave
given in Fig. 2(a). It is easy to see that the major part (almost all) of the energy of the incident
wave will be reflected back at x = x0, which is the toe of the shallow shelf. This is due to the very
large depth contrast and the toe acting almost like a solid vertical wall. Note here that the transmitted
power of a linear shallow water wave at any given point is equal to Huρgη where H , u, ρ, and η are
water depth, fluid velocity, water density, and the free surface vertical displacement, respectively.
Hence, at the toe, the depth-averaged fluid velocity being almost zero, only a very small part of
the power is transmitted onto the shelf. This means that the incident and reflected waves will be
superimposed at x = x+

0 , leading to an oscillation with amplitude equal to 2I0 there. This oscillation
will trigger a progressive wave towards the shore with amplitude 2I0. This wave will be reflected
from the shoreline and will arrive back to the toe. There a tiny part of it will be transmitted onto the
open ocean, and the amplitude of this will be

4I0
√

H1√
H0 + √

H1
� 2I0. (3)

Therefore the perturbation of the offshore boundary condition will be negligible. The process will
continue, setting up a standing wave regime over the shelf, with an amplitude increasing with
time (until the steady regime is reached due to the wave radiation into the open sea) because the
incident wave will keep arriving. Although only a tiny percentage of this standing wave will create
a transmission towards offshore, it too will increase with time and may become of the same order
of 2I0, therefore rendering the Dirichlet boundary condition at the toe invalid.

For a monochromatic incident wave with a frequency matching the first resonant frequency of
the shallow shelf [ω1 = √

gH1π/(2x0)], it can easily be shown that the standing wave solution is
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given as

η(t, x) =
{

2I0
√

H0/H1 cos
(

π
2x0

x
)

sin(ω1t ) for 0 < x < x0

2I0 sin
[

π
2x0

√
H1
H0

(x − x0)
]

sin(ω1t ) for x > x0.
(4)

The second line of the above formula corresponds to the superposition of the incident wave and
the reflected wave, thus indicating radiation towards the open ocean. This particular standing wave
solution maintains η = 0 at the toe during the steady regime. The transient (1) before this steady
regime sets in is shown in Fig. 2(a). In both panels of Fig. 2, one notices that the elapsed time
between two consecutive maxima is four times the travel time of the wave between the toe and the
coastal wall. This is because the wave changes polarity only at the reflections at the toe.

To calculate the time necessary to reach the standing wave state, note first that the standing
wave above does not satisfy the initial conditions, η(t = 0, x) = 0, ∂tη(t = 0, x) = 0 over the
shallow shelf. Therefore the temporally decaying solutions of the homogeneous wave equation
(not driven by the incident wave) need to be added to it. The decay time of these homogeneous
solutions is the time necessary to reach the standing wave regime. Any wave corresponding
to the homogeneous solution, traveling on the shallow shelf, when reflected by the toe of the
shelf gets its amplitude multiplied by 1 − 2

√
H1/H0 for H1 � H0. The polarity is reversed each

time such a reflection occurs simply because the direction of propagation goes from shallow to
the deep. Such consecutive weak damping at the toe will erode the wave exponentially, leading

to a wave proportional to exp [t ln (1 − 2
√

H1
H0

)/(2x0/
√

gH1)], which approximately simplifies to

exp [−t 2
√

H1
H0

/(2x0/
√

gH1)]. Here (2x0/
√

gH1) is the two-way travel time of the wave over the

shallow shelf. Now let us elaborate on the spatial and oscillatory behavior of these homogeneous
solutions. These decaying solutions satisfy usual boundary conditions at the toe (continuity of the
free surface and that of the depth-integrated velocity). These homogeneous solutions transmit energy
in the offshore direction. All these conditions can be satisfied at certain complex frequencies given
by

ωn =
√

gH1

x0

[
π

2
+ nπ + i tanh−1(

√
H1/H0)

]
, n = 0, 1, 2, . . . , (5)

where tanh−1 √
H1/H0 can be approximated by

√
H1/H0. Hence the decay time is approximately

(x0/H1)
√

H0/g [see Fig. 2(b)]. The explicit form of these solutions is

η(t, x) =
{

cos
(

ωn√
gH1

x
)

exp(iωnt ) for 0 < x < x0

cos
(

ωn√
gH1

x0
)

exp
[
iωn

(
t − x−x0√

gH0

)]
for x > x0.

(6)

According to the linear theory, the Fourier transform of the run-up is the Fourier transform of the
incident wave at a given point multiplied by the response function. The natural frequencies of the
homogeneous solutions are the poles of this response function in the complex ω-plane. The response
function for various geometries is given in Refs. [4,9,10].

Two animations have been produced in order to visualize the incident sinusoidal wave and
Gaussian wave train (see the Supplemental Materials [19] and [20]). Our discussion so far involved
neither a bay nor a sloping bathymetry. The reason we investigated a simple step bathymetry so far
is that it has significant relevance for nonreflecting bays where, once a wave enters it, the energy is
transmitted all the way to the inland tip and reflects only from there. In Ref. [21] it was shown that
inclined bays of parabolic cross section satisfy this condition.

A. Rectangular bay of uniform depth

In this section we will look at the wave behavior within rectangular bays of uniform depth when
the dynamical source is an incident wave. Any noninclined bay is obviously nonreflecting, and this
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is the simplest possible case where we can initiate our discussion and eventually cover inclined
nonreflecting bays. Consider now a rectangular bay of width 2Y0 of uniform depth H opening to
a sea of the same depth. If we apply the Dirichlet condition of η(t, x−

0 1) = 2ηinc(t, x+
0 ) at the toe

of the bay, the problem becomes one-dimensional, and the solution within the bay can be obtained
from (1) where H1 will be replaced by depth H and H0 by ∞. When H0 is taken to be ∞ the
Dirichlet condition automatically becomes valid, and the fluid velocity in the x direction becomes
essentially zero for x = x+

0 . But this is not the case at x = x−
0 because when the incident wave hits

the bay mouth, a progressive wave is triggered inside the bay. Our aim here is to find a scattered field
outside such that the continuity of both u and η is maintained. We propose the following solution
for the entire bay:

η(t, x) =
∫ ∞

0
dω

{
B0(ω) cos

(
ω√
gH

x

)
exp(iωt )

+
N∑

n=1

Bn(ω)
cosh[

√
gH (nπ/Y0)2 − ω2 x/

√
gH ]

cosh[
√

gH (nπ/Y0)2 − ω2 x0/
√

gH ]
cos

(
nπ

Y0
y

)
exp(iωt ) + c.c.

}
, (7)

where the first term is an oscillatory solution of the one-dimensional linear wave equation that
satisfies the no-flux condition at the coastal wall (x = 0). There is only one oscillatory mode
in the x direction if ω2 is smaller than gH (π/Y0)2. The rest of the integrand corresponds to a
two-dimensional solution of the wave equation that decays exponentially in the −x direction.
This decaying solution also satisfies no-flux condition in the side walls y = ±Y0. The solution
given above is symmetrical with respect to y = 0. For narrow bays (ω/

√
gH � 1/Y0) the ratio

of the hyperbolic cosines approximately becomes exp [
√

gH (nπ/Y0)2 − ω2 (x − x0)/
√

gH ]. The
y-dependence is simply cos ( nπ

Y0
y) with n = 1, 2, 3, . . . . The reason for the discrete summation

over the positive integers is that the y-dependent part of the solution is eigenfunctions of the
operator d2

dy2 satisfying the von Neumann condition (∂yη = 0) at y = ±Y0. As we will see, finding
the eigenfunctions for the case of parabolic cross sections will not be trivial. The coefficients Bn in
the above expression will be calculated using the boundary conditions at the mouth of the bay.

If the incident wave train is
∫∞

0 dωI0(ω) exp [iω(x − x0)/
√

gH ] exp(iωt ) + c.c., then the sum of
incident, reflected, and scattered wave will be

ηopen(t, x, y) =
∫ ∞

0

{
2I0(ω) cos

[
ω√
gH

(x − x0)

]
exp(iωt )

+
[

ω

2gH

∫ Y0

−Y0

dy∗ s̃(ω, y∗)H(2)
0

(
ω√
gH

|r − x0 î − y∗ĵ|
)

exp(iωt)

]
+ c.c.

}
dω (8)

in the open sea. Here H(2)
0 is the zeroth-order Hankel function of the second kind [see Ref. [22],

formula (9.1.4)]. The scattered wave progresses in the outward direction in the far field (ω|r − x0 î −
y∗ ĵ| � gH) because the Hankel function H(2)

0 (z) is proportional to exp(−iz) for large z. Function
s̃(ω, y∗) in Eq. (8) is the temporal Fourier transform of the virtual sources placed at the mouth of the
bay. These sources will ensure the continuity of the fluid flow across the mouth. The depth-integrated
flow associated with ω

2gH H(2)
0 ( ω√

gH
|r − x0 î − y∗ĵ|) exp(iωt) is the gradient of it multiplied by igH/ω.

The gradient of i
2 H(2)

0 ( ω√
gH

|r − x0 î − y∗ĵ|) for small arguments approximately reads

1

π

r − x0 î − y∗ ĵ∣∣r − x0 î − y∗ĵ
∣∣2 .

Here (x0, y∗) is the position of the virtual source and r = xî + yĵ is the position vector of the target
point. When x → x+

0 the depth-integrated flow vector above becomes orthogonal to î (unit vector
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directed to the open sea) for y �= y∗. On the other hand, the total seaward flux associated with the
depth-integrated flow vector above is unity because∫ ∞

−∞
dy

1

π

r − x0 î − y∗ ĵ

|r − x0 î − y∗ ĵ|2 · î = 1

(see Ref. [11], p. 94) for x > x0. One can then reach the conclusion that the depth-
integrated fluid velocity in the x direction (Hu) associated with a wave given by η =
ω/(2gH )H(2)

0 ( ω√
gH

|r − x0 î − y∗ĵ|) exp(iωt) satisfies

lim
x→x+

0

Hu(t, x, y) = δ(y − y∗) exp(iωt ), (9)

where δ(y − y∗) is a Dirac function. The continuity of Hu across the mouth of the rectangular bay
requires

s̃(ω, y∗) ≈ igH

ω

⎡
⎣−B0(ω)

ω√
gH

sin

(
ω√
gH

x0

)
+

∞∑
n=1

Bn(ω)

√(
nπ

Y0

)2

− ω2

gH
cos

(
nπ

Y0
y∗
)⎤⎦,

(10)

where function tanh with large argument has been approximated by 1. Now the waves inside and
outside of the bay are a function of coefficients B0(ω), B1(ω), . . . , BN as s̃ has been eliminated from
(8) using (10). Let η̃ denote the temporal Fourier transform of η. The coefficients,B0(ω), B1(ω), . . . ,
will be chosen to minimize the penalty integral∫ Y0

−Y0

dy|η̃open(ω, x+
0 , y) − η̃(ω, x−

0 , y)|2 (11)

for each frequency. Using Gaussian quadrature, the penalty integral can be transformed into a finite
summation

M∑
m=1

wm|η̃open(ω, x+
0 , ym) − η̃(ω, x−

0 , ym)|2 (12)

with N + 1 < M where N + 1 is the number of unknowns. Here wm’s and ym’s are weights and
nodes of the Gauss quadrature, respectively. The least-squares solution of the overdetermined
system of equations below:

√
wmη̃(ω, x−

0 , ym, B0, B1, . . . , BN ) = √
wmη̃open(ω, x+

0 , ym, B0, B1, . . . . , BN ) (13)

for m = 1, 2, . . . , M leads to coefficients B0(ω), B1(ω), . . . , BN (ω) with B0(ω) being the temporal
Fourier transform of the run-up. In obtaining η̃open(ω, x0, y) as a linear function of B0, B1, . . . , BN

the Hankel function with logarithmic singularity needs to be integrated with respect to y. In the
vicinity of the singularity, we divide the Hankel function by a log and approximate this ratio by
a polynomial. We then multiply this with the log function again and integrate it analytically. The
solution obtained from the minimization of the penalty integral (12) is more accurate than all other
approaches that will be presented in this article; therefore, hereafter we will refer to it as “exact.”

In order to proceed to the inverse Fourier transform of Bn(ω) we resort to the fast Fourier
transform. For this purpose the incident wave at the toe of the shelf is sampled at instants
0, T/P, 2T/P, . . . , (P − 1)T/P where P is an exact power of two. Here note that coefficients BN (ω)
are calculatef at those discrete frequencies equal or inferior to the Nyquist frequency (Pπ/T ). For
frequencies higher than the Nyquist frequency we use the reality condition, which states that for a
real-valued incident wave the wave inside the bay remains real. A real incident wave means that

I0

(
ω = p2π

T

)
= Ī0

(
ω = −p2π

T

)
= Ī0

(
ω = −p2π

T
+ P

2π

T

)
, p = 0, 1, 2, . . . , P − 1, (14)
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FIG. 3. Run-up generated by a Gaussian incident wave given by exp {−[(x + √
gH0 )(t − T/2)/(0.4x0 )]

2}
entering a rectangular bay of aspect ratio x0/(2Y0) = 10. The continuous curve is the “exact” solution of integral
equation, dashed curve is r (0)(t ) (undisturbed solution of Dirichlet problem), and the stars are r (0)(t ) + r (1)(t ).
The timescale t0 is Y0/

√
gH , and T is the duration of sampling. Maximum run-up associated with r (0) and

r (0) + r (1) is 4.0 and 3.6, respectively. The “exact” maximum is 3.52.

where the overbar denotes the complex conjugate. Here T is taken so large that all the waves within
the bay, generated by the incident packet, die out because of the radiation to the open sea.

The run-up generated by a a Gaussian wave train entering a rectangular bay is displayed in Fig. 3,
where maximum run-up obtained from the Dirichlet condition (dashed curve) exceeds that obtained
from (7) by 13.6% (continuous curve).

III. WAVES IN AN INCLINED BAY OF PARABOLIC CROSS SECTION

Let us consider an inclined bay with a parabolic cross section whose bottom coordinates are
given by

z = −αx + y2/y0, (15)

where z = 0 is the undisturbed free surface. The half width of the bay at its entrance is then Y0 =√
αy0x0. The relation between the uniform depth Hmax of the open sea and the length of the bay is

Hmax = αx0 (see Fig. 4).
Let us consider a progressive wave with an intermediate wavelength advancing in a converging

bay of arbitrary shape. By intermediate wavelength is meant a length scale much shorter than the
bay length but still much larger than the bay width. For such a wave the shape of the cross section of
the bay does not vary much within one wavelength so that the transmitted power is preserved. The
transmitted power is

S0(x)gρη̄(t, x)ū(t, x) (16)

with ū being proportional to η̄/
√

H̄ (x) for a progressive wave (see Ref. [11], p. 117). Here S0(x) is
the undisturbed area of the cross section of the bay. Bars over the symbols denote the averaged values
along the width of the bay. Due to the conservation of energy flux [given by (17)], the approximate
form of the progressive wave inside a smooth bay of arbitrary shape is (see Ref. [23])

η̄(t, x) ≈
∫

dω
2Ĩ0(ω) exp

{
i
[
ωt + ∫ x

x0
k(ω, x′) dx′ ]}

√
S0(x)/S0(x0)[H̄ (x)/H̄ (x0)]−1/4

, (17)
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(a)

(b)

FIG. 4. (a) The inclined bay with a parabolic cross section seen from above. The broken curves are contours
of equal depth given by zk = −k Hmax/8 with k = 1, 2, . . . , 7. Any point (x, y, z) at the bottom of the bay
satisfies z = −αx + y2/y0 with Hmax = Y 2

0 /y0. (b) The bay seen from the side depicting the plane, y = 0. The
slope, α, is Hmax/x0.

where k(ω, x) is ω/
√

gH̄ (x), and Ĩ0(ω) is a Fourier transform with respect to time of the incident
wave train at x = x+

0 . For an inclined bay with parabolic cross section, S0 is proportional to x3/2 and
H̄ to x. Taking these relations into account (17) is reduced to

η̄(t, x) ≈
∫

dω
2Ĩ0(ω) exp

{
i
[
ωt + ∫ x

x0
k(ω, x′) dx′]}

√
x/x0

. (18)

Carrying out the integration with respect to x′ and ω,

η̄(t, x) ≈ 2

√
x0

x
η

open
inc

(
t −

√
6

αg
(
√

x0 − √
x), x+

0

)
(19)

is obtained. However (19) becomes exact when S0 is proportional to x3/2. Waves described by (19)
are called nonreflecting because the phase of a wave inside the bay is simply a function of t −√

6x/(αg), thus exclusively a progressive wave. They, therefore, do not reflect until they arrive the
inland tip of the bay. The reflected wave by the inland tip of the bay has opposite polarity because
the power transmitted to the tip is zero. When the incoming and the reflected waves of opposite signs
are added in the vicinity of the inland tip (x being infinitesimally small), the difference between their
phases becomes proportional to

√
x, thus the wave amplitude being finite, at any given instant t . It

was already mentioned that the wave that is traveling in the offshore direction when reflected by the
mouth of the bay has its polarity reversed because these waves do no affect the water level at x = x0

due to the Dirichlet boundary condition. After two reflections the original polarity is recovered. A
wave that progresses toward the mouth of the bay has undergone an odd number of reflections, while
a wave approaching the inland tip of the bay has been exposed to an even number of reflections (0,
2, ...). Summing all these reflections the profile of the wave within the bay can be found as

η̄(t, x) ≈
∞∑

k=0

2

√
x0

x

{
ηinc

open[t + τ0

√
x/x0 − (2k + 1)τ0, x+

0 ]

− ηinc
open[t − τ0

√
x/x0 − (2k + 1)τ0, x+

0 ]

}
, (20)
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TABLE I. The maximum run-ups for various Gaussian incident waves given by exp[−(x + √
gH0t/L)2]

entering inclined bays of different aspect ratios. All bays have parabolic cross sections. The values within the
parentheses in the columns of the table are run-ups obtained from the “exact” solution given by (43) and from
the solution where the Dirichlet boundary condition has been imposed (21), respectively.

L = 20Y0 L = 16Y0 L = 12Y0 L = 8Y0

x0 = 20Y0 (8.32,8.4) (10.16,10.5) (13.,14.) (18.6,21)
x0 = 10Y0 (4.36,4.19) (5.32,5.23) (6.87,7.) (9.53,10.5)
x0 = 5Y0 (2.54,2.37) (2.94,2.73) (3.6,3.49) (5.16,5.23)

where τ0 is one-way travel time along the bay [
√

6x0/(αg)]. The resulting run-up r(t ) = η(t, x = 0)
according to Ref. [21] can be obtained using L’Hôpital’s rule:

r(t ) ≈
∞∑

k=0

4τ0

[
∂

∂t
ηinc

open(t − (2k + 1)τ0, x+
0 )

]
. (21)

Note that the run-up is proportional to the length of the bay because τ0 = √
6x0/(αg) is equal to

x0/
√

6Hg. For the case of the infinitely wide (independent of y) sloping beach of length x0 connected
to a sea of uniform depth the run-up is proportional to

√
x0 if the wavelengths of the incident wave

are much smaller than x0 (see Ref. [23]). Thus converging bays generate a larger run-up than those
of the infinite sloping beaches.

A consequence of the Dirichlet condition is the run-up being a periodical function of time even
when the incident wave train is not. In the next section we will show that when the series in
Eq. (21) is truncated to its few terms it produces more realistic run-ups because the artificial
periodicity imposed by the Dirichlet condition is canceled. An incident N-wave in the open sea
may have slopes of the same sign in its front and tail. If the distance between the regions of positive
slopes is about 2τ0

√
gHmax, then the wave from these parts may interfere constructively to generate

a larger run-up.
If the period of the incident wave in the open sea is much larger than the travel time (τ0) of the

waves along the bay, then the summation in Eq. (21) can be seen as a Riemann sum with integration
step 2τ0, and the run-up will be approximated by

r(t ) ≈ 2
∫ t

−∞
dt

∂

∂t
ηinc

open = 2ηinc
open(t, x0). (22)

This was an expected result because with such long waves the displacement of the free surface at
the tip and at the mouth of the bay must be almost equal. Note that this result is independent of any
geometric characteristic (except the length) of the bay, reflecting the physical phenomenon of water
slowly invading everywhere simultaneously, in a way reminiscent of the principle of communicating
vessels (see Ref. [24]). Indeed, it will be shown in Table I that the normalized run-up for waves
longer than the length of the bay is close to two as suggested by (22).

To show the difference of behavior of waves in reflecting and nonreflecting bays two longitudi-
nally infinitely long inclined bays are considered, one with a parabolic cross section (nonreflecting)
and the other with a rectangular cross section and constant width. The slope of the rectangular bay
is 2α/3 so that both bays have the same laterally averaged depth for a given x. In the nonreflecting
bay with a parabolic cross section, the wave train reflected by the inland tip is related to the initial
incident wave through the relation [consider the second line of (20) for k = 0],

η̄ref (t, x) = −
√

τ−1[t − τ (x)]

x
ηinc(t = 0, x + τ−1[t − τ (x)])θ [t − τ (x)], (23)
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FIG. 5. The positive continuous curve is the initial profile of the incident wave given by exp [− 1
2 ( x−x1

a )
2
].

The incident wave is progressing in an inclined bay with a parabolic cross section. The bottom of the bay
is z = −αx + y2/y0. The depression is the wave profile at instant t = 2

∫ x1
0

dx√
2gαx/3

(the denominator in the
integrand is the wave speed). The broken curve is the wave profile at instant t for the same incident wave
progressing over a sloping bay with a rectangular cross section whose slope is 2

3 α. In both geometries the
averaged depths for a given x are equal. The values of parameters are x1 = x0/4, a = 0.02x0 (x0 is an arbitrary
length scale). Note that for the case of a sloping bay with a rectangular cross section the incident wave starts to
be reflected before reaching x = 0.

where the function τ (x) is
√

6x/(gα). The step function θ in the above equation is due to the fact that
reflection from the inland tip starts at t = 0. On the other hand, in the case of an inclined rectangular
bay, defining σ as

√
6x/(gα) a general solution of LSW averaged over the width of the bay becomes

η̄(t, x) =
∫ ∞

0
dω J0(ωσ )[a(ω) cos(ωt ) + b(ω) sin(ωt )/ω] (24)

according to Ref. [25]. Here J0 is Bessel function of the zeroth order. Coefficients a(ω) and b(ω)
can be obtained by proceeding to a Hankel transform of η̄(t = 0, σ ) and ∂t η̄(t, σ )|t=0, respectively
[a(ω) = ∫∞

0 dσσJ0(ωσ )η̄(t = 0, σ )]. The wave given by (24) can emulate a wave which initially
progresses toward the coast if ∂t η̄(t = 0, x)|t=0 is equal to

√
gH (x)∂xη̄(t = 0, x) according to

Ref. [5], p. 84 (assuming the breadth of the wave train is much less than the distance to the inland
extremity of the inclined bay). The snapshots of the wave generated by Eqs. (23) and (24) are
displayed in Fig. 5. Although these two examples share the same initial conditions, a reflected wave
in the case of a reflecting bay (inclined rectangular) reaches higher x coordinates than that of the
nonreflecting bay because in the first case the wave starts to be reflected before reaching the inland
tip of the bay.

To understand the mechanism of continuous reflection in reflecting bays one can consider an
inclined bay with a rectangular cross section of constant width. A solution in such a geometry

is η = J0(2ω
√

x
gα ) exp(iωt ). Here the Bessel function J0 is a superposition of Hankel functions

[J0 = 1
2 (H (1)

0 + H (2)
0 )]. In the deeper parts of the bay, Hankel functions can be reduced to the

first term of their asymptotic expansion, and therefore waves associated with them are progres-
sive waves traveling in opposite directions [H (1,2)

0 (z) ∝ exp(+ − iz)/
√

z]. Thus, with ω > 0, η =
H (1)

0 (2ω
√

x
gα ) exp(iωt ) is an incident wave within the bay. However, the Hankel function H (1)

0 does

not represent a progressive wave very close to the inland tip of the bay (for small values of x). The
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reason it is not progressive is because the associated energy flux, denoted as J , is not equal to the
following entity:

−
√

gH (x)
[

1
2ρgη2 + 1

2ρH (x)v2
]
, (25)

where the term in the brackets is the energy density. The minus sign is due to the fact that

H (1)
0 (2ω

√
x

gα ) exp(iωt ) is an incident wave. The energy flux associated with H (1)
0 is a preserved

quantity as energy density averaged over one cycle does not change with time. For small values of x
the kinetic energy density becomes proportional to 1/x with H (1)

0 (z) ≈ 2i
π

ln(z). This divergence near
the coastline is at odds with the preservation of J , which becomes proportional to 1/

√
x according to

(25). Therefore, this Hankel function does not represent a single progressive wave near the coastline.
The only way for the energy density divergence with finite energy transmission is to have two
progressive waves of different amplitudes propagating in opposite directions. In such a case it is
possible for the transmitted power to be arbitrarily smaller than suggested by (25).

A. Comparison with a numerical experiment

In Ref. [26] a numerical experiment was carried out for a geometry where there is an inclined
wall containing a concave semicylinder, reminiscent of an inclined bay of a parabolic cross section.
We compared their maximum run-ups with ours where an incident soliton of amplitude 0.035 m hits
a parabolic bay of length x0 = Hmax/ tan(θ ) + R and width 2R at its mouth. Here Hmax = 0.35 m is
the maximum depth of the parabolic bay [see Fig. 4(b)], R = 1.2 m is the radius of the cylinder, and
θ is the inclination angle. We used the first term of the summation in Eq. (21) (we neglect multiple
reflections) and also modified the factor 4 to 2. The reason we modified this factor is related to the
aspect ratio of their bay with a greater width than length, violating the assumption that the waves
reflecting from the outside lateral walls at the entrance of the bay are equal to the amplitude of the
incident wave. Also, to adapt to the geometry of Ref. [26] we changed the travel time τ used in
Eq. (21) to

∫ x0

0
dx√

gH (x)
where H (x) is the laterally averaged depth according to the setting given in

Ref. [26].
For inclination angles 30◦, 45◦, and 60◦ the maximum run-ups are 0.113 m, 0.088 m, and

0.072 m, respectively, according to a modified (21). The run-up 0.113 m overshoots the compu-
tational result of Ref. [26] by about 5%. This overshooting was expected because in Ref. [26] the
sloping side banks of the bay are completely submerged near the mouth of the bay, making the
trapping of waves inside the bay less effective. For a steeper inclination, our approach underes-
timates the run-up (20% underestimation for θ = 60◦) mainly because for larger inclinations the
bay is shorter and the assumption that the exponentially decaying part of (7) (the summation) may
still be somewhat significant at the inland tip of the bay. In general, the three-dimensional nature
of the flow becomes more prominent for greater inclinations, therefore the shallow water approach
performs poorly.

IV. EXACT BOUNDARY CONDITIONS AT THE ENTRANCE OF THE BAY

In this section we will match η and H (x, y)∂xη across the mouth of the bay. For this purpose
two-dimensional solutions of LSW equations must be found inside the bay. It was already mentioned
that the solutions that depend strongly on y coordinates are confined to the vicinity of the mouth
of the bay where the relative depth variation in the x direction is small. Therefore the bay will be
approximated by a channel of uniform cross section (basically a noninclining channel of parabolic
cross section) in this region. The two-dimensional LSW equation is

∂2

∂t2
η − g

{
∂

∂x

[
H (y)

∂

∂x
η

]
+ ∂

∂y

[
H (y)

∂

∂y
η

]}
= 0, (26)
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where the depth H (y) is Hmax[1 − (y/Y0)2] in the vicinity of the mouth. For depth, independent of
x the solution of the LSW equation is in the form

ηω = exp [κ (ω)x] fκ (y) exp (iωt ), (27)

where κ (ω) multiplied by i is the wave number within the parabolic channel. Defining nondimen-
sional y′ as y/Y0, the function fκ must satisfy the ordinary differential equation

−ω2Y 2
0

gαx0
fκ (y′) − κ2Y 2

0 (1 − y′2) fκ (y′) − d

dy′

[
(1 − y′2)

d

dy′ fκ (y′)
]

= 0. (28)

This ordinary differential equation has two singular points y′ = ±1. Given ω (which we will take to
be equal to the frequency of the incident wave), if the parameter κ takes some discrete values,
κ0(ω), κ1(ω), . . . , then the solution will become regular at both singular points (our aim is to
determine those particular κ values). In the case of such regularity the depth-integrated fluid velocity
in the y direction tends to zero at the sides of the channel (y′ → ±1). The situation is very similar
to the case of rectangular channel where the n in Eq. (7) needed to be an integer in order to satisfy
the no-flux condition at the sides of channel.

Equation (28) in terms of the wave vector of the incident wave (kopen
inc = ω/

√
gαx0) becomes

κ2Y 2
0 (1 − y′2) fκ (y′) = −(

kopen
inc Y0

)2
fκ (y′) − d

dy′

[
(1 − y′2)

d

dy′ fκ (y′)
]
. (29)

Only solutions that are even functions of y′ will be taken into account because of the symmetry of
the incident wave. Note that the eigenfunctions of the differential operator, d

dy′ [(1 − y′2) d
dy′ ], in the

equation above are Legendre polynomials

Pl (y
′)

with eigenvalues

−l (l + 1) with l = 0, 1, 2, . . . .

We can now expand fκ (y′) in terms of these eigenfunctions:

fκ (y′) =
∞∑

l=0

A(κ )
2l

√
2l + 0.5P2l (y

′). (30)

Inserting the series above into (29) and using relations

y′Pl (y
′) = 1

2l + 1
[(l + 1)Pl+1(y′) − lPl−1(y′)] and y′P0(y′) = P1(y′)

d

dy′

[
(1 − y′2)

d

dy′

]
Pl (y

′) = −l (l + 1)Pl (y
′), (31)

the term, y′2, and the derivatives of P2l can be eliminated from the series. The left-hand side of (29)
is then reduced to a series of Legendre polynomials with constant coefficients involving A(κ )

2l ’s.
Equating the coefficients of P2l (y′) at both sides of (29), a recurrence relation between A(κ )

l−2, A(κ )
l ,

and A(κ )
l+2 is found. For the particular case of l = 0, A(κ )

2 is proportional to A(κ )
0 with

A(κ )
2 /A(κ )

0 = − 1
2

[(
kopen

inc Y0
)2 + (κY0)2].

For some discrete values of the eigenvalue, (κY0)2, coefficients A(κ )
2l obtained from the recurrence

relation tend to zero for l → ∞. The value of A(κ )
0 is arbitrary. For the energy-transmitting mode

Aκ
0 is taken 1 so the associated function, fκ (y′), will be approximately 1 in the low-frequency limit.

In the Appendix an alternative method that is easier to implement in Python using a linear algebra
package is presented. Eigenvalues [(κY0)2] computed by the linear algebra package will be referred
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FIG. 6. The continuous and the broken curves are the dispersion relations for an infinite channel with a
parabolic cross section. Broken curves indicate a purely imaginary wave vector. The waves associated with such
wave vectors decay exponentially in the −x direction because they are proportional to exp(|k|x). Continuous
and broken curves were obtained using the routine eigh (see the Appendix). The equation of the bottom of
the channel is z = −Hmax(1 − y2/Y 2

0 ) where H is its maximum depth and Y0 is its half width. The stars are
the dispersion relation given by ω = √

g2Hmax/3 |k| where 2H/3 is the average depth of the parabolic channel.
The circles are the dispersion relation obtained using Eq. (2.51) from Ref. [17]. The dots (two branches) are
the dispersion relation obtained from (40).

to as “exact” eigenvalues because they are more accurate than various approximations that will be
made later. An ordinary differential equation given by (29) is similar to the differential equation for
an angular prolate spheroidal wave function [see Eq. (21.6.1) in Ref. [22]]. In the context of the
angular spheroidal differential equation the term denoted in Eq. (29) as (kopen

inc Y0) is the quantity to
be determined. This quantity in that context is called the separation constant. Our aim in solving the
LSW equation was to determine (κY0)2 as a function of the frequency of the incident wave. Because
of this discrepancy the libraries for spheroidal functions were not used.

In Fig. 6 the inverse of the relation between κ and ω is displayed (see the Appendix for the
relation). In that figure one can observe that given a nondimensional frequency (ωY0/

√
g0H0) less

than
√

6 there is only one mode with negative (κY0)2 (the continuous curve in Fig. 6). Negative
(κY0)2 corresponds to a real wave vector inside the bay, thus transmitting energy in the x direction.
Our hypothesis was that the modes depending strongly on y coordinate are confined to the vicinity
of the mouth of the bay. If there were two modes with a real wave vector, then the hypothesis would
be violated as the second mode is roughly proportional to P2(y′), and thus not independent of y. Our
analysis will be valid for incident waves with the dominant frequency satisfying ωY0/

√
gHmax <√

6. The reason why the nondimensional cutoff frequency is exactly
√

6 will be clarified below. A
purely complex wave vector [(κY0)2 > 0] cannot transmit power because u ad η will be off phase
by π/2.

In an infinite rectangular channel of the equivalent averaged depth (2Hmax/3), there will be only
one energy-transmitting mode if ωY0/

√
gHmax is less than 2.56 ≈ √

2/3 π . Note that the eigenvalues
of the differential operator at the right-hand side of (29) acting on even eigenfunctions are

−(
kopen

inc Y0
)2 + 2l (2l + 1) with l = 0, 1, 2, . . . . (32)

If the nondimensional wave number (kopen
inc Y0) <

√
6, then only the first mode (associated with l = 0)

can propagate, and higher modes cannot.
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The eigenvalues, (κY0)2, will be numbered in ascending order:

(κ0Y0)2 < 0 < (κ1Y0)2 < (κ2Y0)2 < · · · . (33)

Only mode 0 is then capable of transmitting energy. The dispersive nature of the relation between
ω and |κ0Y0| becomes apparent for |κ0Y0| > 2 where clearly

d2

dk2
ω < 0

with k = i|κ0|. According to Fig. 6 the approximation made in Ref. [17] for the dispersion relation is
far better than that obtained from laterally averaging depth (ω =

√
gH̄k). However, the dispersion

relation in Ref. [17] slightly overestimates the frequencies (compare circles with the continuous
curve in Fig. 6). This small overestimation can be explained on the basis of a variational formulation
of the eigenvalue problem.

In the above calculation, our aim was to calculate different κ values given ω, the frequency of
the incident wave. Alternatively, we can calculate ω, given κ . For a given real wave vector k = |κ0|
inside the parabolic infinite channel, the square of the associated frequency, ω2Y 2

0 /(gH0), can be
found minimizing the following Rayleigh quotient:∫ 1

−1 dy
{|κ0|2Y 2

0 (1 − y2) f 2(y) + (1 − y2)
[

d
dy f (y)

]2}
∫ 1
−1 dy f 2(y)

(34)

with respect to f . The variation of Rayleigh quotient [see (34)] around the minimizing function, fκ0 ,
leads to

− ∫ 1
−1

{|κ0|2Y 2
0 (1 − y2) f 2

κ0
(y) + (1 − y2)

[
d
dy fκ0 (y)

]2}
dy[∫ 1

−1 dy f 2
κ0

(y)
]2 ×

[∫ 1

−1
dy f (y)δ f (y)

]

+
{|κ0|2Y 2

0 (1 − y2) fκ0 (y) − d
dy

[
(1 − y2) d

dy fκ0 (y)
]}

δ f (y)[∫ 1
−1 dy f 2

κ0
(y)

] , (35)

where the second term in the numerator of the last line has been obtained by integration by parts. No
contribution comes from the bounds of the integral because fκ0 is bounded at y = ±1. Noticing that
fκ0 minimizes the Rayleigh quotient the first line of (35) is equal to −ω2

0(gH0)−1[
∫ 1
−1 dy f 2

κ0
(y)]−1 .

Accordingly the variation becomes

1∫ 1
−1 dy f 2

κ0
(y)

∫ 1

−1
dyδ f (y)

{
−ω2

0Y 2
0

gH0
fκ0 (y) + |κ0|2Y 2

0 (1 − y2) fκ0 (y) − d

dy

[
(1 − y2)

d

dy
fκ0 (y)

]}
.

(36)

The variation must be zero for all variation δ f since fκ0 is a minimizing function. Therefore the
minimizing function satisfies the ordinary differential equation given in Eq. (28). In Ref. [17] the
function fκ0 was approximated by a polynomial of degree two. That is the reason for the small
overestimation (see circles in Fig. 6). When variation of η along the y axis is ignored ( fκ0 = constant)
the associated frequency is even higher (see the stars in Fig. 6). As mentioned earlier the strong
dependence of the decaying modes on y coordinates can be observed in Fig. 7.

Here we are looking at the propagating modes of an infinite channel with a parabolic cross
section. In this context, there is no open sea, and there is no incident wave. However, we can
still parametrize the frequencies in terms of ω = √

gHmaxkopen
inc . For a given ω defined this way,
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FIG. 7. The continuous curve represents the eigenfunction, f0(y, ω), for ωY0/
√

gαx0 = 1. See Eq. (30) for
the definition of fκ0 . The dashed and the dash-dotted curves are, respectively, fκ1 and fκ2 . The function fκ0 is
associated with the oscillatory solution in the x direction. Note that fκ0 (y) is almost constant.

the corresponding κ2Y 2
0 can be found minimizing the following Rayleigh quotient:∫ 1

−1 dy
{ − (

kopen
inc Y0

)2
f 2(y) + (1 − y2)

[
d
dy f (y)

]2}
∫ 1
−1 dy (1 − y2) f 2(y)

. (37)

If we truncate (30) to the second order to produce the trial function f (y) = A0
√

1/2 +
A2

√
5/2P2(y), then the Rayleigh quotient becomes

(A0, A2)
(−(kopen

inc Y0 )2 0
0 −(kopen

inc Y0 )2 + 6

)(A0
A2

)
(A0, A2)

( 0.666 −0.298
−0.298 0.476

)(A0
A2

) . (38)

The ratio above needs to be minimized with respect A0 and A2. At the minimizing (A0, A2) the
gradient of the denominator and numerator of the Rayleigh quotient must be parallel with the
constant proportionality between the gradients being (κY0)2. There is a no trivial (A0, A2) that makes
these gradients parallel if the determinant of the following matrix vanishes:

Det

⎛
⎝

[
−(

kopen
inc

)2 − 0.6666κ2
]
Y 2

0 0.2981(κY0)2

0.2981(κY0)2
[
−(

kopen
inc

)2 − 0.4762κ2
]
Y 2

0 + 6

⎞
⎠ = 0. (39)

Solving the equation above, κ is obtained as a function of ω′ = ωY0/
√

gH0 as

|κn|Y0 =

⎧⎪⎪⎨
⎪⎪⎩
∣∣√ 4−1.141286ω′2−

√
(−4+1.141286ω′2 )2−0.91428(ω′4−6ω′2 )

0.45714

∣∣ if n = 0∣∣√ 4−1.141286ω′2+
√

(−4+1.141286ω′2 )2−0.91428(ω′4−6ω′2 )
0.45714

∣∣ if n = 1

, (40)

where n = 0 corresponds to a purely complex κ , and it is, therefore, the energy-transmitting mode.
The other is the decaying mode. Two branches of the dispersion obtained from (40) are displayed as
dots in Fig. 6. The lower branch (ω = ω(|κ0|)) obtained from (40) is more accurate than that given
by Eq. (2.51) of Ref. [17] (compare the dotted curve and circles in Fig. 6); however, the difference
between these two approximations becomes apparent only for frequencies larger than

√
6
√

gH0/Y0.
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This range of frequencies is beyond the scope of the present work as the decaying modes will cease
to be decaying for this range.

There are two waves associated with purely imaginary κ0 (power-transmitting modes). One of
these waves travels in the offshore direction and the other in the opposite direction. The full solution
in the vicinity of the mouth (inside the bay) can be written as

ηω(t, x′, y′) = exp(iωt )

{
[B+

0 exp(i|κ0|x) + B−
0 exp (−i|κ0|x)] fκ0 (y′)

+
M−1∑
n=1

Bn exp [|κn|(x − x0)] fκn (y′)

}
. (41)

The solution above can be extended to the whole of the inclined bay [21] using the fact that the
phase difference, at a given instant, between two points separated by dx is ±|κ0|

√
x0/x dx. Here

the sign depends on the direction of travel of the wave. Integrating the argument of the exponential
functions in the square brackets [Eq. (41)] from x0 to x and multiplying the traveling wave by an
appropriate factor to ensure conservation of energy flux [see (18)] η is found to be

ηω(t, x, y′) = exp(iωt )

{√
x0

x

[
B+

0 exp (2i|κ0|√x0x )

+ B−
0 exp (−2i|κ0|√x0x )

]
fκ0 (y′) +

N∑
n=1

Bn exp [|κn|(x − x0)] fκn (y′)

}
. (42)

Again the boundary condition at the inland tip of the bay requires that B+
0 = −B−

0 . The decaying
waves never reach x = 0 because |κn| � 1/x0 for n = 1, 2, . . . , N . Taking into account the bound-
ary condition at the tip (42) is reduced to

ηω(t, x, y′) = exp(iωt )

{
B∗

0 j0(2|κ0|√x0x) fκ0 (y′) +
N∑

n=1

Bn exp [|κn|(x − x0)] fκn (y′)

}
, (43)

where the spherical Bessel function j0(z) is sin(z)/z =
√

π
2z J1/2(z). Here J1/2 is the Bessel function

of fractional order. The right-hand side of (43) is not a rigorous solution of laterally averaged
LSW equations away from the mouth unless one makes the nondispersive approximations |κ0| ≈
ω/

√
g2

3 H0 (see the stars and continuous curve in Fig. 6), but it is good enough for the practical
purposes. Coefficients B∗

0(ω), B1(ω), B2(ω), . . . , BN (ω) will be found from minimizing the penalty
integral given by (11). However, the relation which relates the source strengths to these coefficients
given by (10) needs to be modified because the depth is discontinuous at the mouth of the bay and
the bay cross section is no longer rectangular. It becomes

s̃(ω, y) exp(iωt ) = −H[1 − (y/Y0)2]
g

iω

∂

∂x
ηω(t, x, y)|x=x−

0
, (44)

where ηω is given by the series in Eq. (43). For the run-up the only relevant coefficient is B∗
0(ω), and

for x = 0 the spherical Bessel function in Eq. (43) takes the value of one. Then the Fourier transform
of the run-up, r̃(ω), is simply B∗

0(ω)A0 with A0 being equal to one. In Fig. 8 the amplitude of run-up
rω(t ) is displayed as a function of the incident wave frequency (the amplitude of the incident wave is
normalized to unity). Sharps peaks in that figure indicate that the poles of r̃(ω) = rω(t ) exp(−iωt ) in
the complex ω plane are close to the real axis. The closeness of these poles to the real ω axis will be
responsible of the effective trapping of energy of the wave inside the bay. The general trend in Fig. 8
is that r̃(ω) ∝ ω1. This is in agreement with the predictions of (21) where for a given frequency and
depth the run-up was proportional to the length of the bay. As the ratio between the bay length and
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FIG. 8. Absolute value of Fourier transform of a run-up divided by that of the incident wave is displayed
as a function of the nondimensional frequency, ωY0/

√
gH . The length of the inclined parabolic channel is

x0 = 10Y0 (Y0 is half width at the mouth of the bay).

the wavelength increases, the run-up increases. On an infinitely wide, linearly sloping beach the
run-up is proportional to ω1/2I0 where I0 is the amplitude of the incident wave at a distance L from
the coast (see Ref. [23]). In the case of a converging bay the amplification of short waves is more
effective because of the focusing of the energy towards the inland tip of the bay.

FIG. 9. Continuous curves are an “exact” run-up for an incident Gaussian waves calculated using (43).
In (a) the incident wave in the open sea is exp {−[x + √

gH0(t − T/2) − x0]2x−2
0 }, and in (b) the narrower

Gaussian is given by exp {−[x + √
gH0(t − T/2) − x0]2(0.4x0 )−2}. The ratio x0/(2Y0 ) is 10 for both cases.

Here x0 is the length of the bay, and 2Y0 = 2
√

αx0y0 is the width of the mouth of the bay [see (15) for the
geometry of the bay]. The timescale t0 is given by Y0/

√
gH0. The broken curves are the run-up associated

with the Dirichlet problem η(t, x−
0 ) = 2η

open
inc (t, x+

0 ) [see (21)]. Parameter T is the duration of the sampling of
the incident wave. The solution associated with the Dirichlet boundary condition overestimates the maximum
run-up by 1% in (a) and 12% in (b). The solutions associated with the Dirichlet boundary conditions are not
damped. Note that two-way travel time along this bay are 97.98 t0 =2

√
6 x0/

√
gH0.
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The next step is to calculate the run-up for incident wave packets. In Fig. 9 two Gaussian incident
wave packets of different widths

η
open(a,b)
inc = exp

[−(x +
√

gH (t − T/2) − x0)2L−2
(a,b)

]
(45)

are considered. Here L(a,b) is x0 in Fig. 9(a) and 0.4x0 in Fig. 9(b). Parameter T is the duration of the
sampling. The continuous curves are associated with the solution obtained from (13) where r(t ) is
the inverse Fourier transform of r̃ = B∗

0(ω). The broken curves are run-ups from (21) (the Dirichlet
boundary condition). The solution associated with the Dirichlet boundary condition overestimates
the maximum run-up by 1% in Fig. 9(a) and 12 % in Fig. 9(b). In the introduction it was mentioned
that the Dirichlet boundary condition is an accurate approximation of real boundary conditions for
ω � √

gH0/Y0. That is why the predictions of (21) overestimate the maximum run-up by a higher
margin in Fig. 9(b) where shorter wavelengths are involved. According to the approximate power
law r̃(ω) ∝ ω1 one would expect the ratio between maximum run-ups in Figs. 9(a) and 9(b) to be 2.5
(the ratio of theL values). It turns out the actual value of this ratio is 2.2. The failure of the relation,
r ∝ ω, is due to the fact that the short incident waves cannot capture the general linear trend in
Fig. 8. With increasing frequencies the poles of r̃(ω) move away from the real ω axis making the
peaks at the right side of Fig. 8 broader. The rapid decay of oscillations in Fig. 9(b) is due to the
fact that a narrower Gaussian excites modes with shorter wavelengths. The complex frequencies
of homogeneous solutions of LSW in the bay are the poles of r̃(ω) in the complex ω plane. The
homogeneous solutions with shorter wavelengths are associated with poles that are related to peaks
at the right side of Fig. 8. Therefore they decay quickly transmitting their energy to the open sea.

V. PERTURBATION OF THE DIRICHLET BOUNDARY CONDITION

The Dirichlet boundary condition condition [η(t, x−
0 ) = 2η

open
inc (t, x+

0 )] leads to solutions that tend
to overestimate the maximum run-up because the real sea level disturbance at x = x+

0 is often less
than 2η

open
inc (t, x+

0 ). This is due to partial penetration of the incident wave into the bay. However, there
are exceptions. If the characteristic wavelength of the incident wave packet is much longer than the
length of the bay, situations may arise whereby the forward tail of the wave packet may reflect
from the tip and the mouth of the bay multiple times before the maximum run-up occurs. These
reverberations may cause constructive interference just outside the mouth, making the free surface
disturbance larger than 2η

open
inc (t, x+

0 ). Inspection of Table I reveals that the Dirichlet boundary
condition indeed overestimates the maximum run-up when x0 is larger than the wavelength.

A perturbative approach will be adopted where only one-dimensional solutions of the wave
equation inside the bay will be required. The Dirichlet boundary condition is not “exact” because it
violates the continuity of the depth-integrated x velocity across the mouth of the bay. When a scat-
tered field into the open sea (the part of the wave field due to the presence of the bay) is ignored, the
depth-integrated velocity is zero at x = x+

0 , but the sea level disturbance, 2η
open
inc (t, x+

0 ), will trigger
a wave progressing toward the inland tip of the bay. The simple relation between u and η for a wave
progressing in the −x direction is u = −

√
g/H̄ (x) η where H̄ (x) is the laterally averaged depth.

Therefore the undisturbed Dirichlet condition imposes the following depth-integrated velocity at
x = x−

0 :

H (x−
0 , y)u(0)(t, x−

0 ) = −H (x−
0 , y)

√
g/H̄ (x−

0 )
[
2η

open
inc (t, x+

0 )
]
. (46)

Hereafter all quantities relating to the undisturbed Dirichlet condition will be referred to with the
superscript (0). A distribution of virtual sources

s(1)(t, y) = u(0)(t, x−
0 )H (x0, y) (47)

placed at the entrance of the bay will ensure the continuity of depth-integrated velocity. The
superscript (1) was used because sources s(1) will generate a scattered field η(1)

open(t, x, y) in the open
sea that will disturb the boundary condition η(t, x−

0 ) = 2η
open
inc (t, x+

0 ). Evidently η(1)
open(t, x, y) will be
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a two-dimensional field depending strongly on the y coordinate. It will be shown that η(1)
open(t, x, y)

is of order of (ωY0/
√

gH )ηinc
open(t, x+

0 ) within the relevant time range (before the full resonant regime
sets in). In principle η(1)(t, x, y) must be continuous across the entrance of the bay, but because
η(1)

open(t, x, y) � ηinc
open(t, x, y) this condition can be replaced by a less stringent one,

η(1)(t, x−
0 ) = η̄(1)

open(t, x+
0 ) = 1

2Y0

∫ Y0

−Y0

dy η(1)
open(t, x+

0 , y). (48)

This simplification renders the problem one-dimensional within the inclined bay. The solution of
the Dirichlet problem is identical to (20) for k = 0:

η(1)(t, x) =
√

x0

x

[
η̄(1)

(
t −

√
6x0(

√
x0 − √

x)√
gH

, x+
0

)

− η̄(1)

(
t −

√
6x0(

√
x0 + √

x)√
gH

, x+
0

)]
for 0 < x < x0, (49)

where the second line of the equation represents the wave reflected by the inland tip of the bay. Note
that any function of t ± √

6x/(gα) is a solution of the laterally averaged LSW equation. Equation
(49) will be valid as long as the waves reflected by the inland tip do not reach the entrance of the
bay because the relation given by (46) holds only for waves progressing in the −x direction.

The free surface perturbation η(1)(t, x) generates its own flow u(1) that will perturb the flux
continuity at x = x0. The same procedure needs to be repeated with s(2). The full iterative solution
can be written as

s(t, y) = s(1)(t, y) + s(2)(t, y) + · · · ,

η(t, x) = η(0)(t, x) + η(1)(t, x) + η(2)(t, x) + · · · . (50)

It will be shown that the series above converges rapidly if the relative variation of the incident
wave within the timescale t0 = Y0/

√
gHmax is small. This will be the case if the characteristic

wavelength of the incident wave is much larger than the width of the bay. The contribution from
η(i)(t, x) to the run-up will be

r (i)(t ) = 4x0

√
6

gH

∂

∂t
η(i)

(√
gHmax

[
t − x0

√
6

Hg

]
, x−

0

)
(51)

according to (21).
We will now show how explicitly η(i)(t, x+

0 ) can be written as a function of s(i)(t ′, y) for t > t ′.
Let gr (t, x, y, t ′, x′, y′) be the retarded free surface response to a sudden fluid incursion of the unit
volume into two-dimensional infinite sea at instant t ′ and at a position (x′, y′). The function gr will
then satisfy the inhomogeneous equation,[

∂2

∂t2
− gH

(
∂2

∂x2
+ ∂2

∂y2

)]
gr = δ(x − x′)δ(y − y′)

d

dt
δ(t − t ′). (52)

To solve this for t → t ′+, it is sufficient to integrate the right side of the equation above twice with
respect to t . Note that the term, ∂xx + ∂yy, can be ignored at this limit of small time during which
waves do not have time to travel. This integration leads to

∂

∂t
gr

∣∣∣∣
t=t ′+

= 0 and gr = δ(x − x′)δ(y − y′) (53)
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for t → t ′+. Due to this, the initial fluid velocity v vanishes everywhere because H div(v) is equal
to −∂t gr . The vanishing initial velocity ensures the integral,∫ ∞

−∞
dx

∫ ∞

−∞
dygr (t, x, y, x′, y′), (54)

will be independent of time for t > t ′. Furthermore, the integral of gr,
∫ t dt ′′gr (t ′′, x, y, t ′, x′, y′), is

the usual retarded Green’s function associated with the D’Alambertian operator in two dimensions
(∂tt − gH0[∂xx + ∂yy]). Thus the function gr is (see Ref. [27], p. 235)

1

2π
√

gHmax

∂

∂t

{
θ [gHmax(t − t ′)2 − (x − x′)2 − (y − y′)2]√

gHmax(t − t ′)2 − (x − x′)2 − (y − y′)2

}
, (55)

where θ is the step function. To compute η(i) for x = x+
0 , one should proceed to the convolution of

s(i) with 2gr given in Eq. (55). Here the factor 2 in front of gr stems from the fact that the sources
s(i)(y) generate a unit flux exclusively towards the open ocean, while the function gr acts in the
whole space. In this convolution x and x′ will both be equal to x0 (bay mouth), and η(i) will be
obtained as

η(i)(t, x+
0 , y) =

∫ t

−∞
dt ′

∫ Y0

−Y0

dy′ s(i)(t ′, y′)
π

√
gHmax

∂

∂t

{
θ [gHmax(t − t ′)2 − (y − y′)2]√

gHmax(t − t ′)2 − (y − y′)2

}
. (56)

Inspecting the integral above one notices that if the time dependence of s(i)(t ′, y) is θ (t ′) (thus,
essentially independent of time), then the integration with respect to t ′ can be carried out and η(i)

becomes proportional to 1/t .
Thus η(i) decays quickly for t � Y0/

√
gHmax. To sustain η(i)(t, x+

0 , y) the source, s(i)(t ′, y), must
vary with time. According to the dimensional analysis η(i)(t, x+

0 , y) is of order of

1√
gHmax

t0
∂

∂t ′ s
(i)(t ′, y′),

where t0 is Y0/
√

gHmax. Taking into account s(i) ∝ √
gHmaxη

(i−1), the proportionality relation

η(i) ∝
(

Y0√
gHmax

)
︸ ︷︷ ︸

t0

∂

∂t
η(i−1) (57)

is obtained. Therefore the series given by (50) converges rapidly if the period of the incident wave
is much larger than t0 = Y0/

√
gH .

The averaged value of η(i)(t, x+
0 , y) across the width of the bay is

η̄(i)(t, x+
0 ) = 1

2Y0

(∫ Y0

−Y0

dy
∫ t

−∞
dt ′

∫ Y0

−Y0

dy′ s(i)(t ′, y′)
π

√
gHmax

∂

∂t

{
θ [gH (t − t ′)2 − (y − y′)2]√
gHmax(t − t ′)2 − (y − y′)2

})
.

(58)

If the radius of the causality circle [
√

gHmax(t − t ′)] is less than 2Y0, then the integrand in the
equation above will have severe discontinuity within the domain of integration. In general the source
term,

s(i)(t ′, y′),

is a smoother function than

∂

∂t

{
θ [gHmax(t − t ′)2 − (y − y′)2]√

gHmax(t − t ′)2 − (y − y′)2

}
.
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Therefore it is preferable to proceed to the integration by parts in Eq. (58) with respect to integration
variable t ′. The integration by parts leads to

η̄(1)(t, x+
0 ) = 1

2Y0

(∫ Y0

−Y0

dy
∫ t

−∞
dt ′

∫ Y0

−Y0

dy′
∂
∂t ′ s(1)(t ′, y′)
π

√
gHmax

{
θ [gHmax(t − t ′)2 − (y − y′)2]√

gHmax(t − t ′)2 − (y − y′)2

})
,

(59)

where the identity,

∂

∂t
gr (t, x, y, t ′, x′, y′) = − ∂

∂t ′ gr (t, x, y, t ′, x′, y′),

has been taken into account. Interchanging the order of integration in Eq. (59), this equation
becomes

η̄(i)(t, x+
0 ) = 1

2Y0

(∫ t

−∞
dt ′

∫ Y0

−Y0

dy′
∫ Y0

−Y0

dy
∂
∂t ′ s(i)(t ′, y′)
π

√
gHmax

{
θ [gHmax(t − t ′)2 − (y − y′)2]√

gHmax(t − t ′)2 − (y − y′)2

})
.

(60)

Now the analytical integration with respect to y yields

η̄(i)(t, x+
0 ) = 1

2Y0

(∫ t

−∞
dt ′

∫ Y0

−Y0

dy′
∂
∂t ′ s(i)(t ′, y′)

π
√

gH

{
arcsin

[
min

(
1,

Y0 − y′
√

gHt

)]

+ arcsin

[
min

(
1,

| − Y0 − y′|√
gHmaxt

)]})
. (61)

We will now relate consecutive perturbative η(t, x+
0 ) terms. This can be done by eliminating the

source term s(i) from the equation above using

s(i)(t, y′) = H (x0, y′)u(i−1)(t, x−
0 ) = −H (x0, y′)

√
g

H̄ (x0)
η(i−1)(t, x−

0 ), (62)

and the sea level averaged at the mouth of the bay can be cast in the form

η̄(i)(t, x+
0 ) = −

∫ +∞

0
dτ

∂

∂t
η(i−1)(t − τ, x−

0 )�(τ ), (63)

where

�(τ ) = 1

2πH̄ (x0)Y0

∫ Y0

−Y0

dy′ H (x0, y′)

{
arcsin

[
min

(
1,

Y0 − y′
√

gHmaxτ

)]

+ arcsin

[
min

(
1,

| − Y0 − y′|√
gHmaxτ

)]}
. (64)

The expression given in Eq. (64) is valid for all types of nonreflecting bays, and by using it
we can derive the relevant � functions for bays with parabolic, triangular, and rectangular cross
sections where H̄ is 2H/3, H/2, and H , respectively. Here, of course, in triangular and rectangular
bays of constant width we are referring to noninclining bathymetry, otherwise they would not be
nonreflecting. The functions �(t ) for various geometries are displayed in Fig. 10.

If we now consider a hypothetical incident wave in the open sea with a step discontinuity given
by

θ [
√

gH0t + (x − x0)],
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FIG. 10. The continuous curves are the function �(τ ) displayed as a function of nondimensional time
τ/t0 with t0 = Y0/

√
gH0. See (64) for the definition of �. The horizontal dot-dashed lines are

√〈H〉/H0 [see
(67)]. The dashed curves are an asymptotic approximation given by (68). For a triangular bay the depth is
H (y) = H0(1 − |y|/Y0 ) (depth independent of x). For a rectangular bay the depth is uniform with H = H0.

then η(0) + η(1) at x = x+
0 averaged over the width of the bay will be

2[1 − �(t )]. (65)

We use �(t ) to apply an appropriate free surface boundary condition at the bay mouth.
In the early and late stages of the diffraction, simple approximations of function �(t ) can be

found for bays of arbitrary cross sections, long enough so that the reflection from the inland tip
can be neglected. The source distribution at the mouth of such a long channel for an incident step
function is

s(1)(y) = u(0)H (y) = −2

√
g

H̄
H (y).

At the early stage of the generation of waves by the source distribution above, the geometrical
spreading of the waves in the open sea remains negligible. The solution of the one-dimensional
wave equation (∂ttη − gH0∂xxη = 0) for those generated by s(1)(y) is then

−2

√
1

H̄Hmax
H (y)θ [

√
gHmax t − (x − x0)], (66)

whose average across the mouth is equal to −2�(t ). Accordingly [see (65)]

�(t ) ≈
√

H̄

Hmax
=
⎧⎨
⎩

√
2/3 parabolic channel√
1/2 triangular channel

1 rectangular channel
(67)
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FIG. 11. Run-up generated by a Gaussian incident wave given by exp{−[(x + √
gHmax)

(t − T/2)/(0.4x0 )]2} entering an inclined parabolic bay of aspect ratio x0/(2Y0 ) = 10. The continuous
curve is the “exact” solution found using (43), the broken curve is r (0)(t ) (undisturbed solution of the Dirichlet
problem), and the stars are r (0)(t ) + r (1)(t ). The timescale t0 is Y0/

√
gHmax, and T is duration of the sampling.

is obtained in the limit t � W/
√

gHmax (here W is the width of the channel). In the opposite limit
t � W/

√
gHmax the function gr (t, x, y, t ′, x′, y′) can be approximated [see (55)] by

gr (t, x, y, t ′, x′, y′) ≈ 1

2πgHmax

∂

∂t

(
1

|t − t ′|
)

,

where we neglected y − y′. Proceeding to convolution of the above gr with the sources associated
with the incident step function

�(t ) ≈ W

πHmax

√
H̄

g

1

t
(68)

is found for t � W/
√

gHmax. The function �(t ) together with these asymptotic approximations
is displayed for three different geometries in Fig. 10. In Fig. 11 we show the run-up [r (0)(t )) +
r (1)(t ); see (51)] as displayed by stars. As seen in the figure, there is a good agreement with the
“exact” solution. This perturbative approach was also applied to the bay with a rectangular shape;
the results are displayed as stars in Fig. 3. In that figure the maximum normalized run-up obtained
from the unperturbed Dirichlet condition, perturbative solution, and exact solution is 4.0, 3.6, and
3.52, respectively.

VI. CONCLUSION

We have shown that the problem of a wave packet entering a narrow nonreflecting bay does not
require a complicated two-dimensional analysis within the bay. Furthermore, the offshore boundary
condition can simply be taken as twice the amplitude of the incident wave as proposed in Ref. [7]
if the wavelength of the incident wave is much larger than the width of the bay, and the solution
obtained by doing so can be further improved by means of perturbations. As a geographic setting
where these assumptions are valid, we can cite Ref. [13], where an incident tsunami wave with
a characteristic period of around 15 minutes hit a bay in American Samoa. The wave travel time
across the width of the mouth in this case was much less than 2 minutes. This strategy leads to
satisfactory calculations of the maximum run-up, however, only for the timescales limited by twice
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the travel time of the waves along the bay. The perturbative approach gives more accurate results for
the bay with a parabolic cross section. The reason for this is that the depth is everywhere the same
as the open sea across the entire width of the rectangular bay, while the parabolic bay is shallower
near the edges and this causes reflections from the edges. Therefore, the free surface perturbation at
the mouth is closer to twice the amplitude of the incident wave for the parabolic bay.

The perturbative approach developed in this work can be generalized to reflecting bays as long
as the wavelength of the incident wave is much smaller than the length of the bay. A general width-
averaged solution for waves within the bay for both reflecting nonreflecting cases can be found in
Ref. [28]. In the asymptotic limit of short wavelength this solution can be seen as a superposition of
incident and reflecting waves, both satisfying Green’s law in the far field (near the mouth). Hence,
near the mouth these are progressive waves. Because of this, there is a simple relation between the
free surface perturbation and fluid velocity u, suitable for the perturbative approach.

A possible future research direction is to generalize the perturbation approach presented here to
include the one-dimensional nonlinear solution provided in Ref. [16] inside the bay and handle the
perturbed scattering problem using a matching scheme at various orders.

APPENDIX: GENERALIZED EIGENVALUE PROBLEM

In this Appendix we show how the regular solution of ordinary equation given by (28) can be
found using a linear algebra package for the Python computer language. The emphasis will be on
the easy implementation rather than the speed of computation. First, insert the series in Eq. (30)
into (28). When one multiplies the resulting series by

√
2n + 0.5P2n(y′) and integrates the product

from −1 to 1, a linear relation between Aκ
2l ’s is found. The procedure will be repeated M times

with
√

0.5P0(y′),
√

2 + 0.5P2(y′), . . . ,
√

(2M − 2) + 0.5P2M−2(y′), to get M relations between co-
efficients Aκ

2l . These relations can be written as

−(
kinc

openY0
)2

(
2M−1∑
q=0

δnqAκ
(2q)

)
− κ2Y 2

0

(
2M−1∑
q=0

TnqAκ
(2q)

)

+
2M−1∑
q=0

δnq2q(2q + 1)Aκ
(2q) = 0 for n = 0, 1, . . . , M − 1. (A1)

Here δnq = ∫ 1
−1 dy′√2n + 0.5P2n(y′)

√
2q + 0.5P2q(y′) is the Kronecker delta with δnq = 1 for n = q

and zero for n �= q. The integral Tnq is given by

Tnq =
∫ 1

−1
dy′√2n + 0.5P2n(y′)(1 − y′2)

√
2q + 0.5P2q(y′). (A2)

It is clear from the expression above that matrix T is a symmetrical tridiagonal matrix (Ti j = 0
for |i − j| > 1) because the Legendre polynomial of degree 2n is orthogonal to all polynomials
of degree less than 2n, and in Eq. (A2) the expression (1 − y′2)P2q(y′) is a polynomial of degree
2(q + 1).

Although the integrals in Eq. (A2) can be analytically calculated using a recurrence relation of
Legendre polynomials it is more practical to proceed to numerical integration because these integrals
should be executed only once for all frequencies.

Equation (A1) can be cast in matrix form as

(κY0)2T(A0, A2, . . . , A2M−2)T = D(A0, A2, . . . , A2M−2)T , (A3)

where the superscript T denotes the transpose and D is a diagonal matrix with Dn,n = 2n(2n +
1/2) − (kinc

openY0)2. The equation above is called a generalized eigenvalue problem because the
eigenvalue (κY0)2 is multiplied by the matrix T rather than the identity matrix. Here T is a positive
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definite matrix because
∫ 1
−1 dy′(1 − y′2) f 2(y′) > 0. The usual method to transform a generalized

eigenvalue problem to an ordinary eigenvalue problem without losing the symmetrical nature of
matrices is to proceed with Cholesky decomposition of the positive matrix,

T = SST ,

where S is a lower triangular matrix. Defining new variables

(A∗
0, A∗

2, . . . , A∗
2M−2)T = ST (A0, A2, . . . , A2M−2)T (A4)

and rewriting (A3) in terms of the new variables lead to

(κY0)2TS−1T
(A∗

0, A∗
2, . . . , A∗

2M−2)T = DS−1T
(A∗

0, A∗
2, . . . , A∗

2M−2)T
.

When the equation above is multiplied from left by S−1 one has an eigenvalue problem associated
with a symmetrical matrix,

(κY0)2(A∗
0, A∗

2, . . . , A∗
2M−2)T = S−1DS−1T

(A∗
0, A∗

2, . . . , A∗
2M−2)T . (A5)

The eigenvectors of the generalized eigenvalue problem can be restored multiplying eigenvectors
of S−1DS−1T by the matrix S−1T . All these steps are carried out with a single call of function
linalg.eigh(D,T) from the scipy package for Python. All the eigenvectors of the generalized
eigenvalue problem are found with the routine eigh. Only the ones that conform to convergence
criteria will be retained (A2l → 0 for 2l approaching M). The routine eigh returns eigenvalues in
ascending order. In general the first half of the eigenvectors meet the convergence criteria.

To transform a generalized eigenvalue problem in Eq. (A3) it would have been easier to multiply
T from the right and left by the diagonal matrix, D−1/2. The matrix resulting from this multiplication
will be tridiagonal. We did not resort to this method because for some frequencies the matrix D can
be singular.
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