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We use linear stability analysis to demonstrate how to stabilize multilayer radial Hele-
Shaw and porous media flows with a time-dependent injection rate. Sufficient conditions
for an injection rate that maintains a stable flow are analytically derived for flows with an
arbitrary number of fluid layers. We show numerically that the maximum injection rate
for a stable flow decreases proportional to t−1/3 for t � 1 regardless of the number of
fluid layers. However, the constant of proportionality depends on the number of layers and
increases at a rate that is proportional to the number of interfaces to the two-thirds power.
Therefore, flows with more fluid layers can be stable with faster time-dependent injection
rates than comparable flows with fewer fluid layers, even when the additional layers are
very thin. We also show that for unstable flows, which may be required to inject a given
amount of fluid in a fixed amount of time, an increasing injection rate is less unstable
than a constant or decreasing injection rate, and that the inclusion of more fluid layers can
overcome poor injection strategies.
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I. INTRODUCTION

There are many applications in which one fluid displaces another fluid in a porous medium,
including oil recovery, hydrology, filtration, and fixed bed regeneration in chemical processing.
In the case that the displacing fluid is less viscous than the displaced fluid, the interface between
the fluids is unstable and viscous fingering ensues. In some of the aforementioned applications,
several fluids with favorable properties are used in succession to displace the resident fluid in the
porous medium. An example of this is chemical enhanced oil recovery (EOR) in which various
tertiary displacement processes are employed to contain this instability to a meaningful level
before breakthrough (see Refs. [1–3]). Shah and Schechter [4] describe in detail many of the
processes involved in Alkali-Surfactant-Polymer (ASP) flooding, a type of chemical EOR, that lead
to improved oil recovery. Slobod and Lestz [5] experimentally studied the effect of two types of
flooding processes on stabilization in a Hele-Shaw cell. The first flooding process involved the use
of a sequence of polysolutions (polymer mixed with an aqueous phase) having different constant
viscosities with stepwise jumps in viscosity at each of the fronts that are positive in the direction of
displacement. The study resulted in significant stabilization of the fingering instability.

In what follows, we consider the case in which the injected fluids are all immiscible. In some
EOR flooding schemes, it is possible that an aqueous phase-based liquid is displacing a different
aqueous phase liquid. In such a case, a thin layer of spacer fluid of some nonaqueous phase liquid
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(NAPL) between such miscible phases can be used to ensure immiscibility [6]. Alternatively, the
injected fluid layers themselves can alternate between aqueous phases and NAPLs.

Viscous fingering in porous media flows [7] is often studied using the Hele-Shaw model in which
there is a sharp interface between immiscible fluids. The influence of heterogeneity in porous media
is nontrivial and is difficult to account for with the Hele-Shaw model. Therefore, the Hele-Shaw
model is more directly relevant to homogeneous porous media. A linear stability analysis of viscous
fingering within the Hele-Shaw model was performed by Saffman and Taylor [8]. They studied the
case in which the fluid moves linearly and orthogonal to a planar interface. We refer to this flow
configuration as rectilinear flow. An appropriate model for flow near an injection or production well
is radial flow. The stability of radial Hele-Shaw flows was studied by Bataille [9] and Wilson [10]
and was later developed further by Paterson [11].

There are several different strategies that have been used to control or minimize the viscous
fingering instability. One class of techniques involves adjusting the geometry of the classical Hele-
Shaw cell. An example is the tapered Hele-Shaw cell in which the plates are not parallel but instead
there is a gradient in the gap thickness. The effects of the tapered cell on the instability of the
interface has been studied analytically, numerically, and experimentally in the rectilinear [12–16]
and radial [15,17–20] geometries. Other modifications to the classical Hele-Shaw cell that impact
the stability include rotating the cell [21–24], using an elastic membrane in place of one of the rigid
plates [25–29], and changing the gap width over time [30–32]. Another class of techniques used
to control the interfacial instability is to alter the properties of the fluids. This includes the use of
variable viscosity fluids [33–35], chemically reactive fluids [36] and non-Newtonian fluids [37,38].

In controlling the instability of Hele-Shaw and porous media flows, one of the simplest param-
eters to control is the rate at which fluid is injected. Thomé et al. [39] studied Hele-Shaw flow
in a sector geometry to bridge the gap between rectilinear and radial flow. They showed that a
self-similar finger can grow in the sector geometry with an injection rate proportional to t−1/3. This
was further studied in the sector geometry by Brener et al. [40], Ben Amar et al. [41], and Combescot
and Ben Amar [42]. The t−1/3 injection rate was studied numerically in the radial geometry by Li
et al. [43]. They showed analytically that the wave number of the most unstable wave (and hence the
number of fingers) can be made constant in time by using the t−1/3 injection rate. Through numerical
experiments, they demonstrated that the limiting shape of the interface is found to be independent
of the initial conditions. Zheng et al. [31] studied a class of time-dependent control strategies of
which the t−1/3 injection rate is a special case. The validity of the t−1/3 injection rate for producing
self-similar solutions has also been explored numerically in the context of miscible flows [44] and
a time-dependent gap width [20].

Another avenue of research involving time-dependent injection rates is attempting to minimize
or completely suppress the viscous fingering instability. In the case of miscible flow in the quarter
five-spot geometry, Chen and Meiburg [45] found that starting with a slow constant injection rate
and then smoothly increasing the injection rate resulted in greater recovery (in the context of
EOR) than a constant injection rate with the same average rate. Yuan and Azaiez [46] found that
a piecewise constant injection scheme could reduce the fingering instability in comparison to a
constant injection scheme for miscible flows in a rectilinear geometry. This came after Dias et al.
[47] had shown that a similar strategy could reduce the size of fingers in the case of immiscible
flow in a radial geometry. Also in the context of immiscible radial flow, Dias et al. [48] studied
the optimal injection policy for a given average injection rate and found that a linearly increasing
injection rate approximates the optimal injection rate. Huang and Chen [49] verified the success of
a linearly increasing injection rate for a broader range of parameters than Ref. [48] and showed that
these results do not hold for miscible flow. Going a step further than this is completely stabilizing
the flow using a time-dependent injection rate. Beeson-Jones and Woods [50] found the maximum
possible time-dependent injection rate for a stable radial Hele-Shaw flow.

Increasing the number of fluid layers can also be an effective means of controlling viscous
fingering. This strategy is motivated by the various flooding schemes used in chemical EOR.
However, there have been relatively few stability studies on flows with more than two fluid layers.
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Of the existing studies, the majority are in the rectilinear geometry. Daripa [51] studied three-layer
rectilinear Hele-Shaw flows and derive a formula for a critical value of the viscosity of the middle
layer fluid that minimizes the bandwidth of unstable waves. Daripa also formulated the stability
problem for rectilinear Hele-Shaw flows with an arbitrary number of fluid layers [52]. In that paper,
the Rayleigh quotient and some inequalities are used to derive upper bounds on the growth rate of
instabilities. Cardoso and Woods [53] studied three-layer flows in both the rectilinear and radial flow
geometries. For radial flows, they considered flows in which the inner interface is stable and used
the linear theory to predict the number of drops formed when the interfaces meet. Ward and White
[54] performed experiments for three-layer radial flows in which a liquid composes the intermediate
layer between two gases. Thus, in contrast to Ref. [53], the outer interface is stable. White and Ward
[55] followed up this work by considering the same problem with a non-Newtonian fluid in the
intermediate layer. Gin and Daripa [56] performed a linear stability analysis of multilayer (i.e.,
more than two-layer) radial flows in which all of the interfaces are unstable. They studied flows
with an arbitrary number of fluid layers. Beeson-Jones and Woods [50] studied three-layer radial
flow and used linear stability to find the optimal value of the viscosity of the intermediate fluid
to inject fluid at the fastest rate possible while maintaining a stable flow. Recently, Anjos and Li
[57] performed a weakly nonlinear analysis of three-layer radial flows. This was followed up by
nonlinear simulations of three-layer radial flow by Zhao et al. [58].

With all the different types of control strategies described above, it is important to study the
interplay between them. Some notable examples of studies that have looked at the interaction
between multiple control strategies include Dias and Miranda [59], who studied radial flows in a
tapered Hele-Shaw cell in which the gap width is time dependent, and Morrow et al. [20] who
studied a wide variety of control strategies, including time-dependent injection, time-dependent gap
width, and tapered and rotating Hele-Shaw cells. In the present paper, we consider the interplay
between time-dependent injection strategies and the use of more than two fluid layers. To date, this
has only been studied in a limited capacity. Time-dependent injection was considered for multilayer
flow by Ward and White [54] and White and Ward [55]. These works were experimental and, as
previously stated, involved three-layer flows in which only one interface was unstable. The only
known analytical study of time-dependent injection for multilayer flow is Beeson-Jones and Woods
[50]. Again, this work only considers three-layer flow and the only time-dependent control strategy
considered is completely stabilizing the flow. Therefore, there is a need to study how time-dependent
injection schemes impact flows with more than three layers and how these strategies change as
additional fluids are added. Examining time-dependent injection strategies for flows with more
than three layers is the main thrust of this paper. In what follows, we derive a dynamical system
governing the linearized motion of interfaces for an arbitrary number of fluid layers. In contrast
to the previous work that considers radial flows with an arbitrary number of fluid layers [56], the
formulation in the present paper can be used to solve for the motion of each individual interface. We
then study the maximum injection rate which results in a stable Hele-Shaw flow with an arbitrary
number of interfaces. We provide analytically derived bounds on this injection rate and numerically
investigate how it changes with the number of fluid layers. Additionally, we numerically investigate
two different time-dependent injection strategies and demonstrate that a monotonically increasing
injection rate is less unstable than a comparable constant or monotonically decreasing injection rate.

The paper is laid out as follows. In Sec. II, the stability problem is formulated for multilayer
Hele-Shaw flows with an arbitrary number of fluid layers. The maximum time-dependent injection
rate that stabilizes a multilayer flow is analyzed in Sec. III. We provide analytically derived bounds
on this injection rate and investigate limiting cases. In Sec. IV, we numerically investigate how
the maximum injection rate for a stable flow changes with the number of fluid layers. We also show
numerically that the results of Ref. [48] about optimal injection strategies extend to multilayer flows
and that multilayer flows can overcome even bad injection strategies. Concluding remarks are given
in Sec. V.
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FIG. 1. The basic solution for (N + 2)-layer flow. The radius of the outermost interface is RN .

II. PRELIMINARIES

Consider a radial source flow consisting of (N + 2) regions of incompressible, immiscible fluid
in a Hele-Shaw cell. By averaging across the gap, we may consider two-dimensional flow in polar
coordinates, � := (r, θ ) = R2. The least viscous fluid with viscosity μi is injected into the center of
the cell at injection rate Q. The most viscous fluid, with viscosity μo, is the outermost fluid. There
are N internal layers of fluid with viscosity μ j for j = 1, . . . , N where μi < μ j < μo for all j. The
fluid flow is governed by the following equations:

∇·um = 0, ∇ pm = −μm

κ
um, for r �= 0, (1)

where κ = b2/12, and b is the width of the gap of the Hele-Shaw cell. The governing equations
hold within each fluid layer and the subscript m = i, 1, 2, ..., N, o denotes the fluid region (where
i denotes the innermost layer and o denotes the outermost layer). In what follows, we omit this
subscript for quantities or equations that apply to all fluid layers and when it will not cause
confusion to simplify the notation. The first equation, Eq. (1)1, is the continuity equation for
incompressible flow, and the second equation, Eq. (1)2, is Darcy’s law [60]. Initially, the fluids
are separated by circular interfaces with radii R = Rj (0), j = 0, ..., N , where Rj (t ) are the positions
of the interfaces at time t , and Tj are the corresponding interfacial tensions. This setup is shown in
Fig. 1.

The equations admit a simple basic solution in which all of the fluid moves outward radially
with velocity u := (ur, uθ ) = (Q/(2πr), 0). The interfaces remain circular and move outward with
velocity Q/(2πRj (t )). The pressure, p = p(r), may be obtained by integrating Eq. (1)2.

We scale the variables using the characteristic length RN (0), the characteristic interfacial tension
TN , and the characteristic viscosity μo. The characteristic injection rate Qref is the injection rate at
which a single interface at RN (0) with interfacial tension TN and for which a fluid with viscosity
μo is displaced by an inviscid fluid becomes unstable to a disturbance with wave number 2 (see
Ref. [50]). Therefore,

Qref = 12πκTN

RN (0)μo
, (2)
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Q∗ = Q

Qref
, (3)

r∗ = r

RN (0)
, (4)

μ∗ = μ

μo
, (5)

t∗ = 12κTN

R3
N (0)μo

t, (6)

u∗ = R2
N (0)μo

12κTN
u, (7)

p∗ = RN (0)

12TN
p, (8)

T ∗ = T

TN
. (9)

In these dimensionless variables, Eqs. (1) become

∇∗ · u∗ = 0, ∇∗ p∗ = −μ∗u∗, for r∗ �= 0, (10)

and the velocity of the basic solution is u∗ = (Q∗/(2r∗), 0). With a slight abuse of notation, we
drop the stars below for convenience. We perturb the basic solution (ur, uθ , p) by (ũr, ũθ , p̃). Since
Eqs. (10) are linear, the disturbances satisfy the same equations. Therefore,

∂ ũr

∂r
+ ũr

r
+ 1

r

∂ ũθ

∂θ
= 0,

∂ p̃

∂r
= −μũr,

1

r

∂ p̃

∂θ
= −μũθ . (11)

We use separation of variables and assume that the disturbances are of the form

(ũr, ũθ , p̃) = ( f (r), τ (r), ψ (r))g(t )einθ . (12)

Using Eq. (12) in Eqs. (11) yields the following ordinary differential equation for f (r):

(r3 f ′(r))′ − (n2 − 1)r f (r) = 0. (13)

The above equation is exact since there has been no linearization in its derivation.
Next we derive the boundary conditions for this equation from linearization of the dynamic

interfacial boundary conditions. Let the disturbance of the interface located at Rj (t ) be given by
Aj

n(t )einθ . The linearized kinematic interface conditions are given by

dAj
n(t )

dt
= f (Rj )g(t ) − Aj

n(t )
Q

2R2
j

. (14)

The linearized dynamic interface condition (see Eq. (10) in Ref. [56]) at the innermost interface
located at R = R0 is

{ f (R0)(μi − μ1) + R0[μi( f −)′(R0) − μ1( f +)′(R0)]}g(t )

=
{

Qn2

2R2
0

(μ1 − μi ) − T0

12

n4 − n2

R3
0

}
A0

n(t ). (15)

The linearized dynamic condition at the outermost interface located at R = RN is

{ f (RN )(μN − 1) + RN [μN ( f −)′(RN ) − ( f +)′(RN )]}g(t )

=
{

Qn2

2R2
N

(1 − μN ) − 1

12

n4 − n2

R3
N

}
AN

n (t ). (16)
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For any intermediate interface at R = Rj , the dynamic condition is

{ f (Rj )(μ j − μ j+1) + Rj[μ j ( f −)′(Rj ) − μ j+1( f +)′(Rj )]}g(t )

=
{

Qn2

2R2
j

(μ j+1 − μ j ) − Tj

12

n4 − n2

R3
j

}
Aj

n(t ). (17)

Note that the dynamic interfacial condition on a three-dimensional interface involves two curvatures.
Here, this would mean including the curvature in the thin dimension in the dynamic interfacial
condition. This curvature arises due to contact line effects. In what follows, we have neglected this
curvature effect with the assumption that contact line effects on the stability results are insignificant.
This is done in most stability analyses of Hele-Shaw flows. However, Homsy [61] has addressed how
to modify the dynamic boundary condition for Hele-Shaw flows to account for contact line effects.

Using the fact that f (r) is a solution to the differential Eq. (13), the dynamic interface condition
Eq. (15) at the innermost interface becomes{

μi − μ1

(R0
R1

)2n + 1(R0
R1

)2n − 1

}
f (R0)g(t ) + 2μ1

(R0
R1

)n−1(R0
R1

)2n − 1
f (R1)g(t ) = F0A0

n(t ), (18)

where

F0 = Qn

2R2
0

(μ1 − μi ) − T0

12

n3 − n

R3
0

. (19)

Similarly, the dynamic interface condition Eq. (16) for the outermost interface reduces to⎧⎨⎩1 − μN

(RN−1

RN

)2n + 1(RN−1

RN

)2n − 1

⎫⎬⎭ f (RN )g(t ) + 2μN

(RN−1

RN

)n+1(RN−1

RN

)2n − 1
f (RN−1)g(t ) = FN AN

n (t ), (20)

where

FN = Qn

2R2
N

(1 − μN ) − 1

12

n3 − n

R3
N

, (21)

and the dynamic interface conditions at the intermediate interfaces are⎧⎨⎩−μ j

(Rj−1

Rj

)2n + 1(Rj−1

Rj

)2n − 1
− μ j+1

( Rj

R j+1

)2n + 1( Rj

R j+1

)2n − 1

⎫⎬⎭ f (Rj )g(t )

+ 2μ j

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1
f (Rj−1)g(t ) + 2μ j+1

( Rj

R j+1

)n−1( Rj

R j+1

)2n − 1
f (Rj+1)g(t ) = FjA

j
n(t ), (22)

where

Fj = Qn

2R2
j

(μ j+1 − μ j ) − Tj

12

n3 − n

R3
j

, j = 1, . . . , N − 1. (23)

Equations (18), (20), and (22) can be written as a system of equations of the form

M̃N (t )

⎛⎝ f (R0)g(t )
...

f (RN )g(t )

⎞⎠ =
⎛⎝F0A0

n(t )
...

FN AN
n (t )

⎞⎠,
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where M̃N (t ) is the (N + 1) × (N + 1) tridiagonal matrix with entries indexed by i, j = 0, ...N
given by

(M̃N (t ))00 = μi − μ1

(R0
R1

)2n + 1(R0
R1

)2n − 1
, (M̃N (t ))01 = 2μ1

(R0
R1

)n−1(R0
R1

)2n − 1

(M̃N (t )) j, j−1 = 2μ j

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1
, (M̃N (t )) j, j = −μ j

(Rj−1

Rj

)2n + 1(Rj−1

Rj

)2n − 1
− μ j+1

( Rj

R j+1

)2n + 1( Rj

R j+1

)2n − 1
,

(M̃N (t )) j, j+1 = 2μ j+1

( Rj

R j+1

)n−1( Rj

R j+1

)2n − 1
, (M̃N (t ))N,N−1 = 2μN

(RN−1

RN

)n+1(RN−1

RN

)2n − 1
,

(M̃N (t ))N,N = 1 − μN

(RN−1

RN

)2n + 1(RN−1

RN

)2n − 1
. (24)

Combining this system of equations with the linearized kinematic interface conditions yields the
dynamical system governing the evolution of interfacial disturbances for multilayer flows,

d

dt

⎛⎝A0
n(t )
...

AN
n (t )

⎞⎠ = MN (t )

⎛⎝A0
n(t )
...

AN
n (t )

⎞⎠, (25)

where

MN (t ) = M̃−1
N (t )

⎛⎝F0 . . . 0
...

. . .
...

0 . . . FN

⎞⎠ − Q

2

⎛⎜⎝
1

R2
0

. . . 0
...

. . .
...

0 . . . 1
R2

N

⎞⎟⎠. (26)

For the particular case of N = 1 (i.e., three-layer flow), the matrix M̃1 is a 2 × 2 matrix and can
be easily inverted and plugged into Eq. (26) to obtain the matrix M1(t ) with entries indexed by
i, j = 0, 1 given by

(M1(t ))00 =
{
(1 + μ1) − (1 − μ1)

(R0
R1

)2n}
F0

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
− Q

2R2
0

,

(M1(t ))01 = 2μ1
(R0

R1

)n−1
F1

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
,

(M1(t ))10 = 2μ1
(R0

R1

)n+1
F0

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
,

(M1(t ))11 =
{
(μ1 + μi ) + (μ1 − μi )

(R0
R1

)2n}
F1

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
− Q

2R2
1

. (27)

Note that these entries are time dependent because the radii R0 and R1 are time dependent as well as
possibly the injection rate Q. Hence the matrix M1(t ) is time dependent. Accounting for differences
in notation and scaling, this matrix agrees with the one derived in Ref. [50].
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III. MAXIMUM INJECTION RATE FOR A STABLE FLOW

Traditionally, the injection rate Q for a radial Hele-Shaw flow is taken to be constant. However, in
the formulation above, the injection rate can be a function of time. There have been many studies that
have explored the implications of using a strategically chosen time-dependent injection rate (see, for
example, Refs. [31,43,48,50]). Almost all these studies are for two-layer flows with the exception
of Ref. [50], which considers three-layer flows. In this section, we extend some of these results to
flows with an arbitrary number of layers. In particular, we explore the time-dependent maximum
injection rate for which a particular flow is stable. This is important for many applications including
oil recovery, in which it is beneficial to stabilize the flow but it is also cost effective to inject as fast
as possible.

A. Two-layer flow

To set the stage for time-dependent injection rates for flows with many fluid layers, we very
briefly review a result that has already been established for two-layer flow in Ref. [50]. The
maximum dimensionless injection rate for which the disturbance with wave number n is stable,
which comes from setting the two-layer growth rate equal to zero and solving for the injection rate
Q, is

QM (n) = 1

6R

n(n2 − 1)

n(1 − μi ) − (1 + μi )
. (28)

The maximum time-dependent injection rate for which the flow is stable, which we denote by QM , is
found by taking the minimum of Eq. (28) over all values of n. It follows from inspecting Eq. (28) that
R · QM will be constant over time. By conservation of mass, the injection rate Q(t ) is proportional to
dR2/dt . It then follows that R · dR2/dt is constant or dt is proportional to R2dR. Upon integration,
R(t ) is proportional to t1/3. Hence, the injection rate QM is proportional to t−1/3 since R · QM is
constant.

B. Three-layer flow

We now wish to obtain a result analogous to Eq. (28) but for multilayer flows. The strategy
described above for two-layer flow does not work in this case because Q cannot be isolated when
setting the equation for the maximum growth rate for three-layer flow equal to zero. Additionally,
the fact that QM (n) is proportional to t−1/3 relies on the fact that R · QM (n) is constant [i.e., all
time-dependent terms can be moved to one side of Eq. (28)]. This cannot work for three-layer flows
because the growth rates depend on the radii of both interfaces (R0 and R1). Therefore, instead of
seeking an exact expression for QM (n) we look for bounds that ensure stability of the flow.

We start by considering three-layer flow. By Gershgorin’s circle theorem, both of the eigenvalues
of M1 will have a negative real part if the terms on the diagonal are negative and greater in absolute
value than the off-diagonal terms in the same row. This condition is satisfied if the following two
inequalities hold:

Q

2R2
0

�
{
(1 + μ1) − (1 − μ1)

(R0
R1

)2n}
F0 + 2μ1

(R0
R1

)n−1
F1

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
,

Q

2R2
1

�
{
(μ1 + μi ) + (μ1 − μi )

(R0
R1

)2n}
F1 + 2μ1

(R0
R1

)n+1
F0

(μ1 − μi )(1 − μ1)
(R0

R1

)2n + (μ1 + μi )(1 + μ1)
. (29)

Recall from Eqs. (19) and (21) that both F0 and F1 depend on Q. By using Eqs. (19) and (21)
in Eqs. (29) and solving for Q, the following condition on the injection rate is obtained which is
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sufficient to ensure that the eigenvalues of M1 have negative real parts:

Q � min{G0(n), G1(n)}, (30)

where

G0 = T0

6R0

(n3 − n)D0

nD1 − D2
, (31)

G1 = 1

6R1

(n3 − n)D3

nD4 − D2
, (32)

D0 = (1 + μ1) + 2μ1T −1
0

(
R0

R1

)n+2

− (1 − μ1)

(
R0

R1

)2n

, (33)

D1 = (1 + μ1)(μ1 − μi ) + 2μ1(1 − μ1)

(
R0

R1

)n+1

− (1 − μ1)(μ1 − μi )

(
R0

R1

)2n

, (34)

D2 = (1 + μ1)(μ1 + μi ) + (1 − μ1)(μ1 − μi )

(
R0

R1

)2n

, (35)

D3 = (μ1 + μi ) + 2μ1T0

(
R0

R1

)n−2

+ (μ1 − μi )

(
R0

R1

)2n

, (36)

D4 = (1 − μ1)(μ1 + μi ) + 2μ1(μ1 − μi )

(
R0

R1

)n−1

+ (1 − μ1)(μ1 − μi )

(
R0

R1

)2n

. (37)

Therefore, the maximum injection rate for which a disturbance with wave number n is stable, QM (n),
is bounded below by the right-hand side of Eq. (30):

QM (n) � min{G0(n), G1(n)}. (38)

Considering all wave numbers, the maximum injection rate, QM , for which the flow is stable satisfies

QM � min
n∈N

{min{G0(n), G1(n)}}. (39)

Note that the only terms in the expressions for G0 and G1 that are time dependent are R0 and R1.
As time increases, the interfaces come closer to each other and R0/R1 → 1 as t → ∞. Therefore,
from Eqs. (31) and (32), G0 ∝ 1/R0 and G1 ∝ 1/R1 as t → ∞. This is precisely the relationship
between Q and R in Eq. (28). Therefore, if the injection rate is chosen such that Q = G0 or Q = G1

then Q ∝ t−1/3 for t � 1.

Limiting cases

We now investigate the condition Eq. (30) in the limit when the intermediate layer is very thin
(R0/R1 → 1). Note that as fluid is injected for any three-layer Hele-Shaw flow, the average distance
between the interfaces, R1 − R0, decreases with time. Therefore, even if the interfaces are initially
far apart, the intermediate layer will eventually become thin. In the limit as R0/R1 → 1, Eq. (31)
becomes

lim
R0
R1

→1
G0(n) = 1

6R0

(n3 − n)(T0 + 1)

n(1 − μi ) − (1 + μi )
. (40)

Likewise,

lim
R0
R1

→1
G1(n) = 1

6R1

(n3 − n)(T0 + 1)

n(1 − μi ) − (1 + μi )
. (41)
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Since we are considering the limit as R0/R1 → 1, it is also true that R0 → R1. If we denote R := R1,
then

lim
R0
R1

→1
G0(n) = lim

R0
R1

→1
G1(n) = 1

6R

(n3 − n)(T0 + 1)

n(1 − μi ) − (1 + μi )

and the condition Eq. (30) becomes

Q � 1

6R

(n3 − n)(T0 + 1)

n(1 − μi ) − (1 + μi )
. (42)

After some algebraic manipulation, this condition becomes

Qn

2R2

1 − μi

1 + μi
− Q

2R2
− (T0 + 1)

1 + μi

(n3 − n)

12R3
� 0. (43)

The term on the left-hand side is precisely the two-layer growth rate for a single interface with
interfacial tension T0 + 1 (in dimensional variables this is T0 + T1, the sum of the interfacial tensions
of the two interfaces). This is the same thin-layer limit that was found for the exact three-layer
growth rate in Ref. [56]. The thin-layer limit can also be inferred from physical considerations. The
jump in pressure across the two interfaces in the thin layer limit is the sum of the pressure jumps
across each of the interfaces since the intermediate layer fluid is nonexistent. This is also reflected
in Eq. (43) due to the absence of the viscosity μ1 of the intermediate layer fluid. This explains, in
combination with Laplace’s law of surface tension, that the effective interfacial tension must be the
sum of the interfacial tensions of two interfaces.

Using a similar analysis of the thick-layer limit (R0 
 R1) for n > 2, a disturbance with wave
number n is stable if the injection rate Q is such that

Qn

2R2
0

μ1 − μi

μ1 + μi
− Q

2R2
0

− T0

μ1 + μi

(n3 − n)

12R3
0

� 0 (44)

and

Qn

2R2
1

1 − μ1

1 + μ1
− Q

2R2
1

− 1

1 + μ1

(n3 − n)

12R3
1

� 0. (45)

Equation (44) is the condition that the inner interface is stable according to its two-layer growth
rate, and Eq. (45) is the condition that the outer interface is stable according to its two-layer growth
rate. Therefore, as expected, in the limit of a thick intermediate layer the interfaces are decoupled
and the flow is stable if each interface is individually stable.

C. Multilayer flow

We now find sufficient conditions on the injection rate to stabilize a flow with an arbitrary number
of fluid layers. The approach used for three-layer flows in Sec. III B which uses Gershgorin’s circle
theorem can be adapted to flows with four or more layers by calculating the corresponding matrix
MN . However, to avoid inverting an (N + 1) × (N + 1) matrix, we adopt a different approach. In
Ref. [56, p. 22], upper bounds are found on the real part of the growth rate for flows with N internal
layers. This upper bound is the maximum of N + 1 expressions, each of which has terms that pertain
to the parameter values at one of the interfaces. From examining the upper bound, it can be seen that
a disturbance with wave number n will be stable if Ej � 0 for j = 0, 1, ..., N . Using a dimensionless
version of the upper bounds in Ref. [56], the relationship between Ej and Fj [see Eqs. (19), (21),
and (23)] is

E0 = nR2
0F0 − Qn

2
μi, Ej = nR2

j Fj, for j = 1, ..., N − 1, EN = nR2
N FN − Qn

2
. (46)
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Ej � 0 for all j if

Q � min

{
1

6R0

T0n(n2 − 1)

n(μ1 − μi ) − μi
, min

j=1,...,N−1

1

6Rj

Tj (n2 − 1)

μ j+1 − μ j
,

1

6RN

n(n2 − 1)

n(1 − μN ) − 1

}
. (47)

Therefore, a lower bound on the maximum stable injection rate QM is given by

QM � min
n∈N

{
min

{
1

6R0

T0n(n2 − 1)

n(μ1 − μi ) − μi
, min

j=1,...,N−1

1

6Rj

Tj (n2 − 1)

μ j+1 − μ j
,

1

6RN

n(n2 − 1)

n(1 − μN ) − 1

}}
. (48)

Notice the similarity between the terms in Eq. (48) and the expression for two-layer flows given by
Eq. (28).

The above approach can be used to obtain a bound on a stable injection rate for three-layer flows.
However, the approach taken in Sec. III B using Gershgorin’s circle theorem generally produces
sharper bounds. This is because the effects of the interfaces have been decoupled in Eq. (48).
Because the motion of the interfaces is inherently coupled, any bound that decouples them will
not be a sharp bound.

IV. NUMERICAL RESULTS

In this section, we first numerically explore the maximum injection rate for a stable flow. Then we
consider injection strategies that reduce instabilities for a given average injection rate by numerically
integrating the dynamical system Eq. (25) to compute the motion of the interfaces within the linear
theory and calculating the growth rates of interfacial disturbances. This system has a large parameter
space. The parameters involved in the problem include the viscosities of each fluid, the interfacial
tension of each interface, the injection rate, the initial positions of the interfaces, and the amplitude
and wave numbers of the initial perturbations of the interfaces. In this paper, we focus on the
injection rate. We have tested many values for the other parameters and have chosen values that
exhibit behavior that is typical across parameter space. The values of the parameters are given in the
various figure captions below.

All time stepping is performed using the Dormand-Prince method via MATLAB’s ode45, and
the maximum injection rate for a stable flow is found by using MATLAB’s built-in fzero command
to solve for the value of Q for which the maximum growth rate is zero.

A. Maximum injection rate for a stable flow

In this section, we investigate the maximum value of the injection rate that results in a stable
flow, which is denoted QM . This was studied analytically in Sec. III. For two-layer radial flow, the
maximum stable injection rate for a given wave number n and radius R of the circular interface is
given exactly by the expression Eq. (28). QM is found by taking the minimum value over all integer
wave numbers.

For flows with three or more layers, a lower bound on QM is calculated by minimizing the
expression Eq. (39) or (48) over all integer values of n and with the initial positions of the interfaces
Rj (0). Then the interfacial positions Rj (	t ) at the next time step 	t are calculated using this
injection rate and the process is repeated. To find QM exactly for three-layer flow (see Fig. 2), an
additional calculation is needed. There is no analytical expression for the maximum stable injection
rate for given values of n, R0, and R1 analogous to Eq. (28). Therefore, we use the expression for
σ+(t ) given in Ref. [56]. A root-finding method is used to find the value of Q such that σ+(t ) = 0.
A similar procedure is employed for flows with more than three layers, but the maximum growth
rate is calculated numerically from the matrix Mn(t ) in Eq. (26).

The maximum injection rate for which a certain two-layer flow is stable is given by the solid line
in Fig. 2. As a comparison, the maximum stable injection rate is calculated for a three-layer flow in
which the outer interface starts in the same position as the interface for two-layer flow, the viscosity
of the inner and outer layers are the same as the two-layer flow, and the intermediate layer has a
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FIG. 2. Plots of the maximum stable injection rate versus time for two-layer flow (solid line) and three-
layer flow (dashed line) as well as the lower bound for stabilization derived from Gershgorin’s circle theorem
and given by Eq. (39) (dotted line). The values of the parameters are μi = 0.2, μo = 1, T = 1, R(0) = 1 for
two-layer flow and μi = 0.2, μ1 = 0.6, μo = 1, T0 = T1 = 1, R0(0) = 0.8, R1(0) = 1 for three-layer flow.

viscosity which is greater than the inner layer and smaller than the outer layer. This is the dashed
line in Fig. 2. Note that the three-layer flow is stable for a much larger injection rate due to the fact
that the viscosity jumps at the interfaces are smaller. Also included in Fig. 2 is the lower bound
on the maximum stable injection rate given in Eq. (39). This is the dotted line in Fig. 2. Note that
for these particular values of the parameters, this bound, while not strict, allows for a significant
increase in the injection rate over two-layer flow.

In oil recovery applications, it is often expensive to include a more viscous intermediate fluid
instead of just using water to displace oil. Therefore, it would be economically advantageous if a
minimal amount of fluid could be used in the intermediate layer of a three-layer flow if it still allows
the flow to be stabilized at a faster injection rate. This behavior is investigated in Fig. 3. The solid

FIG. 3. Plots of the maximum stable injection rate versus time for two-layer flow (solid line) and three-layer
flow (dashed line) as well as the lower bound Eq. (39) for three values of R0. The values of the parameters are
μi = 0.2, μo = 1, T = 1, R(0) = 1 for two-layer flow and μi = 0.2, μ1 = 0.6, μo = 1, T0 = T1 = 1, R0(0) =
0.7, 0.8, 0.9, R1(0) = 1 for three-layer flow.
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(a) (b)

FIG. 4. Plots of the maximum stable injection rate versus time for flows with two through six fluid layers.
Plot (a) uses the lower bound given by Eq. (48) for flows with three or more layers while plot (b) shows the
actual maximum stable injection rate. The values of the parameters are μi = 0.2, μo = 1, Tj = 1 for all j,
R0(0) = 0.6, and RN (0) = 1. The interfaces are equally spaced at time t = 0 in all cases and the viscous jumps
are the same at all interfaces.

line is the maximum stable injection rate for two-layer flow using the same parameters as in Fig. 2.
This flow is compared with three-layer flows for which the inner interface is initially at R0(0) =
0.7, 0.8, 0.9. Notice that as the middle layer becomes thinner, the maximum stable injection rate
decreases. Recall from Sec. III B 1 that in the limit of an infinitely thin middle layer, the flow will
be stable when Q satisfies Eq. (42). The injection rate obtained by taking the minimum value of Q
over all n from Eq. (42) is also plotted against time as the thin-layer limit in Fig. 3. Equation (42)
is the same condition as the stable injection rate for two-layer flow but with effective interfacial
tension T0 + T1. Therefore, a three-layer flow with a very thin intermediate layer will be stable for
faster injection rates than the corresponding two-layer flow as long as the sum of the interfacial
tensions in the three-layer flow is greater than the interfacial tension of the two-layer flow. Note that
this does not depend on the viscosity of the intermediate fluid. The fact that the middle layer can be
very thin leads to the conclusion that the use of a thin layer of spacer fluid with desirable properties
can be a viable injection strategy.

We next compare estimates of the maximum stable injection rates using the lower bound Eq. (48)
to explore how the bound changes as the number of layers increases. Recall that Eq. (48) gives a
lower bound on the maximum stable injection rate for a flow with (N + 2) layers (or N internal
layers). This bound was computed for flows with three, four, five, and six layers and plotted in
Fig. 4(a). For comparison, the maximum injection rate which results in a stable flow is plotted for
two-layer flow [see Eq. (28)]. For all flows with more than one interface, the innermost interface has
an initial position of R0(0) = 0.6 and the other interfaces are evenly spaced at time t = 0. For all
flows, the innermost fluid has a viscosity of μi = 0.2, the outermost fluid has a viscosity of μo = 1,
and the viscosities of all intermediate layers are chosen so that the viscous jump at each interface
is the same. All interfaces have the same interfacial tension. In general, the addition of more fluid
layers increases the lower bound on the maximum stable injection rate. Intuitively, this is because
the jumps at the interfaces are smaller when there are more layers of fluid. The one exception is
three-layer flow which has a larger lower bound than four-layer flow for short time. This is due to
the fact that for three-layer flow, the lower bound on the maximum stable injection rate only includes
the first and last terms of Eq. (48), which has a different structure than the intermediate terms. For
flows with four or more layers and these parameter values, the intermediate terms produce the
minima.

In addition to considering approximations to the maximum stable injection rate from lower
bounds as discussed above, we also numerically compute the exact maximum stable injection rate
for multilayer flows. For these computations, a root finding algorithm is used to find the value
of Q that results in the maximum eigenvalue of the matrix MN [defined in Eq. (26)] being zero.
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FIG. 5. Plot of the maximum stable injection rate versus time for three-layer flow (solid line) as well as
the lower bound derived from Gershgorin’s circle theorem [see Eq. (39)] and the decoupled lower bound [see
Eq. (48)]. The values of the parameters are μi = 0.2, μ1 = 0.6, μo = 1, T0 = T1 = 1, R0(0) = 0.8, R1(0) = 1.

Figure 4(b) shows the maximum stable injection rates for flows with two, three, four, five, and six
layers. The parameters used are the same as in Fig. 4(a). A comparison of Figs. 4(a) and 4(b) shows
that the increase in the maximum stable injection rate from using additional layers of fluid is much
greater than what is suggested by the lower bounds. This is especially true for short times. For
example, for these values of the parameters the maximum stable injection rate at time t = 0 is more
than 16 times greater for six-layer flow than it is for two-layer flow.

A comparison of Figs. 4(a) and 4(b) shows that the lower bounds given by Eq. (48) are crude.
There is the potential to find analytical bounds which are sharper. In particular, the three-layer lower
bound Eq. (39) found using Gershgorin’s circle theorem gives a sharper bound than Eq. (48). One
reason that the bound given by Eq. (39) is better is because the interfaces remain coupled whereas in
the bounds given by Eq. (48) the interfaces have been decoupled. A bound for which the interfaces
are coupled has the ability to account for interactions between the interfaces and therefore has the
potential to be a sharper bound. Fig. 5 shows a comparison of the two bounds. The solid curve
shows the exact value of the maximum stable injection rate for the same three-layer flow considered
in Fig. 2. The dashed line is the lower bound given by Eq. (39) and the dotted line is the lower bound
given by Eq. (48). The difference between the two bounds is stark.

Recall from Sec. III A that Beeson-Jones and Woods [50] showed that for two-layer flow (i.e.,
single interface), the maximum stable injection rate scales like t−1/3 for t � 1. This also holds
true for flows with multiple interfaces. For flows with 1 through 30 interfaces, we calculated the
maximum stable injection rate from t = 0 to t = 100. For a subsample of these cases, the maximum
stable injection rates are shown on a log-log scale in Fig. 6(a). As in Fig. 4(b), the initial position
of the innermost interface is R = 0.6 and the initial position of the outermost interface is R = 1.
The interfaces are equally spaced and the viscous jumps at the interfaces are all the same with
μi = 0.2 and μo = 1. The interfacial tension is 1 for every interface. Note that after an initial period
of time, all curves are linear with the same slope. For each curve, we fit an exponential function
of the form Q(t ) = Ctα for t � 10. In all cases, the exponent of the best fit exponential function is
approximately α = −1/3, which matches with the analytically obtained scaling law for the single
interface case. However, the constant C increases with the number of interfaces. The values of C are
plotted versus the number of interfaces on a log-log scale in Fig. 6(b). The line of best fit through
the points is shown in the figure and has slope 2/3. Therefore, if NI is the number of interfaces,
C ∝ N2/3

I . Thus Q(t ) ∝ N2/3
I t−1/3 for t � 10.
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(a) (b)

FIG. 6. Plot (a) is the maximum stable injection rate versus time for several different numbers of interfaces
on a log-log scale. Each curve is of the form Q(t ) = Ct−1/3 for t � 1. Plot (b) shows C versus the number of
interfaces on a log-log scale. The values of the parameters are μi = 0.2, μo = 1, Tj = 1 for all j, R0(0) = 0.6,
and RN (0) = 1. The interfaces are equally spaced at time t = 0 in all cases and the viscous jumps are the same
at all interfaces.

This relationship between C and NI can be understood in the following way. First, notice that
the maximum stable injection rate for flow with a single interface is independent of the interfacial
tension T [see Eq. (28)]. However, the interfacial tension is part of both the characteristic injection
rate and the characteristic timescale. The dimensionless injection rate Q∗ is proportional to 1/T and
the dimensionless time t∗ is proportional to T . Therefore, since Q∗(t∗) ∝ (t∗)−1/3,

Q(t )

T
∝ (T t )−1/3 ⇒ Q(t ) ∝ T 2/3t−1/3.

Recall from Sec. III B 1 that when there are two interfaces, they will eventually be very close
together. In that limit, the maximum stable injection rate reduces to a term that is identical to a
single interface maximum stable injection rate but with interfacial tension equal to the sum of the
interfacial tensions of the two interfaces. Therefore, if both interfaces have the same interfacial
tension, the maximum stable injection rate with two interfaces will be greater than the comparable
single interface flow by a factor of 22/3. For NI interfaces, the long-time behavior is the same as
the single interface case where the single interface has interfacial tension equal to the sum of the
NI interfacial tensions. Therefore, if all of the interfaces have the same interfacial tension we would
expect that Q(t ) ∝ N2/3

I which agrees very well with the results of Fig. 6(a). We further verified
this by looking at the maximum stable injection rate for t � 1 for flows with different numbers
of interfaces, but where the sum of the interfacial tensions remained constant. In that case, the
maximum stable injection rate converged to Ct−1/3 for the same constant C for any number of
interfaces because the thin-layer limits are all the same.

In summary, the injection rate for a stable flow increases at a rate proportional to the number
of interfaces to the two-thirds power at large time t � 1. However, at earlier times the number of
interfaces can increase the maximum stable injection rate by a much greater amount.

B. Optimizing stability for a fixed mean injection rate

In the previous section, we considered the maximum injection rate for a fully stable flow.
However, in practical situations there may be some time constraint that does not allow for a slow
enough injection rate to fully stabilize the flow. Another approach to the problem is to consider the
case in which a certain amount of fluid needs to be injected in a fixed amount of time. The question
is which time-dependent injection rate Q(t ) will have the smallest growth rate of instabilities and
minimize the effects of viscous fingering. It may appear from the previous section that a decreasing
injection rate of the form Q(t ) ∝ t−1/3 would be optimal. However, Dias et al. [48] showed that
for a single interface, the optimal injection rate is approximated by an injection profile which
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(a) (b)

FIG. 7. The maximum growth rate σmax versus time for two-interface flows with (a) a relatively low
constant injection rate Q = 15, and (b) a relatively high constant injection rate Q = 200. The values of the
other parameters are μi = 0.2, μ1 = 0.6, μo = 1, T0 = T1 = 1, R0(0) = 0.5, and RN (0) = 1.

increases linearly with t . We propose that this strategy is also effective for multiinterface flows
for the following intuitive reasoning. Figure 7 shows the maximum growth rate σmax for two flows
that both have two interfaces and share the same parameters. The only difference is that the flow
represented by Fig. 7(a) has a low constant injection rate Q = 15 for which the flow is initially
stable and near the maximum stable injection rate during the duration of time that is plotted, and
the flow represented by Fig. 7(b) has a high constant injection rate Q = 200 which is unstable for
all time. Note that the slow flow in Fig. 7(a) has a maximum growth rate that increases with time
while the fast flow in Fig. 7(b) has a maximum growth rate that decreases with time. Therefore,
from Fig. 7(a) it makes sense that finding the maximum stable injection rate, which corresponds
to enforcing σmax = 0, results in a decreasing injection rate. Namely, a slow flow with constant
injection rate would become unstable over time, as in Fig. 7(a), and therefore a decrease in injection
rate is required to maintain stability. However, Fig. 7(b) shows that for an unstable flow, injecting
more quickly at the beginning would lead to instabilities growing very quickly initially. Therefore,
it makes sense to inject more slowly at the beginning and gradually increase the injection rate in
order avoid the initial behavior of Fig. 7(b).

We now demonstrate the effect of a variable injection rate on the motion of the interfaces
according to the linear theory. In all of the results that follow, the parameters are chosen so that the
jump in viscosity is the same across each interface and the unperturbed interfaces are initially evenly
spaced. Figure 8(a) shows the results for a three-layer flow with a constant injection rate in which the
interfaces are initially disturbed with white noise. The top plot shows the maximum growth rate over
time (solid blue curve) and the injection rate (dashed red curve). The bottom plot shows the positions
of the interfaces according to the linear theory at the beginning time t = 0 (solid blue curves), an
intermediate time t = 0.0125 (dashed red curves), and at the final time t = 0.025 (dotted magenta
curves). Figure 8(b) shows the results for a three-layer flow with the same parameters except that
the injection rate is linearly increasing, but with the same average injection rate as the constant
injection flow in Fig. 8(a). Notice that the maximum growth rate of disturbances for the linearly
increasing injection rate is less than that of the constant injection rate and therefore the interfaces
at the final time have a smaller disturbance. This effect is even stronger if more fluid layers are
added. A comparable four-layer flow is shown in Fig. 8(c). The injection rate for this four-layer
flow is linearly increasing and the flow is even less unstable than the three-layer flow with linearly
increasing injection rate. Although not shown, the maximum growth rate is even smaller if more
fluid layers are added.

An interesting feature of Fig. 8(b) is that the curve which represents the maximum growth rate
σmax versus time is not a smooth curve. This is because σmax(t ) is the maximum growth rate over
all integer values of the wave number n at time t . The curve has a discontinuous derivative with
respect to time when the wave number of the most unstable wave, which we denote nmax, changes.
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(a) (b) (c)

FIG. 8. The top row shows the maximum growth rate σmax versus time and the injection rate Q versus
time, and the bottom row shows the positions of the interfaces at the beginning, middle, and end times for
(a) a constant injection rate with two interfaces, (b) a linearly increasing injection rate with two interfaces, and
(c) a linearly increasing injection rate with three interfaces. The values of the parameters are μi = 0.2, μo = 1,
T0 = T1 = 1, R0(0) = 0.5, and RN (0) = 1.

Figure 9 shows nmax versus time. The times that nmax changes correspond to the places where σmax

has a jump in its derivative.
The effectiveness of controlling the viscous fingering instability by adding additional fluid layers

becomes evident when considering a suboptimal injection strategy. Figure 10 shows results that are

FIG. 9. Plot of the wave number nmax of the most unstable wave versus time for three-layer flow with
a linearly increasing injection rate. The values of the parameters are the same as Fig. 8(b) [μi = 0.2, μ1 =
0.6, μo = 1, T0 = T1 = 1, R0(0) = 0.5, R1(0) = 1].
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(a) (b) (c)

FIG. 10. The top row shows the maximum growth rate σmax versus time and the injection rate Q versus
time, and the bottom row shows the positions of the interfaces at the beginning, middle, and end times for
(a) a constant injection rate with two interfaces, (b) a decreasing injection rate with two interfaces, and (c) a
decreasing injection rate with three interfaces. The values of the parameters are μi = 0.2, μo = 1, T0 = T1 = 1,
R0(0) = 0.5, and RN (0) = 1.

the same as those in Fig. 8 except that the variable injection strategies use a decreasing injection
rate proportional to t−1/3. Figure 10(a) is the same constant injection flow that is shown in Fig. 8(a).
We repeat it for convenience. Figure 10(b) is a three-layer flow with a decreasing injection rate
chosen so that the average injection rate is the same as the constant injection flow. Notice that in this
case the variable injection rate causes the maximum growth rate to increase and the disturbances of
the interfaces at later times are larger than the comparable constant injection flow. The decreasing
injection rate is clearly a bad strategy. However, the addition of more fluid layers can help stabilize
the flow, even with this bad injection strategy. Figure 10(c) shows a four-layer flow with a decreasing
injection rate. With the addition of only one more fluid, the flow is less unstable than the three-layer
flow with a constant injection rate. This demonstrates the using additional fluid layers, even a modest
number, is a viable injection strategy even when the injection rate is chosen naively.

In this section, we numerically investigated two different time-dependent injection strategies.
First, we considered the maximum injection rate for which the flow is stable. We found that for any
number of fluid layers, the maximum stable injection rate is decreasing and proportional to t−1/3

for t � 1. Additionally, the fluid can be injected faster while maintaining stability if the number of
layers increases due to the sum of the interfacial tensions increasing. However, when considering a
scenario in which the flow cannot be stabilized, for example when a certain amount of fluid must
be injected in a given short amount of time, an increasing injection rate leads to a less unstable flow
than a constant or decreasing injection rate. Regardless of the injection strategy, adding even one
extra layer of fluid can significantly affect the stability.

V. CONCLUSION

In this paper, linear stability analysis is used to explore several different time-dependent injection
strategies that can be used to control the instability of multilayer immiscible Hele-Shaw and porous
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media flows. In applications like oil recovery, it can be advantageous to inject fluid as quickly as
possible while maintaining a stable flow. For two-layer flows, the maximum injection rate for which
a disturbance with a particular wave number is stable is given in Ref. [50]. A similar condition
is found in the present work for three-layer flows by using Gershgorin’s circle theorem. By using
upper bounds derived in Ref. [56], a sufficient condition on the injection rate to ensure stability is
found for a flow with an arbitrary number of fluid layers.

The maximum injection rate for a stable flow is then explored numerically. It is found that flows
with more fluid layers can be stable with faster injection rates than comparable flows with fewer
fluid layers, even when the intermediate fluid layers are very thin. It is shown that for flows with
an arbitrary number of fluid layers the maximum stable injection rate is proportional to t−1/3 for
t � 1 with the constant of proportionality being proportional to the number of interfaces raised to
the two-thirds power. We also show that when a certain amount of fluid must be injected in a fixed
amount of time, an increasing injection rate can produce a less unstable flow than a comparable
constant or decreasing injection strategy. Finally, we demonstrate that the addition of even a modest
number of additional fluids can overcome even a poor injection strategy.

There are several important future directions of study. This paper contains theoretical results
based on linear theory. Since the linear theory may fail after some time or at some length scale, it
is necessary to perform physical experiments as well as full numerical simulations to explore the
nonlinear effects. As evidenced by Ref. [58], which is a numerical study of three-layer flow with
constant injection, these studies are likely to be very interesting, and may be even more so when the
injection rate is time-dependent or the number layers is increased. The findings can be nontrivial and
can provide insights into the physics of such multi-interfacial flows. There is also room within the
linear theory to further explore the interfacial morphology and interactions between the interfaces,
especially when the number of interfaces is large. Finally, it would be interesting to analyze the
stability of multilayer radial flows with time-dependent injection in nonstandard geometries, such
as in tapered Hele-Shaw cells or when the gap width is time dependent. The effects of different
geometries would significantly alter the spectral problem which governs the growth of disturbances.
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APPENDIX: DERIVATIONS

In this Appendix, we give full derivations of the equations in Sec. II. The equations of motion
are given by Eqs. (1), which can be written as

∂ur

∂r
+ ur

r
+ 1

r

∂uθ

∂θ
= 0,

∂ p

∂r
= −μ

κ
ur,

1

r

∂ p

∂θ
= −μ

κ
uθ , for r �= 0. (A1)

Recall the scaling given by Eqs. (2)–(9):

Qref = 12πκTN

RN (0)μo
, Q∗ = Q

Qref
, r∗ = r

RN (0)
, μ∗ = μ

μo
,

t∗ = 12κTN

R3
N (0)μo

t, u∗ = R2
N (0)μo

12κTN
u, p∗ = RN (0)

12TN
p, T ∗ = T

TN
.

From these scalings, the following substitutions can be derived:

Q = QrefQ
∗ = 12πκTN Q∗

RN (0)μo
, (A2)

r = RN (0)r∗, (A3)
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∂

∂r
= ∂

RN (0)∂r∗ , (A4)

μ = μoμ
∗, (A5)

∂

∂t
= 12κTN

R3
N (0)μo

∂

∂t∗ , (A6)

u = 12κTN

R2
N (0)μo

u∗, (A7)

p = 12TN

RN (0)
p∗, (A8)

Tj = TN T ∗
j . (A9)

Using (A3), (A4), and (A7) in Eq. (A1)1,

12κTN

R2
N (0)μo

∂u∗
r

RN (0)∂r∗ + 12κTN

R2
N (0)μo

u∗
r

RN (0)r∗ + 1

RN (0)r∗
12κTN

R2
N (0)μo

∂u∗
θ

∂θ
= 0.

Dividing by the constant (12κTN )/(R3
N (0)μo) yields

∇∗ · u∗ := ∂u∗
r

∂r∗ + u∗
r

r∗ + 1

r∗
∂u∗

θ

∂θ
= 0. (A10)

Plugging (A4), (A5), (A7), and (A8) into Eq. (A1)2,

12TN

RN (0)

∂ p∗

RN (0)∂r∗ = −μoμ
∗

κ

12κTN

R2
N (0)μo

u∗
r .

Dividing by the constant 12TN/R2
N (0) gives

∂ p∗

∂r∗ = −μ∗u∗
r . (A11)

Plugging (A3), (A5), (A7), and (A8) into Eq. (A1)3,

1

RN (0)r∗
12TN

RN (0)

∂ p∗

∂θ
= −μoμ

∗

κ

12κTN

R2
N (0)μo

u∗
θ .

Dividing by the constant 12TN/R2
N (0) yields

1

r∗
∂ p∗

∂θ
= −μ∗u∗

θ . (A12)

Equations (A10)–(A12) can be collectively written as

∇∗ · u∗ = 0, ∇∗ p∗ = −μ∗u∗, for r∗ �= 0, (A13)

The original equations admit a simple basic solution in which all of the fluid moves outward radi-
ally with velocity u := (ur, uθ ) = (Q/(2πr), 0). The interfaces remain circular and move outward
with velocity dRj/dt = Q/(2πRj (t )) for j = 0, ..., N . Using Eqs. (A2), (A3), and (A7), the basic
solution u∗ in the scaled variables satisfies

12κTN

R2
N (0)μo

u∗ = 12πκTN Q∗

2πR2
N (0)μor∗ .

Dividing by the constant 12κTN/(R2
N (0)μo) gives

u∗ = Q∗

2r∗ . (A14)
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Equation (A3) implies that Rj (t ) = RN (0)R∗
j (t

∗) for all j. Using this along with Eqs. (A2) and (A6),
the circular interfaces of the basic solution move outward radially with velocity dR∗

j/dt∗ which
satisfy

12κTN

R2
N (0)μo

dR∗
j

dt∗ = 12πκTN Q∗

2πR2
N (0)μoR∗

j

.

Dividing by 12κTN/(R2
N (0)μo) gives

dR∗
j

dt∗ = Q∗

2R∗
j

. (A15)

For notational convenience, we drop the stars below.
We perturb the basic solution (ur, uθ , p) by (ũr, ũθ , p̃) where the disturbances are assumed to be

small. We plug these into Eqs. (A13) and only keep terms that are linear with respect to disturbances.
Since Eqs. (A13) are, in fact, linear, the disturbances satisfy the same equations. Therefore,

∂ ũr

∂r
+ ũr

r
+ 1

r

∂ ũθ

∂θ
= 0,

∂ p̃

∂r
= −μũr,

1

r

∂ p̃

∂θ
= −μũθ . (A16)

We use separation of variables and assume that the disturbances are of the form

(ũr, ũθ , p̃) = ( f (r), τ (r), ψ (r))g(t )einθ . (A17)

Using Eq. (A17) in Eq. (A16)1,

f ′(r)g(t )einθ + 1

r
f (r)g(t )einθ + in

r
τ (r)g(t )einθ = 0.

Simplifying,

f ′(r) + 1

r
f (r) + in

r
τ (r) = 0

and therefore,

τ (r) = i

n
( f (r) + r f ′(r)). (A18)

Next, we use Eq. (A17) in Eq. (A16)3 which yields,

in

r
ψ (r)g(t )einθ = −μτ (r)g(t )einθ .

Simplifying,

ψ (r) = irμ

n
τ (r). (A19)

Using Eq. (A18) in Eq. (A19),

ψ (r) = − rμ

n2
( f (r) + r f ′(r)). (A20)

We now cross-differentiate the pressure Eqs. (A16)2 and (A16)3. Taking ∂
∂θ

of Eq. (A16)2 and ∂
∂r

of Eq. (A16)3 yields

∂2 p̃

∂r∂θ
= −μ

∂ ũr

∂θ
,

∂2 p̃

∂θ∂r
= 1

r

∂ p̃

∂θ
− rμ

∂ ũθ

∂r
.

Setting these equal gives

−μ
∂ ũr

∂θ
= 1

r

∂ p̃

∂θ
− rμ

∂ ũθ

∂r
. (A21)
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We use the ansatz Eq. (A17) in Eq. (A21) and get

−i μ n f (r)g(t )einθ = in

r
ψ (r)g(t )einθ − rμτ ′(r)g(t )einθ .

Using Eqs. (A18) and (A19),

−i μ n f (r) = −μ
i

n
( f (r) + r f ′(r)) − rμ

i

n
(2 f ′(r) + r f ′′(r)).

With some algebraic manipulation, we get the following ordinary differential equation for f (r):

(r3 f ′(r))′ − (n2 − 1)r f (r) = 0. (A22)

The above equation is exact since there has been no linearization in its derivation.
Next we derive the boundary conditions for this equation from linearization of the kinematic and

dynamic interfacial boundary conditions. Let the disturbance of the interface located at Rj (t ) be
given by a j

n(t, θ ) = Aj
n(t )einθ . The linearized kinematic interface conditions (see Appendix A 1) are

given by

∂a j
n

∂t
= ũr (Rj ) − a j

n

Q

2R2
j

, (A23)

where ũr is continuous at r = Rj . Here, the interface condition has been taken at the linearized
position r = Rj . Using a j

n = Aj
n(t )einθ and the ansatz Eq. (A17) in Eq. (A23),

dAj
n(t )

dt
= f (Rj )g(t ) − Aj

n(t )
Q

2R2
j

. (A24)

The linearized dynamic interface condition (see Appendix A 1) at the innermost interface located
at R = R0 is {

p̃+(R0) − a0
n

Qμ1

2R0

}
−
{

p̃−(R0) − a0
n

Qμi

2R0

}
= T0

12

a0
n + ∂2a0

n
∂θ2

R2
0

,

where T0 is the interfacial tension of the inner interface and the superscripts + and – denote the
limits from above and below, respectively. Using a0

n = A0
n(t )einθ and the ansatz Eq. (A17),{

ψ+(R0)g(t )einθ − A0
n(t )einθ Qμ1

2R0

}
−
{
ψ−(R0)g(t )einθ − A0

n(t )einθ Qμi

2R0

}
= T0

12

1 − n2

R2
0

A0
n(t )einθ .

Using Eq. (A20),

− R0μ1

n2
( f (R0) + R0( f +)′(R0))g(t ) − A0

n(t )
Qμ1

2R0

+ R0μi

n2
( f (R0) + R0( f −)′(R0))g(t ) + A0

n(t )
Qμi

2R0
= T0

12

1 − n2

R2
0

A0
n(t ).

After some algebraic manipulation,

{ f (R0)(μi − μ1) + R0[μi( f −)′(R0) − μ1( f +)′(R0)]}g(t )

=
{

Qn2

2R2
0

(μ1 − μi ) − T0

12

n4 − n2

R3
0

}
A0

n(t ). (A25)

The linearized dynamic condition at the outermost interface located at R = RN is{
p̃+(RN ) − aN

n

Q

2RN

}
−
{

p̃−(RN ) − aN
n

QμN

2RN

}
= 1

12

aN
n + ∂2aN

n
∂θ2

R2
N

,
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where TN is the interfacial tension of the outermost interface. Using aN
n = AN

n (t )einθ and the ansatz
Eq. (A17), {

ψ+(RN )g(t )einθ − AN
n (t )einθ Q

2RN

}
−
{
ψ−(RN )g(t )einθ − AN

n (t )einθ QμN

2RN

}
= 1

12

1 − n2

R2
N

AN
n (t )einθ .

Using Eq. (A20),

− RN

n2
( f (RN ) + RN ( f +)′(RN ))g(t ) − AN

n (t )
Q

2RN

+ RNμN

n2
( f (RN ) + RN ( f −)′(RN ))g(t ) + AN

n (t )
QμN

2RN
= 1

12

1 − n2

R2
N

AN
n (t ).

After some algebraic manipulation,

{ f (RN )(μN − 1) + RN [μN ( f −)′(RN ) − ( f +)′(RN )]}g(t )

=
{

Qn2

2R2
N

(1 − μN ) − 1

12

n4 − n2

R3
N

}
AN

n (t ). (A26)

For any intermediate interface at R = Rj , the dynamic interface condition is{
p̃+(Rj ) − a j

n

Qμ j+1

2Rj

}
−
{

p̃−(Rj ) − a j
n

Qμ j

2Rj

}
= Tj

12

a j
n + ∂2a j

n
∂θ2

R2
j

,

where Tj is the interfacial tension of the interface at R = Rj . Using a j
n = Aj

n(t )einθ and the ansatz
Eq. (A17),{

ψ+(Rj )g(t )einθ− Aj
n(t )einθ Qμ j+1

2Rj

}
−
{
ψ−(Rj )g(t )einθ − Aj

n(t )einθ Qμ j

2Rj

}
= Tj

12

1 − n2

R2
j

A j
n(t )einθ .

Using Eq. (A20),

− Rjμ j+1

n2
( f (Rj ) + Rj ( f +)′(Rj ))g(t ) − Aj

n(t )
Qμ j+1

2Rj

+ Rjμ j

n2
( f (Rj ) + Rj ( f −)′(Rj ))g(t ) + Aj

n(t )
Qμ j

2Rj
= Tj

12

1 − n2

R2
j

A j
n(t ).

After some algebraic manipulation,

{ f (Rj )(μ j − μ j+1) + Rj[μ j ( f −)′(Rj ) − μ j+1( f +)′(Rj )]}g(t )

=
{

Qn2

2R2
j

(μ j+1 − μ j ) − Tj

12

n4 − n2

R3
j

}
Aj

n(t ). (A27)

Recall that f (r) satisfies Eq. (A22). Solutions of Eq. (A22) are of the form

f (r) =
⎧⎨⎩Ki,1rn−1 + Ki,2r−(n+1), r < R0

Kj,1rn−1 + Kj,2r−(n+1), Rj−1 < r < Rj, j = 1, ..., N
Ko,1rn−1 + Ko,2r−(n+1), r > RN .
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To ensure that the disturbances go to zero as r → ∞ and to avoid a singularity at r = 0, we require
that Ki,2 = 0 and Ko,1 = 0. Therefore,

( f −)′(R0) = (n − 1) f (R0)

R0
, ( f +)′(RN ) = − (n + 1) f (RN )

RN
. (A28)

The solution to Eq. (A22) for Rj−1 < r < Rj can also be written as

f (r) =
[

f (Rj )
(Rj−1

Rj

)n−1 − f (Rj−1)
](

r
R j−1

)−n−1 + [
f (Rj−1)

(Rj−1

Rj

)n+1 − f (Rj )
](

r
R j

)n−1(Rj−1

Rj

)2n − 1
, (A29)

for j = 1, ..., N . Taking a derivative of this function and evaluating at Rj−1 and Rj ,

( f +)′(Rj−1) = n

Rj−1

f (Rj−1)
[(Rj−1

Rj

)2n + 1
] − 2 f (Rj )

(Rj−1

Rj

)n−1(Rj−1

Rj

)2n − 1
− f (Rj−1)

Rj−1
,

( f −)′(Rj ) = − n

Rj

f (Rj )
[(Rj−1

Rj

)2n + 1
] − 2 f (Rj−1)

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1
− f (Rj )

Rj
. (A30)

Using Eqs. (A28)1 and (A30)1 with j = 1 in the interface condition Eq. (A25),⎧⎨⎩ f (R0)(μi − μ1) + μi(n − 1) f (R0) − μ1n
f (R0)

[(R0
R1

)2n + 1
] − 2 f (R1)

(R0
R1

)n−1(R0
R1

)2n − 1
+ μ1 f (R0)

⎫⎬⎭g(t )

=
{

Qn2

2R2
0

(μ1 − μi ) − T0

12

n4 − n2

R3
0

}
A0

n(t ).

Simplifying, {
nμi f (R0) − μ1n

f (R0)
[(R0

R1

)2n + 1
] − 2 f (R1)

(R0
R1

)n−1(R0
R1

)2n − 1

}
g(t )

=
{

Qn2

2R2
0

(μ1 − μi ) − T0

12

n4 − n2

R3
0

}
A0

n(t ).

After further algebraic manipulation,{
μi − μ1

(R0
R1

)2n + 1(R0
R1

)2n − 1

}
f (R0)g(t ) + 2μ1

(R0
R1

)n−1(R0
R1

)2n − 1
f (R1)g(t ) = F0A0

n(t ), (A31)

where

F0 = Qn

2R2
0

(μ1 − μi ) − T0

12

n3 − n

R3
0

. (A32)

Using Eqs. (A28)2 and (A30)2 with j = N in the interface condition Eq. (A26),{
f (RN )(μN − 1) − μN n

f (RN )
[(RN−1

RN

)2n + 1
] − 2 f (RN−1)

(RN−1

RN

)n+1(RN−1

RN

)2n − 1

−μN f (RN ) + (n + 1) f (RN )

⎫⎬⎭g(t ) =
{

Qn2

2R2
N

(1 − μN ) − 1

12

n4 − n2

R3
N

}
AN

n (t ).
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Simplifying, {
−μN n

f (RN )
[(RN−1

RN

)2n + 1
] − 2 f (RN−1)

(RN−1

RN

)n+1(RN−1

RN

)2n − 1
+ n f (RN )

}
g(t )

=
{

Qn2

2R2
N

(1 − μN ) − 1

12

n4 − n2

R3
N

}
AN

n (t ).

After further algebraic manipulation,⎧⎨⎩1 − μN

(RN−1

RN

)2n + 1(RN−1

RN

)2n − 1

⎫⎬⎭ f (RN )g(t ) + 2μN

(RN−1

RN

)n+1(RN−1

RN

)2n − 1
f (RN−1)g(t ) = FN AN

n (t ), (A33)

where

FN = Qn

2R2
N

(1 − μN ) − 1

12

n3 − n

R3
N

. (A34)

For the intermediate interfaces, we use Eq. (A30) in the interface condition Eq. (A27),⎧⎪⎨⎪⎩ f (Rj )(μ j − μ j+1) − nμ j

f (Rj )
[(Rj−1

Rj

)2n + 1
] − 2 f (Rj−1)

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1
− μ j f (Rj )

−nμ j+1

f (Rj )
[( Rj

R j+1

)2n + 1
] − 2 f (Rj+1)

( Rj

R j+1

)n−1( Rj

R j+1

)2n − 1
+ μ j+1 f (Rj )

⎫⎬⎭g(t )

=
{

Qn2

2R2
j

(μ j+1 − μ j ) − Tj

12

n4 − n2

R3
j

}
Aj

n(t ).

Simplifying, ⎧⎨⎩−nμ j

f (Rj )
[(Rj−1

Rj

)2n + 1
] − 2 f (Rj−1)

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1

−nμ j+1

f (Rj )
[( Rj

R j+1

)2n + 1
] − 2 f (Rj+1)

( Rj

R j+1

)n−1( Rj

R j+1

)2n − 1

⎫⎬⎭g(t )

=
{

Qn2

2R2
j

(μ j+1 − μ j ) − Tj

12

n4 − n2

R3
j

}
Aj

n(t ).

After further algebraic manipulation,⎧⎨⎩−μ j

(Rj−1

Rj

)2n + 1(Rj−1

Rj

)2n − 1
− μ j+1

( Rj

R j+1

)2n + 1( Rj

R j+1

)2n − 1

⎫⎬⎭ f (Rj )g(t )

+ 2μ j

(Rj−1

Rj

)n+1(Rj−1

Rj

)2n − 1
f (Rj−1)g(t ) + 2μ j+1

( Rj

R j+1

)n−1( Rj

R j+1

)2n − 1
f (Rj+1)g(t ) = FjA

j
n(t ), (A35)
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where

Fj = Qn

2R2
j

(μ j+1 − μ j ) − Tj

12

n3 − n

R3
j

, j = 1, . . . , N − 1. (A36)

Linearized interface conditions

First, we derive the linearized interface conditions in the original dimensional variables. Then
we will apply the scaling given by Eqs. (2)–(9) to obtain them in dimensionless form.

Let the disturbance of the interface located at Rj (t ) be given by a j
n(t, θ ). Therefore, the radial

position of the interface is η(t, θ ) = Rj (t ) + a j
n(t, θ ). The kinematic condition is given by

Dη

Dt
= u · n̂, r = η(t, θ ), (A37)

where D/Dt denotes the material derivative, u := (ur, uθ ) is the velocity in polar coordinates, and
n̂ denotes the unit vector which is normal to the interface. Using that η(t, θ ) = Rj (t ) + a j

n(t, θ ), the
left-hand side of this equation can be rewritten as

Dη

Dt
= dRj (t )

dt
+ Da j

n

Dt
= Q

2πRj
+ ∂a j

n

∂t
+ uθ

r

∂a j
n

∂θ
. (A38)

The unit normal vector is given by

n̂ =
(
1,− 1

r
∂η

∂θ

)√
1 + (

1
r

∂η

∂θ

)2
. (A39)

Using Eqs. (A38) and (A39), the kinematic condition Eq. (A37) is

Q

2πRj
+ ∂a j

n

∂t
+ uθ

r

∂a j
n

∂θ
= ur − uθ

r
∂η

∂θ√
1 + (

1
r

∂η

∂θ

)2
, r = η(t, θ ), (A40)

We expand each term that depends on r in a Taylor series about r = Rj . To do so, we first recall
that the velocity of the basic solution is (Q/(2πr), 0) and the disturbance of the velocity is (ũr, ũθ ).
Therefore, the components of velocity are

ur = Q

2πr
+ ũr, uθ = ũθ . (A41)

Using this expression for ur and that η(t, θ ) = Rj (t ) + a j
n(t, θ ), we get the following expression for

ur (η):

ur (η) = ur (Rj ) + a j
n

∂ur

∂r
(Rj ) + O

(∣∣a j
n

∣∣2) = Q

2πRj
+ ũr (Rj ) + a j

n

∂

∂r

( Q

2πr

)∣∣∣
r=Rj

+ a j
n

∂ ũr

∂r
(Rj ) + O

(∣∣a j
n

∣∣2).
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Keeping only terms that are linear with respect to disturbances,

ur (η) = Q

2πRj
+ ũr (Rj ) − a j

n

Q

2πR2
j

. (A42)

Likewise, the Taylor series expansion for uθ (η) about r = Rj is

uθ (η) = uθ (Rj ) + a j
n

∂uθ

∂r
(Rj ) + O

(∣∣a j
n

∣∣2) = ũθ (Rj ) + a j
n

∂ ũθ

∂r
(Rj ) + O

(∣∣a j
n

∣∣2).
Keeping only linear terms,

uθ (η) = ũθ (Rj ). (A43)

Plugging Eqs. (A42) and (A43) into Eq. (A40),

Q

2πRj
+ ∂a j

n

∂t
+ ũθ (Rj )

r

∂a j
n

∂θ
=

Q
2πRj

+ ũr (Rj ) − a j
n

Q
2πR2

j
− ũθ (Rj )

r
∂a j

n
∂θ√

1 + (
1
r

∂a j
n

∂θ

)2
, r = η(t, θ ),

where we used that ∂η/∂θ = ∂a j
n/∂θ . Linearizing with respect to the disturbances and canceling

like terms leads to the linearized kinematic interface condition:

∂a j
n

∂t
= ũr (Rj ) − a j

n

Q

2πR2
j

. (A44)

Next, we derive the linearized dynamic interface condition. The dynamic interface condition is

[p] = −Tj∇ · n̂, r = η(t, θ ), (A45)

where [p] denotes the jump in pressure across the interface and Tj denotes the interfacial tension.
Let pb denote the pressure of the basic solution and p̃ denote the disturbance of the pressure so that
p = pb + p̃. Using a Taylor series expansion about r = Rj , the pressure is given by

p(η) = p(Rj ) + a j
n

∂ p

∂r
(Rj ) + O

(∣∣a j
n

∣∣2)
= pb(Rj ) + p̃(Rj ) + a j

n

∂ pb

∂r
(Rj ) + a j

n

∂ p̃

∂r
(Rj ) + O

(∣∣a j
n

∣∣2).
We wish to evaluate the term [p] := limr→η+ p(r) − limr→η− p(r). We denote the pressure in the
fluid region immediately inside the interface as p− and the pressure in the fluid region immediately
outside the interface as p+. Then, using the Taylor series expansion above,

[p] = lim
r→R+

j

{
p+

b (r) + p̃+(r) + a j
n

∂ p+
b

∂r
(r) + a j

n

∂ p̃+

∂r
(r) + O

(∣∣a j
n

∣∣2)}

− lim
r→R−

j

{
p−

b (r) + p̃−(r) + a j
n

∂ p−
b

∂r
(r) + a j

n

∂ p̃−

∂r
(r) + O

(∣∣a j
n

∣∣2)}.

We then linearize this equation and use from Eq. (A1)2 that ∂ pb/∂r = −(Qμ)/(2πκr) to get

[p] = lim
r→R+

j

{
p+

b (r) + p̃+(r) − a j
n

Qμ(r)

2πκr

}
− lim

r→R−
j

{
p−

b (r) + p̃−(r) − a j
n

Qμ(r)

2πκr

}
. (A46)

Note that for the basic solution, the interface is circular with radius r = Rj , and therefore ∇ · n̂ =
1/Rj . Plugging this into the dynamic interface condition Eq. (A45),

[pb] = − Tj

R j
.
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Using this in Eq. (A46),

[p] = lim
r→R+

j

{
p̃+(r) − a j

n

Qμ(r)

2πκr

}
− lim

r→R−
j

{
p̃−(r) − a j

n

Qμ(r)

2πκr

}
− Tj

R j
. (A47)

Using Eq. (A39) for the unit normal vector, the curvature of the interface is

∇ · n̂ = 1

r

∂

∂r

⎛⎝ r√
1 + (

1
r

∂η

∂θ

)2

⎞⎠ + 1

r

∂

∂θ

⎛⎝−
1
r

∂η

∂θ√
1 + (

1
r

∂η

∂θ

)2

⎞⎠
= 1

r

⎧⎨⎩ 1√
1 + (

1
r

∂a j
n

∂θ

)2
+

1
r2

(
∂a j

n
∂θ

)2(
1 + (

1
r

∂a j
n

∂θ

)2) 3
2

−
1
r

∂2a j
n

∂θ2√
1 + (

1
r

∂a j
n

∂θ

)2
+

1
r2

(
∂a j

n
∂θ

)2 ∂2a j
n

∂θ2(
1 + (

1
r

∂a j
n

∂θ

)2) 3
2

⎫⎬⎭,

where we again used that ∂η/∂θ = ∂a j
n/∂θ . Linearizing with respect to the disturbances,

∇ · n̂ = 1

r
− 1

r2

∂2a j
n

∂θ2

∣∣∣∣
r=Rj+a j

n

.

We can expand this into a Taylor series about the point r = Rj to get

∇ · n̂ = 1

Rj
− a j

n

R2
j

− 1

R2
j

∂2a j
n

∂θ2
+ O

(∣∣a j
n

∣∣2).
Again, we keep only terms which are linear with respect to the disturbances. Using this equation
and Eq. (A47) in the interface condition Eq. (A45), we get

lim
r→R+

j

{
p̃+(r) − a j

n

Qμ(r)

2πκr

}
− lim

r→R−
j

{
p̃−(r) − a j

n

Qμ(r)

2πκr

}
− Tj

R j
= −Tj

(
1

Rj
− a j

n

R2
j

− 1

R2
j

∂2a j
n

∂θ2

)
,

which simplifies to

lim
r→R+

j

{
p̃+(r) − a j

n

Qμ(r)

2πκr

}
− lim

r→R−
j

{
p̃−(r) − a j

n

Qμ(r)

2πκr

}
= Tj

a j
n + ∂2a j

n
∂θ2

R2
j

. (A48)

Equations (A44) and (A48) are the linearized kinematic and dynamic interface conditions.
We now apply the scaling Eqs. (2)–(9) to obtain the linearized interface conditions in dimension-

less form. Note that since a j
n is a radial disturbance to the interface, Eq. (A3) implies that

a j
n = RN (0)

(
a j

n

)∗
, (A49)

where (a j
n)∗ denotes the dimensionless disturbance. For the linearized kinematic condition, we use

Eqs. (A2), (A3), (A6), (A7), and (A49) in Eq. (A44) to get

12RN (0)κTN

R3
N (0)μo

∂
(
a j

n
)∗

∂t∗ = 12κTN

R2
N (0)μo

ũ∗
r (R∗

j ) − RN (0)
(
a j

n

)∗( 12πκTN

RN (0)μo

)(
Q∗

2πR2
N (0)(R∗

j )2

)
.

Dividing by the constant 12κTN/(R2
N (0)μo) gives

∂
(
a j

n
)∗

∂t∗ = ũ∗
r (R∗

j ) − (
a j

n

)∗ Q∗

2(R∗
j )2

. (A50)
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For the linearized dynamic interface condition, using Eqs. (A2), (A3), (A5), (A8), (A9), and (A49)
in Eq. (A48) yields

lim
r∗→(R∗

j )+

{
12TN

RN (0)
( p̃∗)+(r) − RN (0)

(
a j

n

)∗( 12πκTN

RN (0)μo

)(
Q∗μoμ

∗(r)

2πκRN (0)r∗

)}
− lim

r∗→(R∗
j )−

{
12TN

RN (0)
( p̃∗)−(r) − RN (0)

(
a j

n

)∗( 12πκTN

RN (0)μo

)(
Q∗μoμ

∗(r)

2πκRN (0)r∗

)}

= TN T ∗
j

RN (0)
(
a j

n
)∗ + RN (0) ∂2(a j

n )∗
∂θ2

R2
N (0)(R∗

j )
2

.

After some algebraic manipulation,

lim
r∗→(R∗

j )+

{
12TN

RN (0)
( p̃∗)+(r) − 12TN

RN (0)

(
a j

n

)∗ Q∗μ∗(r)

2r∗

}

− lim
r∗→(R∗

j )−

{
12TN

RN (0)
( p̃∗)−(r) − 12TN

RN (0)

(
a j

n

)∗ Q∗μ∗(r)

2r∗

}
= TN

RN (0)
T ∗

j

(
a j

n
)∗ + ∂2(a j

n )∗
∂θ2

(R∗
j )

2
.

Dividing by 12TN/RN (0),

lim
r∗→(R∗

j )+

{
( p̃∗)+(r) − (

a j
n

)∗ Q∗μ∗(r)

2r∗

}
− lim

r∗→(R∗
j )−

{
( p̃∗)−(r) − (

a j
n

)∗ Q∗μ∗(r)

2r∗

}

= T ∗
j

12

(
a j

n
)∗ + ∂2(a j

n )∗
∂θ2

(R∗
j )

2
. (A51)

We drop the stars in Eqs. (A50) and (A51) for convenience and arrive at the dimensionless linearized
kinematic and dynamic interface conditions:

∂a j
n

∂t
= ũr (Rj ) − a j

n

Q

2R2
j

, (A52)

lim
r→R+

j

{
p̃+(r) − a j

n

Qμ(r)

2r

}
− lim

r→R−
j

{
p̃−(r) − a j

n

Qμ(r)

2r

}
= Tj

12

a j
n + ∂2a j

n
∂θ2

R2
j

. (A53)
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