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Statistical properties of streamline geometry in turbulent wall-flows
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Complex but coherent motions form and rapidly evolve within wall-bounded turbulent
flows. Research over the past two decades broadly indicates that the momentum transported
across the flow largely derives from the dynamics of these coherent motions. The associ-
ated spatial organization, and its inherent connection to the dynamics, motivates the present
research on streamline curvature and torsion. All the present results have been calculated
and compared using the existing direct numerical simulation databases for boundary layers
and channel flows. Here we have investigated the statistical properties of the local curvature
(κ ) and torsion (τ ) of streamlines for the considered wall-bounded flows. The computation
of κ (deviation from a straight line-bending) and τ (out of plane motion-twisting) uses
the local construction of the Frenet-Serret coordinate frame. The analysis shows that the
statistics of these geometrical properties change significantly with wall-normal position.
Even though the mean wall-normal velocity is zero (e.g., for channel flow), the wall-normal
curvature component shows a notable positive peak close to the wall. The correlation
coefficient and the conditional average of the wall-normal velocity corresponding to the
wall-normal curvature exhibit an anticorrelation between them. The probability density
function of the curvatures have been calculated across the flow and compared with the κ−4

scaling proposed by Schaefer [J. Turbul., N28 (2012)] for both the total and fluctuating
field. Although in isotropic turbulence this scaling of curvature pertains to scales that are
near to and smaller than the Kolmogorov scale (η), in wall-bounded turbulence we find the
onset of this scaling to occur at slightly larger length scales of ≈10η. In fact, the start of this
scaling with wall distance coincides with the three-dimensionalization of the vorticity field
and agrees with the stagnation point structure in the inertial domain observed by Dallas
et al., [Phys. Rev. E 80, 046306 (2009)]. In this region, the mean radius of curvature scales
like the Taylor microscale. The standard deviation of torsion exhibits a decreasing trend
with distance from the wall. The torsion to curvature intensity ratio reveals that the out of
plane motion of the streamlines exceeds in-plane bending. The joint pdf of curvature and
velocity magnitude supports the notion that large curvature values correspond to the region
near a stagnation point. Furthermore, the joint pdf results between curvature components
provides information about the orientation of the streamlines at different wall-normal
locations.

DOI: 10.1103/PhysRevFluids.6.034609

I. INTRODUCTION

Coherent motions have long been known to populate turbulent wall-flows through a process of
continual formation, evolution, and obliteration [1–3]. This spatiotemporal recurrence of motions
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TABLE I. Inner normalized leading order balance layer thicknesses for boundary layer and channel flows.

Leading balance Leading balance Layer thickness Layer thickness
(boundary layer) (channel) (channel) (boundary layer)

I. |VF| � |MI| |VF| � |PG| 0 � y+ � 4 0 � y+ � 4

II. |VF| � |TI| |VF| � |TI| 4 � y+ � 1.6
√

δ+ 4 � y+ � 2.2
√

δ+

III. |VF| � |TI| � |MI| |VF| � |TI| � |PG| 1.6
√

δ+ � y+ � 2.6
√

δ+ 2.2
√

δ+ � y+ � 3.6
√

δ+

IV. |TI| � |MI| |TI| � |PG| 2.6
√

δ+ � y+ � δ+ 3.6
√

δ+ � y+ � δ+

is related to identifiably recognizable spatial organization and similar evolutionary features. An
intriguing motivation for deeper investigation is associated with the potential to use these motions,
in some systematic manner, as a basis for simplified descriptions that capture the essential elements
of wall-flow dynamics [4,5]. Indeed, in a statistical sense, this underlying spatial organization leads
many to strongly suspect that the long-recognized self-similar scaling properties of turbulent wall
flows connects the geometry and dynamics of the instantaneous motions [6]. As with many studies
of turbulence, a primary gap in our present understanding pertains to the connections between
statistical behaviors of the geometry and the underlying instantaneous dynamics. The present study
addresses aspects of this knowledge gap by quantifying statistical properties associated with the
differential geometry measures of curvature and (to a much lesser degree) torsion of the streamline
patterns in turbulent boundary layer and channel flows.

Streamlines are defined by curves that are instantaneously tangent to the velocity of the flow.
Curvature measures the deviation from a straight line while torsion quantifies the out of plane motion
of a curve. A broad aim here is to clarify the connections between geometry and dynamics, and the
degree to which they are reflected in the instantaneous motions. As such, important ingredients
of the present study draw upon (1) the leading order mean force balance in turbulent wall-flows,
(2) the previously documented behavior of streamline curvature probability density function in
isotropic turbulent flows [7], and (3) the characteristic length scales and the geometric and scal-
ing implications associated with the distributions of stagnation points in the fluctuating velocity
field [8].

A. Mean dynamical structure and its geometric implications

Analysis of the Reynolds Averaged Navier-Stokes (RANS) equations, as simplified for the
canonical turbulent wall-flows reveals a layer structure associated with the leading order balances
with distance from the wall [9,10]. For the flat plate boundary layer and fully developed channel
(or pipe) flows, the mean momentum balance (MMB) equations have three terms. In the boundary
layer, the three terms are mean inertia, turbulent inertia (gradient of the Reynolds shear stress), and
the mean viscous force. These are respectively denoted MI, TI, and VF. For channel flow, the TI and
VF terms are also present, but the MI term is replaced by the mean pressure gradient (PG). In either
case, different terms balance each other at varying distance from the wall.

As shown in Table I, the layer structure associated with the leading balances in the MMB is
qualitatively different from the classical viscous sublayer, buffer layer, logarithmic and wake layer
description that derives from the observed features of the mean velocity profile [9,11]. A central
distinction between the classical versus MMB based descriptions (apart from the latter having a
direct basis in the RANS equations) pertains to the onset and scaling properties of the physical
space inertial sublayer that is a primary focus in many experimental and theoretical studies [2,3].
In the classical description, one surmises that viscous effects become subdominant beginning at
a distance that is y = O(ν/uτ ) from the wall (typically around y+ = yuτ /ν = 100), where the
friction velocity is defined by uτ = √

τw/ρ, with τw denoting the mean wall shear stress, and
ν and ρ respectively denoting the kinematic viscosity and mass density of the fluid [3]. In the

034609-2



STATISTICAL PROPERTIES OF STREAMLINE GEOMETRY …

MMB-based description, the loss of a leading order VF is found to occur at a wall-normal position
y ∝ √

νδ/uτ (or equivalently, y+ ∝ √
δ+), where δ in Table I denotes either the half-channel height

or the boundary layer thickness. (Herein, the boundary layer δ is determined using the composite
profile formulation of Chauhan et al. [12].) This square root Reynolds number dependence is
experimentally supported by measurements of the terms in the MMB, and analytically via multiscale
treatment of the MMB [9,10,13]. This first appearance of inertially dominated flow is additionally
supported by measurements of the logarithmic layer onset at high Reynolds number [14].

The self-similar spatial structure admitted by the MMB equations [6] is of inherent interest owing
to its potential connection to the underlying geometry of the turbulence. A key finding here is that
the mean equations formally admit an invariant form across a hierarchy of scaling layers. The widths
of the members of this layer hierarchy span from O(ν/uτ ) to O(δ), as do the wall-normal locations
of these layers. Importantly, the y coordinate stretching function (required to generate the invariant
self-similar form of the MMB) becomes a linear function of distance from the wall on the inertial
sublayer (i.e., beyond layer III) [11]. This analytical result underpins the existence of a formally
admitted similarity solution to the mean equations that is shown to recover the classical logarithmic
mean velocity profile equation as δ+ → ∞ [10,15]. These and related analytical properties also
support the existence of, and evidence for, self-similar behaviors of the velocity field motions on the
inertial sublayer [16,17]. In the present study, we examine streamline curvature and torsion statistics
in this context.

Physically, the layer widths on the hierarchy represent a characteristic length scale of the
motions responsible for wallward momentum transport, and this motivated more detailed analyses
of the spatial structure of the negative Reynolds stress fluctuations. These investigations [6,18]
revealed intriguing observations suggesting that the slope of the mean velocity profile on the inertial
sublayer (as quantified by the von Kármán constant) relates to the space-filling properties of the
negative Reynolds stress motions, and further that the amplitude and scale of these motions are
self-similarly related. Alternatively, the inward flux of momentum can be equivalently viewed as
being associated with the outward transport of vorticity [19,20]. Near the wall, the flow dynamics
are strongly coupled to the mechanisms of vorticity stretching and reorientation, which serve to
rapidly three-dimensionalize the vorticity field. With increasing y, however, advection becomes the
primary mechanism for vorticity transport and is characterized by the spatial dispersion of small
scale regions of intense vorticity [21,22]. In the present study, the mean curvature statistics reflect
evidences of this feature of the vorticity stretching behavior from the high turbulence region close to
the wall to the outer edge of layer II. With increasing y this behavior is similarly shown to correlate
with the decreasing density of stagnation points in the fluctuating velocity field (described relative
to the studies of Vassilicos et al. [8,23] below), as well as the statistical properties of the fluctuating
streamline curvature documented herein.

B. Previous studies of streamline geometry

Previous researchers have studied turbulent flows relative to both streamlines [7,24] and particle
trajectories [25,26]. We note that the addition of a constant velocity to the flow field will not change
the intrinsic properties of a streamline, such as curvature and torsion (to be defined below), nor
would it change the Navier-Stokes equations, which is the basis of Galilean invariance. However,
Galilean invariance cannot be employed to obtain one flow field from another, when there is a
fixed boundary; for example, a plane Couette flow is not simply an addition of a constant velocity
to plane Poiseuille (channel) flow. Here the Galilean invariance is said to be “broken” due to the
no-slip boundary condition at the wall [27], which remains true for streamlines too. Nevertheless,
streamline properties with zero mean velocity is extensively studied in isotropic turbulence. In our
case of wall-turbulent flows, we study streamlines both from instantaneous velocity field, as well as
from fluctuating (mean subtracted) velocity fields (to compare against isotropic streamline results).

For particle trajectories, Braun et al. [25] show that the product of curvature and velocity is
linearly correlated with the vorticity, suggesting that the region of large curvature are associated
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with large vorticity. Again, for particle paths, Scagliarini [26] studied the geometric properties
of Lagrangian trajectories for homogeneous and isotropic turbulence. According to this study, the
instantaneous curvature statistics are dominated by the flow reversals corresponding to large eddies
in the flow, where the velocity magnitude assumes very low values. The joint statistics of curvature
and torsion in his study highlight the coherent geometrical structure of intense vortical motion
in turbulent flows that are dominated by helical-type trajectories. We should mention here that
curvature of particle trajectories and streamlines essentially differ due to the partial time derivative
of the velocity vector [25], and the turbulence properties would be different if considered along a
streamline or pathline [28].

For defining the turbulent structures at the small scales, the entire DNS flow field was decom-
posed by Peters et al. [24] into the planar geometrical unit that they called a dissipation element. A
dissipation element is defined as the spatial region containing all positions (grid points in a DNS)
whose streamline trajectories can share the same pair of maximal and minimal points in velocity
magnitude. The spatial properties of the turbulent fields have been structured by the streamline
segment analysis by Wang [29]. He defined a streamline segment as the part of a streamline bounded
by two adjacent extremal points of the velocity magnitude, and lying on the dissipation element. The
mean length of these streamline segments were found to be the order of the Taylor microscale [29].
These local extreme points of velocity magnitude also include stagnation points, and coincide with
minima in the turbulent kinetic energy. In the present study, we find that large curvature values are
connected with low values of the velocity magnitude, i.e., stagnation region.

The most relevant work to the present research is the study by Schaefer [7]. He showed that the
advection terms in the Navier-Stokes equation can be expressed in terms of streamlines curvature.
Schaefer treated the curvature and torsion as field variables, and considered the case of low Reynolds
number isotropic flows. In contrast, the present work considers the curvature and torsion in wall-
bounded turbulent flows. Schaefer’s research demonstrated that the probability density function of
curvature P(κ ) follows a power-law scaling of κ−4 for extreme curvature values. This finding is
observed herein, but not over the entire flow domain. The exponent of −4 scaling derives from the
curvature being directly proportional to the product of the inverse of the velocity magnitude (|V |−1)
and the gradient of the velocity magnitude in the streamline direction. Under the assumption that
the pdfs of the two products are independent and that the three velocity components are Gaussian
random variables, a scaling of the pdf of the inverse absolute velocity, |V |−1 =: a, can be found for
isotropic flow. It can be then shown that the pdf of the turbulence kinetic energy K = uiui/2 follows
a chi square (χ2) distribution with three degrees of freedom. This leads to P(K) ∝ K1/2e−K/2,
and therefore, P(a) ∝ a−4e−a−2

. Following this, the pdf of the absolute value of curvature can be
shown to exhibit κ−4 behavior. The present curvature pdfs are analyzed with respect to this, and in
particular the dependence of −4 scaling on wall-normal distance is clarified.

C. Stagnation point structure in turbulent wall-flows

Motivated by earlier investigations of the zero-crossing properties of velocity fluctuations and
their derivatives [30,31], Vassilicos and co-workers studied the properties of the zeros (stagnation
points) of the fluctuating velocity magnitude in turbulent channel flows [8,23]. Stagnation point is
defined to coincide with where the fluctuating velocity components are near zero [8]. Dallas et al.
[8] found that the distance between these stagnation points is proportional to the Taylor microscale.
In the inertial sublayer (inner part of layer IV in Table I), they also showed that the number density
of the stagnation points is inversely proportional to the wall-normal distance. Since these results
from Dallas et al. [8] are pertinent to the present work, we briefly outline their derivation using a
slightly simplified argument than in Ref. [8]. From the standard results (e.g., Refs. [31,32]) on the
zero-crossing of a one-dimensional mean-subtracted random signal (u), it known that the number
of zero-crossing per unit length (x) is proportional to

√
(du/dx)2/σu ∼ 1/λ, where σu is the signal

variance. A 3D analog version leads to the number of stagnation points per unit volume (N0) in three
dimensions proportional to 1/λ3, appropriate for isotropic turbulence. In wall flows, Dallas et al. [8]
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consider (or more accurately said, assume) that the N0 ∼ 1/(λ2δν ), where the in-plane (x−z) density
is proportional to 1/λ2; however, the thickness is taken proportional to the viscous scale δν . Now, we
know that in the inertial region (also see Sec. III A) λ+ := λ/δν ∼ √

y+ (where y+ = y/δν), which
implies that stagnation point density per unit volume in viscous units: N+

0 := N0/(1/δ3
ν ) ∼ 1/λ2 ∼

1/y+.
In the present study, we explore the onset of −4 scaling (related to extreme curvature values

that naturally occur in stagnation regions) as well as the variations in radius of curvature with the
wall-normal distance.

The above background literature connects to the present study. The reorientation of the mecha-
nism for vorticity stretching and advection studied by Klewicki [11] is reflected by the present mean
curvature statistics. As analyzed by Schaefer [7], the curvature values are extreme in stagnation
regions and the −4 exponent scaling is likely related to the turning of the streamlines around
these points. According to the studies by Vassilicos and others [8,23], the number density of the
stagnation points decrease with y+ in the inertial domain where the distance between stagnation
points is proportional to the Taylor microscale. The present study will show that unlike the onset
of −4 scaling that occurs in isotropic turbulence at a curvature that varies in a similar trend to the
inverse of the Kolmogorov length scale, in wall-turbulence the κ−4 scaling starts at a slightly larger
length scale. Furthermore, the onset of the scaling approximately follows a power-law scaling with
y+ on the inertial domain, whereas in the same domain the mean radius of curvature nominally
scales with the Taylor microscale.

II. CALCULATION OF CURVATURE AND TORSION

The present analysis employs three DNS data sets. These include boundary layer data at friction
Reynolds numbers δ+

99 ≈ 1310 and δ+
99 ≈ 2000 [33] (where δ99 is the boundary layer height where

mean velocity is the 99% of the free stream velocity), and channel flow data at friction Reynolds
number δ+ ≈ 934 [34]. Here, in the case of the boundary layer, δ+ was found to be about 1660 and
2530 when the boundary layer thickness δ was computed using the composite profile formulation
by Chauhan et al. [12]. The streamwise, spanwise, and wall-normal directions are considered
to be along the x-axis, z-axis, and y-axis, respectively. For the channel flow, it is feasible to
compute statistics over the entire plane owing to its horizontally homogeneous fully developed
properties. The boundary layers, however, required the use of smaller domains to approximate
a constant friction velocity condition. For this reason, the slices of only 312 grid points are
considered in the x-direction and 2048 grid points are taken in the z-direction, corresponding to
(x/δ × z/δ) ≈ (0.78 × 3) at 38 wall positions for δ+ = 2530 boundary layer. Similarly 195 and
4096 grid points in x and z [i.e., (x/δ × z/δ) ≈ (0.79 × 9.6)] respectively at 36 wall-positions in
the case of δ+ = 1660 boundary layer. For comparison, 312 and 2048 grid points are considered
in x and z [i.e., (x/δ × z/δ) ≈ (2.55 × 8.4)] respectively at 37 wall-positions for δ+ = 934 channel
DNS as well. Statistics are computed from the average of six independent DNS fields by averaging
over the planar domains indicated above.

A. Method for calculating streamlines

To colocate the curvature and torsion values with the grid points, streamline segments local to
each grid point were computed. A fourth-order Runge-Kutta method was employed to calculate
the streamline segments through each grid point location and from these the local curvature and
torsion were computed. The step size that defines the space between two consecutive points on the
streamline segment was tested over a wide range of values and a value for which the statistics remain
fixed was employed. Finally, a pseudo-time-step size of 0.001 viscous units has been used for all
three cases. To put this in context, with the mean centerline velocity of about U + ≈ 20, the spatial
distance is about 0.02 viscous units, which is considerably smaller than the DNS grid spacing.
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B. Frenet-Serret apparatus

The Frenet-Serret apparatus is an orthogonal coordinate system defined locally along a space
curve, and is used herein as a basis for computing the curvature and torsion of the streamlines [35].
These tools relate the three basic vectors of differential geometry; the tangent vector T, normal
vector N, and binormal vector B, as well as two scalar quantities: curvature κ and torsion τ . Here
T is a unit vector pointing in the direction of the velocity vector, N is a unit vector pointing in the
direction of the streamline gradient of T, and B is the unit vector that is orthogonal to both T and
N. Curvature quantifies the bending of a curve from a straight line within a reference plane. Thus,
for example, the curvature value for a straight line is zero, and that of a circle of radius r is constant
and equal to 1/r. The torsion measures the out-of-plane motion of a curve, i.e., the twisting motion
of the curve.

The Frenet-Serret tools are for a unit speed curve β(s), and, the relation between T, N, B, κ , and
τ are given by

dT
ds

= κN, (1)

dN
ds

= −κT + τB, (2)

dB
ds

= −τN, (3)

where, s the streamline arc length.
In terms of the arc or pseudo-time parameter that varies along the streamline, the equation for

the tangent of the streamline is given by

T = β̇

|β̇| , (4)

where β̇ is the pseudo-time derivative of arc β. Subsequent use of the Frenet-Serret equations (1)–
(3), along with the fact that ṡ = |β̇|, gives the final equations for κ and τ as

κ = |β̇ × β̈|
|β̇|3 (5)

and

τ = [β̇, β̈, ˙̇β̇]

|β̇ × β̈|2 . (6)

The derivatives in Eqs. (5) and (6) were computed using standard central difference formulas.
Following Schaefer [7], the curvature components can be defined by

κi ≡ κNi = dTi

ds
, (7)

where, dTi/ds [i = 1, 2, 3 (x, y, z)] is the derivative of the tangent vector components in the coordi-
nate directions. Accordingly,

κ =
√(

κ2
x + κ2

y + κ2
z

)
(8)

is the curvature magnitude. Note that the curvature values in Eqs. (5) and (8) are the same. We
primarily choose Eq. (8) for curvature calculation since from (7), one can consider the curvatures
components individually.
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III. STATISTICAL PROPERTIES OF CURVATURE AND TORSION

A. Curvature

In a turbulent flow, the streamline pattern changes from one instant to the next. Thus, the curva-
ture components in the streamwise, wall normal, and spanwise directions, κx, κy, κz respectively, at
any given point in space are fluctuating quantities. For this reason, we investigate the statistical prop-
erties of κ and τ , e.g., the mean (κi = ∑

κi/N) and the standard deviation (σκi = √∑
(κi − κ )2/N),

where N is the size of the ensemble and an over-line denotes the ensemble average. In what
follows, u, v and w are the fluctuating streamwise x, wall-normal y, and spanwise z velocity
components. Quantities normalized by kinematic viscosity ν and friction velocity uτ are denoted
with a superscript +, e.g., u+ = u/uτ , κ+ = κν/uτ , etc. The total, mean, and fluctuating streamwise
velocity components are defined as ũ, U , and u, respectively, i.e., ũ = U + u, and similarly for the
wall-normal and spanwise components. The curvatures computed from the total and fluctuating field
are defined as κ̃ and κ , respectively.

Large values of curvature are associated with the small length scale features of the turbulent
flow and vice versa. As such it can be reasoned that curvature tends to attain large values around a
stagnation region either in a fixed frame for a zero mean flow field or relative to a mean flow [7].
Although a connection between stagnation regions and extreme curvature values would be sought
in Sec. III D employing joint probability density functions, we begin by considering mean statistics.
Interestingly, the aforementioned finding of Dallas et al. [8] indicates that the distance between
stagnation points is proportional to the Taylor microscale. Therefore, in the present study with
wall-bounded flow, we compare the inverse of the Taylor microscale with the curvature magnitude
(inverse of the radius of curvature). In wall-turbulence, the Taylor microscale nominally scales with√

y in the inertial layer, as now described.
Classical theoretical analysis of the turbulence energy equation in wall-flows indicates that the

energy production ℘= uv∂U/∂y is approximately equal to the dissipation rate ε in the inertial
(logarithmic) layer [36], i.e, ε ≈ ℘= uv∂U/∂y. On the other hand, for y+ � 30 the dissipation
rate can be reasonably obtained from the isotropic estimate, εiso = 15νσ 2

u /λ2, where λ is the Taylor
microscale and σu is the standard deviation of u. Assuming U + = 1/k ln(y+) + B,℘= uv∂U/∂y ≈
u3

τ /ky = ε = 15νσ 2
u /λ2, where k is the von Kármán constant. From this (and noting that σu ∼ uτ ),

it is apparent that λ+ scales according to
√

y+ on the logarithmic layer of wall-flows.
Herein the Taylor microscale, λ, is evaluated in two ways: based on the isotropic approximation

and using the actual viscous dissipation rate. Note that there more ways to define Taylor microscale,
using derivatives in different directions, or using the turbulent kinetic energy. Here, however,
we satisfy ourselves with two more common definitions. The actual viscous dissipation rate ε =
2νsi jsi j , with si j = (1/2)(∂ui/∂x j + ∂u j/∂xi ). Using the relation for the dissipation rate in isotropic
turbulence, εiso = 15ν(∂u1/∂x1)2 or εiso = 15νσ 2

u /λ2, e.g., [36]. Thus, the Taylor microscale for
isotropic turbulence can be defined as

λ = σu√
(∂u1/∂x1)2

, (9)

and the Taylor microscale using the actual viscous dissipation rate is

λε =
√

15ν

ε
σu. (10)

Any given instantaneous streamline gives curvatures in all three directions. Before presenting
mean curvature profiles, it is important to recognize that the mean of the curvature magnitude and
component curvatures are not determinable from the mean streamlines. Rather, the quantities must
be computed using the instantaneous velocity field. For example, the mean wall-normal velocity
V for the channel flow is identically zero (and V 
= 0 in a boundary layer flow), but the mean
of the curvature component associated with the wall-normal direction is nonzero, as described
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FIG. 1. (a) Contours of the total velocity field; (b) contours of the fluctuating velocity field; (c) streamlines
for the total velocity field; (d) streamlines for the fluctuating velocity field.

and discussed later. This is because when the mean wall-normal curvature is computed from the
instantaneous field and is nonlinearly related to the mean field. Later in the paper, we will also
evaluate curvature from the fluctuating flow field. We reiterate that mean curvature values evaluated
from the instantaneous and fluctuating velocity fields are denoted by κ̃ and κ respectively.

Figure 1 shows examples of instantaneous velocity field contours (planar view) with the corre-
sponding streamline patterns for the total (left side) and the fluctuating field (right side) fields. These
plots visualize the different streamline patterns for the total velocity field and the mean subtracted,
i.e., fluctuating velocity field. This change of the streamline pattern quantitatively affects the total
and component curvature that will be discussed later at the pdfs’ profiles in Fig. 7. In the following,
first we will describe the statistics using total velocity field, and then from Sec. III B onwards we
would include results from fluctuation velocity field where necessary. We reiterate that the results
using total and fluctuating fields are distinguished using the tilde (̃ ) symbol. For example, κ̃ and κ

are the symbols for streamline curvature from total and fluctuating velocity fields, respectively.

1. Mean curvature

Figure 2 presents the mean curvature statistics for the boundary layer and channel flows investi-
gated. The vertical gray dashed lines in Fig. 2 indicate the position of the momentum balance layer
boundaries associated with the δ+ = 1660 (Table I) flow. Figure 2(a) shows profiles of the mean
curvature magnitude κ̃+ versus y+ using filled symbols on a log-log scale. For comparison, we also
plot the inverse of the inner normalized Taylor microscales given by (9) (denoted by the dotted line)
and (10) (denoted by the dashed-dotted line). Here κ̃+ decreases with wall-normal distance, except
in layer II between y+ � 15 and y+ � 50. This feature is discussed further relative to Fig. 2(c)
below. From there κ̃+ exhibits an approximate power-law decrease and continues this decrease into
the inertial layer (layer IV). The power-law slope is about −0.5, which is the value expected if κ̃+
scales like the estimate for 1/λ+ indicated above. These results indicate that the streamlines having
the largest mean curvature are located close to the wall.

034609-8



STATISTICAL PROPERTIES OF STREAMLINE GEOMETRY …

100 101 102 103
10-4

10-3

10-2

10-1

100

100 101 102 103
10-7

10-6

10-5

10-4

10-3

100 101 102 103
0

2

4

6
10-3

100 101 102 103

0

2

4

6
10-4

100 101 102 103 104

0

2

4

6
10-4

100 101 102 103

0

2

4

6
10-4

100 101 102 103
-6

-4

-2

0
10-4

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Mean statistics of curvature in case of the boundary layer (colored) (Red circle, for δ+ ≈ 2530 and
blue triangle, for δ+ ≈ 1660) and the channel flow (black diamond, for δ+ ≈ 934). The vertical gray dash lines,
represent the layer boundaries associated with the mean momentum equation (Table I) corresponding to δ+ =
1660. Purple star are some positions where the pdfs have been calculated that are shown in Fig. 7. (a) Mean
of curvature magnitude along with the inverse of Taylor microscale [dot symbol, using Eq. (9) and dash dot
symbol, using Eq. (10)]. Pink square symbol is the Taylor microscale evaluated from the experimental data of
Ref. [38] for δ+ ≈ 6430. Vertical dot line, denotes the wall-normal position at 0.2δ for δ+ = 1660. (b) Mean
streamwise curvature. (c) The mean of curvature magnitude in log-linear scale. (d) The mean streamwise
curvature in log-linear scale. (e) Mean wall-normal curvature. The inset represents the correlation of the wall-
normal curvature with the wall-normal velocity. (f) Mean spanwise curvature.

The mean curvature magnitude is further compared with the Taylor microscales in Fig. 2(a). It is
difficult to measure the si j tensor experimentally. Hence, for practical reasons, the isotropic estimate
is often employed. This isotropic approximation works well away from the near-wall region [37],
and this is also evidenced in Fig. 2(a). Here the difference between the profiles of 1/λ and 1/λε near
the wall is clearly evident. These profiles then merge beginning near the outer portion of layer II.
The experimental data by Vincenti et al. [38] (at δ+ ≈ 6430) shown by empty square symbols also
merge with the 1/λ and 1/λε profiles from the same position in layer II and into the outer region.

The gray vertical dotted line of Fig. 2(a) displays the y/δ = 0.2 upper bound for the classical log
layer at δ+ = 1660. The mean curvature magnitude at this location is not proportional to 1/λ+. The
decay rate of 1/λ+ is about −0.3 that is somewhat different from the κ̃+ slope of about −0.5. This
1/λ+ slope deviates from the estimates of high Re log-region. Thus, in the inertial region, the radius
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of curvature (1/κ̃+) has a power law that varies close to that of λ+ but with a somewhat different
magnitude. A similar result is also evidenced in Figs. 9 and 11 later using fluctuating velocity field.

We now investigate the wall-normal profiles of the mean curvature components. Figure 2(b)
displays the mean streamwise curvature (κ̃+

x ) with y+. Similar to κ̃+, κ̃+
x shows a decreasing

behavior with increasing distance from the wall and an approximate power-law decrease across
layer IV. In the region between 15 � y+ � 50, however, the κ̃+

x profile is nearly constant, which
is clearer when we plot κ̃+

x versus y+ on a linear-log scale as shown in Fig. 2(d). With increasing
distance from the wall, the instantaneous streamlines increasingly align in the x-direction, and thus
the largest κ̃+

x values occur close to the wall.
Figures 2(c) and 2(d) respectively show κ̃+ and κ̃+

x on a log-linear scale. As noted above,
the mean curvature magnitude in Fig. 2(c) shows a clear increasing behavior between y+ � 15
and y+ � 50, i.e., from the peak in the turbulence kinetic energy to close to the region where
advection begins to dominate vorticity transport [11]. The intermediate rise of κ̃+ in the region
15 � y+ � 50 is consistent with the lifting and roll-up of near-wall shear layer-like motions; e.g.,
Refs. [39,40]. In this region, vorticity stretching is large, and we expect this mechanism to reduce the
scale of intense vortical motions. Beyond y+ � 50 advection disperses vorticity, and this transport
mechanism increasingly dominates with increasing y+ [11,41]. Consistent with this, the curvature
values decrease for y+ � 50.

The behavior of the mean curvature components in the x, y and z directions in Figs. 2(d)–2(f) are
different from the mean curvature magnitude κ̃+ in Fig. 2(c). In particular, κ̃+

x in Fig. 2(d) shows
a constant plateau in the region where κ̃+ increases in Fig. 2(c). On the other hand, κ̃+

y (Fig. 2(e))

shows decreasing behavior across that region, while κ̃+
z [Fig. 2(f)] is zero everywhere. The κ̃+

y result
is reconsidered below to investigate the origin of its nonzero values in the region close to the wall.
The mean spanwise curvature (κ̃+

z ) values in Fig. 2(f) are essentially zero for all y+ locations. Note
that these zero values of κ̃+

z are not a consequence of the spanwise homogeneity, since if they were
then κ̃+

x in Fig. 2(b) would also be zero for fully developed channel flow. Here this zero results
arise from the positive-negative symmetry of the flow. These component-wise comparisons indicate
that Fig. 2(c) cannot be determined as a composite of Figs. 2(d), 2(e), and 2(f) because they are
nonlinearly related. In the following section we focus on the peculiar behavior of κ̃+

y .
Before proceeding, we should point out that the mean curvature statistics presented above as

well as the other related statistics that are evaluated further in the paper are broadly similar for both
boundary layer and channel flow cases. Therefore, in the rest of the paper we will rarely comment
on the small differences observed between the two flow types, and for brevity we will show only
one flow type in some sections below.

2. Behavior of the wall-normal component of curvature near the wall

The mean wall-normal curvature (κ̃+
y ) in Fig. 2(e) exhibits a positive peak near the outer edge of

layer I and a slightly negative peak near the outer edge of layer II. In layer IV, the κ̃+
y profiles are

close to zero. For channel flow, κ̃+
y 
= 0 even though V = 0 everywhere. This is because the mean

wall-normal curvature component for the instantaneous flow field is not directly determined by
the corresponding wall-normal velocity component. Rather, κ̃y depends not only on the fluctuating
wall-normal velocity, but also on the other fluctuating velocity components. These effects are further
clarified in Sec. III B on the pdf.

Nevertheless, we expect the instantaneous wall-normal velocity to have a significant effect on
the wall-normal curvature. Therefore, the inset plot of Fig. 2(e) presents the correlation between κ̃y

and ṽ versus y+. Here the correlation function is given by

rṽ,κ̃y = 1

N

i=N∑
i=1

(ṽ − V )(κ̃y − κ̃y), (11)
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FIG. 3. (a) Configuration that depicts positive κy near y+ = 24. The up and down arrows denote the
local radius of curvature and the sign of κy relative to the indicated minimum wall-normal location of the
streamline. The inclined double arrows at “A” and “B” indicate the inflectional regions on this streamline.
(b) The correlation coefficient of ṽ+ and κ̃+

y in case of the boundary layer (colored) (Red circle, for δ+ ≈ 2530
and blue triangle, for δ+ ≈ 1660) and the channel flow (black diamond, for δ+ ≈ 934). The vertical gray dash
line, represent the layer boundaries associated with the mean momentum equation (Table I) corresponding to
δ+ = 1660. Purple star position denotes where the conditional averages are computed in Figs. 4(b) and 5(a).

where N is the size of the ensemble, and the correlation coefficient is given by

Rṽ,κ̃y = rṽ,κ̃y

σṽσκ̃y

. (12)

This correlation is nearly zero (slightly positive) close to the wall, but becomes negative elsewhere
with a negative peak at y+ ≈ 50. Thus, except very near the wall, the wall-normal velocity ṽ and the
associated curvature κ̃y are anticorrelated. Physically, this means that the wall-normal curvature is
negative for the positive wall-normal velocity (flow away from the wall) and positive for the negative
wall-normal velocity (wallward flow). Thus, relative to a quadrant decomposition involving ṽ and
κ̃y, the second and fourth quadrants are most heavily weighted.

To aid in understanding the features in Fig. 2(e), Fig. 3(a) presents an example of the streamline
pattern closer to the wall with a valley and a peak denoted by the upward and downward arrows,
respectively. The upward (A) and downward (B) double arrows show the inflection segments where
sign changes happen between the concave up to concave down streamline shape. Note that the sign
of the wall-normal curvature κ̃y is determined by the direction of a vector from the curve to its
center of curvature. Here κ̃y is positive in the concave upward segment and negative in the concave
downward segment. The arrows in Fig. 3(a) depict the center of curvature, which is essentially the
inverse of curvature at the arrow starting point. From this, one therefore expects that at the positive
peak in Fig. 2(e), streamlines of the orientation associated with the upward arrow of Fig. 3(a) are
prevalent.

To clarify the directional sign changes of κ̃y along the streamline pattern of Fig. 3(a), all four
possible cases are shown by the arrows and double arrows. The four cases arise from the positive
and negative sign combinations of κ̃y and ṽ. The region on the streamline adjacent to the upward
arrow is a case where κ̃y is positive but v changes sign from negative to positive before and after the
position of the arrow. Similarly, near the downward arrow κ̃y is negative but v changes sign from
positive to negative before and after the arrow position. For the inflection region denoted by A, ṽ is
positive but κ̃y changes sign from positive to negative. Similarly, for the inflection region denoted by
B, ṽ is negative but κ̃y changes sign from negative to positive. Collectively, the cases just described
characterize the conditions under which the sign of the ṽ and κ̃y product is determined.
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FIG. 4. (a) Data corresponding to y+ ≈ 3 for channel flow at δ+ = 934. The color contours are conditional
average of ṽ+ corresponding to positive κ̃+

y , whereas the (pink) lines are contour of κ̃+
y ranging from 0.5 × 10−3

to 4 × 10−3, again conditioned on positive κ̃+
y . (b) Same as (a); however, at y+ ≈ 17 for boundary layer flow

at δ+ = 2530, where the range of the κ̃+
y (pink) contour lines are now 0.5 × 10−3 to 5 × 10−3. Note that the

color-bar range is not the same for the two figures owing to the different ranges associated with the color
contours.

Figure 3(b) shows the correlation coefficient profiles of ṽ+ and κ̃+
y . This plot reveals negative

values except in layer I, where ṽ+ and κ̃+
y exhibit a weakly positive correlation. This plot also

reveals an anticorrelation peak of Rṽ,κ̃y at y+ ≈ 17, i.e., near the peak in the turbulence kinetic
energy. Interestingly, the correlation function rṽ+,κ̃+

y
shown in the inset plot of Fig. 2(e) shows only

a mild negative value at the peak negative position of Rṽ,κ̃y . On the other hand, rṽ+,κ̃+
y

shows a peak
negative value at y+ ≈ 50. Thus, the shape of Rṽ,κ̃y , and rṽ+,κ̃+

y
are distinctly different. Since σκ̃+

y
is

approximately constant [as discussed later relative to Fig. 6(c)], this shape difference of Rṽ,κ̃y and
rṽ+,κ̃+

y
primarily comes from the significant variation in the fluctuating wall-normal velocity variance

with y+.
The distinctively negative Rṽ,κ̃y values are examined further using conditional averages. The color

contours in Fig. 4(a) are average ṽ conditioned on positive κ̃+
y values in the xz-plane at y+ ≈ 3 in

the channel flow, i.e., at the positive peak of Fig. 2(e). Figure 4(b) shows (in color contours) ṽ+
conditionally averaged on positive κ̃+

y at the negative peak of Rṽ,κ̃y at y+ ≈ 17 for the boundary
layer flow. (Note that the statistical results for boundary layer and channel flow show similar
behavior.) These averages of the positive κ̃+

y values are shown in Figs. 4(a) and 4(b) using (pink)
lines, respectively. To better understand the location of the positive peak of κ̃+

y [deep pink lines in
Figs. 4(a) and 4(b)] relative to the ṽ+ field, we have shown superimposed the color contours and the
lines on the same figure. The anticorrelation property of ṽ+ and κ̃+

y nominally coincides with the
condition where the pink contour of κ̃+

y overlaps with the peak negative region of ṽ+.
Close to the wall, y+ ≈ 3 [Fig. 4(a)], the positive wall normal curvature contours are nearly

equally distributed between the positive and negative contours of v. This indicates nearly (and not
exactly) equal probability of positive and negative v fluctuations for positive κy. To better understand
this structure we draw reference to the upward arrow in Fig. 3(a) where the positive κy values
correspond to both the positive and negative v values. At y+ ≈ 17 [Fig. 4(b)], positive κ+

y contours
now reside more prevalently in the negative peak region of ṽ+. Thus, this case implies that for a
situation like that near the upward arrow of Fig. 3(a), the positive κy values mostly correspond to
a steep wallward trajectory, followed by a less steep trajectory away from the wall. This is also
consistent with the correlation coefficient results in Fig. 3(b) where κ̃+

y and ṽ+ are anticorrelated
except very near the wall.

To reinforce the anticorrelation result of Fig. 4(b), Fig. 5(a) shows the average of ṽ+ conditioned
on negative κ̃+

y values at y+ ≈ 17. As expected, the green contours depicting the negative peak
region of κ̃+

y reside more prevalently in the positive ṽ+ region. This case implies a situation like that
near the downward arrow of Fig. 3(a) with the negative κ̃y values mostly corresponding to a steep
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FIG. 5. (a) Same flow configuration (y+ ≈ 17 for boundary layer flow at δ+ = 2530) as Fig. 4(b), except
now conditioned on negative κ̃+

y . The (green) contour lines denote the negative values of κ̃+
y ranging from

−3.5 × 10−4 to 0. (b) Sketch of representative streamlines with positive and negative curvatures, respectively,
illustrating the conditional Figs. 4(b) and 5(a).

trajectory away from the wall, followed by a shallower wallward trajectory. Figure 5(b) contains
representative features associated with a streamline pattern consistent with the average behaviors
along the dashed centerline of Figs. 4(b) and 5(a). Here the anticorrelation case of Fig. 4(b) (positive
κ̃+

y and negative ṽ+) corresponds to the streamline pattern below the dashed line of Fig. 5(b), while
the anticorrelation case of Fig. 5(a) (negative κ̃+

y and positive ṽ+) corresponds to the streamline
pattern above the dashed line.

Thus, to summarize, the peak positive value of κ̃+
y in Fig. 2(e) at y+ ≈ 3 corresponds approxi-

mately to the concave upward peak region on a streamline pattern like that of the streamline segment
shown in Fig. 5(b) with the positive curvature. This representative streamline is constructed from the
conditional plot in Fig 4(b). The streamline depicts a wallward v and with the center of curvature
pointing away from the wall. Here the concave upward shape of this streamline (associated with
positive κy) occurs in concert with a wallward v followed by a weaker v flow away from the wall.
Therefore, the positive peak of κ̃+

y in Fig. 2(e) is largely associated with wallward v velocities.

Similarly, the negative κ̃+
y in Fig. 2(e) at y+ ≈ 17 corresponding to strong negative Rṽ,κ̃y is related

to the strong positive v velocities followed by a weaker v flow towards the wall. This is akin to the
streamline segment in Fig. 5(b) with the negative curvature, which is representing the conditional
plot in Fig. 5(a).

Interestingly, it might seem that the connection between κ̃y and ṽ might be related to the
well-known “sweep” and “ejection” events in the boundary layer. Sweep/ejections are typically
associated with the fluctuating velocity joint pdf of (u, v), and here our discussion relates to total
velocities. Nevertheless, we did compute the joint pdf of the total velocities (ũ, ṽ), which has an
area of each 0.5 for both positive and negative ṽ since the mean ṽ is zero (for channel and close
to zero for BL). Importantly, at y+ = 17, when we condition the joint pdf of (ũ, ṽ) on κ̃y > 0, we
find 0.53 as the area for negative ṽ rather than 0.5, and a consistent 0.47 for positive ṽ. Also, when
conditioned on κ̃y < 0, we find the area under positive ṽ as 0.57 and 0.43 under negative ṽ. These
results strengthen our previous assertion that negative κ̃y is associated with positive ṽ, and vice
versa. A similar, however, less pronounced result is also observed at y+ = 3.

3. Standard deviation versus mean curvature

The ratio of the mean curvature to the standard deviation provides an indication of the relative
importance of the fluctuations. Figure 6 presents the ratios of the mean curvatures to their standard
deviations. The vertical dashed lines are again the momentum balance layer boundaries at δ+ ≈
1660 for the boundary layer flow. Figure 6(a) shows the curvature magnitude ratio. This ratio has its
lowest value near the wall, then increases with distance from the wall, and reaches a peak value near
the onset of the inertial region, i.e., near the outer edge of layer III. After that, it attains a plateau near
unity in the log layer, and then rapidly decreases in the outer region. Thus, the curvature variance
is larger than the mean out to a position near the outer edge of layer II. From layer III, the variance
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FIG. 6. The ratio of the mean and standard deviation of the curvatures in case of the boundary layer
(colored) (Red circle, for δ+ ≈ 2530 and blue triangle, for δ+ ≈ 1660) and the channel flow (black diamond,
for δ+ ≈ 934). The vertical gray dash line, represent the layer boundaries associated with the mean momentum
equation (Table I) corresponding to δ+ = 1660. (a) Curvature magnitude ratio; (b) streamwise curvature ratio;
(c) wall-normal curvature ratio and; (d) standard deviation of curvature in the spanwise direction.

becomes slightly smaller than the mean until the center of layer IV, after which it becomes larger
than the mean out to y+ � δ.

Figure 6(b) shows the ratio of the mean to the standard deviation for the streamwise curvature
component. Here there is an increasing trend up to a peak near the outer edge of layer II (due
to likely three-dimensionalization of the flow), followed by a decrease across the log layer. This
indicates that the minimum average fluctuation relative to the mean occurs near the outer edge of
layer II. The ratio for the wall-normal curvature, Fig. 6(c) behaves in the similar trend as κ̃+

y in
Fig. 2(e). This plot also shows a positive peak at the same wall location as the positive peak of
Fig. 2(e). After the peak value, it decreases rapidly and remains constant from the outer edge of
layer II outward. When combined with Fig. 2(e), this figure reveals that the variance of κy remains
approximately constant across the flow.

Figure 6(d) presents the standard deviation of κ̃+
z , rather than the ratio of the mean to the standard

deviation because the mean value κ̃+
z ≈ 0 everywhere [cf. Fig. 2(f)]. This figure shows a decreasing

magnitude with distance from the wall similar to κ̃+ in Fig. 2(a). All the ratios in Fig. 6 show that
the maximum variances relative to the mean respectively occur near y+ � 0, and near y+ � δ.
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The statistical profiles in Figs. 2 and 6 are derived from the total velocity field. These statistics
indicate that the streamlines with large curvature values are generally concentrated closer to the wall.
The distribution of curvatures can, however, be analyzed in greater depth by examining probability
density functions at locations of interest. The next section covers the properties of curvature pdfs as
derived from both the total and fluctuating velocity fields at the positions denoted by the violet stars
in Fig. 2.

B. Curvature probability density functions

The distribution of curvature values at a given wall-normal location contains information about
the scales of motion at that location. For isotropic flow, Schaefer [7] found that for a range of large
curvatures, the pdf of κ exhibits tails having a power-law slope of −4. This can be derived under
the assumptions noted in the Introduction. Physically, large values of curvature are associated with
small length scales of the turbulent flow and vice versa. When these small length scales are of the
order of the Kolmogorov length scale η, they lose connection to the energetic turbulent motions.
The exponent of −4 is the scaling associated with these extreme curvature values, and the results
of Schaefer [7] support this description. Streamlines approaching a stagnation region are sharply
deflected. From this Schaefer describes the expectation that the stagnation points essentially cause
these extreme values of curvature. These findings are reinforced and clarified for wall-turbulence in
the present joint pdf results.

Figure 7 presents the pdf of curvature magnitudes at the wall-normal locations identified in Fig. 2.
Here the pdf results are computed using the δ+ = 2530 boundary layer DNS. The left side plots
of Fig. 7 are computed using the total velocity field, while the right side results are calculated
using the fluctuating velocity field. The solid blue line represents a power law with an exponent of
−4. Figure 7(a) shows the pdfs of curvature magnitude (P(|κ̃+|)), where different symbols are for
different y+. Here the −4 scaling is apparent only close to the wall. For fluctuating velocity fields
(P(|κ+|)) in Fig. 7(b), however, κ−4 scaling is more apparent away from the wall. It is interesting
to note that the mean value of κ+ is not far away from the κ+ value beyond which the −4 scaling
seems to hold.

Figures 7(c) and 7(d) show streamwise curvature magnitude pdfs. Here the P(κ̃+
x ) for both total

and fluctuating velocity fields are qualitatively similar with different magnitudes and exhibit −4
scaling for positions away from the wall. Distinct from this, the wall-normal curvature pdfs in
Figs. 7(e) and 7(f) for the total and fluctuating streamlines are different. For the total velocity field,
the P(|κ̃+

y |) profiles fall on top of each other for different wall-normal locations, and they do not
follow κ̃−4

y scaling except possibly for a small region near the wall. On the other hand, in Fig. 7(f)
P(|κ+

y |) varies with wall-positions and follows κ−4
y scaling at positions away from the wall. Here it

is important to recognize that if κy were to depend only on v, then the calculations using the total
and fluctuating cases would be the same, since the mean V is zero (for channel flow). This is not
the case, however, as κy does not depend on only v but also on the other velocity components. The
different behavior of curvature pdfs for total and fluctuating flow fields is not unexpected given the
differences we observed in the streamline patterns of total and fluctuating velocity fields in Fig. 1.

A number of results in Fig. 7 indicate that the first appearance of −4 scaling depends on y+. To
examine the onset of this behavior, Fig. 8 presents the pdfs multiplied by the associated curvatures
raised to the fourth power at more wall-positions than considered in Fig. 7. The pink stars denote
the approximate onset of −4 scaling and are located by visual inspection. Figure 8(a) shows that
κ approximately follows κ−4 scaling over a significant κ range starting around y+ = 20 outward
for the fluctuating velocity field. The κ−4

y scaling in Fig. 8(b) also starts near y+ = 20. For the total
velocity field in Fig. 8(c), however, the κ̃−4

y scaling does not convincingly appear anywhere. Here the
most important observation is that with increasing y+ a greater portion of the κ and κy pdfs adhere
to −4 scaling. This correlates with the decreasing influence of viscous effects with increasing y+.
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FIG. 7. Probability density function of the curvature magnitude and curvature components for boundary
layer flow at δ+ = 2530 at varying wall-normal locations; diamond, y+ = 3; triangle, y+ = 14, star, y+ = 40,
square, y+ = 67; plus, y+ = 174. (a) Probability of the curvature magnitude computed from the instanta-
neous streamlines pattern; (b) probability of the curvature magnitude for the fluctuating streamlines pattern;
(c) probability of the streamwise curvature for the instantaneous streamlines pattern; (d) probability of the
streamwise curvature for the fluctuating streamlines pattern; (e) probability of the wall-normal curvature for the
instantaneous streamlines pattern; (f) probability of the wall-normal curvature determined from the fluctuating
streamlines pattern.

The κ−4 scaling is related to the fraction of the pdf associated with small-scale motions. The onset
of this scaling at different wall locations may correspond to features associated with the influence
of the stagnation regions as described in the analysis of Schaefer [7].
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FIG. 8. Compensated curvature pdfs for boundary layer flow at δ+ = 2530. (a) κ−4 scaling for fluctuating
velocity field; (b) κ−4

y scaling for velocity fluctuating field; (c) κ̃−4
y scaling for total velocity field. The y

locations start at y+ = 3 from the top in (a) and (b) and decrease downwards. Pink stars denote the estimated
onset of κ−4 scaling.

Figure 9(a) provides insights that connect the onset of −4 scaling with the stagnation point
studies by Vassilicos and group described in the Introduction. These studies demonstrate that the
dissipation rate depends linearly on the density of the stagnation points in the logarithmic layer
[23]. Here we focus on the curvature statistics obtained from the fluctuating velocity field because as
observed in Fig. 8, the κ−4 scaling is unambiguously present only for fluctuating fields. Furthermore,
this lends a more straightforward comparison with the results of other researchers from isotropic
turbulence mentioned in the Introduction.

Figure 9(a) shows the onset of −4 scaling κ0 for fluctuating velocity field [denoted by the pink
stars in Fig. 8(a)] along with the inverse of the Kolmogorov scale. Here η+ has been computed based
on both the isotropic approximation and the actual viscous dissipation rate. Namely, η+ is calculated
using ε = 15ν(∂u1/∂x1)2 and ηε is calculated using ε = 2νsi jsi j . The profile characterizing the
onset of −4 scaling shows a decreasing trend relative to y+, i.e., the length scales increase. Although
the trends of both 1/η and κ0 w.r.t y+ look similar, they are offset by a factor of 10 beyond y+ ≈ 50,
indicating that the length scales below which we expect κ−4 scaling is ≈10η. We note that this is
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FIG. 9. (a) κ+ (curvature magnitude for fluctuating streamlines) values at which κ−4 behavior is first
observed in the κ+ pdf plot [Fig. 7(b) or Fig. 8(a)] versus y+; i.e., the onset of κ−4 behavior, denoted by
κ+

o , as a function of y+. Comparison is made between κ−4
o and the inverse of Kolmogorov length scale (1/η+),

where η+ is computed from the total strain-rate η+
ε and using the isotropic assumption. (b) Ratio of λ+ [using

the definitions from Eqs. (9) (dot symbols) and (10) (cross symbols)] and the inverse of curvature magnitude
in case of the boundary layers (red symbols for δ+ ≈ 2530; blue symbols for δ+ ≈ 1660) and the channel flow
(black symbols for δ+ ≈ 934). The vertical gray dash lines indicate the position of the momentum balance
layer boundaries associated with δ+ = 1660 (Table I).
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FIG. 10. PDF for positive and negative values of κ̃+
y at (a) the positive peak position of Fig. 2(e) i.e., at

y+ = 3, (b) at y+ = 10, and (c) at y+ = 30.

approximately λ/3. These estimates are consistent with the pdfs presented in Fig. 8(a), where the
κ−4 scaling is observed at length scales larger than η [by reading 1/η+ from Fig. 9(a) and comparing
with the abscissa of Fig. 8(a)].

Figure 9(b) shows the ratio of the Taylor microscale to the mean radius of curvature (1/κ+) at
different wall-normal locations. Here the two different symbols represent two different definitions
of λ, where dot symbols use Eq. (9) and the cross symbols use Eq. (10). As discussed before,
the isotropic formula is not a good approximation in the near-wall region. This is reflected by the
deviations up to y+ � 50. The cross symbol profiles (using the total dissipation rate) indicate that
the radius of curvature is greater than the intermediate scale λ+ in layer I. From layer II, the radius
of curvature becomes less than the Taylor microscale. This ratio shows a peak near the peak in the
turbulent kinetic energy, i.e., near y+ � 15. For greater y+, the ratio decreases gradually outward.
Here the curvature radius remains less than the Taylor microscale, although of the same order of
magnitude. Beyond y+ � 50, the radius of curvature varies approximately in proportion to the
Taylor microscale. On the inertial domain, the onset of −4 scaling and the inverse of Kolmogorov
scale of Fig. 9(a) and the ratio of Fig. 9(b) exhibit power-law dependencies on y+ that are consistent
with the classical scaling of η and λ.

Collectively, the above results draw interesting connections between the studies of Klewicki
[11], Vassilicos et al. [23], [8], and Schaefer [7]. As illustrated in Fig. 2(c), Klewicki [11] showed
that beyond y+ � 50 the mechanism of vorticity stretching significantly weakens and vorticity
advection leads to the spatial dispersion of vorticity—a mechanism that increasingly dominates
with increasing y+. In the inertial domain, Fig. 9(a) shows that κ+

o (where −4 power-law scaling
begins) varies in a similar trend with a power law to the inverse of the ≈10η, whereas in accord
with Schaefer [7], the radius of curvature varies in proportion to λ as shown in Fig. 9(b). On the
same domain, the density of stagnation points decreases like 1/y+ [8]. This is not inconsistent
with the onset of −4 scaling [Fig. 9(a)] that also decreases with y+ over the same domain. The
nonproportionalities of 1/κ+

o ∝ 10η+ and 1/κ+ ∝ λ+ before y+ � 50 arise from the overall effect
of the wall. Rationally, these can stem from either viscous or wall-blocking effects. To better
understand the wall-blocking limit, the pdf of wall-normal curvature is now analyzed.

Viscous effects are expected to affect the positive and negative κ̃+
y values proportionally whereas

wall-blocking effect will be reflected in an asymmetry in the κ̃+
y pdf about the zero value. Fig-

ures 10(a)–10(c) present pdfs for the positive and rectified negative values of κ̃+
y at y+ = 3, y+ = 10

and y+ = 30, respectively. For isotropic flow, the behavior of the pdf tail is symmetric about its
mean. Figures 10(a) and 10(b) reveal that the profiles for the positive and negative values of κ̃+

y

are different near the wall. On the other hand, Fig. 10(c) reveals that by y+ = 30, the κ̃+
y pdf

becomes nearly symmetric. These results suggest a wall-blocking effect for y+ � 30. The observed
asymmetry of the pdf y+ < 30 in Fig. 10 cannot, however, be wholly attributed to viscous effect.
That is, if this were the case, then all the plots of Fig. 10 (within layer II where the viscous force
is leading order) would show similar behavior. Thus, Figs. 10(a) and 10(b) are surmised to show
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FIG. 11. Statistics of curvature in case of the boundary layer (colored) (Red circle, for δ+ ≈ 2530 and blue
triangle, for δ+ ≈ 1660) and the channel flow (black diamond, for δ+ ≈ 934) compared with the inverse of
Taylor microscale [dot symbol, using Eq. (9) and dash dot symbol, using Eq. (10)]. Vertical gray dash lines,
represent the layer boundaries associated with the mean momentum equation (Table I) corresponding to δ+ =
1660. (a) Mean curvature statistics for total (lower curves) and fluctuating field (upper curves); (b) standard
deviation of curvature for total (lower curves) and fluctuating field (upper curves).

profiles different from the symmetric one at y+ = 30 owing to a wall-blocking effect. From this, we
further surmise that between 30 � y+ � 50, the nonproportional results of Figs. 9(a) and 9(b) most
likely occur because of viscous effects.

Although in Fig. 2(a) we presented the mean curvature from total velocity field κ̃ , and in Fig. 9(b)
the mean curvature data from fluctuating velocity field κ , given that in wall-turbulence the two
curvatures differ significantly, we find it worth making a direct comparison.

We therefore replot κ̃ and κ in Fig. 11(a) and compare them with the inverse of the Taylor
microscale. Both κ̃ and κ decrease with y+ at a similar rate (especially in the inertial region).
Furthermore, not surprisingly, the mean curvature from the total velocity field κ̃ is smaller than
κ , and they differ by a factor of about 10. In Fig. 11(b) we compare the standard deviation of
the curvature evaluated from the total as well as the fluctuating field, σ+

κ̃ and σ+
κ respectively,

with λ. We find that not only the mean, but rather the standard deviation of the curvature from
the fluctuating field is also closer to the Taylor microscale compared to those calculated from the
total field. This is similar to what other studies (e.g., [7]) have found under isotropic flow conditions,
where the mean flow does not exist, or from uniform shear flows where the effect of mean flow is
negligible.

C. Torsion

Torsion (τ ) is a measure of the twisting of the streamlines out of a reference plane of motion.
Similar to curvature, torsion is a length scale associated with the shape and size of the potential
twisting of a streamline where the inverse of torsion can be conceptualized as a radius of torsion.
Torsion is positive or negative based on whether the streamline is moving with or counter to the
binormal vector (cf. Sec. II B). Thus, positive and negative torsions are related to the out of plane
motion rather than moving towards or moving away from the wall. For example, the torsion is
positive for right-hand helix moving away from the wall but torsion is negative while also moving
away from the wall for left-hand helix, and vice versa.

Figure 12(a) presents the mean torsion (τ̃+) versus y+. Here τ̃+ values are essentially zero
(possibly slightly negative) for all y+. The nearly zero values for the τ̃+ is basically a fraction
of the symmetry of the instantaneous torsion pdf. If we consider the right-hand helix rule for the
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FIG. 12. Torsion statistics of curvature in case of the boundary layer (colored) (Red circle, for δ+ ≈ 2530
and blue triangle, for δ+ ≈ 1660) and the channel flow (black diamond, for δ+ ≈ 934). The vertical gray dash
lines, represent the layer boundaries associated with the mean momentum equation (Table I) corresponding to
δ+ = 1660. (a) Mean; (b) standard deviation.

streamlines and employ the Frenet-Serret apparatus (Sec. II B), the negative torsion reveals that the
streamlines are moving opposite to the binormal vector direction.

Figure 12(b) shows the standard deviation of torsion versus y+. These data reach their maximum
at a location near y+ = 1 and then decreases with distance from the wall. This indicates that
streamline patterns that twist out of the x-z-plane are more prevalent in the near-wall region.
Physically, this is consistent with the rapid three-dimensionalization of the velocity field from the
wall outward.

We now compare the relative strength of bending and twisting of streamlines by examining the
ratio of the curvature to the torsion across the flow. Figure 13(a) shows this ratio using the total
velocity field at different wall-normal locations. The ratio has a maximum value close to the wall
and then shows an approximately power-law decay across layer II. Beyond y+ � 100 to the outer
edge of the inertial layer, the ratio is nominally constant. Figure 13(b) using the fluctuating velocity
field also presents a similar decreasing behavior up to the center of layer II and then attains an
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FIG. 13. Ratio of τ and κ for (a) the total velocity field and (b) the fluctuating velocity field in case of the
boundary layer (colored) (Red circle, for δ+ ≈ 2530 and blue triangle, for δ+ ≈ 1660) and the channel flow
(black diamond, for δ+ ≈ 934). The vertical gray dash lines, represent the layer boundaries associated with the
mean momentum equation (Table I) corresponding to δ+ = 1660.
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approximately constant much greater than one. Thus, this ratio reveals intense twisting motion than
bending over the flow domain.

D. Joint probability density function

In this section we consider the fluctuating streamline pattern, with special attention on the stream-
line curvature behavior in stagnation regions (u, v,w) ∼= 0. Figure 14 presents the joint probability
density function of the fluctuating velocity magnitude |V | = √

u2 + v2 + w2, and the inverse of
fluctuating curvature magnitude, i.e., the radius of curvature, at four wall-positions residing within
the four layers noted in Table I. Figure 14(a) shows the joint probability contour of |V +| and 1/κ+
in the viscous sublayer. Here the contour lines corresponding to small radius of curvature (1/κ+) is
weighted towards the minimum value of the velocity magnitude (|V +|) ≈ 0). Although indirect,
this supports the notion that curvature values are maximal in stagnation regions (|V +|) ≈ 0).
This feature remains prevalent with distance from the wall as shown in Figs. 14(b)–14(d) in
layers II–IV, respectively. This result nominally agrees with the conclusion of Schaefer [7], that
extreme curvature values occur owing to sharply deflected streamlines in the vicinity of stagnation
points.
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FIG. 14. Joint pdf of the fluctuating velocity magnitude with the inverse of curvature magnitude for
fluctuating streamlines pattern in case of the Channel flow at (a) y+ = 3, (b) y+ = 30, (c) y+ = 63, and
(d) y+ = 911.
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1. Joint PDF of the curvature components

The orientations of the streamlines determines the curvature components. To understand the
geometric characteristics of the streamlines in each layer of Table I, jpdfs of all three combinations
for fluctuating κx, κy and κz were examined. For y+ � 30, the jpdfs show distortion from symmetry
due to the presence of the wall. This is reflected by noncircular contours. With increasing distance,
however, the joint pdfs of (κ+

x , κ+
z ) as well as (κ+

y , κ+
z ) exhibit essentially circular pdfs centered

about zero, yielding the correlation coefficient of about 0.01 or less (not shown here).
Very close to the wall, the joint distribution of κ+

x , κ+
y in Fig. 15(a) shows a distorted shape

concentrating in the second quadrant. This distortion most likely arises due to a combination of
the viscous shear effect on κ+

x and a wall-blocking effect on κ+
y , as discussed earlier. Figure 15(b)

in layer II also shows a somewhat distorted pdf that is weighted in the first and second quadrant.
In layer III, Fig. 15(c) presents that the pdf is weighted in the first and second quadrant with the
correlation coefficient, Rκx,κy

∼= −0.1. Beyond this position and up to the centerline of the channel
flow, e.g., Fig. 15(d), the pdfs exhibit essentially circular contours centered about zero with Rκx,κy

∼=
0. Here we note that κ+

x pdf is more distorted (or symmetric) than κ+
y pdf before layer III. From layer

III, the distortion of κ+
x presumably owing to the shear diminishes. Within this region the transfer of

the mean shear into fluctuating vorticity also diminishes [11]. This diminishing mean shear effect
terminates near y+ = 50, where the vorticity intensities are all nearly equal in magnitude [11].
These results reinforce those surmised from Fig. 10 that the wall-blocking effect is most important
for y+ � 30, while the shear effect extends to y+ � 50.
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FIG. 15. (a) Joint pdf of the streamwise curvature component with wall-normal curvature component
for fluctuating streamlines pattern in case of the Channel flow at (a) y+ = 3, (b) y+ = 30, (c) y+ = 63, and
(d) y+ = 911.
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IV. SUMMARY AND CONCLUSIONS

The present study describes statistical properties of the streamline curvature and torsion in
turbulent wall-flows. The streamlines of the flows were calculated from available DNS [33,34] and
used a fourth-order Runge-Kutta method. The Frenet-Serret formulas from differential geometry
were used to evaluate κ and τ . Curvature is calculated using the tangent vectors and the arc length
of the corresponding streamline curve. Torsion is evaluated using central difference formulas for the
derivative terms in the definitional equation of τ . Although statistics of curvature and torsion for
both boundary layer and channel flows are evaluated, we find that these statistics are broadly similar
across the two flow types and the range of Reynolds number investigated. The fact that streamline
geometry statistics scale mostly with small-scale flow features such as η or λ might be the likely
reason that we do not observe significant differences across flow types. The reason for minimal
Re-dependence could further be accentuated by the limited Re-range used in our study. Therefore,
the salient features of the streamline geometry are presented without particular emphasis on the flow
type or Re.

We find that curvature statistics show varying behavior close to the wall, and between y+ � 17
(the peak location of the turbulent kinetic energy) and y+ � 50. At y+ � 50, vorticity advection
becomes an increasingly prevalent mechanism leading to the spatial dispersion of vorticity that
increasingly dominates with increasing y+ [11]. In the classical log layer, the radius of curvature
exhibits a power-law variation that varies approximately like the Taylor microscale. The maximum
variance of curvature corresponding to the mean occurs close to the wall and close to the channel
centerline. This is revealed using the ratio of mean curvature to its standard deviation.

An interesting result from the mean statistics is that κ̃+
y exhibits a positive peak close to the wall.

To understand this, the correlation coefficient of ṽ+ and κ̃+
y and the conditional average of ṽ+ field

corresponding to positive κ̃+
y were computed. The results show an anticorrelation between ṽ+ and

κ̃+
y except close to the wall. These results support that the positive κ̃+

y peak is associated with a
strong negative ṽ+ followed by a weaker positive ṽ+. In other words, the positive peak near the wall
is related to strong wallward flowing streamlines.

The pdfs of the curvature magnitude and the curvature components with an exponent of −4
scaling have been shown for a varying degree in both total and fluctuating velocity fields, but more
prominent for curvature from fluctuating velocity field. From these analyses, it is apparent that κ−4

scaling is predominant at increasing distances from the wall. The −4 scaling is relevant to describing
the large curvature values in stagnation regions [7] (see Fig. 16). The curvature value at the onset of
this scaling κo is comparable to the inverse of ≈10η at different wall positions beyond y+ ≈ 50. Here
both κo and η are found to show a power-law decrease with y+ in the inertial domain (logarithmic
layer). This is not inconsistent with the decreasing number density of stagnation points with y+ in
the inertial layer [8]. The present results indicate that, the onset of −4 scaling varies in a similar
trend with the Kolmogorov scale and the mean radius of curvature varies proportionally with the
Taylor microscale on the inertial layer. The nonproportional results for y+ � 50 arise from the wall-
blocking effect within y+ ≈ 30, and from the viscous effect within that extends to near y+ = 50.
This finding is reinforced by analyzing the positive and negative pdf profiles of the wall-normal
curvature, and the joint pdfs of curvature components. The properties of the out of plane motion of
the streamlines have been shown by the mean and the standard deviation statistics of torsion. The
ratio of torsion to the curvature reveals that the out of plane pattern is smaller scale than the in-plane
pattern for both total and fluctuating streamlines.

The joint pdf results describe the streamline pattern and behavior in stagnation regions is depicted
schematically in Fig. 16. Here the high curvature values are associated with streamlines that come
near to an advecting stagnation region, where they are sharply deflected. On the inertial domain,
the number density of stagnation points decays like 1/y+ [8]. The onset of −4 scaling of curvature
is proportional to the inverse Kolmogorov scale in the same domain, where the mean radius of
curvature scales in a manner similar to the Taylor microscale, whereas both these two length scales
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FIG. 16. Sketch of streamlines in the vicinity of a pair of stagnation regions for wall-turbulent flows within
the inertial region. The spacing between these points is ≈λ, whereas the bounding turbulent motion has a size of
1/κ . The gray shaded region within the solid blue circle around the stagnation points of size 1/κ0 is where we
expect the curvature pdf P(κ ) ∼ κ−4 scaling. The streamlines curve sharply deflected within a smaller region of
size η.

follow a power-law decrease with y+. Furthermore, since the distance between the stagnation points
on the x-z plane as well as the mean curvature of the streamlines follow the Taylor-microscale, the
average streamlines would go between the stagnation points (cf. Fig. 16). Overall, the present results
indicate likely connections between the vortical features around the stagnation point of the flow and
their spatial structure with distance from the wall.
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APPENDIX: SCALING OF CURVATURE PDFS WITH η AND y

The purpose of this Appendix is to show the PDFs of κ̃ as well as κ scaled with the Kolmogorov
length scale η as well as with the wall-normal distance y. Figures 17(a) and 17(b) show the PDFs κ̃

and κ scaled with ηε (which is the Kolmogorov length scale obtained from the dissipation, ε, with
no approximation). Figures 17(c) and 17(d) are a replotting of the same data in Figs. 17(a) and 17(b)
with y as the normalization. It is clear that the top-row with ηε normalization scales the PDFs better
compared to y in the bottom row. Perhaps this is not surprising because the curvature is related to
small-scale features of the flow, which typically scale with the Kolmogorov length scale.
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FIG. 17. Probability density function of the curvature magnitude multiplied by Kolmogorov length scale
and wall-normal distance for Channel flow at δ+ ≈ 934 at varying wall-normal locations; diamond, y+ = 3;
triangle, y+ = 14, star, y+ = 40, square, y+ = 67; plus, y+ = 174. (a) Probability of the curvature magnitude
multiplied by Kolmogorov length scale computed from the instantaneous streamlines pattern. (b) Probability
of the curvature magnitude multiplied by Kolmogorov length scale for the fluctuating streamlines pattern.
(c) Probability of the curvature magnitude multiplied by the wall-normal distance for the instantaneous stream-
lines pattern. (d) Probability of the curvature magnitude multiplied by the wall-normal distance determined
from the fluctuating streamlines pattern.

[1] S. K. Robinson, Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech. 23, 601
(1991).

[2] I. Marusic, B. J. McKeon, P. A. Monkewitz, H. Nagib, A. Smits, and K. Sreenivasan, Wall-bounded
turbulent flows at high Reynolds numbers: Recent advances and key issues, Phys. Fluids 22, 065103
(2010).

[3] J. Klewicki, Reynolds number dependence, scaling, and dynamics of turbulent boundary layers, J. Fluids
Eng. 132, 094001 (2010).

[4] J. Jeong, F. Hussain, W. Schoppa, and J. Kim, Coherent structures near the wall in a turbulent channel
flow, J. Fluid Mech. 332, 185 (1997).

[5] A. Sharma and B. McKeon, On coherent structure in wall turbulence, J. Fluid Mech. 728, 196 (2013).
[6] J. Klewicki, J. Philip, I. Marusic, K. Chauhan, and C. Morrill-Winter, Self-similarity in the inertial region

of wall turbulence, Phys. Rev. E 90, 063015 (2014).
[7] P. Schaefer, Curvature statistics of streamlines in various turbulent flows, J. Turbul. 13, N28 (2012).

034609-25

https://doi.org/10.1146/annurev.fl.23.010191.003125
https://doi.org/10.1063/1.3453711
https://doi.org/10.1115/1.4002167
https://doi.org/10.1017/S0022112096003965
https://doi.org/10.1017/jfm.2013.286
https://doi.org/10.1103/PhysRevE.90.063015
https://doi.org/10.1080/14685248.2012.702216


PERVEN, PHILIP, AND KLEWICKI

[8] V. Dallas, J. C. Vassilicos, and G. F. Hewitt, Stagnation point von Kármán coefficient, Phys. Rev. E 80,
046306 (2009).

[9] T. Wei, P. Fife, J. Klewicki, and P. McMurtry, Properties of the mean momentum balance in turbulent
boundary layer, pipe and channel flows, J. Fluid Mech. 522, 303 (2005).

[10] C. Morrill-Winter, J. Philip, and J. Klewicki, An invariant representation of mean inertia: Theoretical
basis for a log law in turbulent boundary layers, J. Fluid Mech. 813, 594 (2017).

[11] J. Klewicki, A description of turbulent wall-flow vorticity consistent with mean dynamics, J. Fluid Mech.
737, 176 (2013).

[12] K. A. Chauhan, P. A. Monkewitz, and H. M. Nagib, Criteria for assessing experiments in zero pressure
gradient boundary layers, Fluid Dyn. Res. 41, 021404 (2009).

[13] J. Klewicki, P. Fife, and T. Wei, On the logarithmic mean profile, J. Fluid Mech. 638, 73 (2009).
[14] I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, On the logarithmic region in wall turbulence,

J. Fluid Mech. 716, R3 (2013).
[15] J. Klewicki and M. Oberlack, Finite Reynolds number properties of a turbulent channel flow similarity

solution, Phys. Fluids 27, 095110 (2015).
[16] C. Meneveau and I. Marusic, Generalized logarithmic law for high-order moments in turbulent boundary

layers, J. Fluid Mech. 719, R1 (2013).
[17] A. Zhou and J. Klewicki, Properties of the streamwise velocity fluctuations in the inertial layer of turbulent

boundary layers and their connection to self-similar mean dynamics, Int. J. Heat Fluid Flow 51, 372
(2015).

[18] C. Morrill-Winter, J. Philip, and J. Klewicki, Statistical evidence of anasymptotic geometric structure to
the momentum transporting motions in turbulent boundary layers, Philos. Trans. R. Soc. A 375, 20160084
(2017).

[19] J. Klewicki, P. Fife, T. Wei, and P. McMurtry, A physical model of the turbulent boundary layer consonant
with mean momentum balance structure, Philos. Trans. R. Soc. London A 365, 823 (2007).

[20] G. L. Eyink, Turbulent flow in pipes and channels as cross-stream “inverse cascades” of vorticity, Phys.
Fluids 20, 125101 (2008).

[21] P. Priyadarshana, J. Klewicki, S. Treat, and J. Foss, Statistical structure of turbulent-boundary-layer
velocity–vorticity products at high and low Reynolds numbers, J. Fluid Mech. 570, 307 (2007).

[22] C Morrill-Winter and J Klewicki, Influences of boundary layer scale separation on the vorticity transport
contribution to turbulent inertia, Phys. Fluids 25, 015108 (2013).

[23] S. Goto and J. C. Vassilicos, The dissipation rate coefficient of turbulence is not universal and depends on
the internal stagnation point structure, Phys. Fluids 21, 035104 (2009).

[24] N. Peters, L. Wang, J.-P. Mellado, J. H. Gobbert, M. Gauding, P. Schafer, and M. Gampert, Geometrical
properties of small scale turbulence, in John von Neumann Institute for Computing NIC Symposium Edited
by G. Münster, D. Wolf, M. Kremer (Jülich, Germany; Forschungszentrum Jülich GmbH, 2010), pp.
365–371.

[25] W. Braun, F. De Lillo, and B. Eckhardt, Geometry of particle paths in turbulent flows, J. Turbul. 7, N62
(2006).

[26] A. Scagliarini, Geometric properties of particle trajectories in turbulent flows, J. Turbul. 12, N25
(2011).

[27] P. Huerre and P. A Monkewitz, Local and global instabilities in spatially developing flows, Annu. Rev.
Fluid Mech. 22, 473 (1990).

[28] E Lévêque, L Chevillard, J-F Pinton, S Roux, A Arnéodo, and N Mordant, Lagrangian intermittencies in
dynamic and static turbulent velocity fields from direct numerical simulations, J. Turbul. 8, N3 (2007).

[29] L. Wang, On properties of fluid turbulence along streamlines, J. Fluid Mech. 648, 183 (2010).
[30] N. Mazellier and J. C. Vassilicos, The turbulence dissipation constant is not universal because of its

universal dependence on large-scale flow topology, Phys. Fluids 20, 015101 (2008).
[31] KR Sreenivasan, A Prabhu, and R Narasimha, Zero-crossings in turbulent signals, J. Fluid Mech. 137,

251 (1983).
[32] S. O. Rice, Mathematical analysis of random noise, Bell Syst. Tech. J. 24, 46 (1945).

034609-26

https://doi.org/10.1103/PhysRevE.80.046306
https://doi.org/10.1017/S0022112004001958
https://doi.org/10.1017/jfm.2016.875
https://doi.org/10.1017/jfm.2013.565
https://doi.org/10.1088/0169-5983/41/2/021404
https://doi.org/10.1017/S002211200999084X
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1063/1.4931651
https://doi.org/10.1017/jfm.2013.61
https://doi.org/10.1016/j.ijheatfluidflow.2014.09.009
https://doi.org/10.1098/rsta.2016.0084
https://doi.org/10.1098/rsta.2006.1944
https://doi.org/10.1063/1.3013635
https://doi.org/10.1017/S0022112006002771
https://doi.org/10.1063/1.4775361
https://doi.org/10.1063/1.3085721
https://doi.org/10.1080/14685240600860923
https://doi.org/10.1080/14685248.2011.571261
https://doi.org/10.1146/annurev.fl.22.010190.002353
https://doi.org/10.1080/14685240600990266
https://doi.org/10.1017/S0022112009993041
https://doi.org/10.1063/1.2832778
https://doi.org/10.1017/S0022112083002396
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x


STATISTICAL PROPERTIES OF STREAMLINE GEOMETRY …

[33] J. A. Sillero, J. Jiménez, and R. D. Moser, One-point statistics for turbulent wall-bounded flows at
Reynolds numbers up to δ+ ≈ 2000, Phys. Fluids 25, 105102 (2013).

[34] J. C. Del Alamo, J. Jiménez, P. Zandonade, and R. D. Moser, Scaling of the energy spectra of turbulent
channels, J. Fluid Mech. 500, 135 (2004).

[35] R. S. Millman and G. D. Parker, Elements of Differential Geometry (Prentice-Hall, Englewood Cliffs,
N.J., 1977).

[36] H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972).
[37] J. Klewicki and R. Falco, On accurately measuring statistics associated with small-scale structure in

turbulent boundary layers using hot-wire probes, J. Fluid Mech. 219, 119 (1990).
[38] P. Vincenti, J. Klewicki, C. Morrill-Winter, C. White, and M. Wosnik, Streamwise velocity statistics in

turbulent boundary layers that spatially develop to high Reynolds number, Exp. Fluids 54, 1629 (2013).
[39] A. V Johansson, P H. Alfredsson, and J. Kim, Evolution and dynamics of shear-layer structures in near-

wall turbulence, J. Fluid Mech. 224, 579 (1991).
[40] J. Klewicki and C. Hirschi, Flow field properties local to near-wall shear layers in a low Reynolds number

turbulent boundary layer, Phys. Fluids 16, 4163 (2004).
[41] C. Chin, J. Philip, J. Klewicki, A. Ooi, and I. Marusic, Reynolds-number-dependent turbulent inertia and

onset of log region in pipe flows, J. Fluid Mech. 757, 747 (2014).

034609-27

https://doi.org/10.1063/1.4823831
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S0022112090002889
https://doi.org/10.1007/s00348-013-1629-9
https://doi.org/10.1017/S002211209100188X
https://doi.org/10.1063/1.1801891
https://doi.org/10.1017/jfm.2014.486

