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This study examines the effects of angle of attack on the characteristics of the laminar
separation bubble (LSB), its associated low-frequency flow oscillation (LFO), and the
flow field about a NACA-0012 airfoil at Reynolds number of 5 × 104 and 9 × 104, Mach
number of 0.4, and several angles of attack near stall. In the range of the investigated angles
of attack, statistics of the flow field suggest the existence of three distinct angle-of-attack
regimes. At angles of attack lower than the stall angle of attack, the mean flow field is
attached, a short bubble is formed, and the flow field is not much affected by the LFO. At
angles of attack higher than the stall angle of attack and lower than the angle of attack of
maximum LFO, the flow field undergoes a transition process in which the LFO develops
until the flow field reaches a quasiperiodic switching between separated and attached flow
and the LSB switches between short and long bubble. At angles of attack higher than the
angle of attack of maximum LFO, the mean flow field is massively separated, an open
bubble is formed, and the LFO gradually loses momentum and becomes unable to reattach
the flow until the airfoil approaches the angle of a full stall. These angle-of-attack regimes
have, to the best of the authors’ knowledge, not been reported in the literature before.

DOI: 10.1103/PhysRevFluids.6.034701

I. INTRODUCTION

Applications that operate at low Reynolds numbers, Rec < 106 based on the free-stream velocity
and airfoil chord, have steadily increased over the past four decades. These applications include
unmanned aerial vehicles, micro aerial vehicles, low-pressure turbines, low-pressure compressors,
helicopter blades, and vertical axis wind turbines. Airfoils operating at low Reynolds number have
proclivity to induce a laminar separation bubble (LSB) on their upper surface. The LSB affects the
boundary layer on the airfoil surface and consequently the stalling characteristics of airfoils Tani [1]
and Mueller et al. [2].

Owen and Klanfer [3] classified the LSB into two distinct formats of short and long bubble.
The bubble is short if the ratio of the bubble length to the displacement thickness at the point of
separation is in the order of 100, whereas the bubble is termed long if the ratio is in the order of
400. A short bubble has little effect on the external potential flow, while the long bubble has a
more notable influence. At certain conditions, a short bubble suddenly alters to a long bubble or
a fully separated flow without any subsequent reattachment, which is termed bubble bursting. The
first observations and descriptions of the LSB were reported by Melvill Jones [4]. After that, the
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structure of the LSB was investigated in the work of Young and Horton [5], and its averaged shape
was described by Horton [6]. A landmark work on LSBs was carried out by Gaster [7]. He wanted to
eliminate the effect of the airfoil geometry and generate data of different LSBs. The author invented
a brilliant model that allowed him to vary both the Reynolds number and the pressure distribution.
The model was a flat plate with an adjustable pressure distribution. He used the model to carry out a
series of experiments that provided enough data sets for him to characterize the LSB and its bursting
process. He found that the structure of the LSB depends on two parameters. The first parameter is
the Reynolds number of the separated boundary layer, and the second parameter is a function of the
pressure rise over the region occupied by the bubble. Then he determined conditions for the bursting
of short bubbles by a unique relationship between these two parameters. The structure, stability, and
bursting of the LSB were investigated extensively in these studies. However, the primary causes that
triggers the instability of the LSB were not determined. A copious amount of research was carried
out at prestall conditions to investigate the stability of the LSB [8–19].

The bubble breathing, vortex shedding, and/or flapping of the shear layer triggers low-frequency
flow oscillation (LFO) at prestall conditions as a consequence of changing the boundary conditions
or perturbing the free stream. However, at near-stall conditions, the LSB becomes unstable and
switches the flow between attached and separated phases. Consequently, the flow field and the
aerodynamic forces oscillate at a low frequency in a quasiperiodic self-sustained process. Such
an unusually low-frequency oscillation in the flow field was investigated and observed in numerical
and experimental studies [20–30].

The presence of the bubble significantly deteriorates the aerodynamic performance, such as
loss of lift, undesirable change in the moment, and increase in the drag. Flow oscillations due
to bubble shedding and sudden airfoil stalling due to bubble bursting are direct consequences of
the complex and random behavior of the LSB. Mccullough and Gault [31] classified the airfoil
stall into three main categories: (1) leading-edge, (2) thin-airfoil, and (3) trailing-edge stall. The
leading-edge stall results from the flow separation near the leading-edge without any subsequent
reattachment downstream of the separation. In the thin-airfoil stall, the flow reattaches downstream
the separation bubble, and then the reattachment point moves toward the trailing-edge as the angle
of attack increases. The trailing-edge stall initiates at the trailing edge where the flow separates, and
the separation point moves toward the leading edge as the angle of attack increases.

Preliminary results of the data sets used in the present work were documented in Eljack [28],
Elawad and Eljack [29], and a detailed underlying mechanism that generates, sustains, and controls
the LFO was presented by Eljack and Soria [30]. The objective of the present study is to examine
the effects of the angle of attack on the characteristics of the LSB, its associated LFO, and the flow
field around a NACA-0012 airfoil at near-stall conditions. A conditional time and phase averaging
are used to characterize the flow field. The characteristics of the flow field, the LSB, and the
LFO are provided along with careful comparisons with existing experimental and numerical work.
Similarities are discussed in detail, and discrepancies are justified wherever necessary.

II. MATHEMATICAL MODELING

In the present study, the fluid flow is governed by the viscous-compressible Navier-Stokes
equations. The nondimensional analysis of these equations is achieved using the following nondi-
mensional variables:

u j = u∗
j

u∗
r

, ρ = ρ∗

ρ∗
r

, T = T ∗

T ∗
r

, x j = x∗
j

c
, μ = μ∗

μ∗
r

, P = P∗

ρ∗
r u∗2

r

, t = t∗u∗
r

c
,

where

u j = [u1, u2, u3]ᵀ and x j = [x, y, z]ᵀ.

Here ρ, T , and μ are the fluid density, temperature, and dynamic viscosity, respectively. p is the flow
pressure, t is time, and c represents the airfoil chord length. The subscript r denotes the reference
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variables, and the symbol ∗ indicates the dimensional variables. The nondimensional form of the
three-dimensional compressible Navier–Stokes equations can be written in vector form as

∂Q

∂t
+ ∂Fj

∂x j
= ∂Gj

∂x j
, (1)

where

Q =

⎡
⎢⎢⎢⎣

ρ

ρu1

ρu2

ρu3

ρ(D + E )

⎤
⎥⎥⎥⎦ , Fj = u jQ +

⎡
⎢⎢⎢⎣

0
δ1 j p
δ2 j p
δ3 j p
pu j

⎤
⎥⎥⎥⎦ , Gj =

⎡
⎢⎢⎢⎣

0
σ1 j

σ2 j

σ3 j

σk juk − b j

⎤
⎥⎥⎥⎦,

where D = T
γ (γ−1)M2∞

and E = 1
2 u j .uT

j .
Q is a vector including the conservative flow variables, F is the inviscid flux vector, and G is the

viscous flux vector. σi j is the viscous stress tensor, and the term b j is given by

b j = J
∂T

∂x j
and J = μ(T )

(γ − 1)Pr Rec M2∞
,

where M∞ = 0.4 is the reference Mach number, γ = 1.4 is the specific heat ratio, Rec = 5 × 104

and 9 × 104 are the chord Reynolds number, and Pr = 0.72 is the Prandtl number. The dynamic
viscosity μ is calculated using the dimensionless form of Sutherland’s law:

μ(T ) = T
3
2

1 + C

T + C
, C = 0.3686.

The relation between T , ρ and p is given by the ideal gas law:

T = γ M2
∞

p

ρ
.

The viscous stress tensor σi j is given by

σi j = μ(T )

Re

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
,

where δi j is the Kronecker delta.
For LES, any flow variable ψ is decomposed for large and small scales, therefore ψ = ψ̈ + ψ̇ .

ψ̈ and ψ̇ represent the large and small scales, respectively. For compressible flow, it is convenient to
use ψ̃ = ρψ/ρ as a Favre-filtered flow variable (density weighted). By applying the Favre filtering
to Eq. (1), the resultant filtered form is given by

∂Q̂

∂t
+ ∂F̂j

∂x j
= ∂Ĝ j

∂x j
, (2)

where Q̂, F̂j , and Ĝ j are the Favre-filtered counterparts of Q, Fj , and Gj , respectively. The SGS
stress tensor τi j expresses the effect of small scales on the residual stress, and it is modeled as

τi j = ρ(ũiu j − ũi ũ j ). (3)

The models used in the present study are based on the idea of an eddy viscosity νt . Consequently,
the stress tensor is given by

τi j − 1
3δi jτkk = 2νt S̃i j,

where τkk is the isotropic part of the τi j and the strain rate tensor is defined by

S̃i j = 1

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
.
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By applying the dimensional analysis to νt , it gives

νt ∝ ISGS uSGS, (4)

where ISGS and uSGS are the length and velocity scales for the unresolved motion, respectively.
Several models are developed to describe the effect of the SGS stress components. The mixed
timescale (MTS) model was developed by Inagaki et al. [32]. This model is constructed without
using any explicit wall damping function to overcome the drawbacks of other SGS models. In the
MTS model, the expression of νt which is given in Eq. (4) is modified to be given by

νt ∝ TSGS u2
SGS,

where TSGS is a timescale, and uSGS is a velocity scale, which can be calculated using

u2
SGS = (ū − ˆ̄u)2,

where a top hat filtering (̂) denotes a second filtering process. By applying this formula, the νt

approaches zero in the laminar flow region because the uSGS also approaches zero and the flow is
fully resolved. This can be considered as an important benefit of using the MTS model since it does
not need any additional damping functions. The term TSGS is given by

T −1
SGS =

(

̄

uSGS

)−1

+
(

Ct

|S̄|
)−1

,

where 
̄ represents the filter size and Ct is a fixed parameter (in the current study Ct = 10). Inagaki
et al. [32] suggested the timescale as 1/|S̄|. They found that νt ∝ u2

SGS/|S̄| exhibits good agreement
with other SGS models that have a wall damping function. However, it was not appropriate to
implement this eddy viscosity in a region away from the wall where the problem of dividing by zero
can arise. This problem was solved by adding another timescale 
̄/uSGS , which was proposed by
Yoshizawa et al. [33]. Therefore, the νt can be expressed as

νt = CMTS TSGS u2
SGS,

where CMTS is a fixed model parameter (in the current study CMTS = 0.03).
There are two methods to overcome grid to grid oscillations. The first method is by adding an

artificial dissipation to Navier-Stokes equations. The second method is by applying a filter to the
flow field for the small scales without disturbing the large scales. In the current study, the latter
method is used. Visbal and Rizzetta [34] found that to maintain numerical stability, it is convenient
to use compact schemes of order equal or greater than the order of spatial discretization. The spatial
filtering is applied using explicit low-pass filter to the unfiltered field to obtain an approximate
solution:

α f
¯̂Qi−1 + ¯̂Qi + α f

¯̂Qi+1 =
2∑

n=0

an

2
(Q̂i+n + Q̂i−n).

¯̂Qi and Q̂i are the filtered and unfiltered values at point i, respectively. α f is a free parameter in the
range of 0 � α f � 0.5. The coefficients an are derived by matching the corresponding Taylor series
coefficients based on the order of accuracy. The low-pass and high-pass filters remove the small and
large scales, respectively. A fourth-order tridiagonal filter is applied in the current study [35]. It is
unnecessary to implement the whole filtered function but just a part of it according to the following
equation:

¯̄Q = Q̂ − σ (Q̂ − ¯̂Q),

where ¯̄Q is the resulting filtered vector and σ is the filter constant between 0 and 1. If σ = 0, then
no filtering is applied. In the present study σ = 0.25.

034701-4



SIMULATION AND CHARACTERIZATION OF THE …

FIG. 1. Time history of the lift coefficient at Rec = 9 × 104 and the angle of attack of 11.0◦. The dashed,
solid, and dash-dot horizontal lines show the high-lift, mean-lift, and low-lift time average, respectively.

III. CONDITIONAL TIME AND PHASE AVERAGING

The signal of the lift coefficient at each angle of attack was used as a reference to conditionally
time averaging the flow field. The time average of an instantaneous variable of the flow field, < ψ >,
was defined on three different levels a mean-lift, a high-lift, and a low-lift time average. Figure 1
illustrates the concept of the conditional time averaging. The mean-lift average of the variable (<
ψ̄ >) is simply the time average of all data samples of the variable. The high-lift average of the
variable (< ψ̂ >) is the time average of all data samples that have values higher than the mean value.
The low-lift average of the variable (< ψ̄ >) is the average of all data samples that have values less
than the mean value. The lift coefficient signal is used to identify the data samples that are above or
below the mean. It is implemented by taking the mean of the lift coefficient at each angle of attack.
The indices of data points of the time history of the lift coefficient that are above/below the mean of
the lift coefficient are then stored in a high-lift/low-lift data files, respectively. The indices are then
used to locate the data of other flow variables that are above/below their corresponding mean and
consequently used to estimate the low-lift and high-lift time average for all of the flow variables.
Thus, the conditional time averaging is synchronized for all variables so that at a given time step all
variables are allocated to either the high-lift or low-lift regimes.

The previously defined conditional time average on three levels (high-lift, mean-lift, and low-lift)
can be expanded to a series of 37 intervals that gives continues phase information of one complete
cycle. Figure 2 illustrates the conditional phase-averaging process. The right-hand side of the figure
shows time history of the lift coefficient at Rec = 9 × 104 and the angle of attack of 11.0◦. The

FIG. 2. The conditional phase-averaging process. Left: One sinusoidal cycle. Right: Time history of the lift
coefficient at Rec = 9 × 104 and the angle of attack of 11.0◦.
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TABLE I. Computational grid parameters.

Rec Grid y+ 
x+ 
z+ Nξ Nη Nζ Total points

5 × 104 Grid 1 >1 <50 <50 637 320 86 17 530 240
Grid 2 <1 <15 <15 780 320 101 25 209 600
Grid 3 <1 <10 <10 980 320 151 47 353 600

9 × 104 Grid 1 <1 <20 <20 780 320 125 31 200 000
Grid 2 <1 <15 <15 832 351 167 48 769 344
Grid 3 <1 <10 <15 1192 351 167 69 871 464

left-hand side of the figure shows one sinusoidal cycle with a magnitude range of that of the lift
coefficient divided into 36 equally distributed phases. The phase-averaging process is implemented
in the same manner described and used for the conditional time averaging. The lift coefficient signal
was split into an ascending part (� = 0◦ to � = 180◦) in which the lift is increasing with time and
a descending part (180◦ < � < 360◦). The phase-averaging process was applied to the ascending
and the descending lift coefficient and their corresponding data points. For a spanwise ensemble-
averaged instantaneous flow variable < ψ > the decomposition is

< ψ >=< ψ > +< ψ ′′ > + < ψ ′ >︸ ︷︷ ︸
<ψ̆>

, (5)

where < ψ̄ > is the spanwise ensemble-averaged mean of the variable, < ψ̆ > is the spanwise
ensemble-averaged total fluctuations of the variable, < ψ ′′ > is the spanwise ensemble-averaged
periodic fluctuations of the variable, and < ψ ′ > is the spanwise ensemble-averaged turbulent
fluctuations of the variable. The total fluctuations is the summation of the periodic fluctuations
and the turbulent fluctuations.

IV. COMPUTATIONAL SETUP

In terms of the airfoil chord (c), the dimensions of the computational domain were set as
follows: Lξ = 5c in the wake region, from the airfoil trailing edge to the outflow boundary in the
streamwise direction, Lη = 7.3c in the wall-normal direction (the C-grid radius), and Lζ = 0.5c in
the spanwise direction. Here ξ , η, and ζ are the curvilinear coordinates along the airfoil surface, in
the wall-normal direction, and the spanwise direction, respectively. An adequate grid resolution is
required to resolve the large eddies in the flow field. In the present study, three different C-grids for
each Reynolds number are constructed with various distributions in ξ, η, and ζ direction. The LSB
formation, elongation, and bursting processes should be well resolved, therefore; the grid resolution
near the airfoil surface, especially on the suction side, is critical. In Table I, Nξ , Nη, and Nζ are the
grid points in the ξ , η, and ζ direction, respectively. Figure 3 shows a close-up of the computational
grid around the airfoil and a vector plot of the velocity field. As seen in the figure, the grid is very
well refined in the LSB region.

The LES code utilized in the present simulations is an LES version of the direct numerical
simulation (DNS) code written and validated by Jones et al. [36]. The Navier–Stokes equations
were discretized using a fourth-order accurate explicit central difference scheme for the spatial
discretization of the internal points. The fourth-order boundary scheme of Carpenter et al. [37]
was used to treat points near and at the boundary. To preserve the spatial characteristics, the
transformation metrics tensor ξ̀i j were evaluated by using the same fourth-order scheme. The tem-
poral discretization was performed using a low-storage fourth-order Runge-Kutta scheme. The
integral characteristic boundary condition is applied at the free-stream and far-field boundaries
[38]. The zonal characteristic boundary condition is applied at the downstream exit boundary [39],
which is considered as a nonreflected boundary condition to overcome the circulation effects at the
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FIG. 3. Plots of the computational domain, grid distribution, and the LSB.

boundaries. The solution stability was improved by implementing an entropy splitting scheme [40].
The entropy splitting constant β was set equal to 2.0 [41]. The adiabatic and no-slip conditions
are applied at the airfoil surface. The LSB, its associated LFO, and the flow field are inherently
statistically two-dimensional. Therefore, a periodic boundary condition is applied in the spanwise
direction for each step of the Runge-Kutta time steps. The internal branch-cut boundary was updated
at each step of the Runge-Kutta scheme.

V. RESULTS AND DISCUSSION

LESs were carried out for the flow around the NACA-0012 airfoil at near-stall conditions. The
simulations are carried out at Mach number of M∞ = 0.4, Reynolds number of 5 × 104 and 9 × 104,
and several angles of attack near stall. Reducing the Mach number of the numerical simulation to
simulate the flow field at a near incompressible regime (M∞ < 0.1) would considerably increase
the computational cost. The entire domain was initialized using the free-stream conditions (ρ∞ = 1,
ρ∞U∞ = 1, ρ∞V∞ = 0, ρ∞W∞ = 0, and T∞ = 1). The simulations were performed with a time
step of 10−4 nondimensional time units. Samples for statistics were collected once transition of
the simulations has decayed and the flow became stationary in time after 50 nondimensional time
units. Aerodynamic coefficients were sampled for each angle of attack at a frequency of 10 000
to generate two and a half million samples over a time period of 250 nondimensional time units.
The locally time-averaged and spanwise ensemble-averaged pressure, velocity components, and
Reynolds stresses were sampled every 50 time steps on the x-y plane. A data set of 20 000 x-y
planes was recorded at a frequency of 204 at each angle of attack.

A. Three-dimensional instantaneous flow field

Figure 4 shows the instantaneous isosurfaces of the λ2 criterion for the attached and separated
phases of the flow field. The transition process from laminar to turbulent flow is captured in the
simulations as seen in the figure. In the vicinity of the leading edge, the shear layer is separated
and moved away from the airfoil surface. Two-dimensional laminar-like rolls develop along the
separated shear layer. The Kelvin-Helmholtz instability extracts energy from the mean flow and
feeds it into these rolls. The shear layer is a little bit distorted, a secondary spanwise instability
develops to cause helical pairing between adjacent spanwise vortical structures, and eventually
the two-dimensional rolls convert into three-dimensional �-shaped and hairpin structures. Con-
sequently, the flow becomes turbulent. The left-hand side of Fig. 4 illustrates the attached phase
of the flow field. As seen in the figure the separated shear layer is close to the airfoil surface,
and the two-dimensional rolls form in the vicinity of the leading edge and subsequently break into
three-dimensional structures. On the other hand, the separated shear layer moves away from the
airfoil surface and toward the energetic free stream during the separated phase of the flow field
as seen on the right side of the figure. Additionally, the location at which the two-dimensional
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FIG. 4. Instantaneous λ2-criterion isosurface (λ2 = −200) colored by the total energy per unit mass (E ).

rolls breakdown moves farther downstream during the separated phase. Thus, the two-dimensional
structures break down close to the leading edge and consequently cause an early transition to
turbulence during the attached phase, while the transition process takes place farther downstream
during the separated phase of the flow field (late transition). In summary, Fig. 4 shows that the flow
field switches between an attached phase and a separated phase. Consequently, a low-frequency
global oscillation in the flow field is triggered. The velocity components, the pressure, and the
aerodynamics coefficients oscillate accordingly at a low frequency.

B. Aerodynamic coefficients

The locally time-averaged pressure and skin-friction coefficients, CP and Cf , are shown in Fig. 5.
Ten profiles covering the range of angles of attack 9.25◦–10.5◦ at Rec = 5 × 104, and six profiles
covering the range of angles of attack 10.25◦–11.2◦ at Rec = 9 × 104 are presented in the figure.
The zoom-in window illustrates the distribution of CP in the vicinity of the trailing edge in the range
0.6 � x/c � 1.0. Near the airfoil leading edge, a laminar boundary layer develops, and the pressure
coefficient decreases drastically. The boundary layer remains laminar until the pressure gradient
changes from favorable to unfavorable. Consequently, the laminar boundary layer detaches at point
S in Fig. 3 and travels away from the airfoil surface to create a region of separated flow near the
surface. The flow then reattaches to the airfoil surface at point R in Fig. 3 and the LSB forms. The
pressure coefficient exhibits a plateau across the bubble. As the angle of attack increases
above the stall angle of attack the length of the bubble, in the mean sense, increases. Thus, the
magnitude of the pressure coefficient across the bubble increases and the LSB covers a longer
portion of the airfoil as seen in Fig. 5. Downstream the bubble the pressure gradient becomes
adverse, but the flow is turbulent and has enough momentum to overcome new separation. At the
trailing edge, the pressure coefficient shifts upwards gradually as the angle of attack increases as a
consequence of the formation of a trailing-edge bubble (TEB).

In the vicinity of the leading edge, the velocity tends to increase rapidly. Hence, a relatively high-
velocity gradient takes place, and the skin friction is at maximum values at all of the investigated
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FIG. 5. Locally time-averaged pressure and skin-friction coefficients plotted versus the distance from the
airfoil leading edge xc/c. The arrows indicate the direction in which the angle of attack, α, increases in
ascending order.

angles of attack as seen in the figure. Downstream the leading edge, on the suction surface, the
flow separates as a consequence of the high-velocity gradient and the APG. Thus, the skin friction
drops sharply until it crosses the x-axis and becomes negative. The secondary vortex, illustrated in
Fig. 3, rotates in the anticlockwise direction and induces a positive skin friction. Hence, the skin
friction becomes positive again. Downstream the secondary vortex, the skin friction is influenced
by the recirculating flow inside the LSB which is rotating in the clockwise direction and produces
negative skin friction. The skin friction becomes positive downstream the LSB for angles of attack
lower than the angle of attack of maximum LFO. At angles of attack higher than the stall angle
of attack the flow field separates, again, downstream the LSB and upstream the trailing edge.
The flow reattaches to the airfoil surface at the trailing edge and the TEB forms. Consequently, the
skin-friction coefficient becomes negative again in the region occupied by the TEB. On the pres-
sure surface, the skin-friction coefficient increases in the vicinity of the trailing edge as the angle
of attack increases due to the acceleration of the flow. At angles of attack higher than the angle of
attack of maximum LFO, the LSB and TEB merge and form a separated flow region that spans the
whole airfoil chord in the mean sense; thus, the skin friction is negative on the entire suction surface
of the airfoil.

Eight profiles of the streamwise velocity component were extracted along local vertical axes.
The local axes are located at distance xc/c measured from the airfoil leading edge along the airfoil
chord. Figure 6 shows comparison of the extracted data along the local vertical axes with the
incompressible experimental data of Ohtake and Motohashi [42] and Ohtake [43]. The experimental
data were acquired at Rec = 5 × 104 using hot-wire anemometry. The discrepancy in the velocity
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FIG. 6. Profiles of the scaled mean (U/U∞) of the streamwise velocity plotted versus vertical distance from
the airfoil surface (
y/c) at eight locations (xc/c) measured from the leading edge along the airfoil chord at
Rec = 5 × 104 and α = 9.0◦. Solid line: LES data; circles: incompressible experimental data of Ohtake and
Motohashi [42] and Ohtake [43] at Rec = 5 × 104.

near the wall is due to the fact that the hot wire can measure only positive velocities, and negative
velocities are interpreted as positive velocities with the same magnitude. Furthermore, the hot-wire
anemometry does not recognize which velocity component cools its wire; thus, it overestimates
the streamwise velocity component at locations where the wall-normal velocity component has
significant magnitude. Also, the LESs were carried out at a free-stream Mach number of 0.4,
whereas the experiment was conducted at incompressible flow conditions. Thus, the discrepancy
can also be attributed to the effect of compressibility.

Figure 7 also compares predicted variations of the pressure coefficient and the skin friction
around the airfoil surface with the LES data of Alferez et al. [19]. As seen in the figure the LES
data at Rec = 9 × 104, M∞ = 0.4, and the stall angle of attack of 10.25◦ compares very well to the
LES data of Alferez et al. [19] at Rec = 105, M∞ = 0.16, and the angle of attack of 10.55◦, which
is a little bit lower than the stall angle of attack (10.55◦ � αs � 10.8◦). The discrepancy between
the LES data of the present work and that of Alferez et al. [19] is due to the significant difference
in the free-stream Mach number and consequently the effect of compressibility.

FIG. 7. Profiles of the mean pressure and skin-friction coefficients plotted versus the distance from the
airfoil leading edge computed along the curvilinear coordinate on the airfoil suction side xs/c with xs/c = 0 at
the stagnation point at Rec = 9 × 104 and α = 10.25◦.
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FIG. 8. Time histories of the lift and the drag coefficients.

The pressure coefficient was duly integrated about the airfoil at each time step for each angle
of attack to obtain time histories of the lift and the drag coefficients. Time histories of the lift and
the drag coefficients are shown in Fig. 8. The black circles shown at the flow time of 202.955
and 217.855 at Rec = 5 × 104, and at the flow time of 111.255 and 123.155 at Rec = 9 × 104

indicate the instants in time when the instantaneous isosurfaces of the λ2 criterion for the attached
and separated phases of the flow field are shown in Fig. 4. The mean lift and drag coefficients at
the angles of attack of 9.8◦ and 11.0◦ are (CL = 0.6943, CD = 0.1001) and (CL = 0.7028, CD =
0.1110), respectively. Time histories of the lift at the angle of attack of 9.8◦, the drag at 9.8◦, the
lift at 11.0◦, and the drag at 11.0◦ oscillate at an amplitude of about 22%, 25%, 35%, and 50% of
their mean values, respectively. At the Reynolds number of 5 × 104 the LFO cycle is disturbed, and
only a few cycles resemble each other in a time span of about 10 cycles. As the Reynolds number
increases to 9 × 104, the LFO cycle becomes uniform and almost all of the cycles resemble each
other.

The drag coefficient consistently peaks when the lift coefficient hits its mean value as seen in the
figure. Thus, the lift coefficient is leading the drag coefficient by a phase shift of π/2. In the present
study, only the pressure component of the force is considered. Thus, no phase shift between the lift
and the drag is expected. However, these are unsteady aerodynamics studies, and the oscillations in
the aerodynamic coefficients arise from the fluctuating pressure. The fluctuating pressure is the sum
of several modes, and the most dominant are two low-frequency modes. The first low-frequency
mode (LFO mode 1) affects the lift coefficient, and the second low-frequency mode (LFO mode 2)
affects the drag coefficient. The LFO mode 1 leads the LFO mode 2 by a phase shift of π/2, as
discussed in Ref. [30]. Thus, the lift leads the drag by a phase shift of π/2.

Figure 9 illustrates the time-averaged values of the time histories of the lift and the drag coef-
ficients for all of the investigated angles of attack at Rec = 5 × 104 and 9 × 104. The LES data of
Almutairi and Alqadi [27] at Rec = 5 × 104 using Grid 1 above presented here to demonstrate how
the grid distribution affect the LSB, the LFO, and consequently the variation of the lift coefficient
with the angle of attack at near-stall conditions. At Reynolds number of 5 × 104 and 9 × 104 the
angles of attack of maximum lift are αs = 9.0◦ and 10.25◦, respectively. Time-averaged values of the
moment and skin-friction coefficients for all of the investigated angles of attack at Rec = 5 × 104

and 9 × 104 are shown in Fig. 10. The experimental data of Ohtake et al. [44] was not transformed
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FIG. 9. Mean lift and drag coefficients plotted versus the angle of attack α. Circles, upward triangles, and
downward triangles display the mean-lift, high-lift, and low-lift time average of the lift and drag coefficients,
respectively. The filled black squares indicate the incompressible data of Ohtake et al. [44] at Rec = 5 × 104.
The ×’s display the LES data of Almutairi and Alqadi [27].

to its compressible counterpart. The effects of compressibility are expressed by the shift in the
magnitude of the lift coefficient, and the angle of attack at which the lift has maximum values.
Recently, Benton and Visbal [45] showed that increased compressibility causes an earlier inception
of dynamic stall as a consequence of bursting of the LSB. Hence, similar effects of compressibility
in the case of static stall could affect the transition process of the separated shear layer and the
characteristics of the LSB, and consequently lowers the angle of attack of maximum lift.

The aerodynamic coefficients suggest two key angles of attack and three angle-of-attack regimes.
The first key angle of attack is the stall angle of attack (αs), and the second is the angle of attack of
maximum LFO (αLFO). The angle-of-attack regimes are (1) α < αs, (2) αs � α < αLFO, and (3) α �
αLFO. As seen in the figures, the aerodynamic coefficients are not much affected by the variations in
the LSB in the first angle-of-attack regime. In the second angle-of-attack regime, the aerodynamic
coefficients undergo a transition process in which their magnitude is affected by variations in the
LSB and the developing LFO. In the third angle-of-attack regime, the effects of the LFO on the
aerodynamic coefficients gradually diminishes until the airfoil approaches the angle of a full stall.

The vertical distance between the upward and downward triangle at each angle of attack shows
the variation between the high-lift and low-lift time average of the aerodynamic coefficients. The
variation between the high-lift and low-lift time average of the aerodynamic coefficients is relatively
small, increases in proportion to the angle of attack, and reaches a maximum magnitude in the first,
second, and third angle-of-attack regimes, respectively.
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FIG. 10. Mean moment and skin-friction coefficients plotted versus the angle of attack α.

C. Spectral analysis

The magnitude of the time-averaged turbulent kinetic energy (TKE) varies across the separated
shear layer. A line which connect the locations of the maximum TKE values is defined as the center
of the separated shear layer. Four probes are then located along the center of the separated shear
layer. The first probe (Probe 1) is located at the point of separation of the shear layer. Probe 4 is
located at a point where the TKE has a maxima. Two other probes (Probe 2 and Probe 3) are located
between Probe 1 and Probe 4. The four probes are shown on the time-averaged mean-lift flow fields
in Figs. 14, 15, and 16 below for the angles of attack of (9.0◦, 10.25◦), (9.8◦, 11.0◦), and (10.5◦,
11.2◦), respectively. The probes are indicated by the red filled circles and ordered with Probe 1
located at the closest point to the leading edge and Probe 4 located at the furthest downstream point.
The center of the separated shear layer is faithfully aligned with the mean dividing streamline as
seen in the figures.

The instantaneous values of the streamwise, wall-normal, and spanwise velocities were probed
in time at the location of the four probes at each angle of attack. The fast Fourier transform (FFT)
algorithm was used to estimate the spectra of the local variables. Figure 11 (top) shows the spectra
of local variables recorded at Probes 1–4 at Rec = 5 × 104 and the angles of attack of 9.0◦ (stall
angle of attack), 9.8◦ (the angle of attack of maximum LFO), and 10.5◦ (full stall). The bottom of
Fig. 11 shows the spectra of the local variables at Rec = 9 × 104 and the angles of attack of 10.25◦,
11.0◦, and 11.2◦. The line on the upper right corners of the figures indicates the −5/3 slope. The
amplitude of the spectra at Probe 1 is shown on the left y-axis, and the amplitude of the spectra for
the other probes (Probes 2–4) is shown on the right y-axis.

At Probe 1 the amplitude of the spectra of the local velocities is considerably small compared
to its counterpart at the other probes. Also, the amplitude of the spectra of the spanwise velocity
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FIG. 11. Spectra of the streamwise (black line), wall-normal (red line), and spanwise (blue line) velocities
for the angles of attack of 9.0◦, 9.8◦, and 10.5◦ at Rec = 5 × 104 (top), and the angles of attack of 10.25◦,
11.0◦, and 11.2◦ at Rec = 9 × 104 (bottom).

is very small compared to the spectra of the streamwise and wall-normal velocities at Probe 1.
The amplitudes of the spectra of the spanwise velocity increase at Probe 2. The amplitudes of the
spectra of the three velocities become comparable to each other at Probe 3, and the streamwise
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FIG. 12. Spectra of the lift coefficient for the angles of attack α = 9.25◦–10.5◦ at Rec = 5 × 104 (top), and
α = 10.25◦–11.2◦ at Rec = 9 × 104 (bottom).

velocity dominates the other two velocity components. At Probe 4 (the location of the maximum
TKE), the spectra have the classical slope of −5/3 for the inertial subrange indicating that the flow
is turbulent. At the angles of attack of 9.0◦ and 10.25◦ the flow develops more rapidly compared to
the flow field at higher angles of attack.

Most of the variations in the pressure field are integrated into the lift coefficient signal. Hence,
any globally dominant flow feature is reflected by a peak in the spectrum of CL . The spectra of the
lift coefficient were dully calculated using the FFT algorithm. For each of the 16 angles of attack at
Rec = 5 × 104, the spectrum is dominated by a low-frequency peak as seen in Fig. 12. The spectrum
of CL exhibits low-frequency oscillations at the angle of attack of 9.25◦ as a consequence of vortex
shedding and shear layer flapping. At angles of attack higher than the stall angle of attack, the flow
oscillates at low frequency between attached and separated phases. The LFO continues to develop
and gains more strength until the amplitude reaches a maximum at αLFO = 9.8◦. At angles of attack
higher than αLFO, the LFO loses momentum and the amplitude of the CL spectra diminishes as seen
in the figure.

At the Reynolds number of 9 × 104 the spectra do not exhibit low-frequency peaks at angles of
attack lower than or equal the stall angle of attack. Thus, vortex shedding and shear layer flapping
do not induce low-frequency oscillation at this Reynolds number. At angles of attack higher than the
stall angle of attack the flow starts to switch between separated and attached phases as a consequence
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FIG. 13. Low-frequency Strouhal number (St) for the lift coefficient plotted versus the angle of attack α.
Circles: LES data, and ×’s: the LES data of Almutairi and Alqadi [27].

of bubble bursting and reformation. Hence, the spectrum at the angle of attack of 9.6◦ exhibits two
low-frequency peaks as seen in the figure. The spectra exhibit sharp and pronounced low-frequency
peaks at angles of attack α � 10.8◦. This is indicative that the LFO at these angles of attack repeats
periodically and are more pronounced in the magnitude of oscillation.

Figure 13 shows the Strouhal number of the most dominant low-frequency oscillations, St,
plotted versus the angle of attack for the lift coefficient. The ×’s denote the LES data of Almutairi
and Alqadi [27] at the angles of attack of 9.25◦, 9.29◦, and 9.4◦. The authors used a coarser grid
and consequently overestimated the size of the bubble. Thus, the airfoil in their study undergoes an
early full stall at the angle of attack of 9.6◦.

Time histories of the lift coefficient show no apparent low-frequency oscillations for angles of
attack lower than the stall angle of attack [28,29]. However, the spectral analysis identified low-
frequency modes at these angles of attack at Rec = 5 × 104. The LFO at prestall, where the LSB
remains intact, features bubble shedding and breathing modes, whereas the LFO at angles of attack
higher than the stall angle of attack features bubble bursting and reformation.

D. The shape and size of the separation bubbles

Figures 14, 15, and 16 show streamlines patterns superimposed on color maps of the condition-
ally time-averaged streamwise velocity component at the stall angle of attack (αs), the angle of
attack of maximum LFO (αLFO), and an angle of attack higher than αLFO, respectively. The flow
field is ensemble averaged in the spanwise direction and conditionally time averaged on three levels
of high-lift (< ûi >), mean-lift (< ui >), and low-lift (< ūi >) average. As seen in the figures, the
LSB is formed on the upper surface of the airfoil. It is noted that the flow is fully attached in the
high-lift, mean-lift, and low-lift time average at the stall angle of attack, and the LFO does not
have enough momentum to separate the flow. The flow is massively separated (open bubble) in the
high-lift, mean-lift, and low-lift time average at the angles of attack of 10.5◦ at Rec = 5 × 104 and
11.2◦ at Rec = 9 × 104; and the LFO does not have enough momentum to reattach the flow. This is
indicative that these angles set the limits of the angles of attack of interest. At the angle of attack of
maximum LFO, the flow field is fully attached in the high-lift time average and massively separated
in the low-lift time average. Hence, the LFO has the maximum magnitude of oscillation to switch
the flow from fully attached to massively separated. It is interesting to note that the secondary bubble
forms at the same location, in the mean sense, when the flow is attached and when it is massively
separated. Furthermore, the current observation being statistical implies that the conditions for the
formation of the secondary bubble are permanent in space and stationary in time.
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FIG. 14. Streamlines patterns of the time-averaged flow field superimposed on color maps of the time-
averaged streamwise velocity component at the stall angle of attack [αs = 9.0◦ at Rec = 5 × 104 (left), and
αs = 10.25◦ at Rec = 9 × 104 (right)].

A trailing-edge separation region that constitutes the TEB forms at the stall angle of attack (αs =
9.0◦ at Rec = 5 × 104 and αs = 10.25◦ at Rec = 9 × 104). The TEB grows in size as the angle of
attack increases. The LSB and the TEB merge, in the mean sense, at the angle of attack of maximum
oscillations in the LFO (αLFO = 9.8◦ at Rec = 5 × 104 and αLFO = 11.0◦ at Rec = 9 × 104). The
merged bubbles continue to deform, and an open bubble forms when the airfoil approaches the angle
of a full stall (α = 10.5◦ at Rec = 5 × 104 and α > 11.2◦ at Rec = 9 × 104). Thus, a TEB forms at
the stall angle of attack and merges with the LSB at the angle of maximum LFO, and the merged
bubbles forms an open bubble as the airfoil approaches the angle of attack of a full stall. This type
of stall is a combination of thin-airfoil and trailing-edge stall as classified by Mccullough and Gault
[31].

Broeren and Bragg [23] studied the flow field around an LRN(1)–1007 airfoil at Rec = 3 × 105

and the angle of attack of α = 15◦. Two velocity components were measured at 687 locations in the
x-y plane at the airfoil midspan using laser Doppler velocimeter (LDV). A conditional-averaging
method was used and 24 time slots within one cycle resolved the oscillation in 15◦ intervals. They
showed four snapshots of contours of the streamwise velocity at four different phases. The snapshots
show small leading-edge and trailing-edge separated zones; they grow in the second snapshot, merge
in the third one, and become an open bubble in the fourth snapshot. Their experimental observations
are in good agreement with the present discussion inequities of how limited and coarse their data
are.

Figures 17 and 18 illustrate the mean length and the mean height of the LSB and the TEB plotted
versus the angle of attack. The mean length and the mean height of the bubbles were obtained by
approximating the separation location (point S in Fig. 3) and the reattachment location (point R
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FIG. 15. Streamlines patterns of the time-averaged flow field superimposed on color maps of the time-
averaged streamwise velocity component at the angle of attack of maximum LFO [αLFO = 9.8◦ at Rec =
5 × 104 (left), and αLFO = 11.0◦ at Rec = 9 × 104 (right)].

in Fig. 3). At angles of attack lower than the angle of attack of maximum LFO (α < αLFO), the
LSB is bounded by two half-saddle at points S and R as shown in Fig. 3. The TEB is also bounded
by two half-saddle points at the separation point upstream the trailing edge and the reattachment
point at the trailing edge. The length of the LSB and the TEB, in the mean sense, is measured from
the separation point to the reattachment point. The TEB forms at angles of attack equal or higher
than the stall angle of attack (α � αs). Thus, the length and height of the TEB are not defined for
angles of attack lower than the stall angle of attack. At angles of attack equal or higher than the
angle of attack of maximum LFO (α � αLFO), the LSB and the TEB merge and form a full saddle
at the merging point. Therefore, the length and the height of the LSB and the TEB are not defined
for angles of attack equal or higher than the angle of attack of maximum LFO. The height of the
bubbles was measured across each bubble from the airfoil surface, passing through the bubble focus,
and to the edge of the bubble.

The LSBs have a minimum length at the stall angle of attack at each Reynolds number. The height
of the LSBs is proportional to the angle of attack. The LSBs are shorter and thinner at the Reynolds
number of 9 × 104 than their corresponding ones at Rec = 5 × 104. The length of the TEBs
is very small at the inception of stall and increases gradually with the angle of attack. As the LFOs
gain considerable magnitude of oscillations, the length of the TEBs abruptly increases as seen in the
figure. Figure 19 shows the ratio of the height of the LSBs to their length plotted versus the angle
of attack. At angles of attack higher than the stall angle of attack, the bubble bursts. Thus, the LSBs
become thinner, in the mean sense, as the angle of attack increases.

At angles of attack lower than the stall angle of attack, the LSB remains intact. As the angle
of attack increases, the bubble bursts to form a long bubble. Diwan et al. [13] refined the bursting
criterion developed by Gaster [7] to take into consideration the effect of the height of the LSB
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FIG. 16. Streamline patterns of the time-averaged flow field superimposed on color maps of the time-
averaged streamwise velocity component for α = 10.5◦ at Rec = 5 × 104 (left), and α = 11.2◦ at Rec = 9 ×
104 (right).

in addition to its length. The bursting parameter is given by Ph = h2

ν

U

x , where h is the height of

the LSB, ν is the kinematic viscosity, 
U is the velocity difference across the bubble, and 
x
is the length of the LSB. The Reynolds number based on the height of the bubble is given by

FIG. 17. The length of the Laminar Separation Bubble (LSB) and the Trailing-Edge Bubble (TEB) plotted
versus the angle of attack α.
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FIG. 18. The height of the Laminar Separation Bubble (LSB) and the Trailing-Edge Bubble (TEB) plotted
versus the angle of attack α.

Reh = Uhh
ν

, where Uh is the velocity at the maximum height of the LSB (h). The bubble is termed
short if Ph > −28. The right-hand side of Fig. 19 shows a plot of the bursting parameter Ph versus
the Reynolds number Reh. As seen in the figure, the bursting criterion suggests that the LSBs at
Reynolds number of 5 × 104 and angles of attack lower than the stall angle of attack are short
bubbles—in total agreement with the definition of s short bubble and the above discussion which
shows that the LSBs are long bubbles at angles of attack higher than the stall angle of attack.
The bursting parameter Ph is proportional to h2, and the LSBs are thinner at Rec = 9 × 104 than
their Rec = 5 × 104 counterparts. Thus, the criterion suggests that all of the LSBs at the Reynolds
number of 9 × 104 are short bubbles as seen in the figure.

Figure 20 shows the variation of the maximum reverse velocity (MRV) inside the bubble as a
percentage of the free-stream velocity, denoted by circles and as a percentage of the maximum

FIG. 19. The aspect ratio of the LSB plotted versus the angle of attack α (left). The bursting parameter
Ph plotted versus the Reynolds number Reh. The arrows indicate the direction in which the angle of attack, α,
increases in ascending order (right).
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FIG. 20. Maximum reverse velocity (MRV) plotted versus the angle of attack α.

external velocity outside the bubble, denoted by ×’s. The MRV reaches a maximum of 22% of
the maximum external velocity outside the bubble and a maximum of about 35.6% of the free-
stream velocity at the angle of attack of 9.0◦ at Rec = 5 × 104. At the Reynolds number of 9 ×
104, the MRV reaches a maximum of 21.8% of the maximum external velocity outside the bubble
and a maximum of 41.9% of the free-stream velocity at the angle of attack of 10.25◦. It is worth
mentioning that at angles of attack higher than the stall angle of attack, the flow field is switching
between an attached phase and a separated phase. Thus, the percentage of the MRV is in fact the
average of the percentage when the flow is attached and when it is separated. The study by Alam and
Sandham [9] showed that the separation bubble is considered absolutely unstable if the separation
bubble sustains a maximum reverse velocity percentage in the range MRV = 15% to 20%. The
MRV for the current simulation, 22%, is larger than the range pointed out by Alam and Sandham
[9] and can be considered as an indication of the presence of an absolute instability in the bubble at
the stall angle of attack.

E. Periodic and turbulent fluctuations of the flow field

Figures 21, 22, and 23 illustrate color maps of the variance of the velocity components (ŭ2
i ) at the

stall angles of attack, at the angles of attack of maximum LFO (αLFO), and at angles of attack higher
than αLFO, respectively. Where ŭi is the summation of the periodic and the turbulent fluctuations as
defined in Eq. (5) or the total fluctuations. As seen in the figures, ŭ2

i have considerable magnitude
along the separated shear layer in the vicinity of the leading edge where the Kelvin-Helmholtz
instability extracts kinetic energy from the mean flow and feeds it into the turbulent fluctuations.
ŭ2

i also have significant magnitude along the shear layer in the vicinity of the trailing edge where

kinetic energy is fed into the turbulent fluctuations. On the suction surface of the airfoil, ŭ2
i have

considerable magnitude where a triad of three vortices extracts kinetic energy from the mean flow
and adds it to the periodic fluctuations as proposed by Eljack and Soria [30].

Figures 24, 25, and 26 show the maximum values of the velocity variance arising from the

periodic fluctuations (u′′
i

2), the velocity variance arising from the turbulent fluctuations (u′
i
2), and

the turbulent kinetic energy (TKE) plotted versus the angle of attack, where u′′
i is the periodic

fluctuations and u′
i is the turbulent fluctuations. The triad of vortices generates, controls, and sustains

the LFO [30]. Also, the triad of vortices adds periodic fluctuations to the flow field; thus, statistics
of the periodic fluctuations have their maximum magnitude at the angle of attack of maximum
oscillations in the LFO (αLFO). The maximum values of the turbulent statistics peak at αs. The flow
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FIG. 21. Color map of the variance of the streamwise velocity component arising from the total fluctuations
(ŭ2

1) at Rec = 5 × 104 (left) and Rec = 9 × 104 (right).

FIG. 22. Color map of the variance of the wall-normal velocity component arising from the total fluctua-
tions (ŭ2

2) at Rec = 5 × 104 (left) and Rec = 9 × 104 (right).
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FIG. 23. Color map of the variance of the spanwise velocity component arising from the total fluctuations
(ŭ2

3) at Rec = 5 × 104 (left) and Rec = 9 × 104 (right).

field is periodic in the spanwise direction, and the mean velocity component in this direction is
zero. Hence, the periodic oscillations in the spanwise direction (u′′

3) is not shown because it is not
defined. The only acting velocity in this direction is the spanwise turbulent fluctuations (u′

3), and it
is responsible for the break-down of the two-dimensional rolls into three-dimensional structures.

Figure 27 shows color maps of turbulence production (−ŭ1ŭ2
∂u1
∂y ), arising from the total fluctua-

tions, at selected key angles of attack. Turbulence production is dependent on Reynolds stress and

FIG. 24. Maximum values of the variance of the streamwise velocity component arising from the periodic

fluctuations (u′′
1

2) (left) and from the turbulent fluctuations (u′
1
2) (right) plotted versus the angle of attack α.
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FIG. 25. Maximum values of the variance of the wall-normal velocity component arising from the periodic

fluctuations (u′′
2

2) (left) and from the turbulent fluctuations (u′
2
2) (right) plotted versus the angle of attack α.

the gradient of the mean velocity. Reynolds stress extracts energy from the mean flow and feeds it
into the fluctuations along the separated shear layer via the Kelvin-Helmholtz instability. The mean
velocity above the LSB increases during the attached phase and decreases during the separated
phase as seen in Figs. 14, 15, and 16. Consequently, the gradient of the mean velocity increases
during the attached phase and decreases during the separated phase. Thus, production of turbulence
is affected by the Kelvin-Helmholtz instability along the separated shear layer and changes in the
gradient of the mean velocity due to the dynamics of the triad of vortices on the suction surface of
the airfoil [30].

Figure 28 illustrates maximum values of the turbulence production (−ŭ1ŭ2
∂u1
∂y ) and its distance

from the airfoil leading edge (
x/c) plotted versus the angle of attack α. The maximum values of
the turbulence production arising from the total fluctuations have their maxima at the stall angle of

FIG. 26. Maximum values of the variance of the spanwise velocity component arising from the turbulent

fluctuations (u′
3
2) (left) and maximum Turbulent Kinetic Energy (TKE) (right) plotted versus the angle of

attack α.

034701-24



SIMULATION AND CHARACTERIZATION OF THE …

FIG. 27. Color map of the turbulence production arising from the total fluctuations (−ŭ1ŭ2
∂u1
∂y ) at Rec =

5 × 104 (left) and Rec = 9 × 104 (right).

attack. The location of the maximum turbulence production moves towards the airfoil leading edge
and becomes closest to it at the stall angle of attack, and moves away from the leading edge as the
angle of attack increases above the stall angle of attack. The location of the maximum turbulence
production moves away from the airfoil surface as the angle of attack increases in total agreement
with Almutairi and Alqadi [27]. Color maps and the maximum values of the variance of the pressure
( p̆2) are shown in Figs. 29 and 30. The variance of pressure fluctuations has significant magnitude in

FIG. 28. Maximum values of the turbulence production arising from the total fluctuations (−ŭ1ŭ2
∂u1
∂y ) (left)

and the distance of the maximum turbulence production measured from the airfoil leading edge (
x/c) (right)
plotted versus the angle of attack α.
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FIG. 29. Color map of the variance of the pressure arising from the total fluctuations (p̆2) at Rec = 5 × 104

(left) and Rec = 9 × 104 (right).

the laminar portion of the separated shear layer. This is indicative that the instability that generates
and sustains the LFO originates at this location. It is worth mentioning that each of these figures has
four axis two for the magnitude of the maximum variance, and two for the sets of angles of attack
at each Reynolds number.

FIG. 30. Maximum values of the variance of the pressure arising from the periodic fluctuations (p′′2) (left)
and from the turbulent fluctuations (p′2) (right) plotted versus the angle of attack α.
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VI. CONCLUSIONS

Large eddy simulations were carried out for the flow field about a NACA-0012 airfoil at Reynolds
number of 5 × 104 and 9 × 104, Mach number of 0.4, and several angles of attack near stall. The
objective of the study was to examine the effects of the angle of attack on the characteristics of the
flow field, the laminar separation bubble (LSB), and its associated low-frequency flow oscillation
(LFO). Statistics of the flow field show that there are two key angles of attack: The stall angle of
attack and the angle of attack of maximum LFO. Statistics of the periodic flow peak at the angle
of attack of maximum LFO, and statistics of the fluctuating flow (turbulent fluctuations) peak at
the stall angle of attack. At angles of attack lower than the stall angle of attack the mean flow field
is attached, a short bubble forms, and the LFO does not have sufficient momentum to separate the
flow field. At angles of attack higher than the stall angle of attack and lower than the angle of
attack of maximum LFO, the flow field undergoes a transition process in which the LFO develops
until the flow field reaches a quasiperiodic switching between separated and attached flow, and the
LSB switches between short and long bubble. At angles of attack higher than the angle of attack of
maximum LFO, the mean flow field is massively separated, an open bubble forms, and the strength
of the LFO gradually decays and becomes unable to reattach the flow until the airfoil approaches
the angle of a full stall.
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