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We present a general strategy to unify wall-resolved and wall-modeled large-eddy sim-
ulation (LES) approaches for turbulent wall-bounded compressible flows. The proposed
technique allows one to impose the proper wall stress and heat flux, preserving the no-slip
and the isothermal and adiabatic conditions for the velocity and temperature fields, respec-
tively. The approach results in a minimal intrusive algorithm that automatically switches
between wall-resolved and wall-modeled LES according to the local near-wall resolution.
The methodology is discussed and implemented in a flow solver based on high-order finite
difference schemes, the application of which in the context of wall-modeled LES has
been less explored in the available literature. Numerical simulations of canonical turbulent
channel flow and spatially evolving boundary layer are performed in a wide range of
Mach and Reynolds numbers. The results highlight the ability of the present method to
accurately reproduce the outer layer turbulent dynamics, with a minimal influence of the
near-wall grid resolution. In particular, velocity statistics and two-point spatial correlations
are in good agreement with reference direct numerical simulation and wall-resolved LES,
confirming the potential of the proposed approach for predictive analysis of wall-bounded
flows at high-Reynolds number.

DOI: 10.1103/PhysRevFluids.6.034614

I. INTRODUCTION

Wall turbulence plays a fundamental role in a broad range of physical phenomena and en-
gineering applications. Future technological improvements concerning external aerodynamics,
turbomachinery, propulsive, and hydrodynamics systems require a deeper comprehension of fluid
mechanics over solid walls [1–5]. Most of these applications involve turbulent flows, that are
inherently characterized by small-scale eddies in the inner layer playing a fundamental role in
determining friction drag and heat transfer at the wall. They represent a critical issue for any
predictive numerical model.

One major problem in simulating wall turbulence is that close to the wall the energy-carrying
structures scale with the viscous length, δν = ν/uτ , instead of the local boundary layer thickness, δ.
Here uτ = √

τw/ρw denotes the friction velocity and ν denotes the kinematic viscosity of the flow.
Therefore, as the friction Reynolds number (Reτ = δ/δν) increases, the near-wall eddies decrease in
size relative to the boundary layer (BL) thickness. Although direct numerical simulation (DNS) and
large-eddy simulation (LES) can accurately predict the physics of turbulent wall-bounded flows,
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these strategies become prohibitively expensive at high-Reynolds conditions. As a consequence,
Reynolds averaged Navier-Stokes (RANS) approaches are largely preferred in the engineering
practice, even if the errors introduced by modeling all turbulent scales reduce the predictive
capability, particularly for flows with large and massive separations. In this regard, Chapman [6]
and Choi and Moin [7] estimated that the number of grid points necessary to resolve the near-wall
eddies for DNS and wall-resolved LES (WRLES) is about NDNS ∼ Re37/14

L and NWR ∼ Re13/7
L

respectively, where ReL is the Reynolds number based on a characteristic length. Despite the more
favorable computational cost of WRLES compared to DNS, the nearly quadratic relation with the
Reynolds number is still too demanding. Choi and Moin [7] also provided an asymptotic relation
for wall-modeled LES (WMLES), i.e., a LES methodology where the near-wall region is modeled,
estimating that NWM is approximately a linear function of ReL. This makes WMLES an attractive
choice to simulate a strongly time-dependent wall-bounded flow in a reasonable amount of time and
with affordable computational resources.

The theoretical investigation of the near-wall region goes back to the beginning of the 20th
century. The first law of the wall, proposed by von Kármán [8], is a very popular analytical
distribution that can be considered a milestone of near-wall turbulence theory. Over the years,
several extensions of this law have been proposed [9–11] to account for the discrepancies found
among flows in different geometries and to extend the original description to the low-Reynolds
regime. The universal character of these near-wall analytical descriptions has led to a great interest
in the development of wall functions, an idea originally introduced by Launder and Spalding [12]
and then pursued by many others (see, e.g., Craft et al. [13]). Wall functions prevent the need to
resolve the near-wall region and can be employed to design off-wall boundary conditions [14,15].

In the context of WMLES, available methods generally fall into two different categories:
(i) hybrid LES-RANS approaches and (ii) wall-stress model approaches [16,17]. While in the former
the computational domain is divided into near-wall and outer regions where RANS and LES are,
respectively, employed, the latter technique imposes a wall stress computed on an independent grid
that provides the proper boundary conditions to the LES field, covering the whole domain. This
distinction implies that hybrid LES-RANS techniques focus on blending the RANS-type turbulent
eddy viscosity near the wall with an LES-type subgrid scale (SGS) eddy viscosity away from the
boundaries, using a single mesh (see, e.g., Menter [18]). Conversely, the WMLES approach aims at
feeding the information of the wall shear stress and heat flux computed with an external model,
either algebraic or differential, into the LES field. In this regard, numerous contributions have
appeared in the last decades. Cabot and Moin [19] reviewed low-order wall-modeling approaches
combined with the dynamic Smagorinsky SGS model. The authors examined both attached and
separated flows and discussed a novel method to develop wall models from optimal control theory.
Wang and Moin [20] proposed a dynamically adjusted wall-modeled eddy viscosity method for
LES of turbulent boundary layer flows past an asymmetric trailing edge. The study showed that
low-order velocity statistics were in good agreement with corresponding WRLES at a small fraction
of the original computational cost. Temmerman et al. [21] performed a systematic investigation
on the LES of periodic channels with hill-shaped obstructions to assess the predictive accuracy
concerning resolution and modeling issues. Kawai and Asada [22] extended the work of Wang and
Moin [20] by considering a nonequilibrium wall model based on unsteady three-dimensional RANS
equations. The method accounts for a new dynamic eddy viscosity and conductivity model that
corrects the effect of the resolved Reynolds stress and heat flux on the skin friction and the near-wall
thermodynamics. Bose and Moin [23] proposed a dynamic procedure to establish a local slip length
for the wall model to remove any a priori specified coefficient. Park and Moin [24] investigated
the capability of WMLES in predicting the transitional and separated regions of the flow over an
airfoil near stall condition at a high Reynolds number. The comparisons between equilibrium and
nonequilibrium wall models highlight the importance of including the nonequilibrium effects. More
recent developments about WMLES are documented in Larsson et al. [17], Bose and Park [25], and
Yang and Lv [26] where applications of WMLES to complex flows and high-speed conditions are
reported.
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Despite the importance and wide interest for this subject, WRLES and WMLES techniques are
still separate strategies in the field of wall-turbulence applications, and no significant attempts have
been documented to blend them in order to exploit the full potential of the two methods. Consider
for instance the simulation of the flow over a wing at a high Reynolds number. WMLES represents
a useful tool to predict the flow dynamics at a reasonable computational cost. However, since the
near-wall regions can be very different depending on the position considered (laminar, transitional,
turbulent), local grid requirements can vary significantly. Moreover, while high-Reynolds-number
turbulent zones have to be simulated relying on a wall model, regions characterized by incipient
separation, in which the velocity gradient is locally zero, might be directly computed on the
computational grid. Unfortunately, the use of pure WMLES prevents the possibility to resolve these
portions of the flow. Therefore, a unified strategy that can merge the advantages of WMLES and
WRLES keeping the overall computational cost affordable is highly desirable.

The present paper aims at enabling a smooth transition between WRLES and WMLES, designing
a robust algorithm that dynamically adapts the wall treatment. In particular, we propose a unified
method that employs augmented turbulent viscosity and diffusivity at the wall location and allows
one to preserve the no-slip and the isothermal and adiabatic conditions. Such an approach was
partially explored in the field of incompressible flows (see, e.g., Krajnović and Davidson [27] and
Mukha et al. [28]) but it has never been addressed in compressible conditions. Moreover, we discuss
the implementation of the method in the context of high-order, energy-preserving finite difference
(FD) schemes, which represent the ideal solution for LES, allowing for fine control of the numerical
dissipation.

The paper is organized as follows: in Sec. II, the governing equations and the mathematical
models are presented and discussed. In Sec. III, the numerical method is described focusing on the
discrete treatment of the filtered Navier-Stokes equations and the coupling with the wall model.
Simulation results are discussed in Sec. IV, where detailed comparisons of the present method with
reference DNS and LES are provided. Finally, Sec. V summarizes the conclusions.

II. GOVERNING EQUATIONS AND NUMERICAL MODEL

This study has been conducted using URANOS (Unsteady Robust All-Around Navier Stokes
Solver) [29–31], a DNS and LES solver developed at the University of Padova. The code solves the
filtered compressible Navier-Stokes equations in a conservative formulation. Using the Reynolds
(φ = φ̄ + φ′) and the Favre (φ = φ̃ + φ′′, φ̃ = ρφ/ρ̄ ) decompositions, where the overbar denotes
the averaging process in the homogenous space directions and in time, the model reads as follows:

∂ρ̄

∂t
= −∂ρ̄ũ j

∂x j
, (1a)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũ j

∂x j
= −∂ p̄iδi j

∂x j
+ ∂τ̄i j

∂x j
− ∂T SGS

i j

∂x j
, (1b)

∂ρ̄Ẽ

∂t
+ ∂ρ̄ũ j Ẽ

∂x j
= −∂ p̄ũ j

∂x j
+ ∂ ũ j τ̄i j

∂x j
− ∂J̄ j

∂x j
− ∂ESGS

j

∂x j
. (1c)

Here ρ̄ is the filtered density, ũi denotes the Favre-averaged velocity component in the ith
direction, p̄ is the filtered thermodynamic pressure, Ẽ = ẽ + ũiui/2 is the Favre-averaged total
energy per unit mass, J̄ j is the jth component of the filtered molecular heat flux, and ẽ is the
Favre internal energy per unit mass. The thermodynamic variables are related by the ideal gas law,
p̄ = ρ̄RT̃ , where T̃ denotes the Favre temperature and R is the gas constant. The viscous stress
tensor τ̄i j is expressed as

τ̄i j = 2μ(T̃ )
(
S̃i j − 1

3 S̃kkδi j
)

(2)
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where μ(T̃ ) is the molecular viscosity, that is assumed to obey Sutherland’s law:

μ(T̃ ) = T̃ 3/2

(
T0 + S

T̃ + S

)
(3)

where T0 = 273.15K and S = 110.4K are empirical parameters. S̃i j denotes the resolved strain-rate
tensor, S̃i j = 1/2(g̃i j + g̃ ji ), with g̃i j = ∂ ũi/∂x j the resolved velocity gradient. The jth component
of the filtered molecular heat flux is approximated using Fourier’s law:

J̄ j = −λ(T̃ )
∂T̃

∂x j
(4)

where λ = γ R/(γ − 1)μ(T̃ )/Pr is the thermal conductivity. Here Pr denotes the molecular Prandtl
number and γ = cp/cv is the specific heat ratio, the values of which are set equal to 0.71 and 1.4,
respectively.

The SGS stress tensor T SGS
i j = ρuiu j − ρ̄ũiũ j is modeled as

T SGS
i j − 1

3 T SGS
kk δi j = −2μSGS

(
S̃i j − 1

3 S̃kkδi j
)

(5)

where μSGS denotes the SGS viscosity and T SGS
kk is the isotropic contribution. According to Garnier

et al. [32], the latter assumes large values near shocks and discontinues where (usually) the
numerical schemes introduce a considerable amount of numerical dissipation to keep the solution
stable. Therefore, this term is often overwhelmed by the numerical upwinding process, making its
contribution negligible. In the present paper, the SGS viscosity is computed using the wall-adaptive
large-eddy model by Nicoud and Ducros [33], according to which μSGS is expressed as

μSGS = ρ̄(Cw
)2

(
Sd

i jS
d
i j

)3/2

(
Si jSi j

)5/2 + (
Sd

i jS
d
i j

)5/4 (6)

where

Sd
i j = 1

2 (g̃il g̃l j + g̃ jl g̃li ) − 1
3 g̃ml g̃lmδi j (7)

is the traceless symmetric part of the square of the resolved velocity gradient tensor. Here Cw =
0.325 is the model constant and 
 = (
x1
x2
x3)1/3 is the local mesh size. Among the variety
of SGS viscosity models, the one selected automatically provides the correct μ̄SGS/μ̄ ∼ O(y+)3

asymptotic behavior in the near-wall region without prescribing any artificial transition between the
bulk flow and the boundary layer.

Finally, the SGS term of the filtered energy equation is given by

ESGS
j = (ρE + p)u j − (ρ̄Ẽ + p̄)ũ j (8a)

= [
ρcpTu j − ρ̄cpT̃ ũ j

]︸ ︷︷ ︸
Q j

+ [
1
2 (ρuiuiu j − ρ̄ũiũiũ j )

]
︸ ︷︷ ︸

ψii j

− 1
2 T SGS

ii ũ j . (8b)

Here Q j = −λSGS∂T̃ /∂x j is the SGS heat flux, modeled with λSGS = μSGSγ R/(γ − 1)/PrSGS,
while ψii j denotes the velocity triple correlation tensor the contribution of which has been set to
zero. The SGS Prandtl number PrSGS is assumed equal to 0.9.

A. Equilibrium wall-stress model

The wall model assumes equilibrium between convection and pressure gradient and is char-
acterized by two unknowns, UWM and TWM, which denote the averaged wall-parallel velocity and
temperature, respectively. The subscript WM is used to emphasise that the quantity is obtained using
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the wall model and not the LES solver. Under the equilibrium hypothesis [17], the Navier-Stokes
equations result in the following ordinary differential equations (ODE) system:

d

dy

[
(μWM + μt,WM)

dUWM

dy

]
= 0, (9a)

d

dy

[
cp

(
μWM

Pr
+ μt,WM

Prt,WM

)
dTWM

dy

]
= − d

dy

[
(μWM + μt,WM)UWM

dUWM

dy

]
(9b)

where cp is the specific heat at constant pressure, Prt,WM = 0.9 is the model turbulent Prandtl
number, μWM = μWM(TWM) is the laminar viscosity which obeys Sutherland’s law, and μt,WM is
the model eddy viscosity, defined as

μt,WM = κρWMuτ y+D, (10)

where κ = 0.41 is the von Kármán constant and ρWM = pLES/TWM denotes the density profile,
obtained assuming a constant pressure distribution in the boundary layer. The Van Driest damping
function, D, is given by

D = [1 − exp(−y+/A+)]2 (11)

where A+ = 17 is a model constant indicating the dimensionless height above the wall where the
molecular and turbulent viscosities become of the same order of magnitude. Under the equilibrium
assumption, the bracketed quantities in Eqs. (9a) and (9b) are constant across the wall-modeled
layer. These conserved quantities correspond to the sum of the viscous and turbulent shear stress
[Eq. (9a)] and the sum of molecular diffusivity, turbulent heat transport [left-hand side of Eq. (9b)],
and aerodynamic heating [right-hand side of Eq. (9b)]. The ODE system needs to be solved on
an independent grid that goes from the wall y = 0, where the following boundary conditions are
imposed,

UWM = 0, (12a)

TWM = Tw (isothermal wall) or
dTWM

dy
= 0 (adiabatic wall), (12b)

to a matching location y = hwall, where the corresponding boundary conditions are

UWM = u//LES
, (13a)

TWM = TLES, PWM = pLES (13b)

where u//LES
, TLES, and pLES are the resolved LES values of wall-parallel velocity, static temperature,

and static pressure, respectively. The equilibrium model is used to compute the wall shear stress and
the wall heat flux defined as

τw,WM =
(

μ
dUWM

dy

)
y=0

, qw,WM =
(

cpμ

Pr

dTWM

dy

)
y=0

. (14)

The information is then fed back as a boundary condition to the outer LES grid as detailed in the
next sections.

B. Unified WR and WMLES methodology

WMLES models have been developed with the explicit intention of placing the first grid point
as far as possible from the wall location. This represents the strength of the WM approach, but
also its weakness since any relation with the standard no-slip boundary condition for the velocity
field or isothermal and adiabatic conditions for the temperature is wholly lost, and the role of the
boundary is packed into the model wall shear stress, τw,WM, and heat flux, qw,WM. Neglecting the
no-slip condition is strongly penalizing for those flow regions where the near-wall dynamics could
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be resolved rather than being fully modeled, even employing a sufficiently coarse grid: that is the
case of incipient separating or laminar portions of wall layers. In these cases, the wall shear stress
is close to zero, resulting in local resolutions that often fall within wall-resolved criteria.

In the proposed method, the key for blending the WR and WM approaches relies on the
modification of the overall viscosity μtot = μ + μSGS and diffusivity λtot = λ + λSGS at the wall
location in such a way that the allowable shear stress and heat flux are fed back to the outer LES
field simultaneously keeping no-slip and no-penetration and isothermal and adiabatic boundaries
active.

Looking at the filtered NS equations, μSGS and λSGS are free parameters for the system which
solely depend on the choice of the turbulence model and are subject to the constraint of being
wall-turbulence consistent, i.e., they have to vanish moving towards the wall gradually. More
specifically, this condition must be respected in the case of a purely WR simulation, where the
near-wall resolution is sufficient to capture the smallest turbulent structures adequately. Conversely,
if the the near-wall resolution does not provide a WR condition, the wall-consistency constraint
must be dropped and the SGS coefficients (μSGS, λSGS) can assume a nonzero value at the wall
location to provide the SGS contributions not captured by the discretization scheme. Therefore, for
the development of a unified WR and WMLES strategy, it is essential to understand how to assign
values to the overall wall viscosity (μtot

w = μw + μSGS
w ) and diffusivity (λtot

w = λw + λSGS
w ) to meet

this complex set of requirements. Let us consider the following quantities:

μeff = τw,WM

τLES
w

μw, (15a)

λeff = qw,WM

qLES
w

λw, (15b)

which could be called effective wall viscosity and effective wall heat diffusivity. Equation (15a)
represents the laminar wall viscosity corrected by the ratio between the model (τw,WM) and the
resolved LES shear stress (τLES

w ). Similarly, Eq. (15b) denotes the laminar wall diffusivity corrected
by the ratio between the model (qw,WM) and the LES heat fluxes (qLES

w ). These equations can be
physically interpreted as the missing SGS contributions at the wall location which provide the
desired wall shear stress and heat flux for the LES outer field according to

τLES
w = μeff

∂u//

∂y
= (

μw + μSGS
w

)∂u//

∂y
, (16a)

qLES
w = λeff

∂T

∂y
= (

λw + λSGS
w

)∂T

∂y
. (16b)

Therefore, in the case of WMLES, the SGS viscosity and diffusivity at the wall location are not null
and their values

μSGS
w = μeff − μw, (17a)

λSGS
w = λeff − λw (17b)

precisely denote the missing SGS contribution at the wall. These quantities can be fed back to
the LES outer field, correcting the velocity and temperature gradients by a factor that provides
the desired shear stress and heat flux at the wall location. In contrast, in the WRLES case, the
effective viscosity and diffusivity automatically recover the corresponding laminar values, guar-
anteeing μw

SGS = λw
SGS = 0. This arrangement effortlessly unifies the WRLES and the WMLES

approaches, keeping active both the no-slip and no-penetration conditions for the velocity field
and the isothermal and adiabatic condition for the temperature at the wall. Moreover, the general
character of the proposed methodology makes possible an easy coupling with most of the numerical
implementations since the SGS viscosity and diffusivity fields are locally modified depending on
the near-wall resolution.

034614-6



UNIFIED WALL-RESOLVED AND WALL-MODELED METHOD FOR …

III. NUMERICAL METHODS

A. Numerical treatment of the filtered Navier-Stokes equations

The filtered Navier-Stokes equations are discretized through high-order finite difference schemes
on Cartesian grids. The nonlinear convective terms are based on a sixth-order, central discretization
[34] which provides semidiscrete preservation of the total kinetic energy in the limit of inviscid,
incompressible flows. This property allows for a robust spatial discretization of the convective
derivatives without the addition of numerical dissipation. Hence, the numerical method is ideal in the
context of LES, where the dissipation must be provided only by the SGS model to avoid uncertainty
related to the role of the numerical discretization in the prediction of the turbulent fluctuations. The
method has been successfully applied to simulate a wide range of compressible wall-bounded flows
(see, e.g., [29,35–37]).

A peculiarity of the numerical discretization relies on the treatment of the viscous fluxes,
expanded in a semiconservative formulation and discretized with sixth-order finite differences. Here
a brief description of the method is reported, while further details can be found in De Vanna et al.
[38]. The viscous terms can be recast as

∂τ̄i j − T SGS
i j

∂x j
= ∂

∂x j

(
μ̄tot

∂ ũi

∂x j

)
︸ ︷︷ ︸

Incompressible contribution

+ ∂

∂x j

(
μ̄tot

∂ ũ j

∂xi
− 2

3
μ̄tot

∂ ũs

∂xs
δi j

)
︸ ︷︷ ︸

Compressible contribution

. (18)

The incompressible contribution acts in any flow conditions, while the compressible contribution
is expected to assume large values just near shocks. Here μ̄tot = μ̄ + μSGS is the overall viscosity.
Usually, the viscous fluxes are discretized via a standard collocated approach, a numerical descrip-
tion which is well known for providing erroneous behaviors of the flow and instabilities especially
in poorly resolved regions or where the μ̄tot experiences highly local variations. This inconvenience
is highly mitigated if a conservative formulation accounts for the incompressible contribution; thus,
we can write

∂

∂x

(
μ̄tot

∂ ũ

∂x

)
� 1


xi
(τ̂i+1/2 − τ̂i−1/2). (19)

Here τ̂i+1/2 denotes a high-order representation of the viscous stresses at the cell interface expressed
as

τ̂i+1/2 = 1


xi+1/2

n∑
l=m

βl μ̄i+lγl ũi+l (20)

where {βl , γl}n
l=m denote the interpolation coefficients as reported by De Vanna et al. [38]. In the

case of uniform viscosity, the method recovers a standard collocated description of the viscous
terms with corresponding order of accuracy. Besides, in the limit of incompressible or weakly
compressible flows, the proposed approach provides the high-order conservation of the viscous
terms independently to the grid stretching and resolution or the viscosity variations. The scheme is
also employed in the numerical treatment of the heat flux components observing that

∂

∂x

(
λ̄tot

∂T̃

∂x

)
� − 1


xi
(Ji+1/2 − Ji−1/2) (21)

is structurally similar to the one given in Eq. (19).
Finally, the solution is advanced in time with the third-order low-storage total variation di-

minishing Runge-Kutta method by Gottlieb and Shu [39]. The scheme provides a maximum
Courant-Friedrich-Lewy parameter CFLmax equal to 1. In the following computations, the CFL
number is set equal to 0.5.
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B. Numerical treatment of the wall-stress model

The focus of the paper is to develop an algorithm that guarantees a smooth transition between
WMLES and WRLES, leaving the freedom to use a grid compatible with the available computa-
tional resources. During the simulation, a dynamical procedure checks if the near-wall resolution
satisfies WRLES mesh requirements. In this respect, even though sharp thresholds between WR
and non-WR cases cannot be expressed, it is necessary to select upper bounds beyond which wall
resolutions (i.e., 
x+

w ,
y+
w , and 
z+

w ) are not considered adequate for a WR approach. Therefore,
based on recommendations available in literature [40,41], we consider a case sufficiently resolved
when


x+
w < 50, 
y+

w < 5, 
z+
w < 25. (22)

The dynamic procedure computes a first guess of the local viscous length, δν , using Reichardt’s law
[42]

ũ//

uτ

= κ−1 log (1 + κy+) + 7.8

(
1 − e− y+

11 − y+ e−0.33y+

11

)
(23)

that is solved by providing the resolved LES wall-parallel velocity (ũ//) at a fixed wall distance
y0, with y+ = y0/δν . Even if Eq. (23) assumes equilibrium of the flow, the model generalizes the
standard von Kármán log law and can be applied to out-of-equilibrium conditions as long as the
y+ input location is taken in the viscous, the buffer, or the log-law regions of the boundary layer.
Once the solution of Reichardt’s law is obtained, the δν value is employed to evaluate the near-wall
resolution and discern if the local boundary layer requires a WR or a WM treatment. It is worth
pointing out that when grid refinement progressively increases from the purely WM to the WR case
it is likely that the matching location of the wall model hWM (usually taken as a fixed location in
the LES grid in a purely WMLES configuration [43]) falls inside the buffer layer. This region is
not suitable to act as an exchange location with the LES field since it is characterized by extreme
velocity and pressure fluctuations. To avoid this occurrence, the WM-matching location, jint, is
identified by the condition of being at least the third off-the-wall point and having a y+

j value greater
than 40. Thus, the following condition holds:

jint =
{

j � 3
∣∣∣ y+

j = 
y+
w

y j − yw

y1 − yw

> 40

}
. (24)

From preliminary tests on high-Reynolds cases, we found that placing the interface in the range
y+ = 40 ÷ 500 lead to similar results. Moreover, Eq. (24) avoids the first two points off the wall
to be selected as WM interfaces, a condition that is strongly recommended to limit or reduce the
log-layer mismatch [17,43].

A sketch of possible situations concerning the location of the wall-model–LES interface is
reported in Fig. 1 for the wall-normal direction. Figure 1(a) is representative of a setup in which
the grid places enough nodes in the near-wall region to satisfy the WR condition. Thus, the shear
stress model acts sporadically since the WM procedure and the integration of Eqs. (9) is mostly
skipped by the algorithm. Figure 1(b) is representative of a mixed WR and WMLES eventuality.
In this case, the near-wall resolution is not able to entirely satisfy the WR condition, and the shear
stress model acts quite often. However, the WMLES exchange location is still placed sufficiently far
from the first grid point, the matching location being set at y+ ≈ 40. Finally, the third case [Fig. 1(c)]
shows a purely WMLES setup. In this condition, the number of nodes is not sufficient to fall in the
WR case; therefore, the model acts in most of the instantaneous flow conditions and the matching
location follows the suggestions provided by Kawai and Larsson [43].

After the local near-wall resolution has been estimated and the matching location identified, the
wall-stress model is applied to obtain shear stress and heat flux at the wall. As mentioned, the ODE
system in Eq. (9) is solved using an independent one-dimensional finite volume (FV) grid with the
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(a) (b) (c)WRLES WR/WMLES WMLES

FIG. 1. Sketch of representative cases for the location of the wall-model–LES interface: (a) fully wall-
resolved case, (b) mixed wall-resolved and wall-modeled case, and (c) fully wall-modeled case.

proper near-wall resolution, defined by the distribution

y f ,J = 
yw

rJ − 1

r − 1
, J = 0, 1, . . . , nWM (25)

where y f ,J is the coordinate of the Jth cell face, r is the stretching parameter, 
yw/δν = 0.1
is the spacing at the wall, and nWM = 50 is the total number of nodes. The wall-model equa-
tions are solved according to the implementation described in Kawai and Larsson [43]. After
obtaining τw,WM and qw,WM, their values are fed back to the LES solver thorough the effective
viscosity and the effective heat diffusivity defined in Eq. 15, used to locally modify the overall
values at the wall (μtot

w = μw + μSGS
w , λtot

w = λw + λSGS
w ). Specifically, the practical implemen-

tation in our FD solver is based on the definition of the overall viscosity in the ghost nodes
according to

μtot
1− j,gh = 2μeff − μtot

j,in j = 1, . . . , 3 (26)

where μtot
j,in is the overall viscosity in correspondence to an inner point location. This method is

found to be very effective in terms of stability since it does not directly alter the resolved LES
fields, but it locally modifies the quantities provided by the SGS model.

IV. RESULTS AND DISCUSSIONS

In this section, the main results obtained using the proposed unified WR and WMLES
approach are presented and discussed. The method is applied to channel flow configurations
in both the low-speed and high-speed regime and spatially developing supersonic boundary
layers.

A. Turbulent channel flow

The turbulent channel represents a fundamental benchmark for any numerical model developed
to simulate wall turbulence. Here, we consider a nearly incompressible setup at Mb = ub/cw = 0.1
and a compressible one at Mb = 1.5 for different values of the bulk Reynolds number, i.e., Reb =
2ρbubh/μw. Here ub = 1/(ρbV )

∫
V ρudV is the bulk velocity, ρb = 1/V

∫
V ρdV is the bulk density,

while μw and cw are the laminar viscosity and the speed of sound at the wall location, respectively.
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TABLE I. Parameters of the turbulent channel flow simulations.

Case Reτ Reb Mb Re∗
τ Nx Ny Nz α 
x+ 
y+

w ÷ 
y+
c 
z+

0590a 590 21814 0.1 588 128 128 128 3.4 29 0.5 ÷ 18 14.5
0590b 590 21814 0.1 567 48 48 24 78 12.3 ÷ 24.6 78
0590c 590 21814 0.1 560 48 36 24 78 16.4 ÷ 32.7 78
0590d 590 21814 0.1 560 100 96 100 2.0 37.1 3 ÷ 16.4 18.5
0590e 590 21814 0.1 597 100 64 100 37.1 9.2 ÷ 18.4 18.5
0590f 590 21814 0.1 577 100 36 100 37.1 16.4 ÷ 32.8 18.5
1000a 1000 40411 0.1 910 80 36 40 78 28 ÷ 56 78
1000b 1000 40411 0.1 940 80 72 40 78 13 ÷ 26 78
1000c 1000 40411 0.1 993 160 96 120 2.6 39.2 3÷ 32 26.2
1000d 1000 40411 0.1 1016 160 96 60 2.6 39.2 3÷ 32 52.4
1000e 1000 40411 0.1 1027 160 96 30 2.6 39.2 3÷ 32 104.7
1000f 1000 40411 0.1 1012 120 96 160 2.6 52.3 3÷ 32 19.6
1000g 1000 40411 0.1 1057 60 96 160 2.6 104.7 3÷ 32 19.6
1000h 1000 40411 0.1 1095 30 96 160 2.6 209.4 3÷ 32 19.6
2000a 2000 86453 0.1 1790 160 64 80 78 32 ÷ 64 78
2000b 2000 86453 0.1 1840 160 128 80 78 16 ÷ 32 78
5200a 5200 253374 0.1 4870 160 128 80 204 40 ÷ 80 204
500a 500 14386 1.5 462 40 40 20 79 12.5 ÷ 25 79

A list with the relevant parameters of all the configurations analyzed is reported in Table I, where
the bulk Reynolds number (Reb), and the nominal and the computed friction Reynolds number (Reτ

and Re∗
τ , respectively), where Reτ = ρwuτ h/μw, are also available.

The computations are carried out in a tridimensional box with size Lx × Ly × Lz = 2πh × 2h ×
πh along the x, y, and z coordinates, respectively, h being the channel half height. A uniform mesh
spacing is applied in the wall-parallel directions, whereas a nonuniform distribution is adopted in
the wall-normal direction according to

y j

h
= erf

[
α
(
η j − 1

2

)]
erf

(
1
2α

) , j = 1, . . . , Ny (27)

where η j = ( j − 1/2)/Ny is the computational coordinate and α the stretching parameter. The num-
ber of nodes, Nx × Ny × Nz, the value of the stretching parameter, α, and the corresponding mesh
spacings in inner units (i.e., normalized by the viscous length, δν), 
x+ × 
y+

w ÷ 
y+
c × 
z+, are

reported in Table I for all the simulations. The units in the y direction are reported as a range between
the wall (
y+

w ) and the centerline (
y+
c ) spacings, respectively.

Concerning the boundary conditions, periodicity is enforced in the wall-parallel directions while
a no-slip isothermal condition is imposed for the two walls. The grid spacing is staggered in
correspondence with the first and the last cell so that the wall coincides with an intermediate node.
This process guarantees mass conservation and allows one to increase the simulation time step [44].
The initial condition follows the procedure described in Dan and John [45], which superimposes a
vortex pair to the analytical solution of the Poiseuille flow. This strategy promotes an early transition
to turbulence. To sustain the flow rate in the channel, a forcing term F = {0, f , 0, 0, f u}T is added
to the right-hand side of the Navier-Stokes equations. The latter is evaluated at each time step. The
process enforces the conservation of the mass-flow rate discretely.

1. Fully wall-resolved setup

As a first step, a nearly incompressible turbulent channel flow with a nominal friction
Reynolds number equal to Reτ = 590 is simulated considering a purely WR setup. The test
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FIG. 2. WRLES of turbulent channel flow at Mb = 0.1 and Reτ = 590. Distribution of (a) mean velocity
profiles and (b) Reynolds stresses as a function of y+, compared with reference DNS data by Vreman and
Kuerten [46] (gray circles).

aims at validating the solver in the case of an incompressible fully resolved configuration. In
this case the resolution is 
x+ = 29, 
y+ = 0.5 ÷ 18 and 
z+ = 14.5 and the computation
sees the wall model inactive since most of the energetic turbulent scales are assumed to be
captured.

Figure 2 shows the mean streamwise velocity profile, u+ = ũ/uτ , and density-scaled Reynolds
stress components, τ̄i j/τw = ρ̄ũ′′

i u′′
j /τw, as a function of the inner-scaled wall distance y+ = yReτ .

An excellent agreement with the reference DNS data of Vreman and Kuerten [46] is observed.
Moreover, the computed friction Reynolds number is found equal to Re∗

τ = 588 which is 0.3% less
than the target value.

2. Fully wall-modeled setup

As a second step, we assess the performance of the fully wall-modeled approach, which com-
putes the wall shear stress, τw, and heat flux, qw, without a direct computation of the near-wall
turbulence dynamics. This strategy avoids extremely refining the mesh in the wall region since the
computational demanding portions of the flows are completely modeled rather than being solved,
and the first grid point can lie in the log layer. Even if the wall resolution drastically drops, the
large-scale dynamics and the energy-dominant turbulent structures are still directly resolved by the
off-wall LES. The process preserves the proper energy exchange between the vortex scales and
captures the turbulent time-varying dynamics.

The effectiveness of the model can be appreciated looking at Figs. 3 and 4, where the mean
streamwise velocity profile and the density scaled Reynolds stress components are shown, re-
spectively. Both figures report the data as a function of the inner-scaled wall distance for several
cases in the low-Mach regime. The computations span a wide space of Reynolds numbers (Reτ =
{590, 1000, 2000, 5200}T ), ranging from the low to the moderate to high regime. Details in terms of
grid points and resolution are given in Table I, cases 590b, 590c, 1000a, 1000b, 2000a, 2000b, and
5200a. The filtered Navier-Stokes equations are discretized on uniform grids only, avoiding wall
refinements and placing the first grid node sufficiently far from the wall.

Overall the results are in good agreement with the reference DNS data, showing only small dis-
crepancies, especially for the mean velocity profile, that is affected by a mild log-layer mismatch. In
particular, an upward shift is present in the WMLES data, with the model showing some difficulties
in accurately reproducing the target friction Reynolds number. It is worth pointing out that the
log-layer mismatch is a major issue in the field of WMLES since the problem has not been entirely
ascertained yet. In this regard, various studies suggest that, within the WM paradigm, both positive
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FIG. 3. Mean streamwise velocity profiles u+ = ũ/uτ for channel flow cases at Mb = 0.1 and various
Reynolds numbers. Present results (symbols) are compared with DNS data from Vreman and Kuerten [46],
Bernardini et al. [47], and Lee and Moser [48] (solid lines).

and negative mismatches are possible, depending on numerous factors. First, the mesh should be
accurately calibrated to minimize the phenomenon and reduce the under- and overprediction of the
skin friction. This process can undoubtedly be conducted in canonical configurations but can rarely
be employed in complex geometries. Secondly, different code implementations (e.g., FD vs FV),
numerical methods, and turbulence models can have an influence on this issue, making it still an
open problem (see, e.g., Larsson et al. [17] and Yang et al. [49] for further details). However, the
coarsest setup provides a predicted shear Reynolds number (i.e., Re∗

τ in Table I) with a 10% error
compared to DNS, which could be considered well within the range of acceptability in engineering
applications.

Finally, as shown in Fig. 4, velocity fluctuation intensities away from the wall exhibit an excellent
agreement against DNS data whereas the near-wall fluctuations in the unresolved inner layer are
not computed. This implies that the wall model works as expected, creating physically realistic
fluctuations of the resolved turbulence far from the wall without resolving the near-wall region.
However, since the interface between the wall model and the LES field is always placed some
point far from the wall location, the first few WMLES nodes do not accurately represent the actual
solution and could be considered a starting region for the model itself.

3. Wall-resolved and wall-modeled setup

Following the purely WRLES and purely WMLES results, this section aims at illustrating the
principal feature of the proposed method: the ability to smoothly switch from a WR to a WM
configuration in the context of LES. For the sake of clarity, we first investigate the effect of
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FIG. 4. Density scaled Reynolds stress components ρ̄ũ′′
i u′′

j /τw as a function of the inner scaled wall distance
y+ for channel flows at Mb = 0.1 and different Reynolds numbers. Present results (symbols) are compared with
DNS data from Vreman and Kuerten [46], Bernardini et al. [47], and Lee and Moser [48] (solid lines).

the transition in the wall-normal direction, being the most critical of the three concerning wall
turbulence modeling. Then, we will focus on the impact of a low resolution in the wall-parallel
directions.

a. Effect of the wall-normal resolution. Several simulations of the low-speed channel at Reτ =
590 are performed using a set of grids with a decreasing wall-normal resolution. In particular, the
computations are performed setting the precomputed 
y+

w in the range {3, 9.2, 16.4}T and imposing
that the wall-parallel spacings do not exceed the bounds expressed by Eq. (22). The setup corre-
sponds to a coarse WR, mixed WR and WM conditions, and a purely WM arrangement exploiting
the full-range capabilities of the proposed numerical method. The details of the computations are
reported in Table I, cases 0590d–0590f. The comparison of the results with the incompressible
reference DNS by Vreman and Kuerten [46], reported in Fig. 5, shows a good agreement for all
cases. In particular, it is highlighted that the proposed numerical method can link the WR and the
WM approach smoothly, without any undesired effect even when the first grid point is placed inside
the buffer layer.

Figure 6 shows the near-wall turbulent structures in terms of streamwise velocity contours (i.e.,
ũ/cw) in a wall-parallel plane at two different locations, y+ � 20 and 100. It can be observed that,
as 
y+

w decreases, the near-wall streaks become more detailed and qualitatively recover the shape
of those captured by the WRLES. In contrast, WMLES resolutions do not adequately represent the
near-wall streaks, however far from the wall, at y+ � 100, the structure of the velocity fluctuations
appears similar to WRLES cases. To quantitatively analyze the size of the turbulent structures
predicted by the unified WR and WMLES simulations, the two-point spanwise correlation of the
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FIG. 5. Mean velocity profiles (a) and Reynolds stresses (b) from unified WR and WMLES simulations of
turbulent channel flow at Mb = 0.1 and Reτ = 590, compared with incompressible DNS data of Vreman and
Kuerten [46].

streamwise velocity fluctuations is computed as

(28)

Contours of R11 are reported in Fig. 7 as a function of the spacing 
z and the wall-normal location
for the various unified WR and WMLES cases compared with the pure WRLES results (solid black
lines). As expected in WMLES, the structure of the turbulent field is not captured in the near-wall
region, the mesh resolution being not sufficient to resolve the small spacing between the streaks.
However, when moving away from the wall, all cases tend to fall back into the prediction of a
standard WRLES approach. In conclusion, almost independently of the 
y+

w , the outer turbulent
dynamics are well captured, and the model still provides the correct assessment of the boundary
condition and the proper behavior of the turbulent structures.

b. Effect of the wall-parallel resolution. Since the proposed unified WR and WMLES method
provides nonzero SGS contributions at the wall location according to Eq. (22), the present section
aims at analyzing the behavior of the model in cases where the wall-normal grid is sufficiently
fine (i.e., 
y+

w < 5) but the x and z directions are relatively coarse (i.e., 
x+ > 50 or 
z+ > 25).
Near-wall turbulence is inherently three-dimensional, and such arrangements indeed would induce a
considerable underestimation of the wall friction if a vanishing SGS viscosity would be prescribed.

To systematically investigate the problem, keeping the computational time affordable, a turbulent
channel at a nominal friction Reynolds number equal to Reτ = 1000 is here considered. The
spanwise and the streamwise resolution role is independently analyzed, keeping the other directions
below the WR thresholds. The tests refer to cases 1000c–1000e (i.e., the coarse-z setup) and
1000f–1000h (i.e., the coarse-x setup) as listed Table I. As usual, equally spaced grids are employed
along x and z while Eq. (27) is used to cluster the point near the walls.

Figure 8 shows the results of the systematic increase of the spanwise [Fig. 8(a)] and the
streamwise spacing [Fig. 8(b)]. It can be observed that the method, activating the wall model in
all cases in which the wall-parallel resolution goes beyond the thresholds expressed by Eq. (22),
leads to a very good comparison with the reference DNS. In particular, coarsening the grid in the
spanwise direction does not seem to affect the mean velocity profile prediction, whereas a negative
log-layer mismatch is visible when the streamwise resolution becomes progressively coarser. This
behavior is ascribed to the very low number of nodes in the streamwise direction, which induces an
incorrect representation even of the large turbulent scales.
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FIG. 6. Contours of instantaneous streamwise velocity in wall-parallel planes for unified WR and WMLES
simulations of the turbulent channel at Reτ = 590 and Mb = 0.1.

c. Compressible channel flow. To conclude the tests related to the turbulent channel configura-
tion, in this section a supersonic setup is considered. In particular, the bulk Mach number, Mb, is
set equal to 1.5 while the target friction Reynolds number is Reτ = 500. To force the wall model to
be switched on, the simulation is carried out on a relatively coarse grid using constant spacing in
the three Cartesian directions and a number of points equal to Nx × Ny × Nz equal to 40 × 40 × 20.
Such an arrangement corresponds to resolutions equal to 
x+ × 
y+

w × 
z+ = 79 × 12.5 × ×79.
Other details are listed in Table I, case 500a. Figure 9 reports the results of the computation in terms
of mean scaled velocity profile and mean temperature as a function of the wall distance in inner
scaling. In particular, blue dots show the modeled layer response average, i.e., the mean numerical
solution of Eqs. (9). Red dots instead provide the resolved LES external fields. Both regions are
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FIG. 7. Contours of the two-point spanwise correlation as a function of the spanwise shift and wall-normal
location for unified WR and WMLES simulations of the turbulent channel at Reτ = 590 and Mb = 0.1. Solid
lines denote WRLES data.
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FIG. 9. Mean streamwise velocity profile (a) and mean temperature (b) as a function of y+ for channel flow
at Mb = 1.5 and Reτ = 500. Blue circles indicate the solution of the modeled region, red circles indicate the
resolved LES region, while black solid lines denote reference DNS data by Modesti and Pirozzoli [44].

compared to DNS by Modesti and Pirozzoli [44]. A remarkable prediction of the model is obtained
since both the modeled and the resolved regions exhibit a good match with the reference data. In
particular, the former is in excellent agreement with DNS while the latter shows a positive mismatch
in the log region, already observed for the low-speed cases.

B. Spatially developing supersonic turbulent boundary layer

As a next step, the proposed strategy is applied to predict the evolution of a spatially devel-
oping supersonic turbulent BL over a flat plate at M∞ = 2 and friction Reynolds numbers up to
Reτ = δ/δν = 840. Here δ denotes the 99% local boundary layer thickness, while δν = μw/(ρwuτ )
is the local viscous length. The computation is performed over a long and wide three-dimensional
box of size Lx × Ly × Lz = 90δ0 × 10δ0 × 6δ0, δ0 being the boundary layer thickness at the inflow
location, where the nominal friction Reynolds number, Reτ,0, is also computed. The motivation
for such a long domain consists of capturing the large-scale and intermittent dynamics of the
boundary layer, avoiding any disturbance due to the numerical treatment of the inflow condition. An
equally spaced mesh is employed in the wall-parallel directions, while a nonuniform distribution is
applied in the wall-normal to cluster grid nodes towards the wall. A summary of the computational
parameters is given in Table II.

The boundary conditions are specified as follows. At the top and the right boundaries of
the domain, fully three-dimensional Navier-Stokes characteristic boundary conditions [50,51] are
imposed. The method provides the proper outflow behavior with a minimal reflection of acoustics

TABLE II. Parameters of supersonic turbulent boundary layer simulations.

Case Reτ Reτ,0 M∞ Nx Ny Nz 
x+ 
y+
w 
z+

250a 250 180 2 768 128 128 29.0 0.5 11.7
250b 250 180 2 256 48 32 87.9 26 46.9
250c 250 180 2 256 64 32 87.9 19 46.9
250d 250 180 2 256 96 32 87.9 13 46.9
250e 250 180 2 512 96 96 43.9 13 15.6
250f 250 180 2 512 96 96 43.9 3.0 15.6
580a 580 550 2 512 64 64 102 45 82
840a 840 550 2 512 64 64 147 65 118
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FIG. 10. WRLES of the supersonic boundary layer at M∞ = 2 and Reτ = 250. Distribution of (a) mean
velocity profile and (b) density-scaled Reynolds stresses as a function of y+, compared with reference DNS
data by Vreman and Kuerten [46] (gray circles).

waves or injection of spurious disturbances. The bottom wall is also treated using a characteristic
boundary condition; the velocity components are enforced to zero while the wall temperature is
set equal to its nominal recovery value Tr/T∞ = 1 + r/2(γ − 1)M2

∞, where r = Pr1/3 denotes the
recovery factor. Concerning the spanwise direction, the flow is assumed to be statistically homoge-
neous and periodic boundary conditions are applied. As far as the inflow condition, which is a crucial
point in the case of spatially developing boundary layers, velocity fluctuations are superimposed to
a nominal turbulent mean velocity profile. The procedure is based on the synthetic digital filter
(DF) method developed by Klein et al. [52], that is here implemented taking into account the
low-storage and optimized version of Kempf et al. [53]. Finally, the computation is initialized
by prescribing a fully developed turbulent boundary layer using the Van Driest transformation
on a velocity profile of the Musker family [54] and perturbing the initial system with the DF
approach.

1. Fully wall-resolved setup

Similarly to the channel flow analysis, a fully WR setup is first presented. In this case, a spatially
developing supersonic boundary layer at Reτ,0 = 180 is considered. Flow statistics are collected in
correspondence of the location where Reτ = 250. The computation sees the wall model inactive
since most of the turbulent scales are assumed to be resolved by the grid employed, characterized
by 
y+

w � 0.5. The wall-parallel spacings and the number of grid nodes are listed in Table II, case
250a.

Figures 10(a) and 10(b) show the mean streamwise velocity profile in inner units, u+ = ũ/uτ , and
the density scaled Reynolds stress components, τ̄i j/τw = ρ̄ũ′′

i u′′
j /τw, respectively, as a function of

the wall distance y+ = y/δν . The WRLES data exhibit a remarkable agreement with the correspond-
ing DNS by Pirozzoli and Bernardini [35] and only small deviations are observed for the streamwise
component of the Reynolds stress in the buffer layer, the peak of which is slightly underestimated
by the present WRLES.

2. Fully wall-modeled setup

In this section, we test the performance of the fully WM implementation that provides both the
wall shear stress, τw, and the wall heat flux, qw. In this case the inflow Reynolds number is increased
up to Reτ,0 = 550 and flow statistics are evaluated at Reτ = 580 and 840. The corresponding
computational parameters are listed in Table II.
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FIG. 11. Mean streamwise velocity profiles (top) and density scaled Reynolds stress components (bottom)
from WMLES of the spatially developing turbulent boundary layer at M∞ = 2 and various friction Reynolds
numbers. Present results are compared with DNS data by Pirozzoli and Bernardini [35].

In Fig. 11, the mean streamwise velocity profile in inner units, u+ = ũ/uτ , and the density scaled
Reynolds stress components, ρ̄ũ′′

i u′′
j /τw, are reported as a function of y+ = y/δν for both friction

Reynolds numbers. Present data are compared with the DNS results of Pirozzoli and Bernardini
[35] at the same Mach and Reynolds conditions.

Overall the results are in excellent agreement with the DNS data in the outer layer since the
WMLES model accurately predicts both the mean velocity profile and the velocity fluctuations. As
observed in channel flow simulations, the first mean velocity point and the first two locations for
the stress components do not show the expected behavior. As already observed for channel flows,
these nodes lie below the LES–wall-stress model interface and represent a sort of starting zone for
the computational method.

Next, we consider the spatial distribution of the skin friction coefficient. Given the lack of
measurements in compressible conditions, numerical simulations of supersonic boundary layers
usually compare skin friction coefficients at different Mach numbers exploiting the Van Driest
II transformation [55], which allows reducing the friction coefficient, Cf , and the momentum
Reynolds number, Reθ , to incompressible values Cf ,i and Reθ,i (see Hopkins and Inouke [56]).
The transformed skin friction coefficient from the present WMLES is compared in Fig. 12 with a
widely used empirical correlation, the Kármán-Schoenherr expression

C−1
f ,i = 17.08(log10 Reθ,i )

2 + 25.11 log10 Reθ,i + 6.012. (29)
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FIG. 12. Distribution of the skin friction coefficient as function of the incompressible momentum thickness
Reynolds number from WMLES of the supersonic boundary layer at M∞ = 2, compared with the Kármán-
Schoenherr (K-S) empirical correlation.

An excellent collapse of the numerical solution to the empirical correlation can be observed, with the
present data correctly reproducing the skin friction trend with the Reynolds number, thus providing
further confirmation of the accuracy of the current approach.

3. Wall-resolved and wall-modeled setup

Finally, we demonstrate the capability of the present method in a mixed WM and WR setup. This
feature is here assessed through low-Reynolds spatially developing BL computations in supersonic
conditions with Reτ,0 = 180 and using a decreasing resolution. In particular, the precomputed 
y+

w

location is set in the range 
y+
w = {3, 13, 13(b), 19, 26}T . This choice corresponds to a coarse

WR, two intermediate WR and WM cases, and two purely WM configurations since the first grid
point is located in the viscous, buffer, and log regions of the boundary layer, respectively. The
most resolved setup adopts a nonuniform grid stretching in the wall-normal coordinate, whereas a
uniform spacing is used in all the three Cartesian directions for the non-wall-resolved configurations.
The statistics are collected in correspondence to the location where the friction Reynolds number
assumes a value Reτ = 250. The parameters of the computations are detailed in Table II, cases
250b–250e.

The results obtained are collectively reported in Figs. 13(a) and 13(b) and compared with
reference DNS data. It can be observed that the prediction of the mean streamwise velocity profile
is accurate for all cases, independently of the wall resolution, and the correct near-wall behavior is
recovered. Similar considerations also apply for the Reynolds stress components distribution, which
is in excellent agreement with the reference except for the first two grid nodes. Therefore, it can be
concluded that the present unified WR and WMLES model can successfully be applied also to the
case of compressible turbulent wall-bounded flows.

V. CONCLUSIONS

A general strategy to unify the wall-resolved and wall-modeled approaches for LES of turbulent
wall-bounded flows is proposed. The method ensures the no-slip and no-penetration conditions to
velocity components at the wall location and allows one to impose the proper wall stress and heat
transfer using ad hoc turbulent transport coefficients at the wall. The results show that the proposed
numerical strategy falls back to the standard WR approach if the close-to-wall grid resolution
is in the range of a fully resolved simulation. Conversely, the correct wall stress τw and heat
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FIG. 13. Unified WR and WMLES computations of the supersonic turbulent boundary layer at M∞ = 2
and Reτ = 250. Mean streamwise velocity profile (a) and density scaled Reynolds stress components (b) as a
function of y+. Simulation details are reported in Table II, cases 250b–250f. DNS results refer to Pirozzoli and
Bernardini [35].

flux qw are provided by the WM if the near-wall region is poorly described. Thus, the method
relies on a minimally intrusive process able to merge the WRLES and the WMLES approaches
smoothly.

The importance of the proposed numerical strategy consists in its powerful impact for applica-
tions since it allows one to exploit the user’s available computational resources, also reducing the
effort in the simulation preprocessing from taking care of the treatment of the near-wall regions. In
other words, given the available computational resources, the method automatically uses the more
accurate WR methodology in the domain parts where the resolution is adequate while switching to
WM in other regions.

The coupling methodology has been presented in the context of a finite difference flow solver
based on energy preserving schemes, which guarantee virtually zero numerical dissipation in the
approximation of the convective terms. This allows optimal control of the numerical discretization
error, which could be critical to evaluate the accuracy of LES methods. Nonetheless, its extension
to different algorithms is straightforward.

Several numerical tests have been performed by simulating two canonical wall-bounded flows,
i.e., the turbulent plane channel and the spatially evolving turbulent boundary layer. In particular, the
performance of the proposed methodology is intensively tested across a wide range of both Mach
and Reynolds numbers and for various grid resolutions. Compared to DNS reference data, the results
highlight a good accuracy in terms of both single- and two-point statistics, including mean velocity
profiles, fluctuation intensities, and two-point spatial correlations in the spanwise direction. It is also
shown that unified WR and WMLES simulations well reproduce the dynamics of turbulence in the
outer layer, almost independently of the near-wall resolution.

Future developments will be directed to extend the proposed strategy by coupling the mixed WR
and WMLES procedure with the sharp-interface immersed boundary method (e.g., De Vanna et al.
[29]), thus allowing one to perform high-fidelity LES simulations of flows in complex geometries
by using high-order finite difference methods.
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