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Gamma (γ ) instability theory, originally proposed in 2003, continues to provide the
most promising explanation of salt-fingering engendered thermohaline staircases that are
ubiquitously present in both the global ocean and lakes. Our purpose herein is to extend γ

instability theory to salt-fingering systems in which the vertical gradients of temperature
and salinity are not constant. Our goal is to explain why the characteristic “step size” in
a salt-fingering staircase is larger in regions characterized by weak gradients. Through
application of an appropriately modified linear stability analysis, we first demonstrate that
the most quickly growing mode of instability is unaltered by the inhomogeneity of the
background stratification in most cases. We then perform numerical simulations based
upon the mean field equations to show that staircases tend to form and thereafter merge
much more quickly in the low gradient regions than the high gradient regions. After
explaining this difference of timescale within the framework of our model, we argue
that the differences in background gradients of physical properties may arise naturally
in a quasiequilibrium staircase environment. We further invoke observations from the
Tyrrhenian Sea to support a quasiequilibrium staircase hypothesis.

DOI: 10.1103/PhysRevFluids.6.033903

I. INTRODUCTION

Thermohaline staircases are some of the most mysterious regular structures observed in all of
physical oceanography, structures that exist in vast areas of the oceans including both tropical
and polar regions. These structures consist of a series of vertically well-mixed layers separated
by sharp density interfaces. There are generally two types of staircases, depending on the sense of
the vertical gradients of temperature and salinity of the background in which they occur. The first
type of staircase forms primarily in the main thermocline in the low-latitude or mid-latitude ocean
where warm salty water lies above relatively colder and fresher water, as has been observed in the
Mediterranean Sea [1], Tyrrhenian Sea [2], and the western tropical Atlantic [3,4]. The second type
of staircase forms in the opposite environment, where cold and fresh water lies above relatively
warmer and saltier water. Observational examples of such staircases can be found in the Arctic
Ocean, e.g., Ref. [5], the Weddell Sea, e.g., Ref. [6], offshore Antarctica, e.g., Refs. [7,8], and a
variety of lakes in very different environments, e.g., Refs. [9,10].

Although it has been clear for some time that the formation of these two types of staircases are
closely related to the two types of double-diffusive instability corresponding to salt fingering and
diffusive convection respectively, the detailed mechanism through which layer formation occurs
remains a subject of active debate. In fact, the existing literature of attempts to develop a complete
theory may be divided into as many as six different lines of argument, which have been summarized
in Chapter 8 of Ref. [11]. Among these different explanations, the γ instability theory proposed in
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Ref. [12] appears to provide at least the central ingredient of what could become a complete theory
to fully explain the formation of salt-fingering staircases (much more significant issues remain
concerning the mechanism underlying the formation of the diffusive convection staircases [11]).
The γ instability theory of Ref. [12] suggests that uniform salt-fingering fields will be unstable to
staircase formation as long as the flux ratio γ (γ = w′�′/w′S′) is a decreasing function of density
ratio Rρ (Rρ = �z/Sz), which is the dominant nondimensional parameter governing the behavior
of the salt-fingering system. Studies using direct numerical simulation (DNS) [13,14], mean field
model-based simulations [12,15], and basin-scale general circulation model-based analyses [16]
have all demonstrated that the staircase structure will emerge spontaneously if and only if the
decreasing γ (Rρ ) criterion is satisfied.

In Ref. [15], it was further suggested that these initially formed staircases are susceptible to an
additional (tertiary) instability that drives adjacent layers to merge so as to produce larger scale steps.
This mechanism has come to be referred to as involving a “B merger” mechanism, a phenomenon
that occurs in a range of nonlinear systems well beyond those involving double diffusion [17]. This
mechanism has been analyzed using both numerical simulations [13–15] and observational evidence
obtained from ice-tethered profilers (ITPs) in the Arctic Ocean [5,18]. While γ instability theory and
the theory of layer merger together form a complete theoretical framework explaining simulations
and observations of salt-fingering staircases, the theory suffers from a flaw: the existence of an
ultraviolet catastrophe in that the growth rate predicted by the γ instability diverges to infinity as
the vertical wave number increases (we will discuss this issue in detail in what follows).

Despite the significant success of γ instability theory, it has been formulated only to describe a
system with constant vertical gradients of temperature and salinity. In the work described herein,
we will extend the scope of current theory so that it may be applied to a more general system
that includes inhomogeneity of vertical gradients. As we will show, this inhomogeneity may be the
dominant factor in determining the depth of individual steps in the staircase: The staircase step sizes
are always observed to be smaller at vertical positions of relatively higher gradients than at vertical
positions characterized by relatively lower gradients. This trend is quite clear in the observational
data of both salt-fingering staircases and diffusive convection staircases (see Fig. 2 of Ref. [3], Fig. 1
of Ref. [4], Fig. 11 of Ref. [2], Fig. 8 of Ref. [5], and Fig. 3 of Ref. [6] for examples), but there has
not been any entirely satisfactory explanation of this. The only related discussion in the literature
appears to consist of the description of staircases in the northwestern Weddell Sea of Antarctica [6],
in which the authors of Ref. [19] refer to the small steps in the higher gradient regions as type A steps
and the large steps in the lower gradient regions as type B steps [19]. The ensuing work of Ref. [20]
attributed the differences in the step sizes in these two different types of staircases to the differences
in the environment: Type B cases were found to be located in a more pristine environment and were
imagined to be closer to equilibrium and therefore to be characterized by larger steps. For staircases
that are observed to form in other regions (see the western tropical Atlantic [3,4] and the Tyrrhenian
Sea [2] for examples), however, there are no clearly different environmental conditions on the basis
of which one might separate different staircase types as exist in the northwestern Weddell Sea.
Yet, there are clearly different step sizes in regions characterized by different background gradients
of temperature and salinity. What is therefore required, in our opinion, is a more general theory
able to explain staircases other than those in the northwestern Weddell Sea. It is clear to us that
the theory to be discussed herein will have to be an extension of the γ instability theory, which
already well describes the basic mechanism of staircase formation in constant background gradient
circumstances that favor salt-fingering instability.

The outline of the analyses to be described in the remainder of this paper will begin in Sec. II with
a brief discussion of the flux laws for salt-fingering turbulence deduced from a series of analyses
based upon high-resolution DNS in which both the constant and inhomogeneous background
gradient models are employed. These analyses will provide results for γ as a function of Rρ that
will serve as basis for all of the subsequent analyses. In Sec. III, we will first provide a brief review
of the original framework of γ instability theory proposed in Ref. [12], which will be followed by
a linear stability analysis based upon the required formulation of this theory which incorporates

033903-2



GAMMA INSTABILITY IN AN INHOMOGENEOUS …

the inhomogeneity of the vertical environment. In the subsequent section, Sec. IV, we develop a
mean-field-based parametrized model that will be employed to simulate the dynamics of the system
after the perturbations develop beyond the linear regime. The discussion of the results obtained
on the basis of these analyses focuses upon the key mechanism that controls the evolution of the
system. The final step in our discussion of the results of our mean field simulations is to connect
them to the ocean observations. A summary of the results obtained in this work and conclusion are
offered in Sec. V.

II. FLUX LAWS FOR THREE-DIMENSIONAL SALT-FINGERING TURBULENCE BASED
UPON HIGH-RESOLUTION DIRECT NUMERICAL SIMULATION

The γ instability theory described in Ref. [12] was developed on the basis of the stability
characteristics of a set of mean-field equations for temperature and salinity. These mean-field
equations were based on the characteristics of the fluxes of heat and salt that were obtained on the
basis of high-resolution DNS of doubly diffusive salt-fingering turbulence. Specifically, the flux law
employed in Ref. [12] was based on a set of two-dimensional (2D) DNS of relatively low-resolution
salt-fingering turbulence simulations [21]. Two decades later, the computational power on the basis
of which such simulations may be performed has significantly increased. This has made it possible
to perform the needed simulations on the basis of which the flux laws are determined in three
spatial dimensions and at much higher resolution; for examples of such work, see Refs. [22–24]. In
this section, we will provide a brief summary of the most recent such DNS simulations of Ref. [24]
as well as flux laws obtained from them, which will be employed for the purpose of our mean field
analyses to follow in the remainder of the paper.

In Ref. [24], 10 three-dimensional DNS simulations were performed in the system characterized
by uniform background temperature and salinity gradients with Rρ almost evenly distributed in
the range of 1.1–10. A visualization of the results obtained in these simulations is provided in the
snapshots of the temperature and salinity fields at different stages in the evolution of the turbulent
flow in Fig. 1. The results reported in Ref. [24] were the first to describe a methodology that could
be employed to distinguish between irreversible and reversible mixing in a doubly diffusive system,
this being a critical distinction when turbulent mixing is to be represented in terms of an effective
turbulent diffusivity as it is only the irreversible component of mixing that may contribute to this
diffusivity. The results of these analyses for the equilibrium irreversible diapycnal diffusivities for
heat Kirr

� and for salt Kirr
S [which do not differ significantly from the traditionally diffusivities

defined for heat flux w′�′ and salt flux w′S′ in the equilibrium stage of salt-fingering turbulence
(see Ref. [24])] as well as for the irreversible flux ratio γ irr were averaged across the domain and
the results obtained from the totality of these simulations are plotted as a function of Rρ in Fig. 2.
The functional relationship for Kirr

� (Rρ ) and γ irr (Rρ ) were then fit to obtain the following functional
forms:

Kirr
� = a

(Rρ − 1)bRc
ρ

κθ , (a = 78.09, b = 0.52, c = 0.87),

γ irr = aR3
ρ + bR2

ρ + cRρ + d, (a = −0.00068, b = 0.0163, c = −0.125, d = 0.77),

Kirr
S = Kirr

� Rρ/γ
irr (1)

in which κθ is the molecular diffusivity for heat. These empirical parametrizations of the salt-
fingering fluxes were tested in Ref. [24] in a further set of DNS simulations using the interface
model. Specifically, in DNS simulations that are initialized with hyperbolic-tangent shape profiles
for temperature and salinity, it was shown to deliver a correct depth dependence of turbulence
intensity in the quasiequilibrium state. The fluxes for heat and salt were shown to adhere locally
to expectations based upon the empirical representation of the fluxes from the constant gradient
simulations as described by (1), when the depth dependence of Rρ at equilibrium in the interface
model was taken into account. This fact confirms the validity of the mean-field equation that we will
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FIG. 1. Volume rendered temperature fields (a)–(c) and salinity fields (d)–(f) at nondimensional times
0.00507, 0.00512, and 0.00766 in the DNS simulation at Rρ = 2 using the unbounded gradient model in
Ref. [24]. A comparison of temperature and salinity fields at these different time slices clearly display the
process that causes the salt fingers to break under the action of the secondary zigzag instability [25] and to
eventually evolve into a fully turbulent state.

use throughout this paper, especially in the case of an inhomogeneous system that is the primary
focus of discussion in what is to follow.

III. GAMMA-INSTABILITY ANALYSIS IN A VERTICALLY
INHOMOGENEOUS ENVIRONMENT

In this section, we will begin by developing a theoretical framework for γ instability theory in
a vertically inhomogeneous environment using the mean field equation which is based on the flux
laws (1). For the sake of completeness, we will first provide a brief review of the γ instability theory
originally formulated in Ref. [12]. We then discuss how the theory must be modified to account for
the depth variation of background vertical gradients for temperature and salinity.

A. Classical gamma instability theory in the unbounded gradient model

The classical γ instability has been described expeditiously in Ref. [12]. Consider the governing
equations for the mean field temperature �(z, t ) and salinity S(z, t ) that are averaged over space
and timescales that greatly exceed those characteristic of the salt-fingering instability to obtain

∂�

∂t
= − ∂

∂z
F�,

∂S

∂t
= − ∂

∂z
FS, (2)
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FIG. 2. The averaged irreversible turbulent diapycnal diffusivities for heat (a), for salt (b) as well as
irreversible flux ratio (c) as a function of Rρ in 10 simulations in the unbounded gradient model [24]. Numerical
fitting of (1) is shown in each figure to be compared with the data.
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in which the vertical heat and salt fluxes F� and FS are determined by the relations

F� = −Nu(Rρ )
∂�

∂z
,

FS = F�

γ (Rρ )
. (3)

The above equations have been nondimensionalized based on the typical salt-fingering length scale
d = ( ρ0νκθ

g�̄z
)

1
4 (see Ref. [11], for example, where ν is the molecular viscosity) and the timescale is

d2/κθ . Both the temperature field �(z, t ) and the salinity field S(z, t ) are defined in density units so
that a linear equation of state can be expressed as ρ = ρ0 + S − �. The thermal Nusselt number Nu
and the total flux ratio γ are defined to include the contributions due to molecular diffusion and can
be explicitly determined on the basis of the parametrization scheme (1) as

Nu(Rρ ) = Kirr
� (Rρ )/κθ + 1,

γ (Rρ ) = Kirr
� (Rρ )/κθ + 1

Kirr
S (Rρ )/κθ + τ

Rρ, (4)

where τ = κs/κθ = 0.01 is the molecular diffusivity ratio for salt and heat. However, it should be
noticed in what follows that a specific form of parametrization is not necessary in determining the
basic requirement for γ instability.

Once �(z, t ) and S(z, t ) are perturbed from their background values �̄(z) = �0zz and S̄(z) =
S0zz by �′ and S′, Rρ will also deviate from the background value Rρ0 = �0z/S0z, namely as

Rρ = Rρ0

1 + �′
z

�0z

1 + S′
z

S0z

≈ Rρ0

(
1 + �′

z

�0z
− Rρ0

S′
z

�0z

)
, (5)

where we have made the approximation that only first-order deviations from the mean fields �′ and
S′ need be retained. By substituting (3) and (5) into (2) and again retaining only first-order terms, we
obtain the following evolution equations for the perturbations to the initial depth-dependent mean
fields:

∂�′

∂t
= (A2 + Nu)�′

zz − A2Rρ0S′
zz,

∂S′

∂t
= A1Nu�′

zz − A1NuRρ0S′
zz + γ −1 ∂�′

∂t
, (6)

where A1 = ∂γ −1

∂Rρ
|
Rρ0

Rρ0 and A2 = ∂Nu
∂Rρ

|
Rρ0

Rρ0. If we further expand the perturbation fields �′ and

S′ into normal modes in (6) as (�′, S′) = (�̂, Ŝ)exp(λt + ikz), (6) will be transformed into an
eigenvalue problem with the eigenvalue λ determined by the quadratic equation

λ2 + λ

[
A2 + Nu(Rρ0) − A1Nu(Rρ0)Rρ0 − Rρ0A2

γ (Rρ0)

]
k2 − A1Nu2(Rρ0)Rρ0k4 = 0 (7)

in which A1 > 0 is a sufficient condition for the existence of a positive root in (7) and thus suggests
that an instability of the basic state would exist in this circumstance. Since the condition A1 > 0 sim-
ply implies that γ (Rρ ) is a decreasing function of Rρ , this instability was referred to as the “γ insta-
bility” in Ref. [12]. Encouraging matches have been found between this γ instability theory and the
staircase structures that form in DNS of salt-fingering turbulence, in both two-dimensional (2D) sim-
ulations (for example, Ref. [12]) and three-dimensional (3D) simulations (for example, Ref. [13]).
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The theory has been further tested in basin-scale staircase-resolving numerical simulations [16],
which demonstrate that the staircase structures only merge if the total flux ratio (that takes the
turbulent diapycnal diffusivities into account) satisfies the criterion that γ be a decreasing function
of Rρ . We will refer this as the “γ criterion” in what follows.

B. Gamma instability analysis in a vertically inhomogeneous system

In this section, our intention is to investigate how the classical theoretical framework of γ

instability will vary if the variations of vertical gradients are considered.
We will still represent the temperature and salinity fields as the sum of a background component

and a perturbation as in the last subsection, except that the background fields �̄z(z) and S̄z(z) are
now depth dependent. In this case, Eq. (5) in the last section will become

Rρ = �z

Sz
= �̄z

S̄z

1 + �′
z

�̄z

1 + S′
z

S̄z

≈ R̄ρ

(
1 + �′

z

�̄z
− S′

z

S̄z

)
, (8)

where the approximation made is based upon the assumptions that �′
z/�̄z � 1 and S′

z/S̄z � 1. It
is important to notice that the background density ratio R̄ρ (z) is also depth dependent in the above.
We may then proceed to derive the expression for ∂Rρ/∂z again to first order in the perturbations:

∂Rρ

∂z
≈ ∂R̄ρ

∂z

(
1 + �′

z

�̄z
− S′

z

S̄z

)
+ R̄ρ

(
�′

zz�̄z − �̄zz�
′
z

�̄2
z

− S′
zzS̄z − S̄zzS′

z

S̄2
z

)
. (9)

The above expressions (8) and (9) allow us to expand the governing equation (2) to first order in
the perturbation fields �′ and S′ (using the temperature equation as an example) to obtain

∂�̄

∂t
+ ∂�′

∂t
= ∂Nu

∂z
(�̄z + �′

z ) + Nu|Rρ
(�̄zz + �′

zz )

≈ ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

∂Rρ

∂z
(�̄z + �′

z ) +
[

Nu|R̄ρ
+ ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

(Rρ − R̄ρ )

]
(�̄zz + �′

zz )

≈ ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

[
∂R̄ρ

∂z

(
1 + �′

z

�̄z
− S′

z

S̄z

)
+ R̄ρ

(
�′

zz�̄z − �̄zz�
′
z

�̄2
z

−S′
zzS̄z−S̄zzS′

z

S̄2
z

)]
(�̄z+�′

z )

+ Nu|R̄ρ
(�̄zz + �′

zz ) + ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

R̄ρ

(
�′

z

�̄z
− S′

z

S̄z

)
(�̄zz + �′

zz ) (10)

in which the first approximation is made by employing linear expansions of Nu and ∂Nu
∂Rρ

as a
function of Rρ , and the second approximation is made by substituting the expressions (8) and (9).
By balancing terms of the same order in the perturbations in (10), at zeroth order the following
balance condition must hold:

∂�̄

∂t
= ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

∂R̄ρ

∂z
�̄z + Nu

∣∣∣∣
R̄ρ

�̄zz. (11)

At first order from (10), the balance is the following for the evolution of the temperature perturbation
(that for the evolution of the salinity perturbation is simply stated following the result for the
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temperature perturbation) as

∂�′

∂t
≈ ∂Nu

∂Rρ

[
∂R̄ρ

∂z
�′

z + ∂R̄ρ

∂z

(
�′

z

�̄z
− S′

z

S̄z

)
�̄z + R̄ρ

(
�′

zz�̄z − �̄zz�
′
z

�̄2
z

− S′
zzS̄z − S̄zzS′

z

S̄2
z

)
�̄z

]

+ Nu|R̄ρ
�′

zz + ∂Nu

∂Rρ

∣∣∣∣
R̄ρ

R̄ρ

(
�′

z

�̄z
− S′

z

S̄z

)
�̄zz

= ∂Nu

∂Rρ

[
2
∂R̄ρ

∂z

]
�′

z +
[
∂Nu

∂Rρ

R̄ρ + Nu

]
�′

zz

+ ∂Nu

∂Rρ

[
−∂R̄ρ

∂z
R̄ρ + R̄2

ρ

(
S̄zz

S̄z
− �̄zz

�̄z

)]
S′

z − ∂Nu

∂Rρ

R̄2
ρS′

zz

= 2A2A3�
′
z + (A2 + Nu)�′

zz + A2R̄ρ (−A3 + AS − A�)S′
z − A2R̄ρS′

zz

∂S′

∂t
≈ A′

2

R̄ρ

[A3 + AS − A�]�′
z + A′

2

R̄ρ

�′
zz + [NuS − A′

2]S′
zz, (12)

in which A1 = ∂γ −1

∂Rρ
|
R̄ρ

R̄ρ and A2 = ∂Nu
∂Rρ

|
R̄ρ

R̄ρ are defined in a similar way as in the last subsection,

and we have defined the additional parameters A3 = 1
R̄ρ

∂R̄ρ

∂z , A� = �̄zz

�̄z
, and AS = S̄zz

S̄z
to represent the

depth variations of �̄z and S̄z. NuS is the salinity Nusselt number and A′
2 = ∂NuS

∂Rρ
|R̄ρ

R̄ρ . It should be

clear that NuS and A′
2 are related to other variables through NuS = NuRργ

−1 and A′
2 = (A2γ

−1 +
Nuγ −1 + A1Nu)Rρ and have been introduced solely to simplify (12).

While the existence of the new terms A3, A�, and AS makes the forms of (12) more complicated
than (6), it is important to notice that in the special case of A3 = 0 and A� = AS , all of these extra
terms that involve A3, A�, and AS are eliminated from (12) and (12) exactly returns to (6). In fact, for
the typical staircases (see Fig. 1 of Ref. [4], for example), the background temperature profile and
salinity profile share almost the same shape, resulting in both a depth-independent background R̄ρ

(which leads to A3 ≈ 0) and negligible differences between A� and AS (which means A� ≈ AS). In
other words, if we apply our linear stability analysis to a system that mimics the observational data,
the basic equations that are subject to linear stability analysis will remain the same as in the case
of the homogeneous system. Thus, the same γ criterion will be governing the linear stability of the
system, as we discussed in the last section. The analysis for the case in which the conditions (A3 = 0,
A� = AS) are not satisfied is not relevant to the following discussion but is discussed explicitly in
Appendix A of this paper.

C. Remedy for the ultraviolet catastrophe in γ instability theories

In the past two subsections, we have both reviewed the original γ instability analysis and shown
that the alternative formulas for γ instability in a vertically inhomogeneous system remain the same
as in the homogeneous case in the physically relevant regime. When the γ criterion is satisfied,
the growth rate in both of these systems will be determined by (7) and can easily be shown to be
proportional to the square of the vertical wave number k. This ultraviolet catastrophe reveals what
might be a fatal flaw in this theory which prevents us from inferring the fastest growing scale at
which layering would be expected to form. This problem originates from the assumption that the
mean field equations described in (2) are valid at any length scale, while in reality the mean field
equations are only accurate on scales that are at least an order of magnitude larger than the salt-finger
widths [12]. This flaw of the theory has recently been resolved in the multiscale model developed
in [26], which carefully incorporates the interaction between different scales into the theory. These
interactions have been shown to damp the high-order perturbations in the mean-field equation and
thereby lead to a well-defined most quickly growing mode.
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FIG. 3. The growth rate λ plotted as a function of vertical wave number k in the case of Rρ = 1.5, Pr = 7,
τ = 0.01, and μ = 1.19×104. The fastest growth rate is obtained at the value of kmax = 0.0181.

In this work, we will employ a much simpler remedy for the ultraviolet catastrophe, namely by
introducing a hyperdiffusion term in both the temperature and salinity diffusion equations to damp
high-order modes as

∂�

∂t
= − ∂

∂z
F� − μ

∂4

∂z4
�,

∂S

∂t
= − ∂

∂z
FS − μ

∂4

∂z4
S, (13)

where μ is the hyperdiffusivity which has physical units of m4/s. This term has also been introduced
in previous mean-field model simulations in Refs. [15] and [16] in which its value can only be
estimated crudely from the initially formed staircases in DNS. Since the most quickly growing
wavelength has already been calibrated in the multiscale theory, we can adjust μ to a value so
that the most quickly growing wavelength reaches the same value as predicted by the multiscale
theory. We can then solve the modified eigenvalue problem [with the hyperdiffusion terms added
to (12)] to calculate the growth rate. For the case of Rρ = 1.5, Pr = 7, and τ = 0.01, we find that
μ = 1.19×104 leads to a value of the most quickly growing vertical wave number of kmax = 0.0181,
which is consistent with the prediction of the multiscale theory in Ref. [26]. Specifically, the growth
rate increases with k for k < kmax but decreases when k > kmax, reaching the maximum value of
λmax = 0.0013 at kmax, as shown in Fig. 3. The growth rate of the most quickly growing mode and
the most quickly growing wave number will be tested in the fully nonlinear model simulation for
the same nondimensional parameters as will be discussed in the next section.

IV. PARAMETERIZED MEAN FIELD SIMULATIONS FOR THE SALT-FINGERING
INTERFACE MODEL

A. Model settings

While the influence of depth variations of temperature and salinity gradients have already been
well understood in the linear regime, it is not yet clear how the inhomogeneity will affect the
evolution of the system once the perturbation enters the nonlinear regime. To this end, we will
perform numerical simulations for a 1D mean field model whose evolution is fully governed by the
parametrized diapycnal diffusivities for temperature and salinity.
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The system is initialized with hyperbolic-tangent profiles for both temperature and salinity,
namely,

�0(z) = ��tanh(z/h),

S0(z) = �Stanh(z/h). (14)

The vertical domain is chosen to have equal heights and depths from the centerline −H � z � H ,
where the vertical domain half-height H is chosen to be 8160 and the interface depth h = 2/5H =
3264. In dimensional units, this corresponds to H ≈ 75 m and h ≈ 30 m. We have designed
these initial profiles for temperature and salinity to resemble the shape and scale of background
temperature and salinity profiles in the main thermocline of the tropical ocean.

The evolution of this initial profile is then governed by the following set of equations:

∂�

∂t
= − ∂

∂z
F� − μ

∂4

∂z4
� + R�,

∂S

∂t
= − ∂

∂z
FS − μ

∂4

∂z4
S + RS, (15)

in which R� and RS are defined as

R�(z) = −R0(�(z, t ) − �0(z)),

RS (z) = −R0(S(z, t ) − S0(z)), (16)

where R0 has the dimension of inverse of time. These new terms R� and RS are defined to represent
a restoring force that we will employ in order to ensure that the model evolves in such a way as
to retain the shape of the initial background temperature and salinity profiles; otherwise, the steep
gradients of temperature and salinity at the center of the domain will cause both heat and salt to
be constantly transferred from the upper domain to the lower domain in such a way as to erode the
thermocline. By adding these restoring forces, we can mimic the physical circumstances that ensure
that the staircase will form and thereafter be trapped in the stable main thermocline of the oceans,
which our background profiles are intended to model. As discussed in detail in Appendix B, these
restoring forces can be viewed as representing the influence of downwelling associated with Ekman
pumping from the surface mixed layer as well as the upwelling of deep water in the mid-latitude
ocean. The value of R0 must be chosen so that the restoring force is strong enough to balance the
overall vertical diffusion of the system but meanwhile weak enough to avoid influencing the growth
of the γ instability derived perturbations. A value of R0 = 10−5 has been found by experiment to
satisfy these requirements, as will be further discussed in Appendix B.

In (15), F� and FS are parametrized by (3) when Rρ > 1. On the other hand, we assume a large
constant (Kc = 2000κθ ) for diapycnal diffusivity for both temperature and salinity when density
inversions occur in the water columns (Rρ < 1), a method that has been employed to represent the
convective mixing in the kappa-profile parametrization (KPP) scheme ([27]; see also Ref. [28] for a
recent discussion of the importance of this scheme for the parametrization of diapycnal diffusivity
in the context of an important problem in large-scale ocean dynamics).

We initialize our nonlinear simulations by adding white noise of magnitude 10−5�� (10−5�S)
to the initial profiles of both temperature and salinity. No flux boundary conditions will be applied
for �(z, t ) and S(z, t ) at the boundaries z = −H and z = H . The system (15) is then integrated
using a finite difference scheme composed of 1632 grid points.

B. Simulation results

We will first proceed to test the linear stability analysis described at the end of the last section.
It should be noticed, however, that the no-flux boundary conditions and the restoring forces R�

and RS will both influence the linear stability analysis process described above; however, both of
these influences will be negligible so that we can safely retain the result for the linear stability
analysis discussed previously. Once the no-flux boundary condition is applied in the finite domain
(−H, H ), the most quickly growing vertical wave number k can no longer assume arbitrary values.
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FIG. 4. The evolution of the most quickly growing mode of temperature (red solid curve) and salinity (blue
solid curve), compared with the exponential growth (dashed curve) predicted from the linear stability analysis
described in the last section. The growth rate from linear stability analysis precisely predicts the growth of the
most quickly growing mode prior to approximately t = 2000.

In fact, it can only assume a series of specific values of kn = nπ/H so that the first derivatives
of perturbations can vanish at the boundaries z = −H and z = H . However, since H = 8160 is
large enough, the spectrum of kn is sufficiently close to continuous so that the fastest growing
wave number kmax = 0.0181 can be found with a close value of k47 = 47π/H = 0.0181 in the
spectrum. This also suggests that a staircase with 47 steps will form initially at the wavelength of
approximately 347. The additional term that is related to the restoring force in the matrix eigenvalue
problem is proportional to an identity matrix with the coefficient −R0, which has no effect on the
eigenfunctions but only acts to lower the corresponding eigenvalues to a finite value of R0. As
we have chosen R0 = 10−5 so that it is two orders of magnitude smaller than the highest growth
rate λmax = 1.3×10−3, we can safely ignore its influence on the exponential growth of initial
perturbations. Figure 4 shows the evolution of the most quickly growing mode for both temperature
and salinity from t = 0–20 000. It is clear that our linear stability analysis result precisely predicts
the dynamics of the system in the initial stage of exponential growth between t = 0–2000, but after
t = 2000 the growth of the perturbation starts to deviate from the predicted trend, as R̄ρ begins to
increase at the center and decrease on the flanks so as to deviate from the initial constant value. We
will discuss this trend in detail in the next subsection.

Figure 5 presents several snapshots of the temperature profiles after the system enters the non-
linear regime. The staircase first forms in the low-gradient region near the edges of the hyperbolic
tangent interface [Fig. 5(b)] and then gradually extends into the high-gradient region at the center of
the interface [Fig. 5(c)]. At t = 10 000, the staircase structure has developed throughout the domain
and the steps that form at different vertical positions are all of very similar size. This initially formed
staircase is characterized by an interstep wave number of kmax that is predicted accurately on the
basis of the linear stability analysis.

The initially formed staircase then undergoes a series of merging events as shown in Figs. 5(e)–
5(h). These merging events occur through the erosion of some interfaces together with the
strengthening of neighboring interfaces, exemplified by the evolution of the single staircase shown
in the boxes in Figs. 5(e)–5(g). This merging process follows the B merger mechanism as initially
proposed in Ref. [15]. The layer merging events once more begin in regions of low gradient. At
t = 16 000, there has already been very apparent layer merging events in the low-gradient region
near the edges of the interface. However, the steps in the staircase in the high-gradient region
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(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 5. The evolution of the temperature profile �(z) as a function of nondimensional time. The figures
on the top row illustrate the formation of the initial staircase while the figures on the bottom role depict a
succession of layer merging events.

are observed to retain the initial step sizes. The merging of the steps in the high-gradient region
only become apparent at approximately t = 26 000 [Fig. 5(f)]. During this period, the steps in the
high-gradient region have already merged into larger steps. The merging of steps in all vertical
regions is eventually complete by approximately t = 50 000 [Fig. 5(g)] and the ensuing evolution
of the system does not change the step sizes further [as demonstrated by Fig. 5(h)]. Although the
staircase ceases to evolve due to the continuing operation of the merging instability at approximately
t = 50 000, the system continues to evolve until t = 80 000 (not shown), after which the system
remains almost in the same state. Thus, our system produces a situation that very closely resembles
the oceanographic observations mentioned above: The staircase step sizes are always higher in the
low-gradient region compared to those in the high-gradient region, in both the process of evolution
as well as in the equilibrium state of the system.

C. Analysis of the simulation results

Before we are in a position to discuss the connection between this simulation and the staircases
observed in the real oceans, we must first answer three questions related to the above discussed
simulation: (1) Why does the staircase structure form more quickly in the low-gradient region
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(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 6. The evolution of the Rρ (z) as a function of nondimensional time in the stage of the formation of the
initial staircase. The regions of Rρ < 1 corresponding to the homogenous layers where deep convection occurs
and peaks in Rρ suggest the positions of interfaces. We specifically label several specific interfaces as D1, D2,
and H1–H6 as an aid for the analysis in what follows.

compared with the high-gradient region? (2) Why do adjacent stairs in the staircase merge more
quickly in the low-gradient region than in the high-gradient region? (3) Why does the system
equilibrate into a state in which step sizes are generally larger in the low-gradient region?

To answer these questions, we plot on Figs. 6(a)–6(h) the depth dependence of the governing
parameter Rρ for each of the eight time slices at which Figs. 5(a)–5(h) are plotted. The regions
in which Rρ < 1 (equivalent to ∂ρ/∂z > 0) suggests the formation of a convectively mixed layer
in the environment that is gravitationally unstable. [The Rρ in convectively mixed layers, which
equals the flux ratio in interfaces, has to fall into a narrow parameter range (0.5–0.65) in order to
be consistent with the interface flux ratio which is bounded by the flux law in (4).] On the other
hand, the large peaks of Rρ between two convectively mixed layers determine the positions of
the interfaces. Thus, Figs. 6(a)–6(h) provide a clear picture of the evolutionary trajectory of the
staircase. The heights in the convectively mixed layers HL generally increase with time, caused by
the merging of neighboring steps in the staircase. The heights of the interfaces, on the other hand,
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are determined by the strength of the hyperdiffusivity we have employed [15] and is fixed to the
value of approximately 200 throughout the evolution process.

In answering the previously posed questions, we will focus first upon the reason the first
formation of layers occurs in the low-gradient regions, although this might be seen as coun-
terintuitive since our linear stability analysis has demonstrated that the most quickly growing
mode has equal magnitude in the low-gradient region and the high-gradient region. Thus, it is
natural for us to expect that the most quickly growing perturbations �′ and S′ should grow
equally quickly in these two regions (in the linear regime). However, it is important to recognize
that the governing nondimensional parameter Rρ depends on the linear perturbations through the
relationship Rρ (z) = R̄ρ (1 + �′

z/�̄z − S′
z/S̄z ) [derived previously in (8)]. Even though �′

z and S′
z

have the same magnitude in the low-gradient region and the high-gradient region in the most quickly
growing mode, their influence on Rρ is significantly amplified in the low-gradient regions where the
denominators �̄z and S̄z are small, compared with high-gradient region. This can be confirmed in
the Rρ (z) profile shown in Fig. 6(a): Rρ (z) has a vertical oscillation of larger magnitude in the
low-gradient regions near the edges of the model thermocline than in the high-gradient region at
the most quickly growing wave number kmax. Since a convectively mixed layer forms whenever Rρ

oscillates so as to reach a value that is smaller than 1, the layered structure is destined to form more
quickly in the low-gradient region where oscillations in Rρ are strong.

The explanation for quicker merging in the low-gradient region, on the other hand, relies on the
B-merger mechanism as proposed in Ref. [17]. We will briefly review the key conclusion here in
order to make further comparisons. In Ref. [15], the author introduced the following variables to
represent the relative amplitude of merging perturbations:

A = ��2 − ��1

��I
,

B = �S2 − �S1

�SI
, (17)

where ��2, �S2 (��1, �S1) denote the temperature and salinity jumps across the interfaces
that are about to be strengthened (weakened) by the layer merging instability, and ��I and �SI

represent the temperature and salinity jumps across the interfaces before the development of the
merging instability. Therefore, A = B = 0 before merging and the growth of A and B is suggestive of
the gradual merging of these two neighboring interfaces. (A, B) were further expanded into normal
modes (A0, B0)exp(λt ) and the growth rate λ has been shown to obey the following quadratic
equation [see Eq. (A3) of Ref. [15] where the parameters a = 0, b = 1 have been chosen to be
consistent with the flux laws being employed in the present paper]:

λ2 + 4

HL

[
C(RI ) + D2 − RI D2

γ (RI )
− D1C(RI )RI

]
λ − 16

H2
L

C2(RI )D1RI = 0, (18)

where HI and HL represent the heights of staircase interfaces and convectively mixed layers,
respectively. RI = ��I/�SI is the density ratio at the interfaces. C(RI ), D1, and D2 are defined
to depend solely on density ratio RI , namely:

C(Rρ ) = Nu(Rρ )

HI
,

D1 = ∂ (1/γ )

∂Rρ

∣∣∣∣
Rρ=RI

RI ,

D2 = ∂C

∂Rρ

∣∣∣∣
Rρ=RI

RI .

(19)

In the above formulas, the growth rate λ is only determined by HI , HL, and RI since the other
free parameters D1 and K� are fixed once the parametrization scheme for Nu(Rρ ) and γ (Rρ ) are
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(a) (b)

FIG. 7. (a) The growth rate of layer merging instability as a function of interface density ratio RI at different
HL calculated from (18). The growth rate reduces to 0 at the critical value Rcr

ρ . (b) Contour plot of the stability
diagram plotted in the 2D parameter space of (RI , HL ). The interfaces labeled in Fig. 6 are represented by red
dots in the 2D parameter space.

determined by (4). By taking HI = 200, the functional relationship λ(RI ) at different HL may be
evaluated for our system and this is shown in Fig. 7(a). The growth rate has a negative dependence
with respect to the interface density ratio RI at all values of HL as long as RI > 1.14.

At the stage of the system displayed in Fig. 6(d), the layer depth HL has the same value of
approximately 150 in all depth ranges, as determined by the fastest growing mode from the linear
stability analysis. The interface RI , however, generally has a much smaller value (near 1.5) in the
low-gradient region compared with the high-gradient region (where it is near 2). Based on the the
functional relationship λ(RI ) shown in Fig. 7(a), we can conclude that the layer merging instability
has a much higher growth rate in the low-gradient region compared with the high-gradient region.
The reason for a higher RI in the high-gradient region can be traced to a stage prior to the formation
of layers [Fig. 6(a)], in which it is clear that the density ratio Rρ has a higher value in the center
of the domain than near the edges of the model thermocline. This variation of Rρ (z) is induced by
the imbalance in the strength of the fluxes at different vertical positions as discussed and explained
in Ref. [24], in which DNS simulations were performed using the same model. Briefly put, in the
system that has different gradients at different vertical positions, the vertical fluxes (either heat flux
or salt flux) have to reach a coarse balance in neighboring regions to remain in a quasiequilibrium
state (otherwise, the divergence and convergence of fluxes will quickly adjust the local temperature
and salinity in order to satisfy this condition). The coarse balance can only be approached if the
relatively higher gradient region has a relatively smaller diapycnal diffusivity, which can only obtain
at a relatively higher value of Rρ based on the flux laws shown in Fig. 2.

The final equilibrium of the system can also be explained by referring to the layer merging in-
stability presented in (18). However, instead of studying the growth rate of layer merging instability
for early-stage interfaces [exemplified by D1 and D2 in Fig. 6(d)], we need rather to study the
growth rate of layer merging instability in the equilibrium state: The represented interfaces have
been marked as H1–H6 in Fig. 6(h), which range from the low-gradient region to the high-gradient
region. The interface density ratio RI as well as layer height HL (calculated as the average height of
two neighboring layers) for these six interfaces are marked in the stability diagram for layer-merging
instability in Fig. 7(b). For interfaces H2, H3, H4, and H5, the layer merging instability has a finite
growth rate of approximately 2×10−5 and for H1 and H6 the growth rates are higher but remain
constrained close to order 10−5. It is then a natural question as to why the layers cease merging
in the simulation while there is still finite merging growth rate at these interfaces? In fact, in the
original theory of Ref. [15] the author made the assumption that the layers will keep merging until
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the merging growth rate goes to 0 at the critical density ratio Rcr
ρ = 4.95 shown in Fig. 7(a). This

leads the author to the conclusion that all interface density ratios Rρ will reach the value of Rcr
ρ in

the equilibrium state.
This assumption is violated in our system due to the action of the restoring force employed in

the simulation to prevent complete destruction of the model thermocline: The restoring force in
(B3), which serves to “trap” the staircase on the model thermocline, will act to suppress any form of
instability by appearing as a negative constant term in the eigenvalue matrix. In this special case of
layer merging instability, the variation of the temperature in convectively mixed layers will lead to
the same degree of temperature (same argument applies for salinity equation) change in both nearby
interfaces ��2 and ��1 of the opposite sign, and thus the change of A = (��2 − ��1)/��I

will be suppressed by the restoring force with twice the strength. This leads to the conclusion that
the true growth rate of merging instability in the presence of the restoring force must be reduced
by a constant that equals 2R0 = 2×10−5. In other words, the merging event can only occur if the
growth rate of merging instability exceeds 2R0 = 2×10−5. This explains why most of the interfaces
characteristic of the equilibrium state live near the contour line characterized by λ = 2×10−5 in
the stability diagram. The outliers of H1 and H6 should be expected to go through further merging
events since their growth rate exceeds 2R0, but such potential merging events will only happen after
a nondimensional simulation time of order 105.

As discussed above, the equilibrium state of our model is achieved when the restoring force
implemented in our system balances the growth of the layer merging instability. However, the value
of the restoring parameter R0 is still somewhat arbitrarily selected in our model and we have been
able to relate it only qualitatively to the upwelling and downwelling processes that serve to maintain
the existence of the thermocline on which such staircases are observed to be trapped (see our further
discussion in Appendix B). As a result, the relationship between the equilibrium state of our model
staircases and those of the real ocean remains somewhat unclear. Despite this caveat concerning the
equilibrium states of our model staircases, the following systematic relationship is found to hold for
any value of R0, namely that the HL − RI slope is always negative on the equal-growth-rate contour
line as illustrated on Fig. 7(b). As RI has been shown to be always higher in the high-gradient
region, the equilibrium HL is naturally lower there. In this way, we have answered the third question
proposed at the beginning of this subsection.

To summarize, we have been able to explain three important correlations that are observed to
be characteristic of our mean-field model simulations of salt fingering staircases, all related to the
comparisons between high-gradient regions and low-gradient regions. First, the layered structure
forms more quickly in the low-gradient region because the perturbation of the density ratio R′

ρ is
more sensitive to �′ and S′ in the low-gradient regions. Second, the layers merge more quickly in
the low-gradient region because the interface density ratios RI are generally lower there, which leads
to a higher growth rate of layer merging instability based on the theory of Ref. [15]. The lower RI

in the low-gradient regions derives from a lower background density ratio R̄ρ there, which is caused
by the tendency to realize a coarse balance of fluxes in regions of different gradients. Finally, the
layers equilibrate to a state such that the growth-rate of layer merging instability is balanced by
the restoring force that has been introduced in our system to restrain the overall diffusion on a
long timescale. In this equilibrium state, the step sizes HL are negatively correlated with RI as
characterized by the 2R0 contour line in 7(b), and thus the step sizes are generally higher in the
lower gradient region where RI is lower.

In our discussions above, we have illustrated the mechanism that leads to systematically higher
step sizes in the low gradient region by dynamically simulating the formation and evolution of
the thermohaline staircases in an inhomogeneous system. However, it is also worthwhile for us to
re-examine this phenomenon from a static perspective. In fact, the layering height for temperature
(same argument applies for the salinity field) in the layering state can be well approximated by the
relation HL = ��/�̄z, where �̄z is the background temperature gradient. It will be immediately
recognized from this expression that step sizes HL tend to be larger in lower gradient region, as
long as �� has similar values for different interfaces. Unfortunately, this assumption does not
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hold. In both our numerical simulations (shown in Fig. 5) as well as oceanographic observations
(e.g., Refs. [2,4]), �� is found to be much smaller in the low-gradient region than in the high-
gradient region. This is a consequence of the (quasi) flux balance that needs to be reached between
different interfaces: The high-gradient region has smaller diapycnal diffusivities at the interfaces
(induced by higher RI ) and thus it needs to have higher �� to support the required flux. As a
result, although background gradients tend to negatively influence the value of layer depth HL, a
complete explanation of the differences in HL must take the differences of RI into account, as we
have demonstrated above.

D. Comparison with oceanographic observations

As we have discussed in the introduction, it has been a routinely observed characteristic of
observational data sets that the thermohaline staircases have larger step sizes in a low-gradient
region than in a high-gradient region. In this subsection, our intention is to explain this observation
utilizing the results obtained in the simulation described above.

Among all of the different observations of staircases in the ocean, the best example that clearly
shows the layer merging events comes from the historical record of salt-fingering thermohaline
staircases in the Tyrrhenian Basin. Staircase data in the central part of the Tyrrhenian Sea basin
has been summarized and studied from 1973 to 1992 in Ref. [2], from 2007 to 2009 in Ref. [29],
and most recently from 2003 to 2016 in Ref. [30]. The layer-merging events are mainly captured in
the work of Ref. [2], where the temperature and salinity data for depth range 600–1600 m taken in
years 1973, 1979, 1987, and 1992 are specifically plotted and compared in Fig. 11(a) of Ref. [2].
The layers display consecutive merging through these years: The approximately 10-step staircase
in year 1973 evolves to an approximately six-step staircase in year 1979, and further evolves to an
(approximately) three-step structure in years 1987 and 1992. All of the staircase data in these four
years display significantly higher step sizes in the low-gradient region (850–1400 m) than in the
high-gradient region (650–850 m). This merging pattern greatly resembles the temperature profile
evolution in our simulation shown in Figs. 5(e)–5(h): The layered state is a more unstable state in
the low-gradient region compared to the high-gradient region and layers in the lower gradient region
merge more efficiently during the entire layer merging process. Since we have already understood
that the layers merge more quickly in the low-gradient regions (compared with high-gradient
regions) in our mean-field simulation due to the lower density ratio at the interfaces, we can expect
that the same mechanism is governing the layer merging events in the Tyrrhenian Basin. This is
indeed the case. For year 1973, utilizing the thermal expansion rate and haline contraction rate of
α = 2.1×10−4/ ◦ C, β = 7.7×10−4/psu [31], we calculate the average interface density ratio to be
1.32 in the high-gradient region (averaged over three interfaces between 750 and 850 m) and 1.03 in
the low-gradient regions (averaged over four interfaces between 850 and 1400 m). For later data in
year 1992, the density ratio has been evaluated by previous researchers (see TEMPO-4 data in Table
1 of Ref. [2]). The interface density ratio RI is approximately 1.5 for layers in the higher gradient
region and these are characterized by a much lower value of around 1.2 in the lower gradient region
that is deeper in the water column. The systematically lower interface density ratio in the lower
gradient region provides solid evidence in support of the explanation of these observations that our
analyses have provided.

In the most recent analysis of data for the period 2003–2016 in Tyrrhenian Basin [30], it has been
shown that the layering structure recorded above 2000 m depth has similar depth-size distribution
as that been observed in 1992 in Ref. [2], with no evidence of further massive layer merging events.
However, a systematic upward drift of the staircases is observed to occur, accompanied by smaller
steps formed below approximately 2000 m, since May 2010. Although the reason that leads to the
upward drift of the staircases remains to be explained, these newly formed smaller steps in the deep
ocean are expected to correspond to the initially formed layering stage of our simulation [Fig. 5(d)],
which not yet begun to merge and thus has much smaller steps compared with those in the fully
merged region.
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There exists other observational evidence for the layer merging process: For example, the
ITP profile data analyzed in Ref. [18] serendipitously included data characterizing a single layer
merging event in its entirety over a period of several days. However, the collected data lies in the
diffusive-convection regime for which it is generally believed that γ instability theory alone can not
provide a definitive explanation of the process of staircase formation (see discussions in Ref. [32],
for example). In the remainder of most cases of thermohaline staircases, the staircase structure has
been measured over a relatively short time period and it is therefore difficult for us to infer whether
the system lies in a state that is susceptible to further layer merging or the system has already reached
a relatively stable state in which no further layer merging events will occur. If the latter is the case,
our analyses may still provide useful insights: If the layer merging events are susceptible to a certain
type of suppression in the active ocean environment (turbulent stirring or large vertical shear, for
example) so that layer merging can only occur if the growth rate is sufficiently high, our analyses
demonstrate that the equilibrium step sizes have to be larger in regions with lower gradient. A more
detailed analysis of the interaction between staircase formation and internal waves, for example,
will be required in the process of building a fully robust understanding of thermohaline staircase
formation.

V. CONCLUSIONS

In this paper, we have developed a theoretical framework to enable analyses of the way in which
the γ instability theory proposed in Ref. [12] must be modified in a circumstance in which the
vertical gradients of temperature and salinity vary as a function of vertical position. Our theoretical
framework and mean field model simulation demonstrates that, while the evolution of thermohaline
staircases is still governed by the γ instability of Ref. [12] and the layer merging instability of
Ref. [15], a series of ubiquitous features begin to appear once the inhomogeneity of background
temperature and salinity gradients are considered. In the region that has lower gradient, the initial
layers form and merge more quickly and finally equilibrate to a state that has higher step sizes
compared with regions with relatively higher gradients. These observed differences have been
explained based on a detailed analysis utilizing the mathematical properties of the γ instability
and the layer merging instability. It has been shown that the difference in background density ratio
Rρ that is established by the coarse balance of vertical fluxes throughout the domain is the key to
understanding the results obtained for these different characteristics of the staircase in high- and
low-gradient regions. The structures that are observed in our mean field simulations are also found
in the observed time series data of thermohaline staircases in the Tyrrhenian Basin. A detailed
comparison of interface density ratios revealed that the evolution of staircases in the Tyrrhenian
Basin fits exactly to our detailed scenario for staircase formation and evolution.

It must be recognized, however, that our mean-field simulations are based on a series of idealized
assumptions. In particular, we have assumed that a one-dimensional mean field analysis should
provide an adequate explanation of the governing dynamical processes which explicitly ignores
the possible influence of horizontal gradients, for example. We have also assumed that this one-
dimensional thermocline is maintained by the restoring force that is specifically chosen in our
model, while in reality the maintenance of the tropical thermocline relies on the circulation driven by
the complex interaction of buoyancy and winds. Furthermore, we have not included the influence of
any external forcing or background turbulent mixing in the model. Although our simulation works
well in providing qualitatively accurate explanations for the mechanism that leads to higher steps in
the lower gradient regions, we cannot expect a simulation of this kind to fully capture the details of
thermohaline staircases in the ocean. In fact, the interface density ratio in our mean field simulation
obtains much higher values of 2–4 compared with oceanographically observed values of 1.1–1.8,
which is a consequence of the lack of a parametrization for background turbulent mixing. The
entire evolution of our mean field simulation for 100 000 nondimensional time units corresponds
to a physical timescale of approximately 2 years, which is still somewhat faster than the observed
layer merging events described in Ref. [2]. For the purpose of more fully describing the detailed
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dynamics of staircase formation in the oceans, high-resolution basin scale models (see the example
of Ref. [16]) should be employed together with an accurate representation of different sources of
vertical and horizontal mixing.
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APPENDIX A: INDIVIDUAL INFLUENCES OF NONZERO A3, A�, AND AS IN THE LINEAR
STABILITY ANALYSIS OF A MORE GENERALLY INHOMOGENEOUS SALT-FINGERING

ENVIRONMENT

Although we have shown in the main text that the terms that are associated with variation of the
temperature and salinity gradients (A3, A�, and AS) are all canceled in the linear stability analysis
for our simulation initialized with hyperbolic tangent profiles for both salinity and temperature, it
is still meaningful for us to specifically study the influence of each of these terms for more general
cases. It should be noticed that {A1, A2, A3, AS, A�, R̄ρ} are all dependent on the vertical coordinate
z in a vertically inhomogeneous system. However, it will be illuminating to first study the special
case in which these parameters are assumed to be depth independent. In this case, (12) will be
simplified into an eigenvalue problem governed by a 2×2 matrix after expanding the perturbation
fields into normal modes of the form eλt+ikz as in the previous subsection. The eigenvalue equation
can be solved numerically for each given set of these parameters together with an assumed vertical
wave number k.

In the case where A3 = AS = A� = 0, the system returns to the case we have described in
the Sec. III A, in which growth rate is plotted as the black curve in Fig. 8(a). The growth rate is
proportional to the square of the vertical wave number, which is due to the presence of the ultra-
violet catastrophe in current γ instability theories. The depth variation of temperature and salinity
gradients introduces new terms A3, AS , and A� into our model. Their influences are illustrated in
Fig. 8(a): The functional dependence of fastest growth rate λ on k is plotted in the case in which
only one of these three parameters are turned on to 1 (the absolute value does not matter but simply
sets the scale for k, and the negative value has the same growth rate by symmetry) and the others
are set to 0. The parameters AS and A� have exactly the same influence on the curve and therefore
they are represented by the same curve in Fig. 8(a). In the large-k regions (k � A3 or k � A�), the
growth rate is quadratically dependent on k for the case of both nonzero A3 and nonzero AS , since
the perturbations growing at the high order will not be sensitive to the depth variations which are
relatively low order and the behavior of classical γ instability still governs the system. Perturbations
growing at the value of k that is smaller or similar to the scales of depth variations (k � A3 or
k � A�), on the other hand, begin to express their influences through A3, AS , and A�. Specifically,
A3 tends to enhance the γ instability while AS and A� act so as to suppress the instability, as can be
seen in the blue and red curves in Fig. 8(a). While Fig. 8(a) only shows the growth rate when the
criterion A1 > 0 is satisfied, we also plot the growth rate when A3 = 1, AS = A� = 0 in Fig. 8(b)
for the case of A1 = 0 and A1 < 0 [we use the values of A1 = 0.15, 0, and −0.15 to plot Fig. 8(b)].
Again, the system well obeys the properties of the classical γ instability theory in the large-k region:
The system is unstable for A1 > 0 and becomes stable for A1 � 0. In the small-k regions (k � A3),
however, the instability is determined by A3 and thus is independent of the sign of A1.

To summarize, consideration of the depth variations of temperature and salinity gradients only
significantly influence the stability of the system when the scales of the perturbations are close to
the length scale for depth variations. In reality (when there is no ultraviolet catastrophe), the largest
possible wave number should be truncated at the length scale below which the mean field equation
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(b)

(a)

FIG. 8. The real part of growth rate as a function of vertical wave number in the cases of (a) A1 > 0 and
only one of A3, At , and Aθ is set to 1 while others are 0; and (b) A3 = 1, At = Aθ = 0, and A1 = 0.15, −0.15,
or 0. Rρ is selected to be 1.5 and Nu(Rρ ) and γ (Rρ ) are chosen based on (1).

cease to be meaningful. Previous research reveals that such scale is more than an order of magnitude
larger than an individual finger width, which is approximately several meters. The depth variations
of temperature and salinity gradients in the main thermocline, on the other hand, are usually on the
order of 100 m. It is for this reason that the classical γ instability provides a more than adequate
description of the perturbations that grow in the environment of the main thermocline.

APPENDIX B: DISCUSSION OF THE IMPLICATIONS OF THE RESTORING FORCE
INCLUDED IN THE MEAN FIELD MODEL

As discussed in the main text, we have introduced a restoring force to balance the overall vertical
diffusion in the system so as to sustain the shape of our hyperbolic tangent shape profiles that
are employed to model the thermocline on which staircases are observed to be trapped. As we will
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demonstrate below, this term can be viewed as representing the influence of downwelling associated
with Ekman pumping from the surface mixed layer as well as the upwelling of deep water in the
mid-latitude ocean, with a properly chosen value for the restoring parameter R0.

In the following discussion, we will take the evolution of the background profile for potential
temperature as an example and the same argument applies for the salinity field. We first assume
that the diffusion term in our model is to be balanced by the advection term associated with the
upwelling and downwelling velocity w(z) as

∂�(z, t )

∂t
= K�

∂2�

∂z2
− w(z)

∂�

∂z
= 0. (B1)

We can derive the vertical velocity profile w(z) that is needed to balance the diffusion by substituting
the form of our background profile �(z) = ��tanh(z/h) to obtain

w(z) = K�

∂2�

∂z2

/
∂�

∂z
= −2

K�

h
tanh(z/h), (B2)

which is positive (represents upwelling) at the bottom half of the domain, negative (represents
downwelling) at the top half of the domain, and zero at the center of the domain.

An alternative way to balance the diffusion term is to introduce a restoring force R(z, t ) as we
have done in our paper and write

∂�(z, t )

∂t
= K�

∂2�

∂z2
− R0(z)[�(z, t ) − �(z, 0)]. (B3)

At t = 0, it is clear that this restoring term vanishes and thus the evolution of the system is governed
only by the diffusion term. After a short time period δt , the � profile can be estimated with a
first-order approximation as

�(z, δt ) ≈ �(z, 0) + δtK�

∂2�(z, 0)

∂z2
. (B4)

Thus, (B3) becomes

∂�(z, t = δt )

∂t
= K�

∂2�(z, δt )

∂z2
− R0(z)[�(z, δt ) − �(z, 0)]

≈ K�

∂2�(z, δt )

∂z2
− R0(z)δtK�

∂2�(z, 0)

∂z2
. (B5)

Since ∂2�(z,δt )
∂z2 ≈ ∂2�(z,0)

∂z2 , this balance can be approximately reached if we choose R0(z) = R0 =
1/δt (which suggests that R0 should be depth independent). Thus, R0 (or δt) represents the preset
timescale in our system that is needed for the balance to be achieved. Although the restoring force
acts as a replacement for the influence of upwelling and downwelling, the value of the timescale
of the restoring force R0 is independent of the strength of upwelling and downwelling. In fact, we
have to choose an appropriate value of R0 so that the strength of this restoring force is sufficient
to compete with the overall diffusion but small enough to avoid suppressing the growth of the
γ instability mode. Under the choice of the domain size and initial profiles, the nondimensional
value of K�

∂2�(z,0)
∂z2 in Eq. (B4) can be estimated to be of order 10−6. Thus, for the approximation

made in (B4) to be appropriate, the value of R0 = 1/δt needs to be much higher than this value.
Meanwhile, the value of R0 needs to be much smaller than the growth rate of the primary γ mode
λmax = 1.3×10−3, suggesting a relatively narrow range of parameter values is possible, namely,

10−6 � R0 � 10−3. (B6)

We have specifically chosen R0 = 10−5 in the simulation described in our main text.
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