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Depositing and obtaining a liquid film of uniform thickness is a problem integral to nu-
merous applications and requires an understanding of capillary leveling, Marangoni flows,
evaporation, and various other phenomena. These applications often demand multilayer
films where each layer has distinct properties, and this gives rise to additional challenges.
It has been experimentally demonstrated that two-layer films in which the layers are
miscible can undergo dewetting, but theoretical understanding of this phenomenon is
lacking. Through a lubrication-theory-based model, this work studies the mechanisms
that may initiate dewetting in miscible two-layer two-component films. The model film
consists of nonvolatile solvent and solute with constant density and viscosity. Two coupled
fourth-order nonlinear partial differential equations describing the time evolution of the
film height and solute concentration are derived and then solved with a pseudospectral
method. It is found that a disparity in initial solute concentration between the film layers
drives flows that lead to significant film-height nonuniformities. A parametric study is
conducted to examine the influence of system parameters on this behavior and to develop
several scaling relations that shed light on the underlying physical mechanisms.
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I. INTRODUCTION

Ranging from the production of organic light-emitting diode screens [1], printed electronics [2],
and pharmaceuticals [3] to the tear film protecting our eyes [4,5], thin liquid films are ubiquitous;
they exhibit many fascinating and exploitable behaviors that underlie numerous industrial processes.
These processes produce lithium-ion batteries [6], solar and fuel cells [7], drug-delivery devices
[3], and many other products where desired functionality requires that the films have controlled
thickness and species concentration distributions.

Advanced applications often require that coated films consist of numerous layers with varying
components. These films are deposited through a number of processes such as slot coating, curtain
coating, and spray coating. However, small perturbations from vibrations, imperfect mixing, and
other sources can cause variations in film height and component concentration with potentially
disastrous effects on coating quality. While variations in the film height generate capillary flows
that level the film, variations in component concentration can cause surface-tension gradients and
thus Marangoni flow. Sufficiently strong Marangoni flow leads to film rupture (dewetting) and is
catastrophic to coating quality. However, even minor instabilities that result in small nonunifor-
mities may cause a significant quality degradation, so it is crucial to understand the evolution of
nonuniformities in thin liquid films.

The growth of nonuniformities in liquid films from Marangoni flow has been extensively studied
in one-layer systems [8,9]. The characteristic case of a binary (two-component) film has received
considerable attention because it forms a foundation from which we may understand more complex
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FIG. 1. Schematic of a two-layer liquid film resting on a solid substrate. If the liquid layers are miscible,
there is no distinct interface between them.

systems. Serpetsi and Yiantsios [10] studied the stability of an evaporating one-layer binary film
through linear stability analysis and nonlinear simulations, finding modes of instability similar
to those investigated by Pearson [11] and Scriven and Sternling [12,13]. Including a variable
viscosity, Yiantsios et al. [14] examined the nonlinear evolution of film-height and concentration
nonuniformities in drying polymer films. Furthermore, the influence of substrate geometry [15,16],
soluble and insoluble surfactants [4,15,17], evaporation rate [10,15,18,19], and colloidal particles
[15,19,20] has been extensively explored in one-layer systems.

However, coated films are often comprised of multiple liquid layers to provide advanced func-
tionality [21–24]. Horiuchi et al. [25] experimentally demonstrated dewetting of two-layer miscible
films resting on solid substrates, but current theoretical understanding is largely limited to the case
of immiscible liquids [26–31]. Figure 1 shows a simple schematic of a two-layer film resting on
a substrate with a deformable liquid-air interface (free surface). While the liquid-liquid interface
between layers is depicted sharply in Fig. 1, it may be diffuse or even nonexistent if the layers
are miscible. Through two-layer slot coating, Horiuchi et al. [25] coated two-layer films with
an alcohol-based bottom layer and water-based top layer and examined the influence of liquid
properties and film thickness ratios on dewetting. Because these layers are miscible, the only distinct
fluid-fluid interface is the free surface depicted in Fig. 1.

When modeling species concentration in multicomponent films, many previous studies have
employed a rapid-vertical-diffusion approximation [15,17,32–34]. To leading order, this approx-
imation assumes species concentration is uniform through the film depth. This hinges on the
assumptions that initial vertical concentration gradients are negligible and that vertical diffusion
is rapid in comparison to other process time scales. Consequently, this approximation is not useful
for studying two-layer films where there may be a significant difference in species concentration
between layers resulting in large vertical gradients. Although some previous work on the stability
of liquid films has accounted for the presence of vertical concentration gradients [4,10,14,16],
there is limited understanding of their role in miscible multilayer films where large vertical gra-
dients may be present initially. Fundamental understanding of the stability of miscible multilayer
films is important in numerous coating applications [25], but to the best of our knowledge a
systematic theoretical investigation of the evolution of miscible multilayer films has yet to be
reported.

In this work, we study the model problem of a nonvolatile two-layer binary film that approx-
imates the conditions studied by Horiuchi et al. [25] (Fig. 1). The primary goal of this paper
is to understand the mechanisms that generate film-height nonuniformities in two-layer miscible
films rather than to attempt a quantitative comparison with the experiments of Horiuchi et al. [25].
To focus on the effects of solutal Marangoni flow, we choose to neglect evaporation and thermal
Marangoni flows in this study. The rest of the paper is organized as follows. In Sec. II, we present
the mathematical model. In Sec. III, we identify regions of the problem parameter space with
qualitatively different dynamics. We also develop analytical expressions that provide insight into
the underlying physical mechanisms. In Sec. IV, we present a parametric study to highlight the key
factors influencing film uniformity. Conclusions are given in Sec. V.
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FIG. 2. Schematic of the model geometry of two miscible liquid layers resting on a solid substrate. One
liquid is considered the “solvent” and the other the “solute.” Yellow indicates a higher concentration of
solute, and σ+ denotes a locally high surface tension and σ− denotes a locally low surface tension that arise
from solute concentration gradients. The resulting surface-tension gradient causes formation of a film-height
nonuniformity, through Marangoni flow, from an initially flat interface (see Fig. 1).

II. MATHEMATICAL MODEL

We model the evolution of film height and species concentration in a thin liquid film resting
on a solid substrate as shown in Fig. 2. Film height h′ = h′(t ′, x′) and solute concentration c′ =
c′(t ′, x′, z′) vary with time t ′ and the spatial variables x′ and z′. The liquid is comprised of two
miscible liquids, one of which is labeled the “solvent” and the other the “solute.” When the solvent
and solute surface tensions differ, solute concentration gradients create Marangoni stresses that
drive Marangoni flow at the liquid-air interface (free surface) as depicted in Fig. 2. We enforce
periodic conditions in x′, assuming edge effects are negligible, and neglect evaporation and thermal
Marangoni flows to focus on the effects of solutal Marangoni flow.

A. Hydrodynamics

The liquid film is assumed Newtonian with constant viscosity μ and density ρ. Surface tension σ ′
is scaled by the solvent surface tension σ0, and the solute concentration c′ by an initial concentration
c0. The vertical coordinate z′ is scaled by the initial film height H , while the lateral coordinate x′ is
scaled by the length scale L obtained from balancing viscous and Marangoni stresses at the interface:

μ
σ0H2

μL3
∼ �σω0

L
⇒ L ∼ H√

Ma
. (1)

The viscous scale used in this balance is based on a capillary velocity and arises from considering
mass and x-momentum balances. The Marangoni number Ma = �σω0/σ0, where �σ is the solvent
and solute surface-tension difference (assumed positive), and ω0 is the initial mass or mole fraction
of solute. The film is assumed thin so that the ratio of the characteristic lengths ε = H/L � 1,
allowing the application of lubrication theory. This assumption is simply that of a small Marangoni
number

√
Ma = ε � 1 and has been used in previous work [10].

The liquid velocities, v′
x and v′

z, and pressure p′ are governed by the Navier-Stokes equations
with no slip and no penetration at the substrate and stress balances at the liquid-air interface.
The film height h′ deforms in response to flow in the film and is governed by the kinematic
condition. A normal stress balance at the interface reveals that an appropriate scale for the pressure
is p∗ = σ0ε

2/H , and an x-momentum balance coupled with the kinematic condition gives the
x-velocity scale v∗

x = ε3σ0/μ and time scale t∗ = H/v∗
x ε. Finally, bulk mass conservation gives the

z-velocity scale v∗
z = εv∗

x (see the Appendix for a derivation of these scales). Thus, we introduce
the dimensionless variables (indicated without a prime superscript):

x′ = ε−1Hx, z′ = Hz, h′ = Hh, σ ′ = σ0σ, c′ = c0c,

v′
x = v∗

x vx, v′
z = εv∗

x vz, p′ = p∗ p, t ′ = t∗t . (2)
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The surface tension σ is assumed to vary linearly with the solute concentration c at the interface
according to

σ = 1 − Ma c|z=h. (3)

This assumes a dilute solute (ω0 � 1) and has been used in many previous studies (e.g.,
Refs. [10,15,35]). Retaining only leading-order terms in the Navier-Stokes equations yields the
lubrication equations governing the liquid velocity and pressure:

∂2vx

∂z2
= ∂ p

∂x
, (4)

∂ p

∂z
= 0, (5)

∂vx

∂x
+ ∂vz

∂z
= 0. (6)

In dimensionless form, the no-slip, no-penetration, normal stress balance, and tangential stress
balance give the boundary conditions

vx|z=0 = vz|z=0 = 0, (7)

p|z=h = −∂2h

∂x2
, (8)

∂vx

∂z

∣∣∣∣
z=h

= −∂c|z=h

∂x
. (9)

Note that due to the choice of the lateral domain size L = H/
√

Ma, the Marangoni number Ma does
not appear in tangential stress balance (9). Solving equations (4)–(6) subject to these conditions
gives explicit expressions for the liquid velocities:

vx = −
(

1

2
z2 − hz

)
∂3h

∂x3
− ∂c|z=h

∂x
z, (10)

vz =
(

1

6
z3 − 1

2
hz2

)
∂4h

∂x4
+ 1

2

(
∂2c|z=h

∂x2
− ∂h

∂x

∂3h

∂x3

)
z2. (11)

Mass conservation at the interface z = h requires the kinematic condition

vz = ∂h

∂t
+ vx

∂h

∂x
, (12)

and inserting velocities (10) and (11) yields the thin-film equation

∂h

∂t
= −1

3

∂

∂x

[
h3 ∂3h

∂x3

]
︸ ︷︷ ︸

capillary flow

+ 1

2

∂

∂x

[
h2 ∂c|z=h

∂x

]
︸ ︷︷ ︸

Marangoni flow

. (13)

This equation describes the change in film height h over time in terms of contributions from capillary
flow and Marangoni flow. It is coupled to the evolution of solute concentration c through Marangoni
flow and subject to the initial condition h0 = 1.

B. Solute concentration and initial condition

The solute is assumed to have constant diffusivity D in the solvent and is governed by the
dimensionless convection-diffusion equation

∂c

∂t
+ vx

∂c

∂x
+ vz

∂c

∂z
= 1

Pe

∂2c

∂x2
+ 1

ε2Pe

∂2c

∂z2
. (14)
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Here, the Péclet number Pe = Hv∗
x /Dε gives the ratio between the lateral diffusive and convective

time scales. Similarly, ε2Pe gives the ratio between the vertical diffusive and convective time scales.
Note that Eq. (14) assumes Fickian diffusion in the liquid film.

Previous studies often used one of two approximations to simplify Eq. (14). If the vertical diffu-
sion time is small (ε2Pe � 1), one may solve for a leading-order, vertically uniform concentration
profile [15,17,32]. However, vertical gradients are large in the system we seek to investigate, so this
approximation is not applicable. Studies that include vertical gradients argue that lateral diffusion
is negligible, since ε2Pe � Pe, and neglect its contribution in Eq. (14) (e.g., Refs. [4,10]). We do
not neglect lateral diffusion in this work; as will be seen in Secs. III and IV, lateral diffusion plays
a key role in the behavior we observe. Therefore, we retain all terms in Eq. (14) and apply no-flux
conditions:

∂c

∂z

∣∣∣∣
z=0

= 0,
∂c

∂z

∣∣∣∣
z=h

− ε2 ∂h

∂x

∂c

∂x

∣∣∣∣
z=h

= 0. (15)

In the experiments of Horiuchi et al. [25], a solid substrate was coated with two-layer films
consisting of an ethanol-rich bottom layer and an ethanol-depleted top layer. To approximate this
two-layer structure, the initial concentration profile has a solute-rich bottom layer and a solute-
depleted top layer, achieved by the transition function

T (z; hb, s) =

⎧⎪⎨
⎪⎩

1, w � 0
exp(− 1

1−w
)

exp(− 1
1−w

)+exp(− 1
w

)
, 0 < w < 1

0, 1 � w,

where w = z − (hb − 1/s)

2/s
. (16)

Here, hb is the dimensionless bottom-layer thickness and s is the slope of the transition between
layers. There are numerous other functions that could be used, such as an inverse or hyperbolic
tangent function or the Heaviside step function (obtained when s → ∞). However, the inverse
and hyperbolic tangent functions do not satisfy boundary conditions (15) analytically because their
derivatives never vanish. Furthermore, a step function is numerically undesirable because it leads
to the Gibbs phenomenon when numerical solutions are attempted. In contrast, transition function
(16) analytically satisfies no-flux boundary conditions while preserving the spectral accuracy of the
numerical method presented in Sec. II C.

The initial condition c0 is constructed to model a two-layer film with a lateral perturbation to the
concentration profile that is initially localized to the diffuse region between layers:

c0(x, z; hb, s, cp, α, υ ) = T (z; hb, s)
(
1 + cp cos(αx)e− (z−hb )2

2υ2
)
. (17)

Plots of c0 that are used in Secs. III and IV are shown in Fig. 3. The parameters cp and α are,
respectively, the magnitude and wavenumber of the lateral perturbation while υ is the standard
deviation of the Gaussian that localizes the perturbation to the diffuse region between layers. This
work takes s = 3 and υ = 0.1, and the influence of hb, cp, and α is investigated in Sec. IV. The
parameter s is fixed at the largest value that is numerically practical, while υ is fixed at a value
that strongly localizes the perturbation to the diffuse region. This localization is important when
analyzing the effects of hb as will be shown in Sec. IV C. For the parameters used in this work, the
perturbation described in Eq. (17) cannot be seen in Fig. 3 due to its small amplitude but leads to a
wealth of interesting behavior.

Actual coating processes are subject to small, effectively random perturbations that arise from
vibrations, imperfect mixing, and other sources. The initial condition (17) is a model perturbation
that allows us to probe fundamental mechanisms, whereas random noise would involve a distribution
of Fourier modes. Thus, for the results presented in Sec. III, accompanying simulations were run
where the sinusoidal perturbation in Eq. (17) was replaced with a finite sum of Fourier modes over a
uniformly distributed set of wavenumbers and amplitudes to approximate random noise. Only small
quantitative shifts were observed in the results using random noise, so those results are not shown.
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FIG. 3. Cross sections of the initial condition c0(x, z) for three bottom layer thicknesses hb at x = π/α.
The top layer corresponds to layer 1 and the bottom layer to layer 2 in Fig. 1. As the bottom layer thickness hb

increases, the transition between layers occurs at larger z (layer 2 is thicker and layer 1 thinner in Fig. 1). The
perturbation centered at z = hb cannot be seen due to its small amplitude.

C. Parameter values and numerical methods

There are two dimensionless groups that appear in convection-diffusion equation (14). The first
is the Péclet number Pe, which gives the ratio of the lateral diffusive and convective time scales. The
second is the Marangoni number Ma = ε2, which gives the ratio of Marangoni forces to capillary
forces but also defines the lateral length scale L = H/

√
Ma. The Marangoni number appears in the

lumped parameter ε2Pe = MaPe that gives the ratio of the vertical diffusive and convective time
scales. Typical values of dimensional and dimensionless parameters are given in Tables I and II,
respectively. The effects of varying Pe and Ma are investigated in Secs. III and IV D, respectively.

As formulated in Sec. II B, convection-diffusion equation (14) is subject to the no-flux boundary
condition (15) at the moving boundary z = h(t, x). To circumvent numerically solving a moving-
boundary problem, the coordinate transformation (x, z, t ) 
→ (ζ , η, τ ) is performed through the
relations [4]

η = z

h
,

∂ζ

∂x
= 1,

∂τ

∂t
= 1. (18)

Here, η is a scaled vertical coordinate, ζ is the lateral coordinate, and τ is the time coordinate. In this
new coordinate system, the boundary at η = 1 is constant in time and space. However, the governing
equations become appreciably more complex with the corresponding derivative transformations

∂

∂x
= ∂

∂ζ
− η

h

∂h

∂ζ

∂

∂η
,

∂

∂z
= 1

h

∂

∂η
,

∂

∂t
= ∂

∂τ
− η

h

∂h

∂τ

∂

∂η
. (19)

TABLE I. Important dimensional parameters and typical values. Note that, typically, �σ ∼ σ0 [25].

Parameter Definition Typical values

H (m) film thickness 10−5–10−4

μ (Pa s) solvent viscosity 10−4–10−3

σ0 (N/m) solvent surface tension 10−2–10−1

�σ (N/m) solvent/solute surface-tension difference 10−2–10−1

D (m2/s) solute diffusivity 10−9

ω0 solute mass/mole fraction 10−2–10−1
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TABLE II. Important dimensionless parameters and typical values.

Parameter Definition Physical meaning Typical values

ε H/L,
√

Ma vertical length/lateral length 10−2–10−1

Ma �σω0/σ0 Marangoni forces/surface-tension forces 10−3–10−1

Pe Hσ0ε
2/Dμ diffusion time/convection time 1–106

After applying transformation (18) to Eqs. (13) and (14), a pseudospectral method is employed to
solve the resulting set of coupled fourth-order nonlinear partial differential equations on the constant
domain ζ ∈ (0, 2π/α) and η ∈ (0, 1) [4,36,37]. Periodic conditions in ζ warrant an expansion in
Fourier modes, while the finite domain in η warrants an expansion in Chebyshev polynomials.
Therefore, the film height h is expanded in a basis of Fourier modes and the solute concentration
c in a tensor-product basis of Fourier modes and Chebyshev polynomials with 20 Fourier modes
and 140 Chebyshev polynomials. Furthermore, because the clustering of Chebyshev nodes is poor
at resolving features in the center of the domain, the grid is stretched by applying an inverse sine
transformation [36,38,39]. Finally, time integration is performed via MATLAB’s built-in solver ode15I

which is a variable-step, variable-order solver utilizing backward differentiation. The model and
numerical method have been verified by reproducing results for pure film leveling and simple cases
of one-layer binary films [8,10].

III. NONUNIFORMITIES IN MISCIBLE TWO-LAYER FILMS

We wish to study the mechanisms that may initiate dewetting, so we first discuss the mechanisms
through which film-height nonuniformities are generated. With a solute-depleted top layer given by
initial condition (17), there is initially no solute present at the interface z = h (see Fig. 3). The lateral
concentration defect localized to z = hb [Eq. (17)] lowers the concentration at x = π/α (the lateral
center of the film). Thus, there is a smaller vertical concentration gradient driving diffusion toward
the interface z = h where c = 0. Vertical diffusion is therefore slower near the lateral center of the
film, resulting in laterally nonuniform vertical diffusion of solute toward the interface.

Over time, a nonuniform concentration profile that mirrors the imposed defect will develop at the
interface. This defect is a depletion of solute in the center of the film, causing a locally high surface
tension and Marangoni stresses that drive flow toward the center of the film. As liquid accumulates,
a crest in the film height will grow as depicted in Fig. 2. The crest represents a negative curvature
of the interface and generates a positive capillary pressure that drives flow to level the crest. In this
manner, Marangoni and capillary stresses compete as film-height nonuniformities grow.

Constrained by conservation of mass, the magnitude of concentration gradients and Marangoni
stresses is limited and will be matched by capillary stresses if the film does not dewet. Once capillary
stresses balance Marangoni stresses, growth of the crest stops and the film reaches its maximally
deformed state. Subsequently, lateral diffusion relaxes concentration gradients to return the film to
a uniform state. Film height evolution for Pe = 104 is shown in Fig. 4(a), where the maximally
deformed state (black line) has �h ≈ 4 × 10−2 (4% of the film thickness). As evolution continues,
the film slowly returns to a uniform state as shown by the profile at t = 104 (red dashed line).
To illustrate the concentration gradients that drive film-height deformation, a maximally deformed
state at a larger Péclet number Pe = 1.67 × 105 is given in Fig. 4(b) with the solute concentration
contour. Because diffusion is relatively slow, there are significant concentration gradients in both the
lateral and vertical directions. As will be discussed in Sec. III B, the vertical gradients can actually
contribute to the steepening of the lateral gradients shown in Fig. 4(b). This is the primary driving
force for the height perturbation �h ≈ 2 × 10−1 (20% of the film thickness) which is nearly an
order of magnitude larger than that obtained for Pe = 104 in Fig. 4(a).
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FIG. 4. (a) Time evolution of the film height for Pe = 104. The maximum height perturbation �h occurs
at tmax ≈ 2 × 103 where the film-height profile is given by the solid black line. The perturbation slowly decays
beyond this time as shown by the profile at t = 104. (b) Maximally deformed state for Pe = 1.67 × 105 with
solute concentration contour. This state occurs at t ≈ 9 × 102 after which the perturbation slowly decays
through lateral diffusion. The remaining parameter values are cp = 10−2, α = 0.3, ε = 0.1, and hb = 0.5.

Figure 4 shows that the value of Pe has a pronounced effect on film evolution. Parameters that
play a role include the Péclet number Pe, the Marangoni number Ma, and the bottom-layer thickness
hb. The effects of varying these parameters are investigated in this section (Sec. III), Sec. IV D,
and Sec. IV C, respectively. Two important parameters that appear in initial condition (17) are the
perturbation magnitude cp and wavenumber α, investigated in Secs. IV A and IV B. To characterize
film nonuniformity and stability as these parameters vary, one may look to the maximum size of the
height perturbation �h and the time required to achieve it tmax. Larger �h and smaller tmax represent
larger nonuniformities that develop more rapidly and thus indicate a less stable film.

For ε = 0.1, α = 0.3, cp = 10−2, and hb = 0.5, Fig. 5 shows �h and tmax over a wide range of
Pe (red circles) where the labels I, II, and III indicate three distinct parameter regimes. Figure 5(a)
shows that �h increases monotonically through all regions, while Fig. 5(b) shows that tmax has
a sharp drop at a critical Péclet number Pecrit ≈ 105 that indicates the transition into region III.
The trends in Fig. 5 result from both the horizontal (Pe) and vertical (ε2Pe) diffusive time scales

FIG. 5. Plots of (a) the maximum height perturbation �h and (b) the time to achieve it, tmax, at varying
Pe. The plots are divided into three regions labeled I, II, and III. The blue diamond data points are predicted
values from the one-layer approximation discussed in Sec. III A, and the solid magenta line is an analytical
approximation for region I derived in Sec. III A.
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increasing as Pe increases and are discussed by region in Sec. III A (rapid vertical diffusion),
Sec. III B (transition region), and Sec. III C (convective steepening).

A. Region I: Rapid vertical diffusion

In region I of Fig. 5, both the maximum height perturbation �h and the time to achieve it,
tmax, increase monotonically. In comparison to regions II and III, region I is at relatively low Pe so
diffusion is relatively rapid. If rapid enough, vertical diffusion will quickly smooth out any vertical
concentration gradients and the system will behave as if it is vertically uniform. Therefore, we
introduce a one-layer approximation where any initial vertical gradients are averaged out of initial
condition (17) (this is what rapid vertical diffusion would achieve):

c0(x) =
∫ 1

0
c0(x, z) dz =

∫ 1

0
T (z; hb, s) dz︸ ︷︷ ︸
base state cb

+ cp

∫ 1

0
T (z; hb, s)e− (z−hb )2

2υ2 dz︸ ︷︷ ︸
perturbation magnitude cp

cos(αx). (20)

Equation (20) has contributions from a uniform base state cb and a lateral sinusoidal perturbation
with magnitude cp. Governing equations (13) and (14) are numerically solved from the initial
condition c0 (rather than c0) to yield the one-layer approximation shown in region I of Fig. 5
(blue diamonds). There is excellent agreement with the two-layer system, indicating that, in region
I, vertical diffusion is sufficiently rapid to smooth out vertical gradients before the film begins
to deform appreciably. This corresponds to the condition ε2Pe � tmax, which is valid throughout
region I as shown by the values of tmax in Fig. 5(b) (recall that ε = 0.1).

Having established that vertical diffusion is rapid in region I of Fig. 5, we address the trends in
�h and tmax. Increasing Pe corresponds to increasing the lateral diffusion time scale. Consequently,
lateral concentration gradients decay less over a given time, resulting in larger Marangoni stresses
and thus larger film-height perturbations. This mechanism can be described by a simple scaling
relation, derived by considering thin-film equation (13) when growth of the crest has stopped
(∂h/∂t = 0). At this time, capillary stresses balance Marangoni stresses and thin-film equation (13)
reduces to

h
∂3h

∂x3
= 3

2

∂c|z=h

∂x
. (21)

With rapid diffusion, the concentration perturbation magnitude is well approximated by decay of the
initial magnitude cp through diffusion by the factor exp(−α2tmax/Pe). This factor can be obtained
by considering purely lateral diffusion. Noting that h ∼ 1 and ∂/∂x ∼ α (due to periodicity), we
have the relation

�h ∼ α−2cp exp(−α2tmax/Pe). (22)

Relation (22) predicts an increase in �h with increasing Pe due to slowing diffusion, and shows
a scaling with α−2 that arises from the ratio of capillary stresses ∼α4 and Marangoni stresses ∼α2

in height-evolution equation (13). Furthermore, relation (22) reveals that the height perturbation
�h scales linearly with the concentration perturbation magnitude cp. Therefore, with cp � 1, a
perturbation expansion in powers of cp for both the film height h and solute concentration c may
yield useful insight. We expand both unknowns as

h = 1 + cph1(t, x) + O
(
cp

2
)
, c = cb + cpc1(t, x) + O

(
cp

2
)
, (23)

where cb is the base state indicated in Eq. (20). Because vertical diffusion is rapid, we have assumed
that c is uniform in z for simplicity. However, one could instead employ the rapid-vertical-diffusion
approximation proposed by Jensen and Grotberg [17] without affecting the results of this analysis.

Substituting Eqs. (23) into Eqs. (13) and (14) gives the O(cp) problem

∂h1

∂t
= −1

3

∂4h1

∂x4
+ 1

2

∂2c1

∂x2
,

∂c1

∂t
= 1

Pe

∂2c1

∂x2
(24)
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with initial conditions h1 = 0 and c1 = cos(αx). The latter of Eqs. (24) has the solution

c1 = cos(αx) exp

(
−α2

Pe
t

)
, (25)

which shows that c1 is simply the initial perturbation decaying over time due to lateral diffusion.
Substituting this form for c1 into the former of Eqs. (24) gives the fourth-order, linear, inhomoge-
neous partial differential equation governing h1:

∂h1

∂t
= −1

3

∂4h1

∂x4
− α2

2
cos(αx) exp

(
−α2

Pe
t

)
. (26)

Given the nonconstant forcing term in Eq. (26), as well as the eigenfunctions of the fourth-derivative
operator, it is sensible to expect the x dependence of h1 to be a cosine wave. Thus, we assume
h1 = cos(αx)g(t ) with g(0) = 0, and Eq. (26) has the solution

h1(t, x) = α2/2

α4/3 − α2/Pe
cos(αx)

(
exp

(
−α4

3
t

)
− exp

(
−α2

Pe
t

))
. (27)

The constant coefficient in solution (27) is proportional to the magnitude of Marangoni stresses
α2/2 and inversely related to those of capillary flow α4/3 and lateral diffusion α2/Pe. This agrees
with intuition, since stronger Marangoni stresses (larger α2/2) result in larger g(t ) and thus larger
height perturbations. Similarly, considering also the transient part of Eq. (27) suggests that stronger
capillary stresses or faster diffusion results in smaller height perturbations. Summarizing, the
expressions for the height h and concentration c to O(cp

2) are

c = cb + cp cos(αx) exp

(
−α2

Pe
t

)
+ O

(
cp

2), (28)

h = 1 + cp
α2/2

α4/3 − α2/Pe
cos(αx)

(
exp

(
−α4

3
t

)
− exp

(
−α2

Pe
t

))
+ O

(
cp

2
)
, (29)

which describe the film dynamics in region I of Fig. 5. From these solutions, we can obtain explicit
expressions for �h and tmax; the amplitude of h gives the size of the height perturbation over time
and exhibits a unique maximum at time

tmax = log(α4/3) − log(α2/Pe)

α4/3 − α2/Pe
+ O(cp). (30)

Equation (30) is the inverse of the logarithmic-mean difference of the magnitudes of capillary
stresses α4/3 and lateral diffusion α2/Pe, where an increase in either results in a decrease in tmax.
Intuitively, stronger capillary stresses more quickly counteract Marangoni stresses, and stronger
lateral diffusion more quickly levels lateral concentration gradients. However, the logarithmic-
mean difference also suggests a form of nonlinear physical “exchange” (notably arising in heat
exchangers) [40]. Indeed, faster lateral diffusion leads to smaller capillary stresses because it more
quickly levels concentration gradients. This causes smaller Marangoni stresses and thus smaller
height perturbations which create smaller capillary stresses. In contrast, larger capillary stresses
more quickly counteract Marangoni stresses and allow less time for lateral diffusion, reducing its
importance. Therefore, an increase in either capillary stresses (α4/3) or lateral diffusion (α2/Pe)
reduces the importance of the other. This exchange through the medium of Marangoni stresses is
encapsulated in Eq. (30). Capillary stresses, Marangoni stresses, and solute diffusion are interde-
pendent in this manner.

Concluding this analysis, we substitute Eq. (30) for tmax into Eq. (29) for h and solve for the
amplitude to obtain an explicit expression for the maximum height perturbation �h:

�h = 3cpα
−2 exp

(
−α2

Pe
tmax

)
+ O

(
cp

2). (31)
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FIG. 6. Concentration profiles at the interface z = h and t = tmax for three different Pe and the vertically
averaged initial condition c0 [Eq. (20)]. Under pure diffusion, c0 gives the maximum possible lateral perturba-
tion at the interface. The red line for Pe = 1.3 × 103 depicts data taken from region I of Fig. 5. Similarly, the
magenta line for Pe = 7.7 × 104 and the blue line for Pe = 2.2 × 105 are data taken from regions II and III,
respectively, of Fig. 5.

This matches scaling relation (22) derived by considering the magnitude of capillary and Marangoni
stresses. Equations (30) and (31) are plotted in region I of Fig. 5 (magenta line) where there is
excellent agreement between the two-layer system (red circles), one-layer approximation (blue
diamonds), and analytical approximation (magenta line). Therefore, the two-layer system quanti-
tatively behaves as a one-layer film at low Pe (in region I) due to rapid vertical diffusion with
dynamics well described by Eqs. (28) and (29). Discussion of the dependence on cp and α is left to
Secs. IV A and IV B.

We have established simple mechanisms and analytical expressions for the trends in both �h
and tmax in region I of Fig. 5. Through a one-layer approximation, we established that the two-
layer system quantitatively behaves as a one-layer film. Consequently, the maximum film-height
perturbation �h increases with Pe according to Eq. (31) because lateral diffusion slows. Similarly,
Eq. (30) shows that tmax increases with Pe according the inverse of the logarithmic-mean difference
of the magnitudes of capillary flow α4/3 and lateral diffusion α2/Pe.

B. Region II: Transition region

The boundary between region I and region II of Fig. 5 is taken to be the smallest Pe for which
�h for the two-layer system deviates from the one-layer approximation value by more than 10%.
Notably, the one-layer approximation plateaus at �h ≈ 3cpα

−2 [as Pe → ∞ in Eq. (31)] while �h
for the two-layer system continues to increase. While the 10% criterion is arbitrary, it provides a
consistent and quantitative distinction between regions I and II. In region II, both the maximum
height perturbation �h and the time to achieve it, tmax, increase monotonically until a critical Péclet
number Pecrit ≈ 105 where tmax drops precipitously and the system is considered to be in region III.
We will see that region II contains the transition from the diffusion-dominated, low-Pe region I to
the convection-dominated, high-Pe region III.

As Pe increases and the system enters region II of Fig. 5, deviation from the one-layer approx-
imation suggests that the rapid-vertical-diffusion assumption is failing; vertical diffusion becomes
sufficiently slow that vertical solute concentration gradients begin to influence film evolution.
The increase in �h in region II shows that Marangoni stresses become larger over a relatively
small range of Pe (compared to region I). Furthermore, a precipitous drop in tmax at Pecrit ≈ 105

indicates a significant shift in the evolution dynamics. To uncover the role of vertical gradients in
these phenomena, we examine the solute concentration profiles that drive film-height deformation.
Figure 6 shows concentration profiles evaluated at the interface z = h at t = tmax for three different
Pe as well as the vertically averaged initial condition c0 defined by Eq. (20). Examining these
profiles, we see that the concentration perturbation at the interface drastically increases in magnitude
as Pe increases.
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FIG. 7. Velocity contours (black arrows) plotted over solute concentration contours (a) before (t ≈ 2.23 ×
102) and (b) after (t ≈ 6.85 × 102) the development of circulatory flow for Pe = 105. The vertical velocity vz

is generally an order of magnitude smaller than the horizontal velocity vx and is difficult to discern. As a visual
aid, the arrows labeled “vz” indicate the direction of the vertical velocity at the center of the film (x = π/α) but
are not to scale. At early times, there is bulk flow from the troughs to the crest. Later, circulatory flow develops
while the troughs and crest continue to grow.

As discussed in Sec. III A, vertical diffusion is laterally nonuniform and causes lateral concen-
tration gradients to develop at the interface. Starting from initial condition c0 [Eq. (17)], vertical
diffusion brings the system to a vertically uniform state that coincides with its vertical average, c0

[Eq. (20)]. Thus, c0 gives the largest lateral gradient that will develop at the interface solely from
nonuniform vertical diffusion and is plotted in Fig. 6 (dashed black line). The lateral perturbation in
c0 gives a limiting value for Marangoni stresses in the one-layer approximation used for region I of
Fig. 5, resulting in the plateau �h ≈ 3cpα

−2 [as Pe → ∞ in Eq. (31)]. Indeed, for Pe = 1.3 × 103

(red line), which is in region I, Fig. 6 shows that the concentration profile has not exceeded this limit.
However, for Pe = 7.7 × 104 (magenta line), which is in region II, Fig. 6 shows that the concentra-
tion perturbation exceeds the diffusion-dominated profile c0. Furthermore, for Pe = 2.2 × 105 (blue
line), which is in region III, Fig. 6 shows that the concentration profile significantly deviates from
the diffusion-dominated profile c0 with a notably deep trough. The sharpening of concentration
gradients for larger Pe shows that we have departed from the one-layer approximation and thus
diffusion cannot be the mechanism that is sharpening gradients. Therefore, it must be that convection
is sharpening gradients since it is the only other process through which solute is transported in the
film.

To understand the role of solute convection, we examine the liquid velocity profiles. Figure 7
shows velocity profiles (black arrows) plotted over solute concentration contours at two different
times. At early times [Fig. 7(a)], Marangoni stresses drive flow from the troughs (edges) to the crest
(center), resulting in a lateral velocity vx that is positive on the left (x < π/α) and negative on the
right (x > π/α). The corresponding vertical velocity vz is positive in the center (|x − π/α| < π/2α)
and negative on the edges. Note that the velocities do not change sign through the film depth. At later
times, the film has deformed appreciably (≈10% of the film thickness) and capillary stresses become
significant. Figure 7(b) shows that the velocity profiles become circulatory with vx now changing
sign about halfway through the film depth. However, the vertical velocity does not change sign
through the film depth, and is now negative in the center and positive on the edges. These velocity
profiles are reminiscent of cellular structures observed in previous work [10–13], and while a few of
these works studied thermal Marangoni flow, analogous phenomena are seen in solutal Marangoni
flow. However, we observe unique phenomena due to large vertical concentration gradients from
the two-layer geometry.

Due to large vertical concentration gradients, vertical convection can move a significant quantity
of solute to or from the interface z = h. Keeping in mind that vertical concentration gradients
are negative (∂c/∂z < 0), Fig. 7(a) shows that, at early times, vertical convection increases the
solute concentration at the crest (center where vz > 0) and decreases it at the troughs (edges where
vz < 0). This effectively counteracts the imposed perturbation which is a depletion of solute in
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FIG. 8. Solution (35) of convection equation (32) evaluated at z = 1 and three different times. Laterally
nonuniform vertical convection causes the rapid formation of a laterally nonuniform concentration profile,
even though the initial condition is laterally uniform with c∗

0 (z = 1) = 0.

the center [Eq. (17)]. However, at later times shown in Fig. 7(b), vertical convection acts to increase
concentration at the troughs (where vz > 0) and decrease it at the crest (where vz < 0). This steepens
the imposed concentration perturbation, causing larger Marangoni stresses and thus larger height
perturbations. Convective steepening of lateral concentration gradients causes the sharpening of the
concentration profiles shown in Fig. 6 and thus the deviation from the one-layer approximation in
Fig. 5 as Pe increases. Large vertical concentration gradients are critical to this phenomenon, since
the regions of high concentration near z = 0 in Fig. 7 are convected up to the interface z = h by the
vertical velocity vz.

The steepening of lateral concentration gradients from vertical convection is not unique to this
system; it can be observed in an analytical solution for solute undergoing pure convection from a
laterally uniform initial condition:

∂c

∂t
+ ux(x, z)

∂c

∂x
+ uz(x, z)

∂c

∂z
= 0, c∗

0(z) = T (z; hb = 1/2, s = 3). (32)

The laterally uniform initial condition c∗
0 is analogous to c0 given by Eq. (17), except that it lacks a

lateral perturbation. The velocities, ux and uz, are chosen to approximate those shown in Fig. 7(b)
with

ux(x, z) = umz sin(x), uz(x, z) = um

2
z2 cos(x). (33)

Here, ux does not change sign through the film depth, which misses the recirculation shown in
Fig. 7, and approximation (33) does not conserve mass. However, the important phenomenon is
vertical convection and the approximation uz is qualitatively correct with uz < 0 near the center
(x = π ) and uz > 0 near the edges. The parameter um controls the maximum value of the velocity,
which we take as um = 9 × 10−4 to approximate values observed in the numerical model.

On the constant domain x ∈ (0, π ) and z ∈ (0,∞), we solve Eq. (32) by the method of charac-
teristics to obtain

z(t ) = z0

√
sin(x(t ))

sin(x0)
, x(t ) = f −1

(
f (x0) + um

z0√
sin(x0)

t

)
. (34)

The function f , along with a full derivation of these characteristics, is provided in the Appendix.
These characteristics are numerically inverted to obtain values for z0(t, x, z) with which the solution
to Eq. (32) is

c(t, x, z) = c∗
0(z0(t, x, z)). (35)

Solution (35) is plotted for z = 1 as a function of x and three different times in Fig. 8. Although the
initial profile c∗

0 [Eq. (32)] is laterally uniform, the x dependence of the vertical velocity uz [Eq. (33)]
couples with vertical concentration gradients to create lateral concentration gradients.
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The velocities shown in Fig. 7(b) that are approximated by Eqs. (33) require that the interface
has deformed appreciably so that capillary stresses are significant. Recalling that there is initially
no solute at the interface (see Fig. 3), some degree of vertical diffusion must have already occurred
to develop lateral concentration gradients and Marangoni stresses that deform the interface. As
Pe increases and vertical diffusion slows, larger vertical concentration gradients are present in the
system at any given time, and particularly when the liquid velocities become circulatory as shown
in Fig. 7(b). Thus, vertical convection will more rapidly steepen lateral concentration gradients
resulting in the increasing �h we observe in region II of Fig. 5(a). One can observe how rapid
convective steepening is in the analytical example plotted in Fig. 8, where concentration gradients
that are orders of magnitude larger than those shown in Fig. 6 have developed on time scales similar
to values observed for tmax in Fig. 5(b). Once Pe is large enough that the lateral gradients rapidly
created by convective steepening significantly exceed those from nonuniform vertical diffusion, we
observe the precipitous drop in tmax at Pecrit ≈ 105. Beyond this drop, convective steepening is the
dominant mechanism causing film-height deformation. Thus, region II represents the transition from
the diffusion-dominated region I to the convection-dominated region III.

C. Region III: Convective steepening

In region III of Fig. 5, convective steepening of lateral concentration gradients is the primary
mechanism for film-height deformation as discussed in Sec. III B. Throughout region III of Fig. 5,
the vertical diffusion time scale ε2Pe is comparable to, or greater than, the deformation time tmax,
so significant vertical gradients are present for all times t � tmax. Therefore, convective steepening
creates increasingly large and sharp lateral concentration gradients as shown by the profile at Pe =
2.2 × 105 in Fig. 6 (blue line). The increase in the height perturbation �h in region III of Fig. 5
accelerates as Pe increases because of these increasingly sharp concentration gradients.

After the initial precipitous drop at Pecrit ≈ 105 in Fig. 5, tmax begins to increase. This is partially
due to increasing vertical diffusion times, that scale as ε2Pe, since there is an initial diffusion time
required to develop a lateral gradient at the interface. However, this is not the scaling we observe in
region III of Fig. 5(b) (a linear fit gives a power-law exponent ≈0.74) because there is an additional
contribution from capillary stresses. As was discussed in Sec. III A and demonstrated in Eq. (30),
larger height perturbations create larger capillary stresses that inhibit growth and increase tmax.
Coupled with longer vertical diffusion times, this gives the increase in tmax we see in Fig. 5(b). Note
that Eq. (30) was derived for region I and thus does not predict tmax in regions II or III. However,
the physical mechanisms of capillary flow and diffusion that it embodies are present in all regions.

With an understanding of all three regions of Fig. 5, it is worthwhile to discuss their relation
to an actual coating process. Films are solidified for many applications, so there is a solidification
time tsolid that may be from evaporation, curing, or other methods. (Note that solidification is not
considered in this work and could introduce additional phenomena, e.g., film deformation due
to development of stresses in the solid.) In the solidified film, it is likely desirable that the two
layers remain uniform and distinct to impart different functionality to each layer [25,41]. Thus,
solidification should be more rapid than vertical diffusion and the formation of nonuniformities
(tsolid � ε2Pe and tsolid � tmax). Figure 9 shows schematics of possible solidified film geometries
for values of Pe in the three regions of Fig. 5. Despite small height perturbations, it is unlikely that
region I is favorable because any distinction between layers is quickly erased by diffusion, resulting
in one uniform layer as shown in Fig. 9(a); the restriction tsolid � ε2Pe requires extremely rapid
solidification that could introduce additional instabilities [10]. Thus, region II or region III is more
desirable because slower diffusion allows one to achieve stratified layers as depicted in Figs. 9(b)
and 9(c). However, film-height nonuniformities are significantly larger in region III than those in
regions I and II due to convective steepening. Furthermore, tmax drops precipitously at Pecrit as
shown in Fig. 5(b), so the restriction tsolid � tmax is more difficult to achieve in region III. Therefore,
region II may be the optimal region for a two-layer coating process, since height perturbations are
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Stratified Layers

Moderate Deformation

Uniform Solute

Small Deformation

Stratified Layers

Large Deformation

(a) Region I (b) Region II (c) Region III

FIG. 9. Schematics depicting possible geometries of a solidified film for values of the Péclet number Pe in
(a) region I, (b) region II, and (c) region III of Fig. 5.

small relative to region III [see Fig. 5(a)] and Pe and tmax are large enough that the restrictions
tsolid � ε2Pe and tsolid � tmax are not too strict.

IV. EFFECTS OF SYSTEM PARAMETERS

In this section we conduct a parametric study to understand the influence of system parameters
on film evolution. In a two-layer coating, there are a number of physical parameters that affect film
dynamics. Physical properties of the liquid are encapsulated in the two dimensionless groups Pe
and Ma. The dependence on the Péclet number Pe was explored in Sec. III, and the dependence on
the Marangoni number Ma will be investigated in Sec. IV D. The system geometry is controlled by
the dimensionless bottom-layer thickness hb and is explored in Sec. IV C. The two parameters that
control the perturbation imposed in initial condition (17) are the magnitude cp and wavenumber α,
investigated in Secs. IV A and IV B, respectively. The remaining parameters, s = 3 and υ = 0.1, are
fixed as discussed in Sec. II B.

A. Perturbation magnitude

The perturbation magnitude cp controls the magnitude of the imposed lateral perturbation in
initial condition (17). While difficult to control in a coating process, it is important to understand
how the size of perturbations affects film stability. In Sec. III, the perturbation magnitude was taken
to be cp = 10−2 which is 1% of the base-state concentration. While numerical limitations (due
to steep concentration gradients) prevent us from generating meaningful data at larger cp, we can
uncover the basic trends by examining film evolution at smaller cp. Results for cp = 10−2 are given
again in Figs. 10(a) and 10(b) along with results using two smaller values, cp = 10−3 and cp = 10−4.
Figure 10(a) shows that the magnitude of the height perturbation �h increases monotonically as
cp increases. In contrast, Fig. 10 shows that, remarkably, the tmax for all three values of cp are
visually indistinguishable, suggesting that the size of the initial concentration perturbation does not
appreciably affect the time scales for film evolution.

To understand this behavior, we return to Eqs. (30) and (31). In region I (rapid vertical diffusion;
see Sec. III A), Eq. (31) reveals that the maximum height perturbation �h scales linearly with the
initial concentration perturbation cp, while Eq. (30) shows that tmax is independent of cp. Linear fits
of �h at each Pe show a linear scaling with cp for all Pe investigated in this work. Selected values
of Pe are shown in Fig. 10(c), where the largest value is taken in region III. Remarkably, we see
the linear scaling with cp that was derived for region I holds through regions II and III, suggesting
that the lateral concentration gradients that result from convective steepening (see Sec. III B) scale
linearly with cp. Furthermore, Fig. 10(b) shows that tmax is independent of cp for all regions, even
though Eq. (30) only holds in region I. We note that we were unable to obtain analytical relations
for regions II and III due to the complexity of convective steepening of concentration gradients.
Nevertheless, Fig. 10 shows that while the maximum deformation achieved, �h, scales linearly with
the perturbation magnitude cp, so does the rate at which the film deforms, resulting in a deformation
time tmax that is effectively independent of cp for all Pe investigated in this work.
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FIG. 10. (a) The maximum height perturbation �h and (b) the time to achieve it, tmax, at varying Pe and
three perturbation magnitudes cp. There are only quantitative shifts in �h, and the values of tmax are nearly
identical for all three values of cp. (c) Linear fits of the maximum height perturbation �h versus perturbation
magnitude cp at three different Pe. All lines have a slope of approximately unity, indicating a linear scaling
with cp. The largest value of Pe = 2.2 × 105 is taken from region III where an analytical scaling relation has
not been derived.

This analysis has revealed that the perturbation magnitude cp has a direct effect on film stabil-
ity. If a coating process tends to introduce larger perturbations into a coated film, the resulting
film-height nonuniformities will be larger, scaling linearly with the perturbation magnitude cp.
Furthermore, even though the maximum film-height nonuniformities are larger, the times to achieve
them are unchanged; this is a surprising result that can be understood from the analysis in Sec. III A.
Larger height perturbations bring the film to a more nonuniform state, and thus larger cp is
destabilizing. One should strive to minimize the magnitude of lateral concentration perturbations
in two-layer coatings for optimal uniformity.

B. Perturbation wavenumber

The perturbation wavenumber α controls the period of the imposed lateral perturbation in initial
condition (17). Due to periodicity, the dimensionless lateral domain is x ∈ (0, 2π/α), and thus α

controls the dimensionless lateral length scale 2π/α. There are numerous lateral derivatives that
appear in Eqs. (13) and (14), so the effect of varying α is difficult to predict a priori. As shown in
Figs. 11(a) and 11(b), varying α has a pronounced effect on both the maximum height perturbation
�h and the time to achieve it, tmax.

In region I (rapid vertical diffusion; see Sec. III A), the decrease in �h and tmax with increasing
α is quantitatively predicted by Eqs. (30) and (31). Equation (31) may be rewritten in the form

log α2�h ∼ −α2tmax

Pe
. (36)

Linear fits of the data from Figs. 11(a) and 11(b) for three different Pe are shown in Fig. 11(c)
where we see that Eq. (36) captures the trends in �h and tmax as α varies in region I (red circles and
green diamonds) but not in regions II and III (purple squares) where convective steepening becomes
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FIG. 11. (a) The maximum height perturbation �h and (b) the time to achieve it, tmax, at different Pe and
three perturbation wavenumbers α. (c) Linear fits of the scaled height perturbation α2�h versus the scaled
time α2tmax/Pe. Data points for Pe = 1.7 × 104 in regions II and III are repeated in the zoomed-in subplot to
illustrate that the scaling relation does not hold outside of region I.

important. As α is increased in region I, lateral diffusion more quickly levels the higher-wavenumber
concentration gradients resulting in reduced Marangoni stresses. Furthermore, higher wavenumber
disturbances result in a larger interfacial curvature and thus stronger capillary stresses which more
quickly counteract Marangoni stresses. Together, these effects result in the decrease of �h and tmax

in region I of Figs. 10(a) and 10(b) that is described by Eqs. (30) and (31). The evolution is more
complicated in regions II and III, however, where we see nonmonotonic trends arising in both �h
and tmax at large Pe. To understand this, we first investigate the dependence of Pecrit on α and then
establish a qualitative understanding of the trends in regions II and III.

In Fig. 11(b), we observe that Pecrit (at which tmax drops) decreases as α increases. As discussed in
Sec. III B, the drop in tmax at Pecrit occurs when vertical diffusion is sufficiently slow that convective
steepening is the dominant mechanism creating lateral concentration gradients at the interface.
Considering the center of the film where vx = 0 (x = π/α in Fig. 7), we can isolate relevant terms
in Eq. (14):

vz
∂c

∂z
∼ 1

ε2Pecrit

∂2c

∂z2
. (37)

To extract a useful relation from Eq. (37), we assume that vertical derivatives are independent of α

because α does not affect the vertical length scale. We then rewrite Eq. (11) as

vz = 1

6
(η3 − 3η2)

∂

∂ζ

[
h3 ∂3h

∂ζ 3

]
︸ ︷︷ ︸

capillary flow

+ 1

2
η2 ∂

∂ζ

[
h2 ∂c

∂ζ

∣∣∣∣
z=1

]
︸ ︷︷ ︸

Marangoni flow

+η
∂h

∂ζ
vx. (38)

Recalling that vx = 0 in the center of the film, vz [Eq. (38)] has clear contributions from capillary
flow and Marangoni flow. The contribution from capillary flow is negative due to the crest in the
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film height, while the contribution from Marangoni flow is positive because the solute concentration
is minimum in the center of the film. Figure 7(b) shows that vz < 0 in the center of the film at later
times, so capillary flow must be dominant. Furthermore, the capillary-flow term term scales as α4,
and thus vz ∼ α4. Inserting this into relation (37) reveals

Pecrit ∼ ε−2α−4. (39)

This approximates the relation shown in a subplot in Fig. 11(b), where linear regression reveals
the scaling Pecrit ∼ α−3.4. The discrepancy in the power-law exponent of relation (39) is likely due
to the assumption that the vertical derivatives are independent of α; the relation vz ∼ α4 requires
that the qualitative shift in the velocities shown in Fig. 7 has occurred, which in turn requires that
some time has passed. This time is tied to the growth of the height disturbance, which must become
sufficiently large so that capillary flow overcomes Marangoni flow in Eq. (38). Over this time, which
is dependent on α, vertical gradients will relax through diffusion. Thus, the size of vertical gradients
depends on α in a way that is difficult to capture through scaling relations. However, the data in
Fig. 11(b) show that this dependence is somewhat weak, resulting in the small discrepancy in the
exponents of the predicted scaling Pecrit ∼ α−4 and observed scaling Pecrit ∼ α−3.4 for the range of
α investigated here.

Now, we examine the trends in region II (transition between regions I and III; see Sec. III B)
and region III (after the drop in tmax; see Sec. III C) of Figs. 11(a) and 11(b). The increase in �h
with Pe is monotonic, with �h steeply increasing at lower Pe as α is increased. This is due to an
earlier transition into region III described by relation (39); in this region, convection is stronger
and thus more rapidly steepens concentration gradients. These steepened gradients result in larger
Marangoni stresses and thus larger �h. This is especially pronounced at Pe = 105, where �h for
α = 0.6 (blue triangle) has begun to exceed that for α = 0.3 (red circle). Thus, the trend in �h with
α is not necessarily monotonic at large Pe due to the complexity of convective steepening.

The accompanying trend in tmax can be understood with similar reasoning, where faster diffusion
and stronger capillary stresses at larger α reduce tmax according to Eq. (30). The quantity tmax more
rapidly increases at larger α due to capillary stresses in Eq. (13) which scale as α4�h. Because the
size of the height perturbation �h rapidly increases with Pe [as shown in Fig. 11(a)], the damping of
growth rates (∂h/∂t) by capillary stresses also rapidly increases with Pe. Furthermore, this damping
scales as α4, and is thus even more pronounced at larger α. These effects become so prominent
that the trend in tmax with α is not necessarily monotonic at large Pe, with tmax in Fig. 11(b) at
Pe = 2.8 × 104 being nearly equal for α = 0.6 (blue triangle) and α = 1.2 (magenta diamond).

This analysis has shown that the effect of α on film stability is complex. In region I where
Pe is small, we see that an increase in α decreases both �h and tmax according to Eqs. (30) and
(31). While a decrease in �h is stabilizing, a decrease in tmax is destabilizing. Furthermore, the
situation is more complicated at large Pe where we find that the trend in both �h and tmax is not
monotonic with α. The role of perturbation wavelengths in film stability is thus strongly dependent
on the value of the Péclet number Pe. In a physical coating process, small, effectively random
perturbations result in a distribution of wavenumbers where the width of the coated film controls
smallest wavenumber α that can be expressed in the perturbation. A smaller coated width will
generally result in larger wavenumbers giving larger height deformations �h as well as larger
deformation times tmax. However, at very large Pe, these relationships may reverse, with an increase
in α giving a decrease in �h or tmax depending on the value of Pe. One must thus be cognizant
of the value of the Péclet number when considering the effects of film width and perturbation
wavenumbers on film stability.

C. Layer thickness

Initial condition (17) approximates the conditions studied by Horiuchi et al. [25] as a binary
miscible two-layer film with a diffuse boundary between layers. The parameter hb gives an effective
bottom-layer thickness and is an important parameter in two-layer coating that influences many

034004-18



NONUNIFORMITIES IN MISCIBLE TWO-LAYER …

FIG. 12. Plots of (a) the maximum height perturbation �h and (b) the time to achieve it, tmax, at different
Pe and three layer thicknesses hb. There are only small quantitative shifts in both �h and tmax.

aspects of the coating process [25,42]. Here we focus on how hb influences the maximum height
perturbation �h and the time to achieve it, tmax. Values of �h and tmax at three different bottom-layer
thicknesses hb are given in Fig. 12. Notably, both �h and tmax at different hb are indistinguishable in
region I, but begin to diverge from each other slightly in region II and noticeably in region III (see
Sec. III for a discussion of each region).

The lack of dependence on hb in region I is due to the form of initial condition (17), where
the perturbation is localized to the diffuse region between layers. Marangoni flow is the result of
concentration gradients, so it is not affected by the base state value cb in Eq. (20). Furthermore, the
Gaussian in the perturbation magnitude cp integrand decays sufficiently fast that the integrand is
near zero outside of the diffuse region. The diffuse region has radius 1/s, so with υ = 0.1 and s = 3
we have 1/s ≈ 3υ; approximately 99.8% of the Gaussian distribution lies within three standard
deviations of the mean, so the perturbation magnitude integrand in Eq. (20) decays to essentially
zero outside of the diffuse region. It is thus expected that hb has no appreciable effect on region I of
Fig. 12 because it has a negligible effect on the perturbation magnitude. While this may seem to be
an artifact of the form chosen for c0, it is actually a decoupling of the parameters hb and cp that aids
this parametric study.

As Pe increases into regions II and III, the convective steepening mechanism described in
Sec. III B becomes important and a dependence on hb emerges. Steepening of lateral concentration
gradients requires vertical concentration gradients that can be nonuniformly convected to the inter-
face z = h. The largest vertical gradients are precisely at z = hb, so decreasing hb moves the largest
vertical gradients farther from the interface and closer to the substrate where vertical convection
is weaker due to the no-penetration condition. Thus, convective steepening is weaker and steepens
lateral concentration gradients less. This is reflected in Fig. 12, where we see �h for hb = 1/3
(magenta diamonds) falls below hb = 1/2 (blue triangles), which in turn falls below hb = 2/3 (red
circles). However, tmax shows the opposite ordering in region III, because a smaller bottom layer
necessitates more time for vertical concentration gradients to be nonuniformly convected up to the
interface.

It is clear that decreasing the bottom-layer thickness hb has a stabilizing effect on the film. While
changing hb has little effect in region I, there is a noticeable effect in region III. When hb is reduced,
the maximum height perturbation �h decreases and the time to achieve it, tmax, increases. Both of
these effects are stabilizing, so reducing the bottom-layer thickness hb has a small but stabilizing
effect. This stabilizing effect is primarily due to vertical concentration gradients being positioned
farther from the interface and closer to the substrate where convection is weaker. If the perturbation
in initial condition (17) was not localized to the diffuse region between layers, decreasing hb would
also reduce the averaged perturbation magnitude cp [Eq. (20)] because it reduces the amount of
perturbed liquid. One may return to the analyses in Secs. III A and IV A to see that decreasing the
perturbation magnitude results in smaller �h.
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FIG. 13. Plots of (a) the maximum height perturbation �h and (b) the time to achieve, tmax, it at varying
Péclet number Pe and three different Marangoni numbers Ma = ε2. There are only quantitative shifts in where
region transitions occur. The inset plot in (b) shows the scaling Pecrit ∼ ε−2.

While there are a number of differences between the model developed in this work and the
experiments of Horiuchi et al. [25], we can make some qualitative comparisons. Horiuchi et al. [25]
found that decreasing the bottom-layer thickness of their films inhibited dewetting. In this work, we
have found a similar trend, where decreasing hb improves film stability by reducing the film-height
perturbation �h and increasing the time to achieve it, tmax. Our work thus suggests that the improved
stability observed by Horiuchi et al. [25] may be caused by vertical concentration gradients being
positioned farther from the liquid-air interface.

D. Marangoni number

The Marangoni number Ma = ε2 gives the ratio of Marangoni forces to capillary forces. While
this quantity is crucial to the scaling of physical variables used in Eqs. (2) and defines the lateral
length scale L = H/

√
Ma, it only appears once in the final governing equations as the lumped

parameter ε2Pe in Eq. (14). This controls the vertical diffusion time scale, and thus reducing Ma has
the sole effect of reducing the vertical diffusion time. Figure 13 shows results for �h and tmax for
three different ε = √

Ma and varying Pe. We see that at ε = 10−2 the film remains in regions I and
II until Pecrit ≈ 107, whereas for ε = 10−1 the transition occurs at Pecrit ≈ 105. Recalling scaling
relation (39) that predicts Pecrit ∼ ε−2, this is precisely the trend we see in Fig. 13(b) where an
inset plot shows a linear fit of Pecrit to ε. Because reducing Ma simply reduces the vertical diffusion
time scale, a larger Pe is required for vertical diffusion to be sufficiently slow for the convective
steepening mechanism discussed in Sec. III B to become important.

Caution should be taken in interpreting these results from a stability standpoint. Increasing Ma
has the direct effect of decreasing Pecrit , which may be considered destabilizing since convective
steepening becomes significant at lower Pe. In addition, the parameter ε = √

Ma appears numerous
times in physical scales (2), and namely in the time scale t∗ = H/v∗

x ε ∼ ε−4. Therefore, decreasing
ε increases the physical time scale, so while the dimensionless times presented in Fig. 13 may be
similar, the corresponding dimensional times are not. Namely, tmax for smaller Ma are actually larger
and thus, coupled with the shift in Pecrit , decreasing Ma is stabilizing. This is perhaps unsurprising,
since smaller Ma indicates weaker Marangoni forces which should be stabilizing. Therefore,
multilayer coatings comprised of liquids with similar surface tensions will exhibit smaller
film-height nonuniformities than those comprised of liquids with significantly different surface
tensions.

We again compare our results to those reported by Horiuchi et al. [25], where it was found that
decreasing the Marangoni number Ma inhibited dewetting. We have found a similar trend, where
decreasing ε = √

Ma improves film stability by shifting Pecrit to higher values. Thus, our model
suggests that the improved stability observed by Horiuchi et al. [25] may be due to a transition into
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a more stable region (e.g., region III to region II) with smaller film-height perturbations �h as Pecrit

increases.

V. CONCLUSIONS

In this work, we characterized the evolution of film-height nonuniformities in nonvolatile misci-
ble two-layer binary films. From momentum and mass conservation, we derived a set of evolution
equations that predict the time evolution of film height and solute concentration. These equations
assume the liquid has constant viscosity and density, that the solute is sufficiently dilute (ω0 � 1),
and that the Marangoni number is sufficiently small. Because the liquid layers are miscible, there is
no liquid-liquid interface and the two-layer system is captured through an initial condition for the
concentration that changes value sharply between layers.

Rather than attempting a quantitative comparison with the motivating experiments of Horiuchi
et al. [25], we developed fundamental understanding of the mechanisms that generate film-height
nonuniformities in two-layer miscible films. Capturing the effects of large vertical concentration
gradients absent in previous work, we found that a disparity in initial solute concentration between
the film layers drives flows that lead to significant film-height nonuniformities. Subsequently,
through a parametric study, we examined how system parameters influence this behavior and
developed scaling relations that shed light on the physical mechanisms underlying the observations
of Horiuchi et al. [25].

It was found that three distinct parameter regimes arise when the Péclet number Pe is varied.
In region I where Pe is small, vertical diffusion is rapid and the evolution of the two-layer film is
quantitatively that of a one-layer film. Using this fact, analytical relations were derived that predict
the evolution of film-height nonuniformities in region I. In region II at moderate Pe, diffusion time
scales are sufficiently large that circulatory velocities, reminiscent of those observed in previous
work [10–13], cause a rapid steepening of lateral concentration gradients. This phenomenon is
unique to the two-layer system, as it is not observed in region I (one-layer films). Finally, in region
III at large Pe, convective steepening only becomes more pronounced as diffusion slows and leads to
significant film-height nonuniformities. It was determined that region II is likely the optimal region
for a two-layer coating process, since height perturbations are small and develop slowly and vertical
diffusion is slow enough that solidification need not be too rapid to retain stratified layers.

With an understanding of the dependence on Pe, a parametric study was conducted for the re-
maining system parameters. It was found that the magnitude of the initial concentration perturbation
cp has a direct effect on film stability; a larger perturbation results in larger film-height nonunifor-
mities and thus a less stable film. The effect of the perturbation wavenumber α is complex since
intricate dependencies between capillary and Marangoni stresses lead to trends that are strongly
dependent on the value of Pe. It was then found that decreasing the bottom-layer thickness hb has
a stabilizing effect because it hinders convective steepening of the concentration profiles. Finally, it
was found that the Marangoni number Ma = ε2 directly controls the critical Péclet number Pecrit at
which the system transitions into region III. Furthermore, decreasing Ma has a stabilizing effect on
the film, increasing Pecrit and the times required to develop film-height nonuniformities. Predictions
of the model appear to be in qualitative agreement with the experiments of Horiuchi et al. [25].

There are several promising extensions of this work. First, it is possible that the solute and
solvent have widely separated viscosities [25]. Concentration gradients will then lead to significant
viscosity gradients, the effects of which are difficult to predict and warrant a numerical investigation
[4,14,43]. Second, in deriving the mathematical model, we neglected the influence of evaporation
and thermal Marangoni flows. However, evaporation has been shown to have a wide range of effects
on film dynamics [10,18,19]. Extending the model to drying films is a necessary extension of this
work because industrial coatings often undergo drying. Drying films also often contain polymers
or colloidal particles that allow the film to solidify, so including the influence of a polymer solute
or colloidal particles is a third promising extension of this work that may introduce a number of
complex phenomena [19,20].
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APPENDIX

1. Derivation of characteristic scales

To obtain the scales used in Eq. (2), we begin by noting that the initial film height H provides
a scale for z′ and h′. Then, from lubrication theory, the lateral length scale L = H/ε is used for x′,
where ε = H/L � 1. Denoting the scales for the lateral velocity v′

x and the vertical velocity v′
z as

v∗
x and v∗

z , respectively, the continuity equation

∂v′
x

∂x′ + ∂v′
z

∂z′ = 0 (A1)

implies v∗
z = εv∗

x . From the kinematic condition,

v′
z = ∂h′

∂t ′ + v′
x

∂h′

∂x′ ,

we obtain the scale t∗ for t ′ as t∗ = H/v∗
x ε.

Now, substituting these scales into the x-momentum balance

ρ

(
∂v′

x

∂t ′ + v′
x

∂v′
x

∂x′ + v′
z

∂v′
x

∂z′

)
= −∂ p′

∂x′ + μ

(
∂2v′

x

∂x′2 + ∂2v′
x

∂z′2

)
and assuming εRe � 1, where the Reynolds number Re = ρv∗

x H/μ, we obtain the pressure scale
p∗ = μv∗

x /Hε. The normal-stress balance is, at leading order,

p′ = −∂2h′

∂x′2 σ ′. (A2)

Substituting the scales obtained above and using σ ′ ∼ σ0 gives an expression for the velocity scale
v∗

x = ε3σ0/μ.
The result that appears in Eq. (1) is obtained from the tangential-stress balance, which at leading

order is

μ
∂v′

x

∂z′ = −∂σ ′

∂x′ . (A3)

The left-hand side scales as μv∗
x /H , and the right-hand side scales as �σω0/L. Substituting v∗

x =
ε3σ0/μ gives Eq. (1).

2. Solution of convection equation

In this section we derive characteristics (34) used in Sec. III B of the main text. The method
of characteristics seeks characteristic curves (t, x(t ), z(t )) on which the solution to Eqs. (32) is
constant. This leads to the system of nonlinear ordinary differential equations

∂x

∂t
= vmz sin(x),

∂z

∂t
= vm

2
z2 cos(x), (A4)

subject to the initial conditions x = x0 and z = z0. This system is autonomous, allowing us to seek
a solution for z of the form z = z(x(t )) so that

∂z

∂t
= ∂z

∂x

∂x

∂t
. (A5)
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Inserting the time derivatives from Eq. (A4) and simplifying yields

1

z

∂z

∂x
= 1

2
cot(x) ⇒ z(x(t )) = z0

√
sin(x(t ))

sin(x0)
. (A6)

We then substitute this form for z(x(t )) into the former of Eqs. (A4) and integrate to obtain the
implicit solution for x(t ), ∫ x(t )

x0

1

sin3/2(y)
dy = vm

z0√
sin(x0)

t . (A7)

The integral in this solution is not trivial to evaluate; skipping some intermediate details, the key is
to rewrite the integrand and then integrate by parts, giving∫ x(t )

x0

1

sin3/2(y)
dy =

∫ x(t )

x0

√
sin(y) csc2(y)dy = −2

cos(y)√
sin(y)

∣∣∣∣x(t )

x0

−
∫ x(t )

x0

√
sin(y)dy. (A8)

Through the change of variable Y = 1
4 (π − 2y), the latter integral can be rewritten in terms of E ,

the elliptic integral of the second kind:∫ x(t )

x0

√
sin(y)dy = −2

∫ Y

Y0

√
1 − 2 sin2(Y )dY = −2E

(
1

4
(π − 2y)

∣∣ 2

)∣∣∣∣x(t )

x0

. (A9)

Denoting the function f as

f (x) = 2E

(
1

4
(π − 2x)

∣∣ 2

)
− 2

cos(x)√
sin(x)

(A10)

and putting together Eqs. (A7)–(A9) yields∫ x(t )

x0

1

sin3/2(y)
dy = f (y)|x(t )

x0
⇒ x(t ) = f −1

(
f (x0) + vm

z0√
sin(x0)

t

)
. (A11)
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