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Internal layers in turbulent free-shear flows
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The characteristics of the internal layers of intense shear are examined in a mixing
layer and in a jet, in the range of Reynolds numbers 134 < Reλ < 275. Conditionally
averaged profiles of streamwise velocity conditioned on the identified internal layers
present strong velocity jumps, which account for approximately 10% of the characteristic
large-scale velocity of the flow. The thickness 〈δw〉 of the internal layers from the combined
analysis of both the mixing layer and the jet scales with 〈δw〉/λ ∼ Re−1/2

λ , which suggests
a scaling with the Kolmogorov length scale (η), analogous to recent observations on the
turbulent/nonturbulent interface (TNTI). The thickness of the internal shear layers within
the mixing layer is found to be between 9η and 11η. The concentration of a passive
scalar across the internal layers is also examined, at the Schmidt number Sc = 1.4. The
scalar concentration does not show any jumps across the internal layers, which is an
important difference between the internal layers and the TNTI. This can be explained
from the analysis of the internal layers of intense scalar gradient, where the flow topol-
ogy node/saddle/saddle dominates, associated with strain, whereas the internal layers of
intense shear are characterized by a prevalence of focus/stretching. A topological content
analogous to that obtained in layers of intense scalar gradient is found in proximity to the
TNTI, at the boundary between the viscous superlayer and the turbulent sublayer. These
observations evidence that the TNTI and the internal layers of intense scalar gradient are
similar in several respects.

DOI: 10.1103/PhysRevFluids.6.034612

I. INTRODUCTION

In turbulent flows developing within a quiescent and/or nonturbulent environment, a convoluted
and intermittent layer separates the turbulent region from the external fluid. Across this interfacial
layer, turbulent entrainment of the external fluid occurs, and controls the transport of mass, momen-
tum, and scalar from the nonturbulent region into the turbulent one. Turbulent transport and mixing
are relevant to several engineering processes and natural phenomena, such as combustion, volcano
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plumes, and extreme weather events. The turbulent/nonturbulent interface (TNTI) has therefore
received increasing interest over the past two decades, after the pioneering work of Corrsin and
Kistler [1] postulated the nature of this layer.

Several studies presented conditional averages of streamwise velocity, vorticity, and scalar
concentration conditioned on the position within the TNTI (Bisset et al. [2], Westerweel et al.
[3], Westerweel et al. [4], Gampert et al. [5], Gampert et al. [6], van Reeuwijk and Holzner [7],
Attili et al. [8], Chauhan et al. [9]). These averages showed the existence of a steep jump of the
aforementioned physical quantities across the TNTI of several different turbulent flows, both wall
bounded and boundary free. The jump in the average profile of the streamwise velocity was found to
govern the entrainment and the growth rate of these turbulent flows. Moreover, it has been an object
of literature debate whether the entrainment of quiescent fluid is a small-scale process dominated by
viscosity (nibbling) or a large-scale inviscid process (engulfment). The characteristics of the TNTI
were therefore investigated to shed a light on this matter. According to a number of experimental and
numerical investigations, the thickness of the TNTI is in the order of the Taylor microscale (Bisset
et al. [2], Gampert et al. [5], Westerweel et al. [4], Chauhan et al. [10], Borrell and Jiménez [11]).
However, following the recent works based on the analysis of flows at a large range of Reynolds
numbers and at a high spatial resolution, this observation was reconsidered, and a Kolmogorov
scaling was proposed (Silva et al. [12], Watanabe et al. [13], Watanabe et al. [14], Attili et al. [8]).
Regardless, the TNTI was found to be a small-scale feature, which leads us to think of entrainment
as a process dominated by viscosity, although Mistry et al. [15] showed that the mass-flux rate
across the interface is constant across all the turbulence scales. This evidence suggests that the net
entrainment is a scale-independent process, therefore it is not dominated by the viscous scales.

Recently, Eisma et al. [16] showed that layers of intense shear, somehow similar to the TNTI,
exist within the internal region of a turbulent boundary layer. The entrainment velocity of these
internal layers, defined as the velocity at which the internal layers move away from the wall in a
Lagrangian sense, was estimated based on the large-scale properties of the conditionally averaged
profiles of velocity and Reynolds stress. Later, de Silva et al. [17] and Fan et al. [18] examined
the interfaces between adjacent zones of uniform momentum in a turbulent boundary layer. These
studies showed that jumps in the streamwise velocity exist across internal layers, and scale with
the friction velocity, while the thickness of these interfaces scales with the Taylor microscale.
Gul et al. [19] experimentally investigated internal shear layers in a pipe flow, with time-resolved
stereoscopic particle image velocimetry (PIV). Conditional averages across these layers revealed
jumps of several flow properties, including turbulent shear stress, streamwise, and wall-normal
velocities. Stronger velocity jumps were observed when moving progressively closer to the wall, and
at increasing Reynolds number. Layers of intense shear were also reported in homogeneous isotropic
turbulence at very high Reynolds numbers, both from statistical considerations (Elsinga et al. [20])
and instantaneous snapshots (Ishihara et al. [21], Hunt et al. [22]). The analysis of the average flow
pattern in the local coordinate system defined by the eigenvectors of the strain rate tensor revealed
a shear-layer structure consisting of aligned vortical motions (Elsinga and Marusic [23], Elsinga
et al. [20]). A similar structure was also observed from instantaneous snapshots, where sharp layers
of approximately four Taylor length scales in thickness were found to bound regions of different
large-scale velocities (Ishihara et al. [21]). The existence of internal layers was so far ascertained in
turbulent boundary layers and in homogeneous isotropic turbulence, whereas boundary-free-shear
flows have never been examined. Moreover, although Attili et al. [8] and Gampert et al. [6] reported
a jump across the TNTI of a mixing layer, the concentration of a passive scalar across the internal
layers has never been analyzed.

The main goal of the present paper is to investigate the internal layers within a mixing layer
and a jet, at a range of Reynolds numbers 134 < Reλ < 275. Profiles of velocity and scalar
concentration at Schmidt numbers of the order of unity are examined across these layers, with the
aim of determining their properties, with a particular focus on their thickness scaling and velocity
jump. In the mixing layer, three different streamwise locations, corresponding to three different
Reynolds numbers, are considered. The largest Reynolds number of the mixing layer under analysis
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FIG. 1. Two-dimensional cut of the scalar field at Schmidt number 1.4 in the turbulent mixing layer
obtained from direct numerical simulations. The three regions delimited by squares of thick dashed lines
identify the three subdomains analyzed in the present paper.

is Reλ = 275, and to the authors’ best knowledge this is the largest ever achieved in direct numerical
simulation (DNS) of this flow. The jet data are obtained from experiments of tomographic PIV at
high spatial resolution. In the jet, the effect of the initial conditions on the characteristics of the
internal layers is also examined. Specifically, we study the properties of the internal layers within a
jet issuing from orifices of different geometries, i.e., a circular orifice and a fractal orifice, in order
to ascertain the effects of the jet initial conditions on the internal layers.

In their work, Elsinga and da Silva [24] discuss analogies and dissimilarities between the TNTI
and the internal layers. The internal layers are shear layers bounded by nearly uniform flow on
both sides, which is analogous to the TNTI. However, while strain is prevalent over vorticity in the
turbulent region of the TNTI, in the internal layers both strain and vorticity are significant. As a
result, the scalar front is parallel to the TNTI, whereas it is at an angle of approximately 20◦ with
respect to the internal layers. This explains the scalar jump observed at the TNTI (Gampert et al.
[6], Attili et al. [8] among others) and the low scalar gradient in points of high vorticity (Brethouwer
et al. [25]). Nonetheless, the properties and the spatial organization of the regions at intense scalar
gradient have never been examined in relation to the internal layers of intense shear and to the
TNTI. In the second part of the present paper, the flow topology of the regions at intense scalar
gradient is examined, and compared with the topological content of the internal layers of intense
shear, and of the TNTI. Conditionally averaged profiles of streamwise velocity are also computed
across the identified regions of intense scalar gradient. Furthermore, the relative position of intense
scalar gradient and of internal layers of intense shear is statistically examined.

II. METHODS

Two turbulent free-shear flows are analyzed in this paper, namely, a mixing layer from DNS and
a jet from experiments. In the following, the datasets of both flows are illustrated, as well as the
methods of analysis that are applied to them.

A. Mixing layer

The dataset employed in the present analysis was generated with a large-scale DNS of a high
Reynolds number, spatially developing mixing layer, featuring a grid of about 18×109 points.
The configuration and methods applied in these simulations are described in detail by Attili and
Bisetti [26], Attili and Bisetti [27], and Attili et al. [8]. Analogous DNS datasets of a mixing
layer were previously employed to investigate the interaction between the large and the small
scales of turbulence (Fiscaletti et al. [28,29]). Compared to the simulations described in the cited
papers, the Reynolds number of the turbulent flow that is analyzed here was increased up to Reλ ≈
275. The spatial resolution of the numerical dataset is of approximately 2η. A two-dimensional cut
of the scalar field at Schmidt number 1.4 in the turbulent mixing layer is shown in Fig. 1. Here, three
regions delimited by squares of thick dashed lines identify the three subdomains analyzed in this
paper, corresponding to three different Reynolds numbers, i.e., Reλ ≈ 200, 250, and 275. We note
that the initial distribution of the scalar concentration is such that the top side of the mixing layer
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FIG. 2. Snapshots of the streamwise velocity at constant z within the mixing layer, obtained at the three
different downstream locations shown in Fig. 1, corresponding to the three different Reynolds numbers Reλ ≈
200, 250, and 275. The regions characterized by intense shear and obtained with K = 1.5 in Eq. (2) are shown
in red. The streamwise and crosswise coordinates, respectively x and y, are nondimensionalized by the local
momentum thickness δθ .

is characterized by 100% scalar concentration, while the bottom side is characterized by 0% scalar
concentration.

Snapshots of the streamwise velocity obtained at constant z are presented in Fig. 2 from the
three different subdomains at different downstream locations as in Fig. 1. A Cartesian system of
coordinates is introduced within each of the subdomains of the numerical dataset shown in Fig. 1,
where the x axis is oriented along the streamwise direction of the flow, the y axis is oriented along
the crosswise (or transverse) direction, and the z axis is oriented along the spanwise direction. These
coordinate systems are centered in the upstream and low velocity-side corner in each subdomain.
The method for the identification of the internal layers, and for the calculation of the conditional
averages of velocities and scalar concentration, is presented in this section.

(1) With the aim of detecting the internal layers, we apply the triple decomposition method
introduced by Kolář [30]. A detailed description of the method is presented in Appendix A, and
in Nagata et al. [31]. According to this method, the velocity gradient tensor can be regarded as
constituted by the superposition of three terms corresponding to three elementary flow motions,
i.e., a rigid-body rotation, an elongation, and a shear. Schematics representing these elementary
flow motions are shown in Fig. 1 of Kolář [30]. In the following equation, the triple decomposition
method is formalized, where the terms on the right hand side can be associated with the elementary
flow motions of rigid-body rotation, elongation, and shear, and are, respectively, identified with the
subscripts RR, EL, and SH:

∇u = (∇u)RR + (∇u)EL + (∇u)SH. (1)
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FIG. 3. Snapshot of ωSH(x, y, z)|il at constant z, within the mixing layer at Reλ ≈ 275, obtained with
K = 1.5 in Eq. (2). The streamwise and crosswise coordinates, respectively x and y, are nondimensionalized by
the local momentum thickness δθ . The red dots are local maxima of ωSH(x, y, z)|il along the crosswise direction
y, and indicate points constituting the internal layers of intense shear.

Among these three terms, only the shear contribution was considered in the calculation of the
vorticity magnitude, |ωSH(x, y, z)|. The internal layers are defined as interfaces between adjacent
large-scale regions. The difference in momentum between these adjacent large-scale velocity re-
gions produces intense shear at their interface. This motivates the decision of retaining only the shear
contribution to the velocity gradient tensor in the calculation of ωSH(x, y, z). In the continuation
of the paper, we identify the magnitude of the shear vorticity as ωSH(x, y, z) = |ωSH(x, y, z)|. A
two-dimensional version of this decomposition was applied by Eisma et al. [16] on experimental
data of a turbulent boundary layer.

(2) The mean of the shear component of the vorticity magnitude along the z direction is calculated
over the entire domain, ωSH(x, y).

(3) At each streamwise location, the maximum of ωSH(x, y) is calculated and the following
threshold is applied to identify the internal layers, IL:

ωSH(x, y, z)
∣∣
IL > KωSH

max,y(x) (2)

where K is a constant. The value of K is chosen to identify only the intense events and, at the
same time, to identify a sufficiently large sample to guarantee statistical convergence. In Fig. 2, the
regions of intense shear obtained as in Eq. (2), with K = 1.5, and marked red are shown on top of
the three snapshots of velocity. The condition expressed in Eq. (2) was checked in every point of
the domain. In those points where the condition expressed in Eq. (2) is not verified, ωSH(x, y, z)|IL
is set to be equal to zero. A snapshot of ωSH(x, y, z) |IL is given in Fig. 3, where the intensity of the
physical parameter is expressed in shades of gray.

(4) Inside the zones where the condition given in Eq. (2) is verified, the local maxima along the
crosswise direction, y, are calculated, at each downstream location. These maxima are considered
points of the internal layers (red dots in Fig. 3).

(5) The TNTI, the interface separating a turbulent region from the irrotational external fluid, is
detected using a threshold on the vorticity magnitude, which is determined following the method
proposed by Taveira and da Silva [32], and summarized in Appendix 1 of Attili et al. [8].

(6) Profiles of streamwise velocities centered in the points of internal layers (obtained as
explained in step 4) and aligned along the crosswise direction y are identified and retained. These
streamwise velocities contribute to the conditional averages that are computed as explained in step
7. Retaining the velocity profiles along the crosswise direction is supported by the assumption
that the regions of intense shear vorticity are oriented orthogonal to the mean shear of the flow.
This assumption is verified a posteriori. Approximately 60% of the regions of intense shear are
characterized by an inclination angle with respect to the mean shear � in the range 60◦ < � < 120◦.
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An additional reason in support of considering velocity profiles along the crosswise direction is to
enable comparisons with the results by Eisma et al. [16] and de Silva et al. [17]. They analyzed
the shear layers in a turbulent boundary layer and reported conditionally averaged profiles along a
direction orthogonal to the wall. Only samples located inside the TNTI are retained, and contribute
to statistics.

(7) After having identified and retained the profiles of streamwise velocities, these profiles are
used to compute the conditional averages. The profiles contributing to the conditional averages
are chosen based on the value of ui, the streamwise velocity in the points constituting the internal
layers of intense shear. In the example of Fig. 3, the streamwise velocity ui determined in the red
dots is considered. Intervals of the nondimensional parameter (�U − ui )/urms are identified, where
�U is the difference in streamwise velocity between the high velocity side and the low velocity
side of the mixing layer. These velocity intervals can be related to ranges of crosswise positions
within the mixing layer, where larger values of ui lead to smaller values of the nondimensional
parameter (�U − ui )/urms. Depending on the value of the streamwise velocity in a point of the
internal layers, ui, the associated velocity profiles contribute to the conditional averages of a given
range of (�U − ui )/urms. This procedure of conditional averaging is analogous to de Silva et al.
[17] (see their Figs. 6 and 11).

B. Jet

Internal layers of intense shear are investigated in a turbulent jet with two orifice geometries,
a circular orifice and a fractal orifice. The geometry of the fractal orifice is shown in Fig. 1(b)
of Breda and Buxton [33]. The two orifices are characterized by identical open areas D2

e , where
De is the equivalent orifice diameter, obtained from the square root of the exit area [Eq. (4) of
Breda and Buxton [34]]. The dataset subject of the present analysis was obtained from tomographic
particle image velocimetry within a volumetric domain, primarily capturing a radial-azimuthal
plane, centered on a downstream location of 25 orifice equivalent diameters, therefore at the end
of the developing region. The measurement domain is located in the proximity of the TNTI, and
therefore in a region of intense shear that includes both the turbulent and nonturbulent regions,
whereas the centerline is not part of the domain. The range of radial positions under analysis is
approximately 0 < r/r1/2 < 1, where r1/2 is the jet’s half width. At the jet orifice, the Reynolds
number of both jets is ReDe = 104, where the velocity used in the estimate of the Reynolds number
is the equivalent velocity at the orifice, Ue, determined as the ratio between volumetric flow rate over
exit area. At 25 equivalent diameters downstream from the jet orifice, at the centerline, the Reynolds
number based on the Taylor microscale is Reλ ≈ 134 for the circular orifice, and Reλ ≈ 143 for the
fractal orifice. The interrogation volume was of 48×48×48 voxels, with a 75% window overlapping.
The thickness of the light sheet was of 5 mm. The spatial resolution of the measurement is of 5η,
which, with a 75% window overlapping, leads to a vector spacing of 1.25η. The spatial resolution
of the tomographic PIV measurement is thus larger than the spatial resolution of 3η prescribed by
Worth et al. [35] and Buxton et al. [36] to resolve the dissipation scales. One of the criteria that is
commonly used to assess the adequacy of the spatial resolution to the study of small-scale features
is the shape of the joint probability density function (JPDF) of the second and third invariants of the
velocity gradient tensor, respectively Q and R. Even if not presented here, the bespoke JPDF has the
characteristic tear-drop shape when it is calculated from the present dataset, with a well-developed
Viellefosse tail [see Fig. 5.9(c) of Breda [37]]. In addition to this, the dissipation rate calculated
from the present dataset of tomographic PIV at a spatial resolution of 5η is compared with the
same quantity calculated from planar PIV at a spatial resolution of 3.7η assuming local isotropy,
for the same jet flow and at the same downstream distance of 25 orifice equivalent diameters from
the orifice. The result of this assessment is presented in Fig. 4 of Breda and Buxton [38], where
only a small discrepancy can be observed in the dissipation rate obtained from the two datasets.
This suggests that varying the spatial resolution from 3.7η to 5η does not affect the estimated rate
of dissipation importantly. This observation is consistent with Tokgöz et al. [39], who found that in
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FIG. 4. Snapshot of ωSH(x, y, z)|IL at constant x, within the jet, obtained as explained in Eq. (4). The
Cartesian coordinates y and z are nondimensionalized by the equivalent orifice diameter De. The red circles are
examples of ellipses that were fitted to the zones at intense ωSH(x, y, z)|IL, while the black segments orthogonal
to the long axes of the fitted ellipses are examples of profiles of the streamwise velocity that are retained in
the statistics, thus contributing to the conditionally averaged velocity profiles. Note that profiles of streamwise
velocity were determined in each of the points constituting the zones at intense ωSH(x, y, z)|IL, and not only
where the black segments are drawn. Here, only one segment per zone is presented for clarity.

tomographic PIV a window size of up to eight Kolmogorov length scales with a 75% overlapping
is adequate to fully resolve the turbulent dissipation scales. Therefore, the spatial resolution of the
present dataset of tomographic PIV is deemed adequate to the goal of the present paper. Further
details about the measurement can be found in Breda and Buxton [33], Breda and Buxton [34], and
Chap. 2 of Breda [37].

A Cartesian system of coordinates is introduced within this experimental dataset, where the
x axis is oriented along the streamwise direction of the flow. The coordinate system is centered
in the upstream bottom corner of the measurement domain, therefore in the nonturbulent region
(see Fig. 4). The domain has a size of 0.28×1.63×1.85 De, where De is the equivalent diameter
of the orifice. The location of the domain with respect to the jet is such that increasing values
along the y axis correspond to positions closer to the centerline. Although the same symbols are used
as the Cartesian system introduced in the dataset of the mixing layer, these symbols can identify the
Cartesian system associated with the jet or with the mixing layer depending on whether they refer
to one flow or the others.

After decomposing the velocity gradient tensor as shown in Eq. (1), the shear component of
the vorticity ωSH(x, y, z) was calculated from this dataset. We refer to the shear component of the
vorticity as SV in the continuation of the paper. With the aim of investigating the internal layers, the
TNTI had to be identified. The criterion for the identification of the TNTI is based on enstrophy, as
follows:

|ω(x, y, z)|2 > 0.1
U 2

e

D2
e

(3)
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where De is the equivalent diameter of the orifice and Ue is the equivalent velocity. According to this
criterion, the turbulent region is identified when the enstrophy is larger than 10% of the characteristic
large-scale vorticity Ue/De. The choice of setting an arbitrary threshold for the identification of
the TNTI based on the large-scale vorticity of the flow is analogous to previous works examining
these interfaces, i.e., Bisset et al. [2], Mathew and Basu [40], and da Silva and Pereira [41]. An
analysis on the sensitivity of the results to the choice of the threshold value 0.1 in Eq. (3) was
conducted. Over the whole range of coefficients examined, it turned out that all the points belonging
to the internal layers, identified with the criterion in Eq. (4), remained such for the jet with a fractal
orifice. With regard to the round orifice, all the points identified as internal layers remained such
for the coefficients 0.025, 0.05, 0.1, and 0.2. For a value of the coefficient of 0.3, 0.73% of the
points originally constituting the internal layers ended up becoming external points, whereas for
the coefficient being equal to 0.4, this percentage was of 8.95%. It is worth highlighting that the
TNTI of the jet flow is not the object of this analysis, but it is determined here only with the aim
of discriminating if points of intense shear belong to the turbulent region and should therefore be
classified as internal layers, or if they are external to the TNTI. Inside the TNTI, layers of intense
SV are identified if more than 12 points of the domain comply with this criterion:

ωSH(x, y, z)
∣∣
IL > Cωrms

SH (4)

where ωrms
SH is the rms of the SV magnitude ωSH, and C is a constant.

The condition of Eq. (4) is examined in planes yz, therefore at constant streamwise locations. The
internal layers are expected to be oriented orthogonally to the mean shear of the flow. Therefore,
while in a mixing layer the internal layers tend to be at a preferential orientation angle with respect
to the Cartesian system, the internal layers of a jet can be oriented at any angles in the yz plane.
As a consequence, the orientation angles of the internal layers should be determined in a jet if we
want to calculate the conditionally averaged profiles of the streamwise velocity across these layers
of intense shear. This can be done by fitting an ellipse in each of the zones that are identified with
the criterion of Eq. (4), as shown in Fig. 4 for some of the detected zones. A linear least-squares
fitting method was employed, which optimizes the squared sum of orthogonal distances from the
points to the fitted ellipse. The initial guess is calculated by a linear least-squares routine, using the
“Bookstein constraint” (see Gander et al. [42]). Local maxima of the SV within the intense zones
are calculated along segments orthogonal to the major axis of each fitted ellipse. Profiles of the
streamwise velocity centered in these local maxima and oriented orthogonal to the major axis of
the associated ellipse (therefore along the minor axis) are estimated. The major axis of the fitted
ellipse is used as an approximation for the direction along which a given layer of intense shear
develops. The direction orthogonal to the major axis of an ellipse does not necessarily pass through
the points of the grid of the PIV velocity dataset, therefore a linear interpolation of the neighboring
streamwise velocities is performed to determine the velocity profile along this orthogonal direction.
Higher-order methods of interpolation, such as a cubic interpolation and a spline interpolation, are
observed to give identical conditionally averaged velocity profiles to the linear interpolation. It is
worth stressing that only samples located inside the turbulent region delimited by the TNTI layers
contribute to these velocity profiles. Figure 4 shows examples of segments along which the profiles
of streamwise velocity are estimated. From these profiles the conditional averages are calculated.

III. INTERNAL LAYERS OF INTENSE SHEAR WITHIN THE MIXING LAYER

The internal layers within the mixing layer are investigated in this section. The conditionally
averaged profiles of the streamwise velocity across the internal layers of intense shear are presented
in Fig. 5(a). They are obtained as discussed in Sec. II, after setting K = 1.5 in Eq. (2). However, it is
worth stressing that variations of the constant K do not affect significantly the results of this analysis
(see Appendix B for additional details). Three different downstream locations within the flow were
examined, corresponding to Reynolds numbers based on the Taylor microscale of Reλ ≈ 200, 250,
and 275. Throughout this paper, the Taylor microscale we use for the nondimensionalization of
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(a) (b) (c)

FIG. 5. (a) Conditionally averaged profiles of the streamwise velocity in the near vicinity of all detected
internal layers within the range 0.25 < (�U − ui )/urms < 0.50. In (b) and (c), only the profiles characterized
by negative and positive values of du

dy |IL, respectively, were retained and contribute to the conditionally averaged
profiles of streamwise velocity. Red full • symbols refer to Reλ ≈ 200, black + symbols refer to Reλ ≈ 250,
and blue empty � symbols refer to Reλ ≈ 275.

the thickness of the internal layers and for the velocity profiles across them is the longitudinal
Taylor microscale as defined by Eq. (6.56) of Pope [43], whereas the Taylor microscale we use
in the estimate of the Reynolds number Reλ is the transverse Taylor microscale as defined by
Eq. (6.57) of Pope [43]. The choice of using the Taylor length scale to nondimensionalize the
velocity profiles in Fig. 5 is consistent with the results from de Silva et al. [17] (see their Fig. 12),
and from Eisma et al. [16] [see their Fig. 8(b)]. All detected internal layers used to compute
the velocity profiles in Fig. 5 are characterized by 0.25 < (�U − ui )/urms < 0.50, where �U is
the difference in streamwise velocity between the high velocity side and the low velocity side
of the mixing layer, and urms is the velocity root mean square calculated at the geometric centerline
of the mixing layer. Velocity jumps of modest intensity can be observed to occur across the internal
layers of intense shear. Similar velocity jumps were found at different ranges of nondimensional
velocities (�U − ui )/urms, although not shown here. These velocity jumps can be quantified by
applying a fitting to the linear branches of the conditionally averaged profiles, similar to de Silva
et al. [17] [their Fig. 7(b)]. According to this quantification, the nondimensional velocity jumps
(〈δu〉/urms) can be estimated to be of 0.17 and 0.11, respectively, for Reλ ≈ 200 and 275. This is one
order of magnitude lower than the velocity jumps observed by Ishihara et al. [21] in homogeneous
isotropic turbulence, which was quantified from instantaneous snapshots of the intense shear layers.

The conditional velocity profiles presented in Fig. 5(a) do not distinguish between negative or
positive crosswise gradients of the streamwise velocity du

dy |IL. If we apply this additional condition-

ing as shown in Fig. 6, i.e., on the sign of du
dy |IL, we obtain the velocity profiles presented in Figs. 5(b)

(negative crosswise gradients) and 5(c) (positive crosswise gradients). Both the velocity profiles
exhibit much larger jumps than those in Fig. 5(a). In particular, they are one order of magnitude
larger than the velocity jumps of the profiles including all the internal layers, which are given in
Fig. 5(a), and of the same order of magnitude as urms. The internal layers in which the profiles are
characterized by du

dy |IL > 0 over the total profiles are found between 60 and 70%, depending on the
nondimensional velocity (�U − ui )/urms), i.e., on the crosswise position within the flow, and on
the local Reynolds number. Therefore, as expected, profiles with du

dy |IL > 0 are dominant, which
explains the similar trends observed in Figs. 5(a) and 5(c). A significant percentage of the velocity
profiles at the internal layers (between 30 and 40%) is characterized by negative du

dy |IL, which leads
to mild velocity jumps when all the detected internal layers are considered in the computation of
the conditionally averaged profiles [Fig. 5(a)]. The structures that could be associated with these
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(a) (b)

FIG. 6. Averaged conditional statistics for the streamwise velocity across the internal layers of intense
shear after distinguishing into (a) negative and (b) positive crosswise gradients of the streamwise velocity,
du
dy |IL. The quantities 〈δu〉, ∂〈u − ui〉/∂y|max, and 〈λW〉 correspond to the jump in the averaged streamwise
velocity, the maximum local gradient of the averaged profile, and the characteristic thickness of the internal
layer, respectively. In this figure, the profiles at Reλ ≈ 250 from Fig. 5 are used.

conditionally averaged profiles are internal layers of intense shear of the same type as those that
are associated with the profiles characterized by positive values of du

dy |IL, with the only difference
that the local high velocity side of these internal layers is on the opposite side with respect to
the high velocity side of the mixing layer flow, and the same applies for the low velocity side.
Internal layers are small-scale features, therefore features tending to isotropy to the limit of an
infinite Reynolds number. Nonetheless, averaging all of them, and therefore considering the net
contribution of all these internal layers, results in the mean flow, i.e., the macroscopic mixing layer,
which is anisotropic. This means that although the internal layers characterized by a positive du

dy |IL,
thus oriented as the mean flow, are dominant in a probabilistic sense, there is a large number
of them that are oriented in the completely opposite way. Different ranges of (�U − ui )/urms

produce velocity profiles analogous to those presented in Fig. 5, even if they are not shown here for
brevity.

In Figs. 7 and 8, the streamwise and crosswise components of the local advection velocities of the
points constituting the internal layers of intense shear are presented. The streamwise local velocities
within the internal layers are evaluated at the three different streamwise locations, corresponding to
Reynolds numbers based on the Taylor microscale of Reλ ≈ 200, 250, and 275. The internal layers
are identified using two values of K in Eq. (2), i.e., K = 1.5 and 2.5. The black continuous lines
and the blue dashed lines represent the average streamwise velocities of the points constituting the
internal layers, calculated, respectively, for K = 1.5 and 2.5, at a range of crosswise positions. The
gray regions bound a range of velocities characterized by ui ± σ (ui ), where σ (ui ) is the standard
deviation of the velocities at the points constituting the internal layers, i, and ui are the streamwise
velocities at the points i. The red dots represent the average streamwise velocities of the flow. The
position of the geometric centerline is shown with vertical continuous lines, while the crossing
points in the average streamwise velocity are shown with vertical dashed lines. The internal layers
of intense shear tend to be more preferentially located where the mean shear is maximum, therefore
in the vicinity of the crossing point of the average streamwise velocity (red dots) in Fig. 7, while
this probability tends to gradually decrease where both TNTIs are approached. A mild scattering
of the blue and black lines can be observed as the edge of each plot is approached, thus when
moving towards both TNTIs, which can be attributed to a not sufficiently large statistical sample to
reach a complete statistical convergence. The described scattering occurs more prominently when
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(a) (b) (c)

FIG. 7. Black continuous lines show the average values of the instantaneous streamwise velocities ui of all
the points representing the internal layers as detected from Eq. (2), with K = 1.5, at different nondimensional
crosswise locations y/λ. The gray region bounds the instantaneous streamwise velocities within the range
ui ± σ (ui )/�U , where σ is the standard deviation. Blue dashed lines represent the same as black continuous
lines, but the coefficient in Eq. (2) is K = 2.5. Red full • symbols are the average streamwise velocity of
the flow. Vertical continuous lines identify the geometric centerlines, while dashed lines identify the crossing
points within the flow, therefore the physical centerlines. These features are investigated at (a) Reλ ≈ 200, (b)
Reλ ≈ 250, and (c) Reλ ≈ 275.

retaining only the more intense events (blue lines), which are fewer in number. Moreover, increasing
streamwise positions, associated with larger Reynolds numbers, determines a crosswise spread of
the mixing layer, which results in smaller statistical samples and larger levels of scattering too, as
can be observed when looking at Fig. 7(c). The main aspect that can be observed in Fig. 7 is that near
the high velocity side of the flow the internal layers are characterized by a local advection velocity
lower than the average velocity of the flow, while near the low velocity side of the flow the opposite
occurs. This observation is consistent with Buxton et al. [44], Buxton and Ganapathisubramani
[45], and Fiscaletti et al. [28] (their Figs. 2 and 3). The reversal of the observed behavior, i.e.,
the crossing point where the average velocity of the internal layers overlaps with the average
velocity of the flow, is not at the geometric centerline, but at a crosswise position closer to the

(a) (b) (c)

FIG. 8. (a), (b) Conditionally averaged profiles of crosswise velocity in the near vicinity of (a) all the
points representing the internal layers, and (b) only those points characterized by positive values of du

dy |IL
detected within the ranges (blue line) −0.25 < (�U − ui )/urms < 0, (red line) 0 < (�U − ui )/urms < 0.25,
(green line) 0.25 < (�U − ui )/urms < 0.50, and (black line) 0.50 < (�U − ui )/urms < 0.75. (c) Conditionally
averaged profiles of crosswise velocity with respect to the local crosswise velocity at the internal layers, within
the range 0.25 < (�U − ui )/urms < 0.50, at Reλ ≈ 200, 250, and 275 (symbols defined as in Fig. 5).
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low velocity side of the flow with respect to the geometric centerline of the mixing layer itself.
In Fig. 7, it can be observed that for increasing Reynolds number, therefore when moving along
the streamwise direction, the nondimensional distance between the geometric centerline and the
crossing point tends to diminish. However, it is important to stress that this absolute distance tends
to increase overall, and the observation from Fig. 7 is the result of the Taylor microscale increasing
more rapidly. Therefore, the increasing downstream location accentuates the mismatching between
the crossing point and the geometric centerline and, as a consequence, the crossing point presents
growing displacements towards the low velocity region of the flow when moving downstream. The
velocity difference between the average velocity and the local streamwise velocity of the internal
layers tends to increase when moving towards both the TNTIs. The described trends appear to be
insensitive to the value of the constant K .

The averages of the crosswise advection velocities of points constituting the internal layers are
presented in Fig. 8, at different velocity ranges (�U − ui )/urms. In Fig. 8(a), all the internal layers
are considered, while in Fig. 8(b) only the profiles of the internal layers characterized by positive
values of the crosswise gradients of streamwise velocities du

dy |IL are considered. From this analysis,
we can see that the internal layers of intense shear tend to move on average from the high velocity
side to the low velocity side of the mixing layer. This crosswise velocity tends to increase for
increasing values of the quantity (�U − ui )/urms, thus when approaching the low velocity side
of the flow. Larger crosswise velocities can also be observed when examining only the internal
layers with positive values of the crosswise gradients [Fig. 8(b)]. In Fig. 8(c), the crosswise velocity
profiles relative to the velocity at the internal layers, vi, are shown, at the three different Reynolds
numbers Reλ ≈ 200, 250, and 275. From this analysis, positive crosswise velocities (upwash) are
found on the lower side of the internal layers, while negative crosswise velocities (downwash) are
found on the upper side of the internal layers. These velocities profiles appear to be insensitive to
the Reynolds number.

The velocity jumps of the internal layers at the three different Reynolds number and at the
different ranges of nondimensional velocities (�U − ui )/urms are presented in Fig. 9. Specifically,
Figs. 9(a) and 9(c) report the strength of the velocity jumps associated with profiles where du

dy |IL > 0,

while in Figs. 9(b) and 9(d) the velocity jumps are associated with profiles where du
dy |IL < 0. In the

top figures, the velocity jumps are nondimensionalized by the r.m.s. velocity, while in the bottom
figures the nondimensionalization is done by the large-scale quantity �U , the velocity difference
across the mixing layer. As can be observed in Fig. 9, velocity jumps of more than 10% of �U
are found in a statistical sense across the identified layers of intense shear. Also, 〈δu〉 appears not to
depend on the range of nondimensional velocities where these intense shear layers are detected. This
is different from what was found in a turbulent boundary layer, where larger velocity jumps were
detected closer to the wall, therefore at increasingly larger momentum deficits (Eisma et al. [16],
de Silva et al. [17]). It can also be observed that these velocity jumps nondimensionalized by the
constant quantity �U are characterized by decreasing intensities for growing Reλ, both for positive
and negative gradients of du

dy |IL [Figs. 9(c) and 9(d)]. In turbulent boundary layers, the increasingly
larger velocity jumps detected when moving closer to the wall could be explained as an effect of the
local Reynolds number of the flow. As the wall approaches, the local Reynolds number of the flow
decreases, which results in larger velocity jumps, consistent with the relationship between Reynolds
number and velocity jump across the internal layers that is found in this paper and in previous ones,
e.g., Elsinga et al. [20].

The velocity jumps across intense shear layers that are quantified in the present mixing layer can
be compared with those found in different turbulent flows. From DNS of homogeneous isotropic
turbulence at very large Reλ, Ishihara et al. [21] examined instantaneous snapshots of extreme shear
events. The authors reported velocity jumps of the order of the velocity r.m.s., which is consistent
with the finding of the present analysis (Fig. 9). From their analysis on DNS data of both a channel
flow and a turbulent boundary layer, Wei et al. [46] reported velocity jumps of approximately half
the r.m.s. velocity [their Fig. 6(d)]. Similar to Wei et al. [46], de Silva et al. [17] and Eisma et al. [16]
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(a) (b)

(c) (d)

FIG. 9. Velocity jump at the internal layers identified by setting K = 1.5 in Eq. (3) for (a), (c) positive
and (b), (d) negative values of du

dy |IL detected within the ranges (green symbols) −0.25 < (�U − ui )/urms < 0,
(magenta) 0 < (�U − ui )/urms < 0.25, (blue) 0.25 < (�U − ui )/urms < 0.50, and (black) 0.50 < (�U −
ui )/urms < 0.75. • symbols refer to Reλ ≈ 200, � symbols refer to Reλ ≈ 250, and � symbols refer to
Reλ ≈ 275.

reported smaller velocity jumps than those obtained here from their experimental investigations on
turbulent boundary layers [see Fig. 13(b) of de Silva et al. [17] and Fig. 8(a) of Eisma et al. [16]]. The
smaller values of the velocity jumps compared to those in the aforementioned studies on turbulent
boundary layers can be attributed to the conditioning of averages on the sign of the transverse
gradients. When not conditioning on the sign of these gradients, much smaller velocity jumps
are obtained in the present paper too, which can also be qualitatively appreciated from comparing
Figs. 5(a) with 5(b).

Following Brown and Roshko [47], the thickness of the internal layers of intense shear δw can be
estimated as the ratio between the velocity jump δu and the maximum local gradient of the profile
∂〈u − ui〉/∂y|max. The thicknesses of the internal layers associated with profiles with du

dy |IL > 0 and

with du
dy |IL < 0, obtained as illustrated in Fig. 6, are presented, respectively, in Figs. 10(a) and 10(c)

and in Figs. 10(b) and 10(d). These thicknesses are nondimensionalized by the Taylor microscale λ

[Figs. 10(a) and 10(b)] and by the Kolmogorov microscale η [Figs. 10(c) and 10(d)], and estimated
at different Reλ, i.e., different streamwise locations, and at different ranges of streamwise velocities
(�U − ui )/urms.

From Fig. 10, it is not possible to establish whether the thickness of the internal layers scales with
the Taylor length scale or with the Kolmogorov length scale. This is because the range of Reynolds
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(a) (b)

(c) (d)

FIG. 10. Thickness of the internal layers identified by setting K = 1.5 in Eq. (3) for (a), (c) positive
and (b), (d) negative values of du

dy |IL detected within the ranges (green symbols) −0.25 < (�U − ui )/
urms < 0, (magenta) 0 < (�U − ui )/urms < 0.25, (blue) 0.25 < (�U − ui )/urms < 0.50, and (black) 0.50 <

(�U − ui )/urms < 0.75. • symbols refer to Reλ ≈ 200, � symbols refer to Reλ ≈ 250, and � symbols refer to
Reλ ≈ 275.

number under analysis is not sufficiently large. However, several important observations can be
made. First, the thickness of the internal layers seems to be insensitive to the velocity range (�U −
ui )/urms. Secondly, 〈δw〉/λ ranges between 0.3 and 0.4, which is the same as that found by Eisma
et al. [16] [their Fig. 8(b)], and very similar to what found by de Silva et al. [17] [their Fig. 13(e)]
in turbulent boundary layers. Moreover, 〈δw〉/η is nearly equal to 10, which is the characteristic
diameter of the small-scale coherent structures according to several studies, the so-called worms
[21,48–51]. It can also be observed that 〈δw〉 decreases when moving from Reλ ≈ 200 to 275. This
is analogous to what was observed for the velocity jump, 〈δu〉.

IV. INTERNAL LAYERS OF INTENSE SHEAR WITHIN THE JET

The internal layers of intense shear are investigated in the jet with two different orifice geome-
tries, a circular and a fractal orifice. The near field of the circular jet is characterized by intense
coherent structures developing in the azimuthal direction, whereas the fractal orifice was observed
to break the azimuthal coherence, which changes significantly the near field of turbulence [33,34].
In the past, several studies showed that changes of the initial conditions of a jet have a strong impact
on the fully developed region of a jet (see Xu and Antonia [52] and references therein). In this
section, we intend to examine if and how different orifice geometries could affect the characteristics
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(a) (b)

FIG. 11. Conditionally averaged profiles of the streamwise velocity in the near vicinity of the internal
layers of intense shear, in which only the profiles characterized by (a) negative and (b) positive values of du

ds |IL
are retained and contribute to the calculation. Red • symbols refer to the circular jet, while black � symbols
refer to the fractal jet.

of the internal layers, at the beginning of the fully developed region of the flow, i.e., at a downstream
distance of 25 diameters. Moreover, a different free-shear flow at a different Reynolds number is
analyzed to determine a scaling for the thickness of the internal layers.

In the jet, the internal layers are obtained as discussed in Sec. II, after setting C = 3 in Eq. (4).
However, variations of the constant C do not affect significantly the results of this analysis, as shown
in Appendix C. The profiles of streamwise velocity are presented in Fig. 11 along a local abscissa
s that passes through the point si of the region of intense shear, and has a direction orthogonal
to the major axis of the fitted ellipse. We distinguish between negative and positive gradients of
the streamwise velocity du

ds |IL, analogous to the analysis of the mixing layer in Sec. III. The sign
of the gradient of the streamwise velocity du

ds |IL for each profile is determined based on the sign
of the gradient of the conditional mean streamwise velocity along the segments where the velocity
profiles are calculated, i.e., along the local abscissa s. Positive gradients are those where the sign
of the local gradient agrees with the gradient of the mean streamwise velocity, and vice versa. Red
circles refer to the circular jet, while black diamonds represent the fractal jet. As can be seen, the
shapes of the two profiles are similar to conditionally averaged profiles obtained from the mixing
layer (in Fig. 5), and they do not appear to be particularly sensitive to the initial conditions of
the flow. Similar to the mixing layer, the percentage of velocity profiles characterized by negative
transverse gradients, therefore having an opposite sign with respect to the mean shear, is of 31%
for the jet with a fractal orifice, and it is of 34% for the jet with a round orifice. Therefore, the sign
of the transverse gradients across the internal layers is in prevalence coherent to the mean shear of
the region of jet flow under analysis. There is however a significant percentage of internal layers in
which the shear is opposite with respect to the mean shear, similar to the mixing layer.

From the analysis of the conditionally averaged profiles, we can determine the velocity jump
across the layers. Both with a circular and a fractal orifice, velocity jumps larger than the velocity
r.m.s. are obtained. Specifically, 〈δu〉/urms is equal to 1.24 for the fractal jet and to 1.57 for the jet
with circular jet, when positive transverse gradients are considered. 〈δu〉/urms is equal to 1.14 for
the fractal jet and to 1.33 for the circular jet, when negative transverse gradients are considered.
The velocity r.m.s. used for the nondimensionalization, urms, is calculated using samples of the
flow domain in the point where the average streamwise velocity is maximum. The obtained urms is
expected to be analogous to the rms at the jet centerline as it is calculated in a point in the range 0 <

r/r1/2 < 1, a range of radial locations over which urms does not vary significantly according to the
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literature on jets (see Pope [43]). These velocity jumps are larger than the velocity jumps obtained in
the mixing layer [Figs. 9(a) and 9(b)]. This can be either the consequence of a different flow or of a
lower Reynolds number. The second explanation seems to be more convincing considering the trend
reported in Figs. 9(a) and 9(b), where at decreasing Reynolds numbers we observe larger velocity
jumps, for the same flow. Increasing velocity jumps nondimensionalized by urms for decreasing
Reynolds numbers are consistent with the observations by Gul et al. [19] on a pipe flow, by Wei
et al. [46] on wall-bounded flows [their Fig. 6(d)], and by Elsinga et al. [20] on homogeneous
isotropic turbulence (their Figs. 4 and 19). In the latter two works, the maximum tangential velocity
in the direction orthogonal to the shear layer was examined, which can be assimilated to half of the
velocity jump as defined in the present paper. When nondimensionalized by the jet velocity at the
orifice, the velocity jumps found in the jet are of the order of 10%, which is comparable to what
we find in the mixing layer [Figs. 9(c) and 9(d)]. These findings confirm what we observe from the
analysis of the mixing layer, i.e., that in free-shear flows velocity jumps across the internal layers
are considerably larger than in previous analyses on wall-bounded flows. Similar to the comment
made when examining the mixing layer, this discrepancy can be attributed to not having accounted
for the sign of the wall-normal gradients of the streamwise velocity when computing the conditional
averages.

From the velocity profiles in Fig. 11, we can determine the characteristic thickness of the internal
layers. When nondimensionalized by the Taylor microscale, we obtain that 〈δw〉/λ is equal to 0.51
for the fractal jet and to 0.47 for the circular jet, when positive transverse gradients are considered.
〈δw〉/λ is equal to 0.66 for the jet with fractal orifice and to 0.50 for the jet with circular orifice, when
negative transverse gradients are examined. For the jet, a nondimensionalization of the characteristic
thickness 〈δw〉 by the Kolmogorov length scale would be challenging though, as the Kolmogorov
length scale is heavily dependent on the position within the flow and affected by measurement noise.
Moreover, the velocity data from the jets do not include the geometric centerline, therefore it would
be inaccurate to use estimates of the Kolmogorov length scale at the centerline. It was therefore
decided not to quantify the thickness of the internal layers within the jets in terms of Kolmogorov
length scale, but only in terms of Taylor microscale. From this analysis, it appears that the thickness
of the internal layers at a downstream distance from the jet orifice of 25 diameters is not significantly
affected by changes in the jet initial conditions.

Overall, when comparing these values with those obtained from the analysis of the mixing layer,
it appears that the thickness of the internal layers decreases with the local Reynolds number. The
thickness of the internal layers of intense shear identified in the jet and in the mixing layer and
nondimensionalized by the Taylor microscale is presented in Fig. 12 for varying Reynolds numbers.
The ratio 〈δw〉/λ closely follows the scaling law 〈δw〉/λ ∼ Re−1/2

λ . From recalling that at high
Reynolds numbers the ratio between the Kolmogorov and the Taylor microscales is η/λ ∼ Re−1/2

λ ,
the observed scaling law 〈δw〉/λ ∼ Re−1/2

λ suggests a Kolmogorov scaling for the thickness of the
internal layers of intense shear in free-shear flows. The observed scaling for the internal layers is
consistent with the very recent observations of Watanabe et al. [53], who examined the shearing
motions in isotropic turbulence with the same triple decomposition as that applied in the present
paper. However, Eisma et al. [16] and de Silva et al. [17] found a Taylor scaling for the internal
layers from the analysis of turbulent boundary layers, although in their analysis de Silva et al.
[17] adopted a different methodology than the one used in the present paper. Therefore, a possible
explanation for the observed difference between the present result and the Taylor scaling found by de
Silva et al. [17] could be attributed to the methodology to identify the internal layers within the flow.
Regarding the investigation of Eisma et al. [16], they applied an identification criterion similar to the
one adopted here, but they did not account for the sign of the crosswise gradient when determining
the average profiles across the internal layers, which could lead to a larger thickness. It is worth
highlighting that recently Silva et al. [12] found a Kolmogorov scaling also for the thickness of
the TNTI in the range of Reynolds number 142 � Reλ � 400. This finding expands from previous
observations by Holzner and Lüthi [54], Watanabe et al. [13], and Watanabe et al. [14].
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FIG. 12. Thickness of the internal layers identified in the jet (blue �) and in the mixing layer (red •) as
explained in Sec. II, and normalized by the Taylor microscale λ, as a function of the Reynolds number Reλ.

V. THE CONCENTRATION OF A PASSIVE SCALAR ACROSS THE INTERNAL LAYERS

In the following, we focus on the concentration of a passive scalar across the internal layers.
According to the analysis presented up until now and to the previous literature, several features of
the internal layers are common to the TNTI. These are (i) the existence of a jump in the streamwise
velocity profile, (ii) the scaling of the jump thickness, and (iii) the entrainment of fluid associated
with the observed velocity jumps. Given the existing analogies between the TNTI and the internal
layers, and given that also the scalar concentration exhibits a jump across the TNTI, as Gampert
et al. [5] (their Fig. 15) and Gampert et al. [6] (their Fig. 10) showed, we might also expect to find a
jump of scalar across the internal layers. If such a jump was observed, it would mean that zones of
relatively uniform scalar concentration are bounded by internal layers of intense shear throughout
the flow. Conditional averages of a passive scalar at Schmidt number Sc = 1.4 are calculated across
the internal layers, and they are reported in Fig. 13. As can be observed, the concentration of a
passive scalar does not exhibit any jumps 〈δc〉 across the internal layers. In a similar way, there seem

(a) (b) (c)

FIG. 13. (a) Conditionally averaged profiles of scalar concentration at Schmidt number Sc = 1.4 in the
near vicinity of all detected internal layers within the range 0.25 < (�U − ui )/urms < 0.50, in the DNS mixing
layer. In (b) and (c), only the negative and positive values of du

dy |IL, respectively, are retained and contribute to
the conditionally averaged profiles of streamwise velocity. Symbols are defined in Fig. 5.
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to be no jumps when applying an additional conditioning on the sign of the crosswise gradient du
dy |IL,

as shown in Figs. 13(b) and 13(c). This observation can be confirmed from a rigorous quantification
of 〈δc〉 analogous to that made for the jumps in the streamwise velocity 〈δu〉, and illustrated in
Sec. III. The described quantification results in concentration jumps one order of magnitude smaller
than those computed from streamwise velocity profiles (Fig. 9), from which we can consider them
as negligible. Although not reported here, a similar analysis is also performed for a passive scalar at
Schmidt number Sc = 0.7 and 0.35. The results are analogous to those obtained at Schmidt number
Sc = 1.4, which shows that small deviations of the Schmidt number from unity do not significantly
affect the concentration of a passive scalar in the proximity of the internal layers.

From this analysis, layers of intense shear are not characterized by strong crosswise gradients
of a passive scalar. Therefore, the internal layers, which bound regions of different momentum,
do not appear to bound regions of different passive scalar according to our finding from Fig. 13.
It is worth pointing out that this finding is independent of the method that is adopted for the
identification of these internal layers. A method analogous to the one described in de Silva et al. [17]
can also be applied, with the aim of identifying the internal layers. This method relies on the local
probability density function for the identification of the edges of “uniform momentum zones,” which
are regarded as the internal layers within turbulent boundary layers. Even if additional details of this
analysis are not reported here for the sake of brevity, conditionally averaged profiles analogous to
those presented in Fig. 13 are obtained when applying such a methodology. These observations are
consistent with Brethouwer et al. [25], who performed numerical simulations of isotropic turbulence
at relatively low Reynolds numbers and at a wide range of Schmidt numbers. They found that the
scalar gradients are weak in regions of intense vorticity.

VI. INTERNAL LAYERS OF INTENSE SCALAR GRADIENT

In this section, the reverse problem is investigated. Starting from the points at intense scalar
gradients, we intend to examine the profiles of average streamwise velocity in the proximity of
these points. We shorten scalar gradient as SG in the continuation of the paper. Three snapshots
of the magnitude of the SG |∇c(x, y, z)| at Schmidt number Sc = 1.4 and at Reλ ≈ 250 are shown
in Fig. 14. From this figure, it can be observed that the passive scalar is organized into thin layers
of intense SG which appear to be elongated along the streamwise direction, and therefore their
orientation tends to be nearly orthogonal with respect to the mean shear of the flow. The points
constituting layers of intense magnitude of the SG are identified with the following method:

|∇c(x, y, z)|∣∣GSC > H |∇c(x, y, z)|max,yz(x) (5)

where GSC stands for gradient of scalar concentration and denotes the identification of a layer
of intense gradient of scalar concentration. According to Eq. (5), a point (x, y, z) is considered
part of an internal layer of intense SG if |∇c(x, y, z)| is larger than the local maximum along the
y and z directions multiplied by a constant. At each Reynolds number, the distribution of points
of intense SG along the crosswise direction (not shown here for brevity) exhibits a maximum in
the proximity to the geometric centerline of the mixing layer, even though a more uniform spread
over the crosswise direction can be observed when compared with the points of intense shear.
After setting H = 0.4, conditionally averaged profiles of the streamwise velocity are computed
across |∇c(x, y, z)||GSC. These profiles are presented in Fig. 15, at different Reynolds numbers and
at different ranges of velocities (�U − ui )/urms. It is worth stressing that the profiles in Fig. 15
consider all the points identified with Eq. (5), and therefore they do not distinguish among profiles of
positive or negative crosswise gradient of the streamwise velocity, du

dy , as done in obtaining Figs. 5(b)
and 5(c).

From Fig. 15, jumps in the streamwise velocity appear along the crosswise direction. The strength
of these jumps seems to mildly decrease at increasing Reynolds number. Also, the positive branches
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FIG. 14. Snapshots showing the magnitude of ∇c(x, y, z) on planes at constant z, in a streamwise region
where Reλ ≈ 250. The streamwise and crosswise coordinates, respectively x and y, are nondimensionalized by
an averaged momentum thickness δθ in this region.

of the velocity profiles are inclined at increasing angles with respect to the vertical, at increasing
values of (�U − ui )/urms, thus when moving towards the low velocity side of the mixing layer. On
the other hand, a counterclockwise rotation of the negative branches appears for growing (�U −
ui )/urms. The velocity profiles obtained in the vicinity of the layers of intense SG can be compared
with those obtained in the previous section, which are conditioned on the internal layers of intense
shear, and are shown in Fig. 5(a). The latter profiles are composed of three straight lines, and the
velocity jump occurs over a crosswise span of 0.2–0.3λ, whereas the profiles conditioned on the
intense SG show a milder but constant velocity variation, and the jump occurs over a crosswise span
of 0.5–0.6λ. These differences in the velocity profiles evidence a different flow topology between
the layers of intense shear and the layers of intense SG.

The observed difference in the topological content can be further investigated through the
analysis of the second and third invariants of the velocity gradient tensor, Q and R [55]. In
the following, we examine the statistics of the Q and R invariants. We first consider random
points of the flow domain included between the TNTIs, then we consider only the points that
are part of the internal layers of intense shear, and, finally, only the points characterized by
intense |∇c(x, y, z)|. In Figs. 17(a), 17(b), and 17(c) the results of this analysis are presented. A
conventional division of the JPDF of the Q and R invariants into four regions was proposed by
Ooi et al. [56], and their lifetime and temporal evolution in turbulent flows was investigated more
recently by Elsinga and Marusic [57]. The described classification of the local flow topology based
on the Q and R invariants is shown in Fig. 16. According to this classification, region I corre-
sponds to stable focus/stretching [R > 0, Q > −(27R2/4)1/3], region II corresponds to unstable
focus/stretching [R < 0, Q > −(27R2/4)1/3], region III corresponds to stable node/saddle/saddle
[R > 0, Q < −(27R2/4)1/3], and region IV corresponds to unstable node/saddle/saddle
[R < 0, Q < −(27R2/4)1/3].

034612-19



FISCALETTI, BUXTON, AND ATTILI

(a) (b)

(c) (d)

FIG. 15. Conditionally averaged profiles of the streamwise velocity in the near vicinity of crosswise
gradients of the passive scalar concentration at Schmidt number Sc = 1.4 within the range (a) −0.25 <

(�U − ui )/urms < 0, (b) 0 < (�U − ui )/urms < 0.25, (c) 0.25 < (�U − ui )/urms < 0.50, and (d) 0.50 <

(�U − ui )/urms < 0.75. • symbols indicate Reλ ≈ 200, + symbols indicate Reλ ≈ 250, and � symbols
indicate Reλ ≈ 275.

Figure 17(a) shows the JPDF of the second and third invariants calculated in random points of
the turbulent domain. Over 5×106 points are used in these statistics, identified at constant intervals
along the three directions of the flow, within the turbulent region. The isocontours of the JPDF
exhibit the characteristic tear-drop shape, with the tail along the right branch of the null-discriminant
line into region II, and the body inclined towards region I. This shape was observed in several
previous investigations of turbulent flows [56–60], and it is considered a universal characteristic of
small-scale turbulence according to Elsinga and Marusic [23]. A similar JPDF is obtained when
the Q and R invariants are calculated in points that are part of the internal layers of intense shear
[Fig. 17(b)], after setting K = 2.5 in Eq. (2), with the aim of considering the most extreme events
only. However, this result is not particularly sensitive to the value of the constant K , as discussed
in Appendix D. The observed analogy between the unconditional JPDF and the JPDF obtained
at the internal layers of intense shear shows that the latter ones are characterized statistically
by a very similar topological content as any other random points within the turbulent flow. The
JPDF of the second and third invariants of the velocity gradient tensor presents the characteristic
tear-drop shape in points of intense shear vorticity, even though slightly skewed towards region
I, which is associated with stable focus/stretching (see Fig. 16). The topology of focus/stretching
results is dominant over node/saddle/saddle, with a 75% probability. From the analyses presented in
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FIG. 16. Local flow topologies associated with the invariants of the velocity gradient tensors (Q and
R) for incompressible flow. Region I corresponds to stable focus/stretching [R > 0, Q > −(27R2/4)1/3],
region II corresponds to unstable focus/stretching [R < 0, Q > −(27R2/4)1/3], region III corresponds to stable
node/saddle/saddle [R > 0, Q < −(27R2/4)1/3], and region IV corresponds to unstable node/saddle/saddle
[R < 0, Q < −(27R2/4)1/3]. Figure adapted from Ooi et al. [56].

Secs. III and IV, the internal layers of intense shear scale with the Kolmogorov microscale, which
implies that these internal layers are small-scale dissipative features. Their thickness is also found
to be of approximately 9–11η. The JPDF in Fig. 17 shows that the points constituting the internal
layers of intense shear are characterized by a dominant flow topology of stable focus/stretching
(region I of Fig. 16). Such a flow topology is associated with the elongated coherent structures
of vorticity that can be typically identified in small-scale turbulence, the so-called worms, with
a characteristic diameter of approximately 10η [21,48–51]. All these aspects concur with the
development of a conceptual picture for these internal layers as constituted by a series of line
vortices, the worms, organized into vortex sheets, and bounding regions of large and intermediate
length scales, consistent with the model proposed by Hunt et al. [22]. Therefore, the identified
internal layers are cuts through the structures of vortex sheets (see Fig. 3), with their major axis
being preferentially oriented orthogonally to the observation plane.

A different topological content is found when considering only points characterized by intense
magnitude of the SG. These are points of the three-dimensional domain where the concentration of
a passive scalar exhibits a large gradient, and they are identified after setting H = 0.6 in Eq. (5).
The JPDF of the Q and R invariants in points of intense SG is presented in Fig. 17(c). As can be
observed, the Q and R invariants are preferentially located in regions I and IV, although the JPDF
of the Q and R invariants also extends to region III. On the other hand, the statistical presence
of the Q and R invariants inside region II is nearly insignificant, which is an important difference
with respect to Fig. 17(a). The tail located along the right branch of the null-discriminant line is
also much longer here than in the unconditional JPDF. Therefore, two flow topologies are mainly
present in these layers of intense |∇c(x, y, z)|, which are the unstable node/saddle/saddle and the
stable focus/stretching. The strong prevalence of the unstable node/saddle/saddle is evidence that
at intense |∇c(x, y, z)| strain dominates rotation (Fig. 16). The topology of node/saddle/saddle is
prevalent over the focus/stretching topology, with 59% of the total probability. A flow topology
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(a) (b)

(c) (d)

FIG. 17. Joint probability density functions of the second (Q) and third (R) invariants of the velocity
gradient tensor (a) in random points of the turbulent portion of the domain, (b) in points of intense shear
vorticity ωSH(x, y, z), and (c) in points of intense gradient of the scalar concentration |∇c(x, y, z)| [with H = 0.6
in Eq. (5)], at Reλ ≈ 275. (d) QR scatter plot at yI = 4η from the TNTI of the low velocity side of the flow inside
the turbulent region, at Reλ ≈ 250. The blue continuous lines are the null-discriminant lines Q = −(27R2/4)1/3

(Chong et al. [55]). In each panel, four regions can be identified, and their physical meaning is illustrated in
Fig. 16. QW = (∇×u)2/4.

of unstable node/saddle/saddle can be associated with diverging streamlines (region I of Fig. 16),
and therefore with low levels of mixing in the neighborhood of the point, which explains the high
gradient of scalar concentration. On the other hand, in a flow topology of stable focus/stretching
the streamlines are associated with the formation of a vortex. This enhances mixing of the scalars,
which reduces the local norm of the scalar concentration gradient, thus leading to the conditionally
averaged profiles of scalar concentration presented in Fig. 13. Variation of the coefficient H in
Eq. (5) does not affect significantly the results reported in Fig. 17(c), as discussed in Appendix D.
These observations on the topological content of points at intense SG are consistent with Brethouwer
et al. [25] and Elsinga and da Silva [24], among others.
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In Fig. 17(d), we present the QR scatter plot of points located at yI = 4η from the TNTI of the low
velocity side of the flow inside the turbulent region, at Reλ ≈ 250. Note that yI = 4η represents the
envelope of the TNTI at a crosswise distance of 4η. This location is approximately at the interface
between the viscous superlayer (VSL) and the turbulent sublayer (TSL) (see Fig. 1 of da Silva
et al. [61]), given that the extent of the VSL is of 4–5η according to Taveira and da Silva [62]
and Silva et al. [12]. The Q and R invariants are preferentially located in regions I, III, and IV,
with a prevalence for the topology of node/saddle/saddle. This result is consistent with Taveira
and da Silva [62], who showed that the production of enstrophy ωiSijωj becomes significant at
� 5η, which suggests that a prevalence of foci is expected to build up at this location. Although
not reported here, scatter plots are also estimated in points at yI = 2η and 6η. From these plots
we can infer that for decreasing distances from the TNTI, the Q and R invariants tend to be more
preferentially located in region III and less preferentially located in region I, consistent with Elsinga
and da Silva [24] (their Fig. 7). The observation reported in Fig. 17(d) is an important analogy
with the prevalent flow topology that characterizes the layers of intense |∇c(x, y, z)|. In this mixing
layer, and, predictably, in other turbulent flows, several similarities exist between the internal layers
of intense SG and the TNTI. These are (i) the existence of a velocity jump across both types of
layers, (ii) the existence of a jump in the concentration of a passive scalar across both types of
layers (this is by definition true in layers of intense SG), (iii) a topological content characterized
by a prevalence of node/saddle/saddle and stable focus/stretching, and (iv) an overall dominance of
unstable node/saddle/saddle, which is evidence that strain is dominant. Moreover, the findings from
the analysis given in Fig. 17 explain why the conditionally averaged profiles of scalar concentration
shown in Fig. 13 have a uniform trend, i.e., they do not exhibit any discontinuities or jumps. The
lack of jumps in the scalar profiles suggests that the gradients of the scalar concentration tend
to not be located within the internal layers of intense shear. Therefore, regions of intense scalar
gradients and layers of intense shear vorticity are not expected to spatially overlap. The analysis
of the flow topology in points of intense scalar gradients and in points of intense shear vorticity
confirms this inference by showing that they are characterized by a different topological content.
Because the flow topology of unstable node/saddle/saddle is dominant at intense scalar gradients
while the stable focus/stretching is dominant in the internal layers of intense shear, scalar gradient
and shear vorticity tend to be located in different regions of the flow.

From the profiles of streamwise velocity conditioned on the intense SG (Fig. 15), we observe
that a jump in the streamwise velocity occurs in layers of intense SG. Analogous velocity jumps
are identified in the internal layers of intense shear. Although we stress that a difference exists in
the prevalent topological content between points of intense shear and points of intense SG, it is
not clear what is their mutual location within the turbulent flow. We try therefore to answer the
question “given that the chances are small for scalar and velocity gradient to overlap, is there a
preferential location where we could find a point of intense scalar gradient with respect to a point
of intense shear vorticity?” This aspect can be investigated from the covariance between SV and
SG. This analysis was performed for the mixing layer at Reλ ≈ 275, in the range of crosswise
positions y = [5.1, 6.5], and it is presented in Fig. 18. The results are obtained from averaging the
covariance along the spanwise direction, which is calculated in 348 uncorrelated planes along the
streamwise and crosswise directions. The covariance has the physical dimension of [m−1 s−1]. The
largest covariance is found for a nearly zero displacement, which means that the SV correlates with
the SG, although weakly. Comparable values are found for positive streamwise displacements �x
up to ≈4λ, and for negative crosswise displacements �y up to ≈ −2.5λ. From the analysis of the
topological content of the points at intense SG, we can see that it is highly improbable that the
QR invariants are located in region II of the QR JPDF [where R > 0 and Q > −(27R2/4)1/3, see
Fig. 16]. From this observation, points of intense SV belonging to the region II are not expected
to correlate with points of intense SG, simply because there are very small chances that they share
the same flow topology. According to this reasoning, these points are set to zero in the SV dataset,
and the covariance between this and the SG are calculated in the same way as explained previously.
The results of this calculation are presented in Fig. 19. At nearly zero displacements, a covariance
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FIG. 18. Covariance between the shear vorticity magnitude ωSH and the scalar gradient magnitude |∇c| in
the range of crosswise positions y = [5.1, 6.5], at Reλ ≈ 275.

double that obtained previously is found in this case. Furthermore, these levels of covariance are
much larger than those obtained far from �y ≈ �x ≈ 0, which shows that SV correlates locally
with SG when points belonging to region II are not considered. These points account for only 25%
of the total turbulent region, at Reλ ≈ 275.

After having ascertained that the SV correlates locally with the SG, we examine the probability
of points of intense SV to overlap with points of intense SG. Therefore, the following analysis
tries to answer the question “what is the probability that a point of intense SV is also a point of
intense SG, and vice versa?” The results are presented in Table I. As can be observed, an overlap
probability larger than 10% (up to 15% for Reλ ≈ 250) is obtained when examining whether points
of intense SG are also points of intense SV (|∇c| 	→ ωSH), with the latter ones being identified after
setting K = 1.5 in Eq. (2). On the other hand, a probability slightly larger than 2% is estimated
when examining whether points of intense SV are also points of intense SG (ωSH 	→ |∇c|). This
shows that there is a much larger probability that a point of intense SG is also a point of intense SV,
rather than the other way around, although this is still unlikely to occur. This finding is consistent
with the conditionally averaged profiles reported in Figs. 13 and 15, i.e., it is consistent with finding
a velocity jump across the internal layers of intense SG, and with not finding any jumps in the

FIG. 19. Covariance between the shear vorticity magnitude ωSH and the scalar gradient magnitude
|∇c| after removing points characterized by unstable focus/stretching, in the range of crosswise positions
y = [5.1, 6.5], at Reλ ≈ 275.
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TABLE I. Probability that a point of intense shear vorticity, ωSH, is also a point of intense SG, |∇c|, and
vice versa. The points of intense shear vorticity are identified for K = 1.5 and 2.5 [Eq. (2)], while the points of
intense SG are identified for H = 0.4 [Eq. (5)], and at three different Reynolds numbers.

Reλ

K H 200 250 275

ωSH 	→ |∇c| 2.5% 2.4% 1.9%
1.5 0.4 |∇c| 	→ ωSH 10.7% 15.9% 12.0%

ωSH 	→ |∇c| 2.5% 3.1% 2.3%
2.5 0.4 |∇c| 	→ ωSH 2.2% 3.9% 2.5%

scalar concentration across layers of intense shear. This observation is also consistent with recent
experimental analyses presented by van de Water et al. [63], who examined the dispersion of a
plume of pollutant in a turbulent boundary layer. Nonetheless, when the identification of the intense
internal layers is made by setting K = 2.5 in Eq. (2), a drop in the percentage probability is obtained.
This suggests that points at intense SG tend to be located where the SV is larger than average, even
though they are not preferentially located in the extreme shear events within the flow.

VII. CONCLUSIONS

In this paper, internal layers were investigated both in a mixing layer and in a jet, in the range
of Reynolds numbers based on the Taylor microscale 134 < Reλ < 275. The mixing layer was
obtained from DNS while the jet under analysis came from experiments of tomographic PIV where
two different orifice geometries were adopted, a fractal orifice and a circular orifice.

Internal layers of intense shear were identified after applying a triple decomposition of the
velocity gradient tensor into the sum of three different contributions, i.e., rigid-body rotation,
elongation, and shear, in which only the shear component was used in the calculation of the vorticity.
In the turbulent domain, the magnitude of the shear vorticity was required to be larger than a
threshold value in order to identify an internal layer of intense shear. The identified internal layers
of intense shear tend to move on average from the high velocity side to the low velocity side of the
mixing layer, therefore with a negative crosswise velocity. This crosswise velocity tends to increase
for increasing values of the quantity (�U − ui )/urms, thus when approaching the low velocity side
of the flow. The local advection velocity of the points constituting the internal layers of intense shear
was also assessed. Near the high velocity side of the flow the internal layers are characterized by a
local advection velocity lower than the average velocity of the flow, while near the low velocity side
of the flow the opposite occurs. This is consistent with recent observations from the literature.

Across all detected internal layers, conditionally averaged profiles of streamwise velocity ex-
hibited jumps that, if made nondimensional by the velocity r.m.s., showed a decreasing trend for
increasing Reλ. The observed velocity jumps accounted for approximately 10% of the characteristic
large-scale velocity of the flow, which is in a mixing layer the velocity difference between the
high and the low velocity sides, and in a jet, the orifice velocity. The intensity of these velocity
jumps is much larger than what Eisma et al. [16] and de Silva et al. [17] found in turbulent
boundary layers. From the conditionally averaged profiles of streamwise velocity, we estimated
the characteristic thickness of the internal layers of intense shear. We found that, in the mixing
layer, this thickness does not depend significantly on the crosswise location, and it is between 0.3
and 0.4 times the Taylor microscale, and of between 9 and 11 times the Kolmogorov microscale.
The thickness of these internal layers is analogous to what is reported in turbulent boundary layers
when nondimensionalized by the Taylor microscale.

From the analysis of the mixing layer solely, it was not possible to determine whether the
thickness of the internal layers scales with the Taylor or with the Kolmogorov microscale, because
the range of Reλ under investigation was not sufficiently large. The results from the jet at Reλ ≈ 140
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were therefore added to the analysis on the mixing layer with the aim of determining a scaling for
the thickness of the internal layers. In the jet, a thickness of around 〈δw〉 ≈ 0.5λ was estimated,
independent of the orifice geometry. When considering both flows for scaling purpose, we found
that 〈δw〉/λ ∼ Re−1/2

λ , which suggested that 〈δw〉 scales with the Kolmogorov length scale (Fig. 12).
Recently, Silva et al. [12] observed that also the TNTI scales with the Kolmogorov microscale,
which appears to be an important analogy between the internal layers of intense shear and the
TNTI. However, these two types of layers exhibit a major difference in the way the concentration
of a passive scalar (at Sc = 1.4) varies across them. While previous literature showed that a jump
exists in the scalar concentration across the TNTI, no jumps were found across the internal layers
of intense shear.

With the aim of explaining this difference of behavior, the topological content of the flow was
examined in points characterized by an intense magnitude of the scalar gradient. It was found that
node/saddle/saddle and stable focus/stretching are prevalent (Fig. 16), with an overall dominance
of node/saddle/saddle, which is associated with strain. A very similar topological content was
observed in the proximity of the TNTI, whereas the internal layers are shear-dominated regions. The
JPDF of the second and third invariants of the velocity gradient tensor presents the characteristic
tear-drop shape in points of intense shear vorticity, even though slightly skewed towards region I,
which is associated with stable focus/stretching. The observed different content in the flow topology
between shear vorticity and scalar gradient explained the absence of a jump in the profiles of scalar
concentration across the shear layers. On the other hand, when conditionally averaged profiles of
streamwise velocity were calculated across layers of intense scalar gradient, evidence of velocity
jumps was found. These observations showed that the TNTI presents more similarities with the
layers of intense scalar gradient than with the layers of intense shear. In particular, the similarities
between the TNTI and the layers of intense scalar gradient are (i) the existence of a velocity jump,
(ii) the existence of a scalar jump across both types of layers, (iii) the topological content, and (iv)
an overall dominance of strain over rotation.

The cross correlation between shear vorticity and scalar gradient was calculated to determine
possible mutual interactions between these quantities. A weak peak was found for a nearly zero dis-
placement along the streamwise and crosswise directions. However, when the points characterized
by unstable focus/stretching were removed from the map of shear vorticity, a stronger correlation
peak was obtained, of double intensity. This showed that unstable focus/stretching within the shear
vorticity can dramatically deteriorate the levels of correlation between shear vorticity and scalar
gradient. Finally, the probability that a point of intense scalar gradient is also a point of intense
shear vorticity, and vice versa, was examined. A point of intense scalar gradient has more than
10% chance of being also a point of intense shear vorticity, whereas the opposite is much more
improbable, accounting for a probability of 2–3%.

In future works, it would be of interest to examine whether significant deviations of the Schmidt
number from unity, therefore when either viscous diffusion or molecular diffusion is dominant,
could affect the characteristics and the topological content of the internal layers of intense scalar
gradient. The effect of Schmidt numbers in the range 0.07 � Sc � 7.0 on the structure of the scalar
gradient near the TNTI of a planar jet was investigated in the recent past by Silva and da Silva [64].
Higher Schmidt numbers produce a steeper scalar gradient jump in the TNTI and a more corrugated
interface of the passive scalar at the jet edge. Also, the outer boundary of the TNTI based on the
scalar gradient tends to coincide with the the TNTI obtained from vorticity at Sc = 7.0, whereas at
decreasing Schmidt numbers their distance becomes progressively larger.

APPENDIX A: THE TRIPLE DECOMPOSITION OF THE VELOCITY GRADIENT TENSOR

The triple decomposition of the velocity gradient tensor is illustrated in this Appendix. The
decomposition is performed in the frame of reference that maximizes the quantity G = |S12�12| +
|S23�23| + S31�31|, where S and � are, respectively, the strain-rate tensor and the vorticity tensor.
We define this new frame of reference the basic reference frame (BRF), following the nomenclature
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by Kolář [30]. The velocity gradient tensor ∇u∗ in the BRF frame is obtained as Q(∇u)QT , where
Q is the transformation tensor for an arbitrarily rotated Cartesian coordinate system, and it can be
obtained by a sequence of three rotational transformations with respect to the Cartesian system in-
troduced in Sec. II. The first rotation of an angle α, with 0 � α � π , is around the z axis. The second
rotation of an angle β, with 0 � β � π , is around the y axis obtained from the previous transfor-
mation. The third rotation of an angle γ , with 0 � β � π/2, is around the z axis obtained from the
previous two transformations. In the following, the transformation tensor Q(α, β, γ ) is presented:

Q =
⎡
⎣

cosα cosβ cosγ − sinα sinγ sinα cosβ cosγ + cosα sinγ −sinβ cosγ
−cosα cosβ sinγ − sinα cosγ −sinα cosβ sinγ + cosα cosγ sinβ sinγ

cosα sinβ sinα sinβ cosβ

⎤
⎦.

In implementing this transformation, the values of the three angles α, β, and γ are varied, each
of them at increments of multiples of � = π/12. The sensitivity of the results to the size of the
increment angle � was tested. It was found that for � < π/9 the results are not significantly
affected. This observation is consistent with Nagata et al. [31].

Each combination of the so obtained triplets of angles identifies a distinct frame of reference. In
each of these frames of reference, the quantity G is calculated. The frame of reference in which the
quantity G is the highest identifies the BRF frame of reference. The velocity gradient tensor ∇u is
calculated in BRF. In this new frame of reference BRF, the velocity gradient tensor is referred to as
∇u∗. Two contributors to ∇u∗ can be identified, i.e., (∇u∗)RES = (∇u∗)EL + (∇u∗)RR and (∇u∗)SH,
where ∇u∗

SH identifies the shear contribution, while ∇u∗
RR and ∇u∗

EL represent the contributions
from the rigid body rotation and elongation, respectively. The shear contribution of the velocity
gradient tensor ∇u∗ can be obtained from the following relationship [see Eq. (8b) of Kolář [30]]:

[(∇u∗)RES]i j = sgn[(∇u∗)ij] min[|(∇u∗)ij|, |∇(u∗)ji|]
where sgn(h) is the sign function that yields sgn(h) = 1 for h > 0, sgn(h) = 0 for h = 0, and
sgn(h) = −1 for h < 0. The component (∇u∗)SH can be obtained from subtracting (∇u∗)RES to
∇u∗. In order to obtain (∇u)SH, therefore to transform (∇u∗)SH in the laboratory frame of reference,
the following matrix operation should be performed:

(∇u)SH = QT [(∇u∗)SH]Q.

From the obtained shear component of the velocity gradient tensor, the vorticity associated to the
shear contribution ωSH was calculated.

APPENDIX B: SENSITIVITY OF THE THICKNESS OF THE INTERNAL LAYERS OF INTENSE
SHEAR TO THE CONSTANTS OF THE IDENTIFICATION METHODS

This Appendix is meant to examine how variations of the constants for the identification of the
internal layers of intense shear (K and C in Sec. II) affect the thickness of the bespoke layers.
First, we focus on the mixing layer, and, second, on the jet. Figure 20(a) shows the thickness of the
internal layers of intense shear, which is estimated after identifying these layers with different values
of the constant K in Eq. (2). These values of the thickness are obtained from conditionally averaged
velocity profiles characterized by positive values of du

dy |IL, where the local velocity of the points of
the internal layers is in the range 0.25 < (�U − ui )/urms < 0.50. As can be observed, the thickness
of the internal layers is rather insensitive to the constant K in Eq. (2) (Sec. II). Therefore, because
the intensity of the internal layers does not affect significantly their thickness, it was decided to
consider a constant of K = 1.5 in Eq. (2) for most of the analysis presented in Sec. III.

If we move to examine the jet, we can observe that analogous conclusions can be drawn. In
Fig. 20(b), the thickness of the internal layers of intense shear is presented, which is estimated for
different values of the constant C in Eq. (4), both for the jet with circular orifice as well as with
the jet with fractal orifice. These values of the thickness are obtained from conditionally averaged
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(a) (b)

FIG. 20. (a) Thickness of the internal layers of intense shear identified in the mixing layer at different values
of the constant K in Eq. (2), within the range 0.25 < (�U − ui )/urms < 0.50. Only the profiles characterized
by positive values of du

dy |IL are retained and contribute to the averages. Red full • symbols refer to Reλ ≈ 200,
while blue empty � symbols refer to Reλ ≈ 275. (b) Thickness of the internal layers of intense shear identified
in the jet at different values of the constant C in Eq. (4). Only the profiles characterized by positive values of
du
dy |IL are retained and contribute to the averages. Blue full � symbols refer to the jet with circular orifice, while
red asterisks ∗ refer to the jet with fractal orifice.

velocity profiles characterized by positive values of du
dy |IL. The thickness of the internal layers is not

particularly sensitive to variations of the constant C in Eq. (4). Moreover, the observed deviations
from the thickness obtained for C = 3, which was adopted in the analysis reported in Sec. IV, do
not appear to question the scaling law 〈δw〉/λ ∼ Re−1/2

λ , indicating a Kolmogorov scaling for these
internal layers.

APPENDIX C: SENSITIVITY OF THE CONDITIONALLY AVERAGED PROFILES OF
STREAMWISE VELOCITY TO THE CONSTANTS OF THE IDENTIFICATION METHODS

This Appendix shows the sensitivity of the conditionally averaged profiles of streamwise velocity
to variations of the constants for the identification of the internal layers of intense shear K and
C, respectively, for the jet and for the mixing layer. First, we consider the profiles of streamwise
velocities characterized by positive values of du

dy |IL. These are presented in Figs. 21 and 22,
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FIG. 21. Conditionally averaged profiles of streamwise velocity identified in the mixing layer in the vicinity
of internal layers of intense shear, at different values of the constant K in Eq. (2), within the range 0.25 <

(�U − ui )/urms < 0.50, at (a) Reλ ≈ 200 and (b) Reλ ≈ 275. Only the profiles characterized by positive values
of du

dy |IL are retained and contribute to the averages.
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(a) (b)

FIG. 22. Conditionally averaged profiles of the streamwise velocity in the near vicinity of the internal layers
of intense shear, at different values of the constant C in Eq. (4), for (a) the jet with fractal orifice and (b) the jet
with round orifice. Only the profiles characterized by positive values of du

dy |IL are retained and contribute to the
calculation.

respectively, for the mixing layer and for the jet. As can be observed, variations of the constant
K do not affect the shape of these profiles. Increasing values of K and of C are associated with more
intense events, which results in mildly larger velocity jumps across the internal layers of intense
shear. This trend can be found from the analysis of both the mixing layer and the jet.

Analogous to these observations for positive values of du
dy |IL, negative values of du

dy |IL lead to
velocity profiles that are not significantly altered by variations of the constants K and C. Growing
of K and of C is associated with more intense events, which result in mildly larger velocity jumps
across the internal layers of intense shear, as presented in Figs. 23 and 24.

APPENDIX D: SENSITIVITY OF THE CONDITIONAL TOPOLOGICAL CONTENT
TO THE CONSTANTS OF THE IDENTIFICATION METHODS

In this Appendix, we examine how variations of the constant for the identification of the internal
layers of intense shear [K in Eq. (2)] and for the identification of the internal layers of intense
SG [H in Eq. (5)] affect the joint probability density functions of the second (Q) and third (R)
invariants of the velocity gradient tensor presented in Figs. 17(b) and 17(c). Figures 25(a) and 25(b)
show the JPDF of Q and R in points of intense scalar gradient, identified after setting H = 0.4
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FIG. 23. Conditionally averaged profiles of streamwise velocity identified in the mixing layer in the
vicinity of internal layers of intense shear, at different values of the constant K in Eq. (2), within the
range 0.25 < (�U − ui )/urms < 0.50, at (a) Reλ ≈ 200 and (b) Reλ ≈ 275. Only the profiles characterized
by negative values of du

dy |IL are retained and contribute to the averages.
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(a) (b)

FIG. 24. Conditionally averaged profiles of the streamwise velocity in the near vicinity of the internal layers
of intense shear, at different values of the constant C in Eq. (4), for (a) the jet with fractal orifice and (b) the jet
with round orifice. Only the profiles characterized by negative values of du

dy |IL are retained and contribute to the
calculation.

(a) (b)

(c) (d)

FIG. 25. Joint probability density functions of the second (Q) and third (R) invariants of the velocity
gradient tensor (a) in points of intense scalar gradient with H = 0.4 in Eq. (5), (b) in points of intense scalar
gradient with H = 0.5 in Eq. (5), (c) in points of intense shear vorticity with K = 2 at Reλ ≈ 200, (d) in points
of intense shear vorticity with K = 3 at Reλ ≈ 275. The regions within the different JPDFs are described in the
caption of Fig. 17. QW = (∇×u)2/4.
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and 0.5 in Eq. (5), respectively. As can be observed, the differences between these JPDFs and the
JPDF reported in Fig. 17(c), and obtained after setting H = 0.6, are modest. Overall, it appears that
the JPDF calculated in points of increasingly more intense scalar gradient exhibits a longer tail,
which results in a growing dominance of the node/saddle/saddle topology. The percentage of points
characterized by a node/saddle/saddle topology is 52, 56, and 59% when setting the value of the
H coefficient in Eq. (5) to H = 0.4, 0.5, and 0.6, respectively. Nonetheless, varying the coefficient
H does not affect significantly the results, and, even though less pronounced, a dominance of the
node/saddle/saddle topology can still be found.

The same observations can be made when calculating the JPDF of Q and R in points of intense
shear, after setting K = 2 in Eq. (2). When comparing Fig. 25(c) with Fig. 17(b), which is obtained
for K = 2.5, it can be seen that the JPDFs are similar, even though the JPDF obtained considering
events at higher intensity, in Fig. 17(b), tends to be more skewed towards region I, associated with
a more pronounced dominance of stable focus/stretching. This trend can also be observed when
examining Fig. 25(d), which is obtained for K = 3. Regardless, the results are not importantly
affected by the value of K .
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