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Dynamics of a droplet driven by an internal active device
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A liquid droplet, immersed into a Newtonian fluid, can be propelled solely by internal
flow. In a simple model, this flow is generated by a collection of point forces, which
represent externally actuated devices or model autonomous swimmers. We work out the
general framework to compute the self-propulsion of the droplet as a function of the
actuating forces and their positions within the droplet. A single point force, F, with general
orientation and position, r0, gives rise to both translational and rotational motion of the
droplet. We show that the translational mobility is anisotropic and the rotational mobility
can be nonmonotonic as a function of |r0|, depending on the viscosity contrast. Due to
the linearity of the Stokes equation, superposition can be used to discuss more complex
arrays of point forces. We analyze force dipoles, such as a stresslet, a simple model of a
biflagellate swimmer and a rotlet, representing a helical swimmer, driven by an external
magnetic field. For a general force distribution with arbitrary high multipole moments the
propulsion properties of the droplet depend only on a few low order multipoles: up to the
quadrupole for translational and up to a special octopole for rotational motion. The coupled
motion of droplet and device is discussed for a few exemplary cases. We show in particular
that a biflagellate swimmer, modeled as a stresslet, achieves a steady comoving state, where
the position of the device relative to the droplet remains fixed. There are two fixed points,
symmetric with respect to the center of the droplet. A tiny external force selects one of
them and allows one to switch between forward and backward motion.
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I. INTRODUCTION

Micro- and nanoscale medical robotics is a rapidly emerging area of research, which may open
the way to many new and fascinating applications like precision surgery, directed drug delivery,
microdiagnostic sensing, uptake of toxins, and many others (for recent reviews see [1,2]). A most
important challenge on the way towards reliable biotechnological systems is to find bio-compatible,
long-lasting, and precisely controllable methods of propulsion in vivo. Magnetically actuated helical
micromotors on the 10-μm length scale, which are driven and controlled by external fields, provide
a promising example. They have been used for important manipulations of soft materials, in
particular for steerable locomotion in small droplets, for the actuation of human B lymphocytes
and the assembly or disassembly of complexes of droplets and cells [3]. Furthermore, they have
already been actuated in the peritoneal cavity of a mouse [4] for deep tissue analysis. Another
promising technique is the biohybrid actuation, which uses molecular motors of biological systems
as the propulsion mechanism. The big advantage of this approach is that fuel is provided by the
surrounding biofluid, and these motors are highly optimized to convert the chemical energy into
three-dimensional propulsion [5,6].
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In many aspects of biohybrid systems can we profit from copying evolutionary optimized designs
from natural biological systems. In the case of self-propulsion [7], the design of artificial swimmers
is inspired by biological microswimmers, such as algae, bacteria, and eukaryotic cells. Many
of these have special organelles, e.g., flagellae or cilia, to propel the microorganism. However,
swimming without specialized organelles is also found in nature. In the present paper, we want to
explore possibilities of actuating a soft droplet by small internal motors, which either are externally
driven or operate autonomously.

The motion of a passive particle in the presence of a rigid cavity was first considered by Oseen,
who solved the Stokes equation for the flow field of a point force outside a spherical cavity [8].
Several extensions of Oseen’s work have been obtained [9,10] and other geometries, such as plane
walls and cylinders, have been considered. For a more recent exposition, see [11,12]. A Stokeslet
near a spherical viscous drop was first considered by Fuentes et al. [13,14]. They solved the
mobility problem for both the axisymmetric case [13] as well as motion perpendicular to the
line connecting the centers [14]. Further solutions in terms of simple image systems have been
constructed for point rotlets and point sources in [15]. Recently the oscillatory motion of a particle
inside an elastic cavity was discussed [16,17]. Such a cavity is thought to model a vesicle that
is enclosed by a membrane with shear and bending resistivity. Whereas the early works focused
on colloidal suspensions [18,19], more recently active devices, such as squirmers inside a droplet,
acquired attention. In [20], the locomotion of a spherical squirmer encapsulated inside a droplet
of comparable size suspended in another viscous fluid has been studied. The authors show that the
encaged swimmer can propel the droplet, and in some situations both remain in a stable coswimming
state. In [21], the coswimming of a squirmer in a droplet with a nonuniform surface tension
was studied. The latter provides an additional mechanism for self-propulsion and can increase or
decrease both velocities, that of the squirmer and that of the droplet. Both papers [20,21] consider
only axisymmetric configurations, resulting in translations.

Here we consider a spherical droplet that is immersed in an ambient Newtonian fluid and actuated
by small internal motors. Our focus is the propulsion of the droplet due to an internal active device.
We assume the device to be small as compared to the droplet and hence model it by a collection of
point forces [22]. In contrast to [20,21], we consider asymmetric configurations and compute both
the linear and rotational velocity of the droplet generated by point forces. Quantitative results are
obtained for both cases, an autonomous force- and torque-free swimmer and an externally actuated
device. In the next section (Sec. II) we introduce the model and we obtain its analytical solution
in Sec. III. We present results for a single point force, representing an externally driven device, as
well as for a dipolar and a quadrupolar force configuration, representing autonomous swimmers in
Sec. IV. The coupled dynamics of droplet and device is discussed for exemplary cases in Sec. V.
Conclusions are presented in Sec. VI; details of the analytical calculations are deferred to the
Appendices.

II. MODEL

We want to study the propulsion of a droplet, which is driven by a device, which is either
controlled externally or autonomous. The droplet is assumed to be spherical of radius R and consists
of an incompressible Newtonian fluid with viscosity η−. It is immersed into an ambient Newtonian
fluid of viscosity η+ which is at rest in the laboratory frame. The two fluids are assumed to be
completely immiscible and of the same density ρ, so that the droplet is neutrally buoyant.

For small Reynolds number, the flow field created by the moving device can be calculated from
Stokes’s equation

∇ · σ = η∇2v − ∇p = −f, (1)

supplemented by the incompressibility condition ∇ · v = 0. The viscosity η in Eq. (1) jumps
between η+ and η− across the boundary of the droplet. The viscous stress tensor σ is given by
its Cartesian components σi j = −pδi j + η(∂iv j + ∂ jvi ), with the pressure p determined from the
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incompressibility. The force density exerted by the active device is denoted by f and will be specified
below. On the boundary of the droplet we assume continuity of the flow field v(r) and of the
tangential stress, whereas the normal stress jumps due to the Laplace pressure pL = γ0∇ · n. The
homogeneous surface tension is denoted by γ0 and n is the normal of the droplet surface, which
in general depends on θ and φ. Here we only consider the limit of high surface tension so that
shape deformations can be neglected. The Laplace pressure is then given by pL = 2γ0/R and the
boundary condition for the normal stresses reads er · (σ+ − σ−) = (2γ0/R)er . Once the internal
flow v has been computed, the linear and angular momentum of the droplet follow from

MvCM = ρ

∫
V

d3x v, Iω = ρ

∫
V

d3x r × v (2)

with total mass M = 4πρR3

3 and moment of inertia I = 8πρR5

15 . Here the integral is over the volume
V of the droplet.

We model the simplest externally controlled device by a point force:

f (r) = Fδ(r − r0). (3)

Once the solution for the point force has been constructed, more general force distributions can be
treated by superposition of the flow fields, because the Stokes equations are linear in v. Of particular
interest are force dipoles and force quadrupoles which can serve as models for an autonomous
force-free swimmer. Another motivation for considering a point force stems from the following
well-known fact [12]: The flow field of a moving sphere of radius a is correctly represented by a
point force and a point quadrupole in unbounded space. Even though this result is not expected to
hold for a sphere within a finite droplet, it may serve as an approximation provided the particle
radius is small compared to all other length scales [22]. This point will be discussed in more detail
in Sec. V.

III. ANALYTICAL SOLUTION

Our general strategy is to construct a special solution of the inhomogeneous equation and
then add a homogeneous solution to match the boundary conditions. As a special solution of the
inhomogeneous problem we can choose the classical Oseen tensor solution of a point force at
position r0 in an unbounded fluid [12]:

8πηGi j (r − r0) = 1

|r − r0|δi j + (r − r0)i(r − r0) j

|r − r0|3 . (4)

However, the usual representation of this solution is not easy to match to boundary conditions on
the surface of a sphere.

A. Expansion in vector spherical harmonics

Instead of expanding the Oseen tensor into solutions of the homogeneous Stokes equation, we
prefer to construct the solution from the Stokes equation in terms of vector spherical harmonics
(VSH) directly. Our choice of VSH is Y(0)

lm = erYlm, Y(1)
lm = r∇Ylm, and Y(2)

lm = er × Y(1)
lm . The vector

spherical harmonics form a complete orthogonal set on the surface of a unit sphere with respect to
the scalar product:

(h, g) =
∫

d� h∗(�) · g(�). (5)

Not all of the Y(s)
lm (s = 0, 1, 2) are normalized. While the Y(0)

lm have norm 1, the s = 1, 2 fields have
a norm of (A(s)

l )−1 = �(� + 1). For further properties of these functions we refer the reader to [23].
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The expansion of the force density is explicitly given by

Fδ(r − r0) = δ(r − r0)

r2
0

2∑
s=0

∞∑
l=0

l∑
m=−l

flms(�0)Y(s)
lm (�). (6)

Here flms(�0) = A(s)
l [Y(s)

lm (�0)]∗ · F and �0 denotes the solid angle of r0, specifying its direction.
The flow field and the pressure which are generated by the above point force are similarly expanded
in VSH:

v(r|r0) =
2∑

s=0

∑
lm

vlms(r, r0)Y(s)
lm (�), (7)

p(r|r0) =
∑
lm

plm(r, r0)Ylm(�). (8)

The {vlms} and {plm} are constructed by a superposition of a special solution of the inhomo-
geneous equation and the general solution of the homogeneous equation to satisfy the boundary
conditions. This provides an exact analytic solution of the flow field of our model in terms of an
infinite series. The applicability of this result may be limited by the rate of convergence of the
series. For our purposes of calculating the propulsion velocities of the droplet [Eq. (2)], however, it
proves to be very convenient, because the total momentum and angular momentum of the droplet
are determined exclusively by the l = 1 component. Inserting the expansion of v into Eq. (2) reveals
(see [24])

vCM = 3

4π

∑
m

∫
∂V

d� v1m0(r = R, r0)Y1m(�)er, (9)

ω = − 15

8πR5

∑
m

∫
V

d3r r2 v1m2(r, r0)∇Y1m(�). (10)

B. Solution inside the droplet

The solution outside of the droplet is standard, so that we concentrate here on the interior of the
droplet. The homogeneous solutions to the Stokes equation in the interior of the droplet are well
known and explicitly given by

vhom
1m0 (r) = a−

lm

( r

R

)�+1
+ b−

lm

( r

R

)�−1
, (11)

vhom
lm2 (r) = c−

lm

( r

R

)�

. (12)

The constraint of incompressibility determines vhom
lm1 .

The difficult part is the construction of a special solution of the inhomogeneous equation, given
the point force singularity in the interior of the droplet. The first step is to decompose the interior
of the droplet into a sphere with radius r � r0 and the enclosing space, a spherical shell, defined
by r0 � r � R (see Fig. 1). In the inner space (r � r0), we use the solutions of the Stokes equation
which are regular at the origin. In the outer shell (r0 � r � R), but still within the droplet, the flow
is represented by both solutions of the Stokes equation, the ones which are regular at the origin and
the other ones which are regular at infinity.
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FIG. 1. Decomposition of the interior of the droplet into an inner sphere r � r0 and an outer shell r0 � r �
R, used for the construction of the flow field generated by a point force Fδ(r − r0 ) in the interior.

Inserting the expansions [Eqs. (6)–(8)] into Eq. (1), the Stokes equation is converted into three
ordinary differential equations for the {vlms(r)} and {plm(r)}:

η

⎛
⎜⎝

(
d2

dr2 + 2
r

d
dr

) − [2+l (l+1)]
r2

2l (l+1)
r2 0

2
r2

(
d2

dr2 + 2
r

d
dr

) − l (l+1)
r2 0

0 0
(

d2

dr2 + 2
r

d
dr

) − l (l+1)
r2

⎞
⎟⎠

⎛
⎝vlm0

vlm1

vlm2

⎞
⎠

=
⎛
⎝

d plm

dr
plm

r

0

⎞
⎠ − δ(r − r0)

r2
0

⎛
⎝ flm0

flm1

flm2

⎞
⎠. (13)

(In the following we suppress the dependence on r0 to keep the notation transparent.) The above
system of equations decouples into a 2 × 2 block for the nonchiral flow, generated by flm0 and flm1,
and a single equation for the chiral flow, generated by flm2. Hence chiral and nonchiral flow can be
discussed separately. We choose to first solve for the chiral part because it is simpler and allows us
to fully explain our method of solution.

C. Chiral flow

We take flm0 = flm1 = 0 and concentrate on the rotational flow:

v(r) =
∑
l,m

vlm2 r × ∇Ylm

where vlm2 is the solution of

η−
(

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2

)
vlm2 = − flm2

r2
0

δ(r0 − r). (14)

A special solution of this equation is constructed with help of the inner and outer solutions with
respect to the position of the point force r0. We thus make the ansatz

vinh
lm2

R
= Klm

( r

R

)�


(r0 − r) + Glm

(R

r

)�+1


(r − r0)
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[where 
(x) = 1 for x > 0 and 
(x) = 0 for x < 0 denotes the Heaviside function] and plug it into
Eq. (14) to determine the coefficients:

Glm = flm2

η−R2(2l + 1)

( r0

R

)l
, Klm = flm2

η−R2(2l + 1)

( R

r0

)l+1

.

Thereby we have constructed a special solution to the inhomogeneous equation (14). We now add
the homogeneous solution, Eq. (12),

vlm2 = c−
lm

( r

R

)�

+ vinh
lm2, (15)

to fulfill the boundary conditions. Note that in the shell r0 � r � R we indeed need both solutions
for the flow field, namely, those which are regular at the origin and those which are regular at infinity.

Two boundary conditions at the surface of the droplet have to be fulfilled: continuity of the flow
and of the tangential stresses. The internal flow has been derived above and the exterior (chiral) flow
is given by v+

lm2 = c+
lm( R

r )l+1. The first boundary condition thus reads

c+
lm = c−

lm + flm2

Rη−(2l + 1)

( r0

R

)l
. (16)

The second boundary condition requires that the surface of the droplet be force free. We define the
surface tractions t = er · σ|r=R and their chiral components tlm2 = 1

2

∫
d� t · [Y(2)

lm (�)]∗. Given the
interior and exterior flow fields, the computation of the tractions is straightforward: tlm2 = η( d

dr −
1
r )vlm2. Continuity, t+

lm2 = t−
lm2 implies

c+
lm(2 + l )η+ = −c−

lm(l − 1)η− + flm2
l + 2

(2l + 1)

rl
0

Rl+1
. (17)

These two equations (16) and (17) determine the free coefficients completely:

c+
lm = flm2

Rη+
( r0

R

)l 1

2 + l + λ(l − 1)
, c−

lm = flm2

Rη+
l + 2

2l + 1

( r0

R

)l 1 − 1/λ

2 + l + λ(l − 1)
.

Here we have introduced the viscosity contrast λ = η−/η+.
The rotational velocity ω is determined exclusively by the � = 1 component of the flow

[Eq. (10)], which is given explicitly by

v1m2(r, r0) = f1m2(�0)

3η−

[
(λ − 1)

rr0

R3
+ 
(r − r0)

r0

r2
+ 
(r0 − r)

r

r2
0

]
.

Substituting this result into Eq. (10) yields the rotational velocity of the droplet:

ω = r0 × F
16πη−R3

[
2λ + 3

(
1 −

( r0

R

)2]
, (18)

which will be discussed in Sec. IV A.

D. Nonchiral flow

Next we consider the nonchiral flow with flm2 = 0. The coupled equations for the two compo-
nents of the flow vlm0, vlm1 can be decoupled using the constraint of incompressibility,

dvlm0

dr
+ 2

r
vlm0 − l (l + 1)

r
vlm1 = 0, (19)

resulting in a single equation for vlm0:

η

(
d2

dr2
+ 4

r

d

dr
+ 2 − l (l + 1)

r2

)
vlm0 = d plm

dr
− flm0

r2
0

δ(r − r0). (20)
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In order to solve it, we first have to compute the pressure, again using the constraint of incompress-
ibility, ∇2 p = ∇ · f , to obtain

d2 plm

dr2
+ 2

r

d plm

dr
− l (l + 1)

r2
plm = flm0

r2
0

d

dr
δ(r − r0) + 2 flm0

r3
0

δ(r − r0) − l (l + 1) flm1

r3
0

δ(r − r0).

(21)

A special solution of this equation is constructed with help of the inner and outer solutions with
respect to the position of the point force r0. We thus use the ansatz,

pinh
lm (r) = Alm

( r

R

)�


(r0 − r) + Blm

(R

r

)�+1


(r − r0) , (22)

plug it into Eq. (21), and find for the coefficients Alm and Blm

Alm = 1

r2
0

�(� + 1) flm1 − (� + 1) flm0

2� + 1

( R

r0

)�

, (23)

Blm = 1

r2
0

�(� + 1) flm1 + � flm0

2� + 1

( r0

R

)�+1
. (24)

Note that the pressure is discontinuous at r0, as it has to be due to the singularities on the right hand
side of Eq. (21).

If this solution for the pressure is substituted into Eq. (20), one observes that the contributions
involving δ(r − r0) cancel and one obtains the following equation for vlm0:

η−
(

d2

dr2
+ 4

r

d

dr
+ 2 − l (l + 1)

r2

)
vlm0 = �

r
Alm

( r

R

)�


(r0 − r) − � + 1

r
Blm

(R

r

)�+1


(r − r0).

(25)

The equation is solved by linear combinations of the inner and outer solutions as detailed in
Appendix A. Once a special solution of the inhomogeneous equation has been constructed, we
subsequently add the general solution of the homogeneous equations. This leaves us with four sets
of yet unknown coefficients {a−

lm, b−
lm} for the flow inside the droplet and {a+

lm, b+
lm} for the exterior

flow. These are determined by four boundary conditions, two resulting from continuity of the flow at
the droplet’s surface and two from the condition that the interface be force free. These four equations
are given and solved in Appendix B [see Eqs. (B3)–(B6)].

IV. RESULTS

The general formalism of the previous section allows us to give simple and exact expressions for
the translational and rotational velocities of a droplet, which is driven by a configuration of point
forces. This is the central finding of the present paper. In this section we first give basic results
for the propulsion velocities vcm and ω due to a single point force. All other configurations can be
studied by linear superpositions of these velocities. As examples, we consider pairs of point forces,
such as stresslets and rotlets, and a device made of three linearly arranged points (see Fig. 2). The
examples have been chosen to provide crude approximations of biflagellate microorganisms and of
helical magnetic swimmers. Finally, we discuss arbitrary configurations and show that only a few
low order multipoles of the force distribution determine the propulsion velocities completely.

A. Single point force

First consider a single point force f (r) = Fδ(r − r0), representing an externally driven device.
Such a device gives rise to both translational and rotational motion of the droplet. For the center of
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r 0

x x x

(a)

(b) (c) (d)

FIG. 2. (a) Upper half of the droplet with examples of devices of point forces at r0. (b) Stresslet. (c) Rotlet.
(d) Quadrupolar device. The point forces are indicated by vectors.

mass velocity we find

vcm = 1

4πη+R

1

(3λ + 2)

[
(2λ + 3)F −

( r0

R

)2
(2F − F||)

]
=: μt (r0) · F. (26)

Here we have introduced the vector component of the force parallel to r0, F|| = (F · r0)r0/r2
0 .

As expected, we find a linear relation between vcm and the externally applied force with, however,
an anisotropic mobility tensor μt . In other words, the droplet does in general not move in the
direction of the applied force. The mobility for a force parallel to r0 is always larger than the mobility
for a force perpendicular to r0: μ‖ − μ⊥ = 1

4πη+R
1

3λ+2 ( r0
R )2.

The angular velocity [Eq. (18)] is linearly related to the torque with respect to the center of the
droplet: ω = μrot(r0) r0 × F. The rotational mobility μrot,

μrot(r0) = 1

16πη−R3

{
2λ + 3

[
1 −

( r0

R

)2]}
, (27)

is isotropic and decreasing with r0 while the torque is increasing. This may lead to a nonmonotonic
dependence of ω(r0). For example, a point force F = Fex located on the z axis at r0 = z0ez causes
an angular frequency ω = ω(z0)ey, which takes on a maximum at z∗/R = √

2λ + 3/3, which is
inside the droplet if λ < 3.

Rotation is prevented, if the torque with respect to the center of the droplet vanishes, i.e., if the
force is parallel to r0. Choosing F = Fez and r = z0ez the droplet moves in the z direction with a
translational mobility of the form

μ(z0) = μHR + 1

4πη+R

1 − ( z0
R

)2

2 + 3λ
, (28)

where μHR = (1/2πη+R)[(λ + 1)/(2 + 3λ)] is the classical result of Hadamard and Rybczynski for
a spherical droplet moving with prescribed velocity [12]. The correction vanishes, if the singularity
is moved to the surface of the droplet z0 → R. In other words the inner sphere in Fig. 1 fills the
whole droplet and the outer shell vanishes. For a general position of the point force μ(z0) � μHR.
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B. Force dipoles

We are interested in the propulsion of a droplet, driven by an encapsulated, autonomous
swimmer. These are frequently modeled as force dipoles f (r) = Fδ(r − r+) − Fδ(r − r−) with
r± = r0 ± d/2 (see Fig. 2). The total force vanishes, but there is in general a nonzero torque. The
propulsion velocities of the droplet driven by a force dipole are obtained from Eqs. (26) and (18)
by superposition. The results for a general position and orientation of the point forces are given in
Appendix C. Here we only discuss two special cases, the stresslet and the rotlet which have been
suggested as simple models for microswimmers.

The simplest example of a fully autonomous device is a stresslet-like force pair characterized
by F = Fd/d [see Fig. 1(b)]. This may be considered as a crude approximation of a biflagellate
microorganism [25] with a thrust F exerted by flagella and balanced by the viscous drag −F of the
cell body. Note that the symmetric configuration studied here would not lead to self-propulsion of
the device in free space.

The translational velocity of the droplet driven by a stresslet is given by

vcm = Fd

4πR3(3η− + 2η+)

(
r0 − 3

d · r0

d2
d
)

.

The mobility is anisotropic and vanishes, if either η+ or η− becomes very large. Although the
stresslet’s intrinsic torque is zero, it will generate rotational motion of the droplet with

ω = − 3

8πη−R5
(r0 · d) (r0 × F).

This angular velocity is independent of the exterior viscosity; it only vanishes if d is perpendicular
to r0 or if F is parallel to r0.

A rotlet-like force pair F ⊥ d [see Fig. 1(c)] may be considered as a first approximation to a
helical magnetic swimmer driven by a rotating magnetic field [3,26] and exerting a finite torque
on the fluid. The propulsion velocities are easily read off from Eqs. (C11) and (C12) and show
that the droplet is not only rotated but also translated by this force pair. If, for example, d || ex and
F || r0 = z0ez the droplet will move in the x direction with speed vcm = Fdz0/[4πR3(3η− + 2η+)].

Pointlike force dipoles are included in the above results by taking the limit d → 0 while keeping
the dipole strength Fd fixed. The propulsion velocities for general orientations of (r0, d, F) are
given in Appendix C.

C. Quadrupolar autonomous device

As a last example of simple point force configurations consider a slightly refined model of a
biflagellate microorganism characterized by f (r) = 2Fδ(r − r0) − Fδ(r − r0 − d) − Fδ(r − r0 +
d) [see Fig. 1(d)]. Here the two flagellae are described as separate, symmetrically arranged point
forces [27]. The device is fully autonomous, because both the total force and the torque with respect
to the point r0 vanish. The propulsion velocities become

vcm = 1

4πη+R3

1

3λ + 2
[4d2F − 2(d · F)d] (29)

and

ω = 3

8πη−R5
[(2r0 · d)(d × F) + d2(r0 × F)]. (30)

Note that unlike a single point force or a force pair the translation velocity of the three point device is
independent of the position r0 of the configuration in the droplet’s interior. The droplet is translated
without rotation if F || r0 and d ⊥ r0 hold.
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D. Droplet driven by a general configuration of point forces

It is straightforward to generalize the results of the previous subsection to arbitrary configurations
f (r) = ∑M

ν=1 F(ν)δ(r − r(ν) ) with r(ν) = r0 + d(ν). The point r0, which here appears as an arbitrary
marking of the position of the device, may acquire a physical meaning in more detailed models as
will be discussed in Sec. V. Superposition of the contributions of point forces gives the propulsion
velocities

vcm = 1

4πη+R

1

3λ + 2
(31)

[
(2λ + 3)FM −

M∑
ν=1

(
r (ν)

R

)2(
2F(ν) − F(ν)

||
)]

(32)

and

ω = − 1

16πη−R3

[
(2λ + 3)(NM + r0 × FM) − 3

∑
ν

(
r (ν)

R

)2

r(ν) × F(ν)

]
, (33)

which are determined by only a few low order multipoles. It is easily seen by inserting r(ν) =
r0 + d(ν) into Eqs. (31) and (33) that vcm is completely fixed by the total force FM = ∑M

ν=1 F(ν),
the second rank tensor of force dipole moments d = ∑

ν d(ν)F(ν) (including the total torque NM =∑M
ν=1 d(ν) × F(ν)), and the third rank tensor of quadrupole moments Q = ∑

ν d(ν)d(ν)F (ν). For the
angular velocity, ω, a special octopole moment W = ∑

ν (d(ν) · d(ν) ) d(ν)F(ν) is needed in addition.
Therefore different distributions of internal forces may generate the same propulsion velocities.
In particular, if the configuration is autonomous and its dipole moment vanishes, the translation
velocity is independent of the position r0 (the three point device of the previous subsection is a
simple example). If in addition Q = 0 but W is finite then vcm = 0 and the droplet is only rotated.
All higher order multipole moments beyond the octopole do not generate any propulsion of the
droplet.

V. COUPLED DYNAMICS OF DEVICE AND DROPLET

So far we have discussed snapshots of a droplet and a device, the latter being treated as an
assembly of point forces. The motion of a real device within the droplet depends upon the details
of its material properties, its structure, and its internal dynamics. A discussion of the general case
is beyond the scope of this paper. In the following, we illustrate the use of our results to determine
the coupled evolution of the droplet and devices consisting of small spherical beads. We consider a
single bead dragged by an external force and a simple steering problem of a biflagellate model.

When we integrate the device velocity to determine its trajectory, we assume that the droplet
retains its spherical shape. As the flow field on the interface contains shape-changing components,
these have to be counteracted by large surface tension, which prevents any changes in area, i.e., we
have to assume a sufficiently small capillary number [28].

A. Small bead dragged by an external force

In Sec. IV A we have computed the propulsion of the droplet by a device consisting of a single
point force in the interior. In order to derive an approximate velocity for the device, we now replace
the point force by a spherical particle of radius a which is dragged along the z axis by an external
force Fext = F extez. The current position of the center of the sphere is r0 = z0ez. In free space its
velocity is given by Stokes’s law as U sphere = Fext/(6aπη−) = μ0Fext. In the droplet the moving
sphere causes a response flow v(a)(r|r0) due to the interface and the device velocity can be obtained
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from Faxén’s law in the explicit form

U sphere = μ0Fext +
(

1 + a2

6
∇2

)
v(a)(r0|r0), (34)

provided the response flow, v(a)(r|r0), is known in the vicinity of r ∼ r0. For a small sphere (a 
 1),
with distance D � a from the interface, we approximate the flow it generates at the interface by
that of its leading multipole, i.e., the flow due to a point force Fext, calculated in Appendix A.
Furthermore, the internal flow is determined by all � components in the expansion (7) and not just
the � = 1 component which determines the instantaneous propulsion. The flow field with � > 1, in
general, induces shape deformations which we assume to be small due to strong surface tension.
Since we do not include the shape conserving terms explicitly, our calculation of the internal flow
is only approximate and this may limit the computation of trajectories to small times.

For the axially symmetric structure of the device, r0 = z0ez and F = Fez, the calculations sim-
plify considerably. The response flow is parallel to the z axis v(a)(r0|r0) = v(a)(z0)ez and explicitly
given by

v(a)(z0) =
∞∑

l=1

(
2l + 1

4π

)1/2[
a−

l0

( z0

R

)l+1
+ b−

l0

( z0

R

)l−1]
. (35)

Here a−
lm and b−

lm are defined in Eqs. (11) and (A2).
Comparing the device velocity to the droplet velocity, as given in Eq. (26), we find that Udevice −

vcm is always positive for a device in the interior of the droplet, i.e., a + |z0| < R. It is minimal for
the device in the center of the droplet and grows as the device moves towards the interface. For an
illustrative example with particle radius a = 0.05 and a viscosity contrast λ = 30, the difference is
a few percent.

B. Externally guided biflagellate

Given the above approximate velocity of the device, we are now looking for a dynamic state,
in which the droplet and the encapsulated device (the swimmer) move with the same velocity.
Otherwise, if the swimmer is faster or slower than the droplet, it will move out of the droplet and the
composite system will be unstable. To achieve a stationary, comoving state one needs two driving
mechanisms: the activity of an autonomous swimmer and an external steering force. The latter
is acting on the device and has to be adjusted appropriately to the swimming activity in order to
produce a stable state with the same velocities for droplet and encapsulated device and hence fixed
relative position of the two.

As a simple example, consider a variant of the three point biflagellate model, which was
introduced in Sec. IV B. Here the device consists of a spherical particle of radius a < d cen-
tered at z0ez and flagella (with negligible hydrodynamic resistance) exerting point forces ±Fez

at r± = (z0 ± d )ez. The point forces add up to zero. An additional force Fext = F extez is acting on
the sphere to guide the device (see Fig. 3). More explicitly, the force dipole models the swimming
activity of the device and the external force will be adjusted so that the velocity of the droplet
coincides with the velocity of the device.

In the absence of the sphere the point forces create a flow ṽ, which consists of a sum of Stokeslets
and the corresponding response flows v(±)(r|r±) due to the droplet interface, i.e.,

ṽ(r) = [G(r − r+) − G(r − r−)] · F + v(+)(r|r+) + v(−)(r|r−). (36)

Here G denotes the Oseen tensor [Eq. (4)]. If we now add the spherical particle at position r0, it will
be advected by the flow ṽ(r0). At r = r0 the first term on the right hand side vanishes, because G
is an even function of its argument. Including the Faxén correction, this flow drives the sphere with
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x
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-F

d

-d

Fext

a

FIG. 3. Biflagellate swimmer, modeled by a small sphere with an attached stresslet and subject to an
external force Fext, which will be tuned to the swimming activity to achieve a stable comoving state of droplet
and device. All length scales are assumed to be small as compared to the droplet’s radius.

velocity

U stresslet =
(

1 + a2

6
∇2

)
[v(+)(r0|r+) + v(−)(r0|r−)]. (37)

In addition to the swimming activity, as described by the force dipole, we now turn on an external
steering force Fext, so that the velocity of the device is given by the sum of Eqs. (34) and (37),
Udevice = U sphere + U stresslet. This velocity contains the response flow v(a) due to the particle, which
we replace by the response flow of the point force Fext as explained in the previous subsection. As
the flow is smooth at r0, we can drop the derivative term ∝ a2∇2 to obtain the device velocity to
leading order in a:

Udevice = μ0Fext + v(+)(r0|r+) + v(−)(r0|r−) + v(a)(r0|r0). (38)
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FIG. 4. Device velocity U device (solid line) and droplet velocity (dashed line) generated by the device
described in the main text with point forces F of 1 pN at a distance d = 2 μm from a bead with radius 1 μm,
in a droplet of radius 50 μm. Top: Without steering force F ext = 0. Stable fixed points are marked by circles;
unstable fixed points are marked by squares. Bottom: With F ext = 0.001 pN. The viscosity contrast is λ = 5
and contributions up to l = 50 are taken into account. No visible changes appear if contributions up to l = 100
are added.

The steering force can now be used to control the velocity of the device relative to the droplet
velocity. The latter is obtained from Eq. (26) by superposition of the three point forces and is
explicitly given by

vcm = 1

4πη+R

1

3λ + 2

{[
2λ + 3 −

( z0

R

)2]
F extez − 4

dz0

R
Fez

}
. (39)

The relative velocity Udevice − vcm is shown in Fig. 4. If F ext = 0 [Fig. 4(a)] there are two off-center
stable fixed points of the one-dimensional motion of the biflagellate, whereas the center of the sphere
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is an unstable fixed point. With a tiny external force one can select a stable fixed point [Fig. 4(b)],
which makes it possible to switch between forward and backward motion along the z axis. With
increasing F ext the device approaches the interface and the number of l components needed for a
correct description increases.

It is straightforward to generalize these results to more complex arrays of point forces, including
asymmetric configurations and rotations of the droplet.

VI. CONCLUSIONS AND OUTLOOK

Point forces in the interior of a fluid droplet generate flow and thereby can propel the droplet.
By constructing the Green function for the boundary conditions of a fluid droplet, we were able
to compute the linear and rotational velocities of the droplet as a function of general point force
configurations.

Starting from a single point force, we showed that the translational mobility of the droplet is
anisotropic: vi

cm = μ
i j
t (r0)F j . The rotational motion of the droplet is determined by the torque of the

device with respect to the center of the droplet, i.e., r0 × F, and the rotational mobility is isotropic
but potentially nonmonotonic as a function of the position of the device. Considering stepwise
more complex configurations, we next discussed force dipoles, which in general give rise to both
translational and rotational motion of the droplet. Force dipoles include as special cases stresslets
as a simple model for an autonomous device as well as rotlets as an approximation for externally
driven, helical swimmers. A more refined model of an autonomous device includes three point
forces, such that both the total force and torque vanish. The translational velocity of the droplet is
independent of the position of the device if the total force dipole moment vanishes.

We have also considered general force distributions and have shown that the propulsion velocities
of the droplet depend only on a few multipole moments of the force. The translational velocity is
determined by the total force, dipole moment, and quadrupole moment. The rotational velocity
requires an additional special octupole moment. Therefore different force distributions give rise to
the same propulsion of the droplet, provided these low order moments are the same.

For many applications, such as medical microrobotics, it is desirable to control the trajectory of
the forcing device, such that a prescribed trajectory of the droplet results. Approximating the device
by a small spherical bead allows us to use Stokes’s law supplemented by Faxén’s law to derive
an approximate relation between the velocity of the device and the applied forces. To illustrate
our approach, we consider two illustrative examples: a single bead dragged by an external force
and a biflagellate swimmer modeled as a stresslet. The latter allows for a steady comoving state
of the droplet and the device. Depending on the position of the device within the droplet, we find
two stable fixed points for the relative velocity and finite propulsion. The two stable fixed points
are separated by an unstable one, where the device is located at the center of the droplet and no
propulsion occurs. If the biflagellate swimmer is additionally controlled by a tiny external steering
force, one of the fixed points is selected, allowing for a switch between forward and backward
motion.

Alternatively one might consider a squirmer in a droplet, possibly driven by an external force in
addition to the autonomous activity. Thereby the trajectory of the squirmer as well as of the droplet
could be controlled, generalizing the work of [20]. First results along this line have been published
[29].

Note added. Recently, Sprenger et al. [30] submitted a paper with some overlap with our
paper. Both papers consider the propulsion of a droplet driven by point forces but use different
methods of solution. Furthermore, we consider general configurations of point forces and include
chiral flow, giving rise to rotational motion of the droplet. We also discuss the possibilities of a
stationary state in which a droplet and a device move with the same velocity. Sprenger et al. on the
other hand discuss a surfactant laden droplet and its effects on the dynamics of the encapsulated
swimmer.
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APPENDIX A: NONCHIRAL FLOW IN THE INTERIOR OF THE DROPLET

In this Appendix, we construct the nonchiral flow components vlm0 and vlm1 due to a point force
in the interior of the droplet. The solutions of the homogeneous equation are given by

vhom
1m0 (r) = a−

lm

( r

R

)�+1
+ b−

lm

( r

R

)�−1
, (A1)

vhom
lm1 (r) = 3 + �

�(� + 1)
a−

lm

( r

R

)�+1
+ 1

�
b−

lm

( r

R

)�−1
. (A2)

We need to find a special solution of the inhomogeneous equation. Our starting point is Eq. (25) in
the main text, which we recall here for convenience:

η

(
d2

dr2
+ 4

r

d

dr
+ 2 − l (l + 1)

r2

)
vlm0 = �

r
Alm

( r

R

)�


(r0 − r) − � + 1

r
Blm

(R

r

)�+1


(r − r0).

(A3)

Special solutions of this equation are r�+1 for the inner sphere and r−� for the outer shell,
suggesting an ansatz vinh

lm0(r) = C−
lm(r/R)�+1
(r0 − r) + C+

lm(R/r)�
(r − r0). However, the flow
and its derivative have to be continuous at r0. Continuity can be achieved by adding solutions of
the homogeneous equation, r�−1, � � 1 for the flow in the inner sphere and r−�−2 for the outer
shell. Combining all these terms leads us to the following ansatz:

1

R
vinh

lm0(r) = C−
lm

( r

R

)�+1

(r0 − r) + C+

lm

(R

r

)�


(r − r0)

+ Flm

( r

R

)�−1

(r0 − r) + Hlm

(R

r

)�+2


(r − r0). (A4)

When plugged into Eq. (A3), all four sets of coefficients are determined in terms of flm0 and flm1:

C−
lm = �

4� + 6

Alm

η− , C+
lm = � + 1

4� − 2

Blm

η− , Flm = 2C+
lm

2� + 1

( R

r0

)2�−1

− 2� + 3

2� + 1
C−

lm

( r0

R

)2
,

Hlm = −2� − 1

2� + 1
C+

lm

( r0

R

)2
− 2

2� + 1
C−

lm

( r0

R

)2�+3
. (A5)

The coefficients Alm and Blm are given in terms of flm0 and flm1 in Eqs. (23) and (24). The constraint
of incompressibility determines vinh

lm1 from Eq. (19).
The special solution of the inhomogeneous equation is simply related to the Oseen tensor with

Cartesian components Gi j :

vi(r | r0) =
∑

j

Gi, j (r | r0)Fj (A6)

where we have made the dependence of v on r0 explicit again. Inserting its expansion in vector
spherical harmonics,

Gi j (r, r0) =
∑
s,s′

∑
lm

Gs,s′
lm (r, r0)

[
Y(s)

lm (�)
]

i

[
Y∗ (s′ )

lm (�0)
]

j,

into Eq. (A6) yields

vlms(r, r0) =
∑

s′
Gs,s′

lm (r, r0) flms′ (�0)
1

A(s′ )
l

.

The chiral component (s = 2) decouples and is solely determined by the special solution of the
inhomogeneous equation vinh

lm2, constructed in Sec. III C:
√

�(� + 1)G2,2
lm (r, r0) = − 1

η−(2�+1)

(

(r − r0) r�

0
r�+1 + 
(r0 − r) r�

r�+1
0

)
.
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The other components require the inversion of a 2 × 2 matrix, which is not needed here.
Having constructed a special solution to the inhomogeneous equation, one can now simply add

the homogeneous flow fields to obtain the general solution and match the boundary conditions,
which is explained in the next section.

APPENDIX B: MATCHING BOUNDARY CONDITIONS

The flow outside of the droplet is given by the homogeneous solutions

v+
lm0(r) = a+

lm

(R

r

)�

+ b+
lm

(R

r

)�+2

, (B1)

v+
lm1(r) = 2 − �

�(� + 1)
a+

lm

(R

r

)�

− 1

� + 1
b+

lm

(R

r

)�+2

, (B2)

while the flow in the inside is given by the superposition of the inhomogeneous and homogeneous
flow. The boundary conditions determine the four yet unknown coefficients a±

lm and b±
lm of the

homogeneous flow: two linear equations emerging from the continuity of the flow velocity at r = R,
and another set of two linear equations emerging from the balance of forces on the surface of the
droplet, er · (σ+ − σ−) = (2γ0/R)er .

The boundary condition that the flow is continuous gives rise to two equations, corresponding to
vlm0 and vlm1:

a+
lm + b+

lm = a−
lm + b−

lm + R(C+
lm + Hlm), (B3)

(2 − l )a+
lm − lb+

lm = (l + 3)a−
lm + (l + 1)b−

lm + R(2 − l )C+
lm − lRHlm. (B4)

The boundary condition that the surface of the droplet is force free requires the calculation of the
tractions t± = er · σ± as an expansion in vector spherical harmonics. The expansion coefficients tlms

are related to those of the velocity [24]

tlm0(r) = (−plm(r) + 2η dvlm0
dr

)
, tlm1(r) = η

(
dvlm1

dr
− vlm1

r
+ vlm0

r

)

for both the external and the internal flow. The surface tension γ0 is balanced by the � = 0 compo-
nent of the pressure, so that the force-free condition reads t+

lm0(R) = t−
lm0(R) and t+

lm1(R) = t−
lm1(R)

for � � 1. These two boundary conditions provide two more equations for the coefficients:

2
l2 + 3l − 1

l + 1
a+

lm + 2(l + 2)b+
lm + 2λ

l
(l2 − l − 3)a−

lm + 2λ(l − 1)b−
lm

= R

η+ Blm + 2λR[C+
lm + (l + 2)Hlm], (B5)

2(l2 − 1)a+
lm + 2l (l + 2)b+

lm − λ2l (l + 2)a−
lm − 2λ(l2 − 1)b−

lm

= 2λR(l2 − 1)C+
lm + 2λRl (l + 2)Hlm. (B6)

The four equations (B3)–(B6) determine the coefficients of the homogeneous solutions and are
conveniently written in matrix notation for the vector of coefficients Z = (a+

lm, b+
lm, a−

lm, b−
lm)t . In

this notation the system of four equations resulting from the four boundary conditions is written in
compact form as M̂Z = I with

M̂ =

⎛
⎜⎜⎜⎝

1 1 −1 −1
2−l

l (l+1)
−1
l+1 − l+3

l (l+1) − 1
l

2 l2+3l−1
l+1 2(l + 2) 2

l λ(l2 − l − 3) 2λ(l − 1)
2(l2 − 1) 2l (l + 2) −2λl (l + 2) −2λ(l2 − 1)

⎞
⎟⎟⎟⎠
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and the vector I = (I (1)
lm , I (2)

lm , I (3)
lm , I (4)

lm )t :

I =

⎛
⎜⎜⎜⎝

RC+
lm + RHlm

2−l
l (l+1) RC+

lm − RHlm/(l + 1)
R
η+ Blm + 2λRlC+

lm + 2λR(l + 2)Hlm

2λR(l2 − 1)C+
lm + 2λRl (l + 2)Hlm

⎞
⎟⎟⎟⎠. (B7)

The solution, a±
lm, b±

lm, is obtained from M̂−1I with the help of symbolic machine computation or
numerical evaluation, except for the special case � = 1, discussed below.

APPENDIX C: PROPULSION VELOCITIES

The propulsion velocities require only the � = 1 component of the flow (9) and (10). Since the
linear equations, M̂Z = I, for the coefficients Z = (a+

lm, b+
lm, a−

lm, b−
lm)t are decoupled for different

�, it is sufficient to consider the case � = 1, for which the matrix M̂ simplifies considerably. The
coefficients are given explicitly by

a+
1m = (

I (3)
1m − I (4)

1m

)/
3, (C1)

b+
1m = I (4)

1m + 6λ
(
I (1)
1m − I (2)

1m − a+
1m

/
2
)

3(2 + 3λ)
. (C2)

These coefficients determine vCM according to Eq. (9), which is most easily evaluated with help of
the external flow field:

vCM = 3

4π

∑
m

∫
∂V

d� (a+
1m + b+

1m)Y1m(�)er . (C3)

The simplest case is a force F = Fez parallel to r0 = z0ez, so that only m = 0 contributes: f100 =√
3

4π
F . The linear propulsion velocity is then given by

vCM = ez

√
3

4π
(a+

10 + b+
10) = F

4πη−R

3 + 2λ − ( z0
R

)
z2

0

2 + 3λ
. (C4)

For a general direction of the force the following relations are used to express the expansion
coefficients f1ms in coordinate-free form:

F · Y 0
10 =

√
3

4π
F|| · ez, (C5)

F · Y 1
10 =

√
3

4π
(F − F||) · ez, (C6)

F · Y 0
11 = −

√
3

8π
F|| · (ex + iey), (C7)

F · Y 1
11 = −

√
3

8π
(F − F||) · (ex + iey), (C8)

F · Y 2
10 = −

√
3

4π

r0 × F
r0

· ez, (C9)

F · Y 2
11 =

√
3

8π

r0 × F
r0

· (ex + iey) (C10)
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where F|| = (F · r0)r0/r2
0 . The expansion coefficients of the force f1m0 and f1m1 determine the

expansion coefficients Alm, Blm,C−
lm,C+

lm, Flm, Hlm [Eqs. (23) and (A5)] and hence the flow field
for general force. The final step is the computation of the propulsion velocity from Eq. (C3) with
the result given in the main text [Eq. (26)].

Once the flow field of a single point force is known, a general assembly of point forces can
be treated by superposition. An example is the force dipole f = Fδ(r − r+) − Fδ(r − (r−) with
r± = r0 ± d/2 (see Fig. 2). The propulsion velocities for the dipole are obtained by superposition
of the results from Eqs. (26) and (18):

vcm = 1

4πη+R3(3λ + 2)
[(F · d)r0 + (F · r0)d − 4(r0 · d)F] (C11)

and

ω = − 1

16πη−R3

[
3

r2
0

(
r2

0 + d2

4

)
− 2λ − 3

]
(d × F) − 6

16πη−R4
(r0 · d) (r0 × F). (C12)

In the main text we discuss two special cases, the stresslet and the rotlet.
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