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The stability of the circular Couette flow with two differentially heated cylinders is stud-
ied in the special cases of hydrodynamically stable rotation regimes. A one-dimensional
model is developed to derive the condition of flow stability. This condition combines the
curvature of the cylinders, the applied temperature difference between the two cylinders,
and the diffusion properties of the fluid. The three-dimensional analysis is performed
for two different rotation regimes: the Keplerian regime and the regime where the inner
cylinder is stationary. The main results of this analysis is that, for a given radius ratio
of the two cylinders, a single parameter combining the Prandtl number and the thermal
expansion parameter can describe the critical state of the system. The description is in
good agreement with the result of the one-dimensional model. An energy analysis shows a
subtle role played by the shear stress in these two rotation regimes.
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I. INTRODUCTION

The Taylor-Couette instability consists of the destabilization of the flow of a Newtonian fluid
confined between two concentric cylinders rotating at different angular velocities. This instability
occurs when the destabilizing effect of the centrifugal force overcomes viscous dissipation. Lord
Rayleigh [1] developed an analogy with the Rayleigh-Bénard problem and predicted that for an
inviscid fluid, the Taylor-Couette instability cannot occur if the square of the circulation increases
monotonically with the radial distance. This configuration is then referred to as Rayleigh-stable,
in opposition to the Rayleigh-unstable regime in which the angular momentum density decreases
with the radial distance. Applying a temperature difference between the two cylinders provides a
radial density stratification. The rotation of the cylinders gives rise to the centrifugal acceleration
which acts on this stratification. The resulting force called centrifugal buoyancy can change the
stability conditions of the circular Couette flow. To focus on the effect of the centrifugal buoyancy,
many authors investigated this problem theoretically in weightless environments. The centrifugal
buoyancy destabilizes the flow when the density decreases with the radial distance and has a
stabilizing effect in the case of opposite density stratification. The effect of the centrifugal buoyancy
can be theoretically derived in the form of a generalized Rayleigh criterion [2–4]. This generalized
Rayleigh criterion is similar to the condition presented by Lin [5] using the arguments of von
Kármán. The criterion states that the flow remains stable if the product of the density and the square
of the circulation increases with the radial distance. Yih [6] improved Lin’s stability criterion by
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including viscosity. He performed a linear stability analysis of a circular Couette flow of a viscous
fluid with a radial density gradient and highlighted the dual role of the fluid viscosity. On the one
hand, the viscosity of a fluid tends to dissipate kinetic energy and therefore stabilizes the flow. On the
other hand, because the viscosity forces a displaced particle of fluid to adjust its circulation to that
of its new surrounding, the stabilizing effect of outward increase of circulation is diminished. This
makes the generalized Rayleigh criterion fail for rotation regimes close to the boundary between
Rayleigh-stable and Rayleigh-unstable regimes. Yih’s extended criterion of flow stability [6] is that
both the density and the square of the circulation must increase with the radial distance.

Many authors studied the stability of Rayleigh-unstable regimes with a radial density gradient
[7–14]. These studies underline the rich variety of unstable flows regarding their spatial and
temporal structures which depend on the fluid properties and on the curvature of the system. In
the Rayleigh-stable regime, the case of solid body rotation [15–18] was widely studied due to its
numerous applications in geophysical and atmospheric flows. The Keplerian regime has also been
intensely investigated since it is a model for thin accretion disks in astrophysics. The Keplerian
rotation, in which the centrifugal acceleration and the central gravitational acceleration are balanced,
is characterized by the angular velocity proportional to the radial distance to the power 2/3. In
a Taylor-Couette system, the flow in this rotation regime is realized approximately by cylinders
rotating such that the ratio of the angular velocities is proportional to the radius ratio to the power
2/3. This linearly stable flow is usually coupled with magnetic and gravitational effects [19–21],
but the thermohydrodynamic effect associated with the centrifugal acceleration is often neglected.
As a first approximation, because the considered fluids have a high electrical conductivity and
a low thermal diffusivity, the magnetohydrodynamic has a more prominent effect compared to
that of centrifugal buoyancy. However, the centrifugal buoyancy may contribute to the stability
of protoplanetary disks in low ionization zones [4].

The aim of the present work is to investigate the general role played by the centrifugal buoyancy
in a Taylor-Couette system in the special case of Rayleigh-stable regimes. To focus on the effect
of centrifugal buoyancy, microgravity conditions are assumed. A one-dimensional analysis of
the linearized perturbation equations leads to a criterion for the stability of differentially heated
Taylor-Couette systems. This criterion highlights the role played by a dimensionless parameter
� combining the temperature difference and the fluid diffusion properties. A three-dimensional
linear stability analysis is then performed for two hydrodynamically stable regimes: the regime
with stationary inner cylinder and the Keplerian regime. To that end, inward heating configuration
is considered for various values of radius ratio, temperature difference and diffusion properties of
fluid. We will show that the predictions of the one-dimensional model regarding the parameter �

are confirmed by the three-dimensional linear stability analysis.
In Sec. II, after being introduced, the equations governing the problem are linearized. A one-

dimensional formulation of the problem is derived in Sec. III and leads to a condition for this flow
to become unstable. Section IV consists of the three-dimensional linear stability analysis of the two
Rayleigh-stable regimes: the Keplerian regime and the regime where the inner cylinder is stationary.
The results are discussed in Sec. V and a conclusion is given in Sec. VI.

II. PROBLEM FORMULATION

We consider a Newtonian fluid of density ρ, kinematic viscosity ν, and thermal diffusivity κ

confined between two coaxial cylinders of infinite length. The inner cylinder of radius R1 rotates
at an angular velocity �1, while the outer one of radius R2 = R1 + d rotates at a different angular
velocity �2. The temperatures T1 and T2 of the inner and outer cylinders are maintained constant.
The temperature difference will be denoted by �T = T1 − T2. Figure 1 shows the geometry of the
considered nonisothermal Taylor-Couette system. The Boussinesq approximation can be adopted
for Taylor-Couette systems of cylinders rotating at moderate speeds [22]. It consists in keeping the
density of fluid constant except in the centrifugal force term. For that term, the density is considered
as dependent linearly on the temperature: ρ(θ ) = ρref[1 − αθ ], where α is the thermal expansion

033905-2



STABILITY OF RAYLEIGH-STABLE COUETTE FLOW …

FIG. 1. Schematic representation of the nonisothermal Taylor-Couette system.

coefficient and θ = T − T2 is the deviation from the reference temperature T2. The governing laws
for the velocity field u = (u, v,w) and the temperature deviation θ are the conservation of mass,
momentum, and energy. In the laboratory frame of reference these laws are given by the following
equations:

∇ · u = 0, (1a)

∂u
∂t

+ (u · ∇)u = −∇π + ν�u − αθ
v2

r
er, (1b)

∂θ

∂t
+ (u · ∇)θ = κ�θ, (1c)

in the cylindrical coordinate system (�er, �eϕ, �ez ) depicted in Fig. 1. A reduced pressure π includes
the contribution of the centrifugal acceleration. Imposing no-slip conditions at the cylinder surfaces,
the boundary conditions read as follows:

u = R1�1eϕ ; θ = �T; at r = R1, (2a)

u = R2�2eϕ ; θ = 0; at r = R2. (2b)

Seeking for a steady, axisymmetric, and axially invariant solution, we find the base flow which
depends on the radial position r only:

 = �T
ln (r/R2)

ln η
, (3a)

V = −�1r
η2 − μ

1 − η2
+ �1R2

1

r

1 − μ

1 − η2
, (3b)

where  is the temperature and V is the azimuthal flow velocity. We introduced the radius ratio
η = R1/R2 and the angular velocity ratio μ = �2/�1. The velocity and the temperature fields are
decoupled in the base flow.

The set of Eqs. (1) together with the boundary conditions (2) are nondimensionalized using d as
the length scale, d2/ν as the timescale, ν/d as the velocity scale, (ν/d )2 as the scale of the reduced
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TABLE I. Taylor numbers, functions in the boundary conditions, and base flows in the considered two
Rayleigh-stable regimes.

Rotating outer cylinder regime Keplerian regime
�1 = 0 �1/�2 = η−3/2

Ta
R2�2d

ν

√
d

R2

2η�1d2(1 − η3/2)

ν(1 − η2)

f1 0
Ta

2(1 − η)

1 − η2

1 − η3/2

f2
Ta√
1 − η

Ta
√

η

2(1 − η)

1 − η2

1 − η3/2

V (r)
Ta√

1 − η(1 + η)

[
r − η2

(1 − η)2r

]
Ta

2

[
r(η3/2 − η2)

η(1 − η3/2)
+ η

r(1 − η)2

]

pressure and �T as the temperature scale. From now on, unless it is specified, all the quantities are
dimensionless. The set of Eqs. (1) now reads

∇ · u = 0, (4a)

∂u
∂t

+ (u · ∇)u = −∇π + �u − γaθ
v2

r
er, (4b)

∂θ

∂t
+ (u · ∇)θ = 1

Pr
�θ, (4c)

where the Prandtl number Pr = ν/κ and the thermal expansion parameter γa = α�T have been
introduced. The boundary conditions (2) are now given by

u = f1(Ta, η)eϕ, θ = 1, at r = η/(1 − η), (5a)

u = f2(Ta, η)eϕ, θ = 0, at r = 1/(1 − η), (5b)

where the Taylor number Ta represents the ratio of the characteristic time of viscous dissipation to
the characteristic time associated with the centrifugal acceleration. In the present study, the rotation
ratio μ will be fixed to particular values of two Rayleigh-stable regimes: μ → ∞ for the Rotating
Outer Cylinder (ROC) regime and μ = η3/2 for the Keplerian regime. Depending on the rotation
regime, different expressions of the functions f1 and f2 are employed in the boundary conditions
(5). In addition, we adopt different definitions of the Taylor number depending on the considered
rotation regimes to better capture the effect of the rotation of one or both cylinders on the flow. The
functions f1 and f2, the Taylor number, and the base azimuthal velocity are summarized in Table I.
The Taylor number is based on the outer cylinder for the ROC regime, and on the mean geometric
radius for the Keplerian regime. The temperature profile of the base flow is given for both regimes
by

(r) = ln [(1 − η)r]

ln η
. (6)

The temperature gradient d/dr remains negative. The heating direction is determined by the sign
of γa. As we consider only inward heating, this parameter is negative. For this study, Pr ∈ [1, 1000],
γa ∈ [−0.01, 0], and the Taylor number Ta will be restricted by a maximum value of 1000 for the
validity of the Boussinesq approximation [22].

Aiming to perform the linear stability analysis, we add infinitesimal perturbations to the base
state and linearize the resulting equations around the base flow. These perturbations are expanded
in normal modes (u′, v′,w′, π ′, θ ′) = (û, v̂, ŵ, π̂ , θ̂ ) exp[st + inϕ + ikz] + c.c., where c.c. stands
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for complex conjugate. The primed and hatted quantities indicate the perturbation fields and their
complex amplitudes, respectively. The temporal growth rate of perturbations s can be a complex
number: s = σ + iω, where σ is the real temporal growth rate which discriminates decaying
perturbations from marginal and growing ones, and where ω is the frequency of perturbations.
The axial wave number k is a real positive quantity since the cylinders are of infinite length.
The azimuthal mode number n takes only integer values. The resulting equations for the complex
amplitudes of perturbations are

1

r
D(rû) + in

r
v̂ + ikŵ = 0, (7a)(

s + inV

r

)
û − 2V

r
v̂ = −Dπ̂ + �û − û

r2
− 2in

r2
v̂ − γa

r
(V 2θ̂ + 2V v̂), (7b)

(
s + inV

r

)
v̂ +

(
DV + V

r

)
û = − in

r
π̂ + �v̂ − v̂

r2
+ 2in

r2
û, (7c)

(
s + inV

r

)
ŵ = −ikπ̂ + �ŵ, (7d)

(
s + inV

r

)
θ̂ + (D)û = 1

Pr
�θ̂, (7e)

where D = d/dr and � = D2 + D/r − n2/r2 − k2. The perturbations satisfy homogeneous bound-
ary conditions on the cylinder surfaces:

û = v̂ = ŵ = θ̂ = 0, at r = η/(1 − η); 1/(1 − η). (8)

The last term in the right-hand side of Eq. (7b) is the perturbed centrifugal buoyancy and includes
the effect of the base centrifugal acceleration on the perturbed density profile and the effect of the
perturbed centrifugal acceleration on the base density profile.

III. ONE-DIMENSIONAL MODEL

The stability of the Couette flow is modified by a density stratification. In particular, the cen-
trifugal buoyancy will stabilize the flow in the outward heating and will destabilize it in the inward
heating [3]. An easy way to derive a criterion showing this effect is to use a one-dimensional model.
For this model, only the z dependence of the perturbations is retained in the set of Eqs. (7), i.e., n = 0
and Dû = Dv̂ = Dπ̂ = Dθ̂ = 0. Since the perturbations depend only on the axial position, the
perturbation axial velocity w′ vanishes because of the continuity equation and the no-slip boundary
condition. The set of equations for the perturbations amplitude Eqs. (7) thus reads in the matrix
form: ⎛

⎝ s + k̃2 −2A� γar�2

D(r2�)/r s + k̃2 0
D 0 s + k2/Pr

⎞
⎠

⎛
⎝û

v̂

θ̂

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠, (9)

where k̃2 = k2 + r−2 is a positive quantity, � = V/r is the local angular velocity, and A = 1 − γa.
The solvability condition of Eq. (9) requires that the determinant of the matrix in Eq. (9) equals zero,
and leads to the dispersion relation:

(s + k̃2)2

(
s + k2

Pr

)
+ 4A�2(1 + Ro)

(
s + k2

Pr

)
− 2γaRt�2(s + k̃2) = 0. (10)

We have introduced the Rossby number Ro = rD�/(2�), and the thermal Rossby number Rt =
rD/(2). Because of the Boussinesq approximation, |γa| � 1, therefore the condition A ≈ 1 is
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FIG. 2. Schematic representation of the stability of the flow spanned by the parameters 1 + Ro and �. The
function f (1 + Ro) is defined as the right hand side of the inequality (12).

applied. Assuming the principle of exchange of stability (s = 0), we have

(2�)2 ≈ k2k̃4

γaPr
2 k̃2Rt − k2(1 + Ro)

. (11)

For the considered regimes, the thermal Rossby number Rt varies as function of r but remains
negative. In the isothermal case (γa = 0) the right hand side of Eq. (11) is positive if 1 + Ro < 0.
This corresponds to the Rayleigh-unstable flow. In nonisothermal cases, the positivity of the right
hand side of Eq. (11) leads to the criterion for the occurrence of an instability:

� = −γaPr >
2(1 + Ro)

(−Rt)

k2

k̃2
. (12)

If this inequality holds at any radial distance, an instability would develop. The centrifugal buoyancy
parameter � is positive if the temperature difference is negative.

An important indication of the criterion (12) is that for any rotation regime, the flow stability
would be determined by the parameter γaPr. This parameter was used by Walovit et al. [7] in a
slightly different form which included the curvature of the cylindrical annulus. It corresponds to
the ratio between a Rayleigh number based on the centrifugal acceleration and the square of the
Taylor number. Styles and Kagan [23] also used the same parameter and named it the temperature
drop parameter. Meyer et al. [3] remarked that the temperature drop parameter unified the stability
conditions obtained for different Pr and γa for stationary modes. A schematic representation of the
flow stability is shown in Fig. 2 for a given radial position.

In outward heating (� < 0), for Rayleigh-stable flows (1 + Ro > 0) the inequality (12) is never
satisfied as the right-hand side of Eq. (12) takes a positive value. In that case both the centrifugal
force and the centrifugal buoyancy have stabilizing effects. However, in the case of Rayleigh-
unstable flows (1 + Ro < 0), the inequality is satisfied unless γaPr exceed certain values so that the
stabilizing effect of the centrifugal buoyancy overcomes the destabilizing effect of the centrifugal
force. In inward heating (� > 0), Rayleigh-unstable regimes always satisfy the inequality, while
Rayleigh-stable regimes can be destabilized by the centrifugal buoyancy. This argument validates
the criterion proposed by Yih [6] who found that the viscosity tends to weaken the effect of the
stable stratification of angular momentum on a fluid particle pushed outside of equilibrium.
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FIG. 3. Evolution of the stability criterion �∗ as function of μ − η2 for various η. The condition obtained
by the one-dimensional model Eq. (13) reveals that the value � must be above a certain value �∗ to make the
flow unstable.

When the radial position equals the geometric mean radius r̄ = √
η/(1 − η), we have 1 +

Ro = (μ − η2)/[(1 − η)(μ + η)],  = 1/2 and Rt = 1/ ln η. The inequality (12) can then be
written

� > �∗ = B(k, η)
μ − η2

(1 − η)(μ + η)
ln(η−1), (13)

where B = 4k2[k2 + (1 − η)2/η]−1 is a positive coefficient. Counter rotating regimes of Taylor-
Couette system are Rayleigh-unstable, but only within a zone between the inner cylinder and the
nodal cylindrical surface where the base velocity vanishes [24]. Here the velocity vanishes at the
mean geometric radius when μ = −η, leading to a discontinuity of �∗ at that particular position.
The choice of this particular radius to derive Eq. (13) is thus not convenient for counter-rotating
regimes. For μ > −η, the function �∗ is an increasing function of μ − η2.

Keeping η and k at fixed values, the parameter �∗ < 0 for −η < μ < η2, meaning that the flow
of these rotation regimes are always potentially unstable in inward heating, and can be stabilized
in outward heating. When μ > η2 the rotation regime is Rayleigh stable, and in that case, inward
heating can destabilize the flow. The condition (13) is shown in Fig. 3 for various radius ratios η

and for mode with k = π . The quantity �∗ equals zero at μ = η2 and increases with increasing μ.
For a given rotation regime, increasing the radius ratio destabilizes the flow. For large values of μ,
the parameter �∗ becomes dependent only of the radius ratio. Overall, the remarkable result simply
relies on the fact that for a given curvature of the cylindrical annulus and for a given rotation regime,
there exists a value of �∗ below which the Rayleigh-stable flow cannot be destabilized due to the
centrifugal buoyancy. The coupling between thermal and dissipative effects plays a primary role in
characterizing the stability of nonisothermal Taylor-Couette systems.

IV. GENERAL 3D CASE

To destabilize a Rayleigh-stable circular Couette flow by applying a temperature difference
between the two cylinders, we must have γa < 0, which will be assumed from now on. The
equations for the complex amplitude (7) are discretized using the Chebyshev spectral collocation
method and completed by the boundary conditions (8). The highest order of considered Chebyshev
polynomials was set from 13 to 21 to ensure the convergence, depending on the radius ratio.
The resulting generalized eigenvalue problem, written in the matrix form, was solved by the QZ
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FIG. 4. Marginal stability curves (σ = 0) in the (k, Ta) plane for various �, and for different values of η

(a) η = 0.2 and (b) η = 0.9 in the ROC regime. The critical parameters corresponding to each marginal curves
of (a) and (b) are given in Table II.

decomposition. Solving numerically the eigenvalue problem gives us eigenvalues s for a given set of
parameters (η, Pr, γa, Ta, n, k). A marginal stability state is obtained when the real part of, at least,
one eigenvalue changes the sign from negative to positive. Marginal stability curves are plotted in
the (k, Ta) plane for a given set of control parameters (η, Pr, γa). The global minimum of marginal
stability curves obtained for different azimuthal wave numbers n gives us the critical conditions
(Tac, nc, kc, ωc).

A. Rotating outer cylinder regime

When only the outer cylinder is rotating, it is found that the critical modes are axisymmetric
(nc = 0) and stationary (ωc = 0). Figure 4 shows the behavior of the marginal stability curves in
the (k, Ta) plane for several values of �. These curves highlight the behavior of the critical wave
number with the variation of � for small and large radius ratios. For η = 0.2, the unstable area,
above the marginal curve becomes wider and shifts downward to the right with increasing �. For
large η (=0.9), the unstable region does not change in shape and shifts downward to the left with
increasing �.

Although the critical conditions depend on γa and Pr, we found that the parameter � incorporates
the effects of these parameters and allows a unified description. Two systems with a given geometry
will exhibit the same threshold Tac if they are characterized by the same value of � (see Table III).
Figure 5 shows the behavior of the critical Taylor number [Fig. 5(a)] and of the critical wave number
[Fig. 5(b)] as functions of the centrifugal buoyancy parameter � for various values of the radius

TABLE II. Critical parameters for chosen values of � in the wide gap (η = 0.2) and small gap (η = 0.9)
Taylor-Couette flow in the ROC regime for Pr = 1000.

η = 0.2 η = 0.9

� Tac kc � Tac kc

7.5 63.58 2.309 3.5 202.6 4.925
8.3 47.13 2.642 4.0 116.14 3.760
9.1 39.31 2.772 4.5 81.38 3.361
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TABLE III. Critical Taylor number and critical wave number for various radius ratios, Prandtl numbers,
and thermal expansion parameter.

ROC regime Keplerian regime

η Pr −γa � Tac kc η Pr −γa � Tac kc

0.2 700 0.01 7 95.591 1.664 0.2 300 0.01 3 90.169 3.165
0.2 1000 0.007 7 94.752 1.679 0.2 1000 0.003 3 90.043 3.165
0.2 800 0.01 8 51.696 2.557 0.2 800 0.01 8 43.400 3.169
0.2 1000 0.008 8 51.622 2.557 0.2 1000 0.008 8 43.396 3.169
0.5 500 0.01 5 139.139 4.235 0.5 200 0.01 2 48.097 3.127
0.5 1000 0.005 5 137.002 4.139 0.5 1000 0.002 2 48.051 3.127
0.5 800 0.01 8 36.234 3.079 0.5 800 0.01 8 20.391 3.129
0.5 1000 0.008 8 36.214 3.079 0.5 1000 0.008 8 20.390 3.129
0.8 400 0.01 4 142.272 4.186 0.8 100 0.01 1 33.469 3.118
0.8 1000 0.004 4 141.052 3.248 0.8 1000 0.001 1 33.448 3.118
0.8 800 0.01 8 35.708 3.156 0.8 500 0.01 5 13.492 3.118
0.8 1000 0.008 8 35.688 3.156 0.8 1000 0.005 5 13.491 3.118

ratio. The threshold Tac decreases with � and converges to zero asymptotically. For a given value
of �, the curvature of the cylindrical annulus has a stabilizing effect. Depending on the radius ratio,
there is an asymptotic value of � where the critical Taylor number tends to infinity and below
which the thermal instability cannot occur. This limit decreases with increasing η. For η = 0.5 and

FIG. 5. Variation of the critical parameters with � = −γaPr in the ROC regime for different η: (a) Taylor
number and (b) wave number. For each values of η, a vertical line shows the value �∗ of � below which the
flow cannot destabilize; �∗ = 6.61, 3.85, 2.45 for η = 0.2, 0.5, 0.8, respectively.
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(a) η = 0. η = 0. η = 0.2, (b) 2, (c) 5, (d) η = 0.5,

γa = −0.007, γa = −0.01, γa = −0.005, γa = −0.01,

Tac = 89.63, Tac = 33.67, Tac = 130.63, Tac = 28.43,

kc = 1.773 kc = 2.854 kc = 3.860 kc = 3.091

FIG. 6. Eigenfunctions at critical conditions in the ROC regime for Pr = 1000 and for different values of
η and γa.

η = 0.8 the critical wave number decreases with increasing �, but for η = 0.2 we observed the
opposite behavior [Fig. 5(b)].

The eigenfunctions for the perturbation velocity field and for the perturbation temperature at
the critical states are illustrated in Fig. 6. The radial velocity perturbation and the temperature
perturbation are in anti-phase, which means that a fluid particle traveling from the hot outer cylinder
to the cold inner one passes through a high temperature zone while a fluid particle moving in the
opposite direction passes through a low temperature zone. For η = 0.2 the critical wave number is
small for small values of � and we can see in Fig. 6(a) that large vortices occupy the whole space in
the gap. The wavelength decreases when increasing � until their axial extension becomes of about
the gap size [Fig. 6(b)]. In Fig. 6(c) the vortices observed for η = 0.5 and for a small value of �

are shown. The critical wave number is large and we can observe that the vortices are located close
to the outer cylinder. The increase of � increases the critical wavelength for vortices to occupy the
whole gap between the cylinders.

B. Keplerian regime

As in the ROC case, the stability of the Keplerian regime in inward heating can be described
conveniently in terms of the centrifugal buoyancy parameter � (see Table III). Critical modes are
also found to be axisymmetric and stationary. Figure 7 shows the critical parameters variation as
function of �. The critical Taylor number decreases with increasing � and asymptotically tends
to zero. The larger the curvature is, the more stable the flow gets. For a fixed radius ratio, there
is a limit value �∗ of � below which the flow cannot be destabilized. This limit decreases when
increasing the radius ratio and has smaller values than those of the ROC regime. For all the studied
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FIG. 7. Variation of the critical parameters with � in the Keplerian regime for different η: (a) Taylor
number and (b) wave number. For each value of η, a vertical line shows the value �∗ of � below which
the flow cannot destabilize; �∗ = 0.51, 0.41, 0.19 for η = 0.2, 0.5, 0.8, respectively.

radius ratios, the critical wave number decreases toward a constant with increasing �, which is
independent of the radius ratio.

C. Description using the Ginzburg-Landau equation

At the onset of convection the critical modes are stationary and axisymmetric and have a finite
wave number. The behavior of the amplitude of perturbation A in the weakly nonlinear regime can
thus be described by the Ginzburg-Landau equation [25]:

τ0
∂A

∂t
= εA + ξ 2

0
∂2A

∂z2
− l|A|2A, (14)

where ε = Ta/Tac − 1 is the bifurcation parameter. The constants τ0 and ξ0 represent the character-
istic time and the coherent length of the perturbations, respectively. The characteristic time relates
to the time needed for the perturbation flow to be saturated, while the coherent length corresponds
to the distance needed for the amplitude to heal from a perturbation suppression, e.g., at a lid of the
Taylor-Couette system. These two quantities can be derived from the linear stability analysis by the
following formulas:

τ0 =
[

Tac

(
∂σ

∂Ta

)
c

]−1

, ξ 2
0 = −τ0

2

(
∂2σ

∂k2

)
c

. (15)

The Landau constant l determines the nature of the bifurcation from the base flow and cannot be
derived from a linear perturbation analysis. It can be determined from a weakly nonlinear analysis
or direct numerical simulations [14].
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FIG. 8. Variation of the coefficients of the Ginzburg-Landau equation with � for various η and various Pr
in (a) the rotating outer cylinder regime and (b) the Keplerian regime.

The variations of ξ0 and τ̃0 = τ0/Pr with the parameter � are shown in Fig. 8. For the ROC
regime of rotation [Fig. 8(a)], the coherent length decreases with the increase of � for η = 0.2.
This behavior is associated with the wave number of the modes, which diminishes when � is
decreased [Fig. 5(b)]. Modes with wavelength larger than the gap size need more distance for
amplitude modulation. The opposite behavior can be seen for η = 0.5 and η = 0.8. For these cases
with intermediate and small gaps, the wavelength of the modes increases with increasing �, and the
associated coherent length also increases. The characteristic time τ̃0 decreases with increasing � for
η = 0.2, but for larger radius ratios, τ̃0 first increases with �, reaches a maximum value, and then
decreases. For the Keplerian rotation regime, the wave number decreases with �, and the associated
coherent length also decreases with increasing � [Fig. 8(b)]. The variation of the characteristic
time has a similar behavior to what observed in the ROC regime, i.e., τ̃0 increases until it reaches a
maximum value, and then starts to decrease with �.

For both rotation regimes, at a fixed value of �, the Prandtl number has no influence on the
coherent length, nor on the characteristic time τ̃0. For large � and for a given radius ratio, the
coherent length converges to a constant value between 1/4 and 1/3 of the gap size. This constant
slightly diminishes with increasing η and is dependent on the rotation regime. The characteristic
time τ0 varies linearly with the Prandtl number, as in the classical Rayleigh Bénard instability
[26,27]. Overall, the observed invariance of ξ0 and τ̃0 to the variation of Pr is an additional indication
of the important role played by the parameter �.

D. Energy analysis

An energy analysis is used to gain a better understanding of the instability mechanism in the
heated Rayleigh-stable Couette system. Multiplying Eqs. (7b)–(7d) by u′, v′, and w′, respectively,
and summing the resulting equations leads to the equation for the kinetic energy density of perturbed
flow. Integrating over the whole fluid volume, we have

dK

dt
= WSh + WBu − Dν, (16)

where K is the kinetic energy, WSh is the power performed by the shear stress, WBu is the power
performed by the centrifugal buoyancy, and Dν is the rate of viscous dissipation. These terms are
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FIG. 9. Power terms as function of � for η = 0.5 and for (a) the ROC regime and (b) the Keplerian regime.

given by

K =
∫

u′2

2
dV, WSh = −

∫
u′v′r

d�

dr
dV,

WBu = −γa

∫
u′(V 2θ ′ + V v′)

r
dV, Dν =

∫
�νdV, (17)

where the viscous dissipation function �ν is given by

�ν = 2

[∣∣∣∣du′

dr

∣∣∣∣
2

+
∣∣∣∣ imv′

r
+ u′

r

∣∣∣∣
2

+ k2|w′|2
]

+
∣∣∣∣r d

dr

(
v′

r

)
+ imu′

r

∣∣∣∣
2

+
∣∣∣∣ imw′

r
+ ikv′

∣∣∣∣
2

+
∣∣∣∣iku′ + dw

dr

∣∣∣∣
2

. (18)

Figure 9 shows the variation of the powers WSh, WBu, and Dν with the parameter � for the two
studied rotation regimes. The power given by the centrifugal buoyancy is always positive, which
means that in inward heating, this mechanism contributes to the destabilization of the Couette flow.
The contribution of the shear stress to the energy generation is more subtle. For the ROC regime,
WSh > 0 and hence the shear stress destabilizes the flow, while for the Keplerian regime WSh < 0
and so the shear stress stabilizes the flow. In fact, the sign of WSh is dependent on the sign of
the base flow shear rate rd�/dr. This shear rate of the base flow is positive for the ROC regime
and negative for the Keplerian regime. The growth of perturbations promoted by the centrifugal
buoyancy is weakened by the negative shear rate of base flow in the Keplerian regime, and is
reinforced by the positive shear rate in the ROC regime. For both regimes, the power performed
by the centrifugal buoyancy and the absolute value of the power performed by the shear stress
diminishes when increasing �. The rate of viscous energy dissipation always balances the other
terms since the growth rate of perturbation flows vanishes at critical conditions.

Figure 10 shows the variation of the power rate terms with the parameter η for the two rotation
regimes. For the ROC regime, WBu increases with increasing η for η < 0.2 and then decreases for
η > 0.2. The power performed by the shear stress WSh increases with increasing η. Surprisingly,
there exists a certain value of η above which WBu < WSh. For η > 0.75, while the instability is
triggered by the centrifugal buoyancy, the shear stress of the base flow becomes the main mechanism
for energy transfer to the vortices formed in the annulus. For η approaching 1, the effect of the shear
stress even becomes prominent compared to that of the centrifugal buoyancy. The critical Taylor
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FIG. 10. Power terms as function of η for � = 10 in (a) the ROC regime and (b) the Keplerian regime.

number decreases when the radius ratio is increased, because of the decrease of the power from the
centrifugal buoyancy. The shear rate in the ROC regime can be written as

r
d�

dr
= 2η2

(1 + η)(1 − η)5/2

Ta

r2
. (19)

It increases with η, leading to the increase of the power of the shear stress. In the case of the
Keplerian regime, WSh is negative and decreases when the radius ratio is decreased. For large values
of � and of η, the shear stress does not transfer energy to the perturbations, i.e., WSh = 0, and the
power given by the centrifugal buoyancy becomes constant. The shear rate for the Keplerian regime
is given by

r
d�

dr
= ηTa

r2(1 − η2)
. (20)

The shear stress of the Keplerian regime also increases when the radius ratio is increased, but this
time the decrease of the power of the centrifugal buoyancy with η, due to a decrease of the critical
Taylor number seems to dominate over that effect.

V. DISCUSSION

A. Lower limit of �

As a result of the one-dimensional model (Sec. III), we found that for a given radius ratio and
a given rotation regime there exists a lower limit �∗. Below this limit, the destabilizing effect of
the centrifugal buoyancy in inward heating cannot overcome the stabilizing effects provided by
viscous dissipation and, in the Keplerian regime, also by the shear stress. Table IV shows some

TABLE IV. Values of �∗ calculated from the one-dimensional model (13) for the two studied rotation
regimes and for various radius ratios.

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

ROC 5.62 6.08 5.90 5.60 5.28 4.97 4.70 4.44 4.21 4.02
Kepler. 0.92 1.04 0.95 0.80 0.64 0.49 0.35 0.22 0.11 0.01
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FIG. 11. Variation of the critical Rayleigh number as functions of � for Pr = 1000 for various radius ratios
in (a) the ROC regime and in (b) the Keplerian regime.

values of �∗ computed from the instability criterion (13) with k = π for the two studied rotation
regimes and for various radius ratios. For both rotation regimes, �∗ is an increasing function of
η for 0 < η < 0.2, and decreases with η for 0.2 < η < 1. The ROC regime exhibits much larger
�∗ than the Keplerian regime for all values of η. Figures 5 and 7 indicate the lower limits of �

for various values of η computed from the three-dimensional linear stability theory. Quantitatively,
the one-dimensional model systematically over-estimates �∗ compared to the three-dimensional
calculations. This overestimation can reach 100% and it is attributed to the simplifications made in
the one-dimensional model. Nevertheless, the lower limit of � calculated from both approaches are
of the same order of magnitude and shows the same behavior regarding the influence of the rotation
regime and of the radius ratio. Fluids with a Prandtl number of order 103 or lower, such as some
oil-based ferrofluids [28] may have � < �∗, where, for instance, �∗ ∼ 1 in the Keplerian regime.
As a results, the centrifugal buoyancy would not be able to destabilize the flow, and an external
force field such as thermomagnetic buoyancy [29] would be needed to induce instabilities.

B. Large values of �

In Sec. IV D, we saw that the power performed by the the shear stress is a decreasing function
of �. For sufficiently large values of �, WSh tends to zero. The effect of shear rate can then be
neglected. In that case, the centrifugal buoyancy becomes the only force playing a role in flow
stability. The system reduces to a Rayleigh-Bénard-like problem where the angular velocity only
provides a centrifugal acceleration acting on the density stratification. In a recent article, Kirillov and
Mutabazi [4] analyzed the problem both in ROC regime and in the Keplerian regime in the limit of
short wavelength of vortices. They derived analytic expressions of the threshold for both regimes and
for arbitrary radius ratio. For � approaching infinity, their expressions for the critical Taylor number
lead to a constant parameter Ra = γaPrTa2/ ln η = 1, independently of the rotation regime, where
Ra is a centrifugal Rayleigh number often used to describe the stability of a fluid in a rigidly rotating
cylindrical annulus (e.g., in Ref. [18]). The fact that the Rayleigh number becomes constant for
large values of � indicates that the instability mechanism is analog to that of the Rayleigh-Bénard
instability.

Figure 11 shows the variation of the critical Rayleigh number with � for various values of η

and for both rotation regimes. For large values of �, the Rayleigh number tends to a constant. In
contrast to the results of Kirillov and Mutabazi [4], the constant value of Ra depends both on the
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TABLE V. Values of �∞ above which the shear rate has a negligible influence on the stability. The
associated critical Rayleigh number and critical wave number for various radius ratios are given.

ROC regime Keplerian regime

η �∞ Rac kc η �∞ Rac kc

0.2 420 2590 3.065 0.2 140 7600 3.175
0.5 340 6245 3.111 0.5 70 4390 3.130
0.8 290 23480 3.137 0.8 25 3895 3.118

rotation regime and on the radius ratio. For the ROC regime, this constant increases with η, while
for the Keplerian regime, it decreases with η.

Large values of � can be realized with highly viscous fluid. For instance in geophysics, magma in
the Earth’s mantel exhibit a Prandtl number which can be considered as infinite [30]. Some silicone
oils have Prandtl numbers of the order of 105 [31]. A centrifugal parameter of the order of � ∼ 103

can therefore be achieved experimentally for a thermal expansion parameter |γa| ∼ 10−2. For these
large values of �, the present analysis predicts that the critical parameters depend only on η and
μ. In Table V, the value of �∞ above which the effect of shear rate is negligible is given for both
rotation regimes and various values of η. The value of �∞ is defined as the value of � when the
Rayleigh number reaches its asymptotic value within one percent of difference. Above these values
of �∞, the corresponding Rayleigh number given in Table V is considered as constant, and the
critical wave number is unchanged. The Keplerian regime exhibits smaller values of �∞ than the
ROC regime, and �∞ decreases with η for both regimes.

C. Small gap analysis

Kirillov and Mutabazi [4] investigated the case of axisymmetric perturbations and found, for both
ROC and Keplerian rotation regimes, oscillatory critical modes at low Prandtl number and stationary
modes above a certain Pr. When only the outer cylinder rotates, the oscillatory axisymmetric modes
were not captured by the present linear stability analysis. However, in the Keplerian regime, for
η = 0.99 and γa = −0.01, the oscillatory modes were found as critical modes. The corresponding
evolution of the threshold, the critical wave number and the critical frequency with Pr are shown in
Fig. 12. The critical modes are axisymmetric and the transition from oscillatory modes to stationary
modes occurs at about Pr = 1, which recovers the result of Kirillov and Mutabazi [4] who found
oscillatory and stationary modes for Pr < 0.98 and Pr > 1.01, respectively.

VI. CONCLUSION

The stability of Rayleigh-stable flows subject to a radial temperature gradient has been analyzed.
A one-dimensional model highlighted the role played by the centrifugal buoyancy parameter � =
−γaPr on the stability of circular Couette flows. Rayleigh-stable flows can become unstable in
outward heating configurations and above a certain value of � depending on the curvature of the
system and on the rotation regime. The existence of this lower limit of � was confirmed by a linear
stability analysis performed for two distinct rotation regimes: the case where the inner cylinder is at
rest while the outer one is rotating and the Keplerian regime. For both regimes, the critical modes
take the form of stationary toroidal vortices and for a given radius ratio, the critical Taylor number
and the critical wavelength depend only on the parameter �. The description of the instability using
the Ginzburg-Landau equation also showed that the coherent length of perturbations is constant and
that, once measured by the thermal diffusion time d2/κ , the characteristic time is also constant for
fixed values of � and η.
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FIG. 12. Variation of the critical parameters as functions of Pr for η = 0.99 and γa = −0.01 in the
Keplerian regime: (a) Taylor number, (b) wave number, and (c) frequency.

Regarding the general mechanism of the instability, the main difference between the rotating
outer cylinder regime and the Keplerian regime lies in the opposite sign of their base flow
circulations. When only the outer cylinder rotates, the radial shear plays a subtle role. Even though
the circulation is stably stratified, the shear stress transfers energy to the perturbation and sustains the
vortices. In contrast, in the Keplerian regime, the shear stress drains energy from the perturbations.
For large values of � and of η, the shear rate plays no role on the stability. The centrifugal buoyancy
therefore becomes the only source of energy transfer from the base state to the perturbations.
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