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Electroconvective (EC) instability and its influence on surface morphological pertur-
bations (Morph) are important in many applications, including electrodialysis, batteries,
and fuel cells. In this work, we study the effects of a two-dimensional channel flow on
the EC and Morph instabilities using two approaches. In the bulk analysis, we derive the
asymptotic solutions for small and large wave numbers by neglecting the space charge
layer and imposing a second kind electroosmosis slip velocity boundary condition on
the electroneutral bulk region. In the full analysis, the instability of the entire region of
the liquid electrolyte is analyzed using the ultraspherical spectral method. Both studies
show that the flow significantly affects the EC instability. The imposed flow distorts
the concentration field, causing a sheltering effect which hinders the ion transport from
low- to high-concentration regions, and therefore suppresses the EC instability below
a certain wave number. In combination with the viscous stabilization of the high wave
number modes by the space charge layer, a sufficiently strong imposed flow can fully
suppress the EC instability. The increment in the critical voltage for the instability onset
is roughly proportional to the square root of the product of imposed velocity and double
layer thickness. The imposed flow has a smaller effect on the Morph instability, except
that it may remove the morphological modes resulting from the EC instability and thereby
change the wave number of the most unstable mode.
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I. INTRODUCTION

The interaction between an imposed flow and the electroconvection of a liquid electrolyte is
important in many applications: desalination [1], rotating disk electrodeposition, and fuel cells
[2]. Experiments and simulations show that an imposed channel flow modifies the patterns of
EC vortices near a fixed ion-selective surface [3] and significantly increases the ion flux [4]. On
a metal electrode surface, the imposed flow affects the morphology of the electrodeposition by
inducing Taylor vortex streets along streamlines [5]. More recently, linear stability analyses by
Parekh and coworkers showed that the forced advection of ions by normal [6] and tangential [7]
imposed velocities has a stabilizing effect on the morphological (Morph) instability. However, these
studies neglected the perturbation of the velocity field induced by morphological perturbations [6]
as well as electroconvective flows. The present study provides a theoretical understanding of the
influence of the imposed flow on the EC instability in the presence (EC/Morph) and absence (EC)
of morphological evolution of the interface.
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In the absence of the imposed flow, purely electroconvective (EC) instability near a fixed ion-
selective surface [8,9] and inlets of the nanofluidic channels connecting two micro-chambers of ion
solutions [10,11] has been widely studied in the literature using theories [12–15], experiments [8,9],
and direct numerical simulations [16–20]. More discussion on fundamental physics and applications
of EC instability can be found in reviews [21,22]. Near a surface such as a Nafion membrane, the
ions simply pass through the membrane without changing the morphology of the surface. At a small
voltage, the current is sustained by a one-dimensional ion transport by migration and diffusion, and
the electrolyte remains quasielectroneutral except that it forms a nanometer-sized nonelectroneutral
electric double layer near to the membrane. With increasing voltage, the strong depletion of the ions
near the membrane forms a nonequlibrium double layer, which has a micrometer-sized extended
space charge layer outside the original equilibrium double layer. Inside the space charge layer, the
perturbation of the electric force and the osmotic pressure generate an electroosmosis slip velocity.
The osmotic slip velocity, which is called second kind to differentiate from the slip velocity caused
by the equilibrium double layer, is the fundamental cause of electroconvection. Rubinstein and
coworkers have conducted a series of works to investigate this type of instability using two types of
analyses, the bulk analysis and the full analysis. In the first approach, the linear stability analysis is
performed only in the electroneutral bulk region, and the contribution of the space charge layer is
represented by the slip velocity, which is determined by the properties of the bulk region [12,13].
This simplification facilitates an analytical treatment and predicts the existence of a critical voltage
for the onset of the instability. However, it is only qualitatively correct and its prediction of the
critical voltage is substantially lower than the one observed in direct numerical simulations [16,18].
In the full analysis [15], the entire electrolyte, including the bulk region and the thin layers near
the membrane, is considered by solving the anion and cation conservation equations separately.
In this analysis, both the one-dimensional base state solution and the eigenvalue problem for the
perturbed equation are numerically solved. The prediction of the critical voltage for the onset of
EC instability based on the full analysis quantitatively agrees with the direct numerical simulations
[16]. The full analysis also predicts a stable mode at sufficiently high wave number in contrast to
the bulk analysis, which has the “short-wave catastrophe” [15]. The numerical calculation in the full
analysis is challenging because the double layer is much thinner than the bulk region (typically by
four to seven orders of magnitude). Typical spectral methods easily become ill conditioned since
they require a large number of grid points to resolve the thin layer. In this work, we will use both
methods to build a complete understanding of the EC and EC/Morph instabilities.

On a metal electrode surface, the electrodeposition of the metal ions from their salt solutions
causes the Morph instability and generates ramified structures. This instability is common in solidi-
fication processes and is caused by the “Mullins-Sekerka”-type unstable phase transformation from
liquid into solid [23]. Although this morphological instability does not require electroconvective
flow, the EC instability, when present, modulates the morphological evolution of the electrodeposit-
ing surface [24,25]. Depending on the type of salt, the ion concentration, and the applied field,
the deposition can have different morphologies, such as fractal, dense branching, and needle-like
[26–28]. Chazalviel found that the fast ramified growth is directly related to the formation of a
space charge layer [29]. In his study, the deposit is modeled as a comb of rectilinear equally spaced
needles of infinitely small thickness. In a steady solution without a flow, the advancing speed of
the deposits equals the retreating speed of anions in the applied electric field near the electrode
surface. In the presence of fluid flow, the net charges at the tips of the deposits induce vortices,
which bring more ions to the tips and further amplify the needle growth [30]. This positive feedback
between electroconvection and the Morph instability is directly observed in experiments [24,25].
The uncontrolled electroconvection near deposition can also lead to different morphologies under
similar depositing conditions and generate depositions of network structures [31]. In applications
related to batteries and energy storage, many efforts have been devoted in order to suppress the EC
and Morph instabilities and achieve stable deposition. Such examples include coating a thin layer of
a cross-linked polymers on the electrode surface [32–35], adding agar gel to modify the deposition
morphology [36,37], adding high-molecular-weight polymers into the liquid electrolyte [38,39], and
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adding the polymer-grafted colloids [40]. Our previous study shows that the electroconvection can
be stabilized by adding polymers to exert extra drag to the liquid electrolyte [41]. Other studies show
that the electroconvection can be suppressed by increasing the resistance to flow with a buoyancy
force [42] or boundary confinement [43]. Generally speaking, these results are consistent with
the analysis for a Newtonian electrolyte which predicts that the critical voltage for the onset of
electroconvection increases with increasing fluid viscosity [12].

The mechanism by which the imposed flow modulates the EC and Morph instabilities is very
different from the mechanisms by which rheological modifications alter these instabilities. The
imposed flow advects the concentration field and affects the instabilities by altering the base state
and/or by directly modifying the perturbation modes. Most previous studies have focused on
the first effect. For example, on a rotating disk, the flow brings more ions to the electrode and
creates a concentration boundary layer whose thickness is inversely proportional to the square
root of the rotation rate [44]. The increased ion concentration near the electrode helps smooth
the electrodeposition at microscales [45] and creates spiral deposition structures of millimeter
width following the streamlines [46,47]. In a developing boundary layer within a microchannel,
the velocity enhances the ion flux perpendicular to the flow direction [4] and interacts with the EC
vortices near the boundary layer. Kwak et al. showed that the pressure-driven flow reduces the height
of the EC vortices as d ∼ V 2/3/U 1/3

m , where V is the voltage and Um is the maximum velocity of
the imposing flow [3]. At a high flow rate, the strong mainstream flow confines the fluctuations of
electroconvection in the near-wall region and can even fully suppress the EC instability. At low flow
rate or/and high voltage, large vortices are swept downstream by the imposed flow [4]. Because
of the small thickness of the channel in the direction perpendicular to the flow-electric-field plane,
the flow and concentration fields in these examples are nearly two dimensional. In comparison,
a flow in a wide channel induces helical vortices originating from the side walls and generates
a nonmonotonical overlimiting current dependence on the channel width [48]. Two-dimensional
numerical simulations of electroconvection in a electrodialysis cell were numerically studied in
Refs. [49,50]. These simulations are performed at a relatively low flow rate and no full suppression
of EC flow has been observed. The vortices increase the current and their unsteady motion generates
strong oscillations in current. More discussion on flow-through electrodialysis membrane cells in
the overlimiting current regime can be found in a recent review paper [51]. However, it is still
unclear whether the imposed flow can stabilize the EC flow without altering the concentration field
in the base state.

In a channel flow with a fully developed boundary layer, the base state ion concentration is
the same as the one-dimensional (1D) steady profile in the absence of the flow. This occurs for a
channel whose length is much larger than the entrance region, i.e., Lx/Lz � Pe1/3

U , where PeU is
the Peclet number based on the imposed velocity. As we will see later, however, our analysis also
agrees reasonable well with simulations of a developing boundary layer [3]. The theory is applicable
to numerical simulations with periodic boundary conditions in the flow direction and experiments
with a recycled electrolyte. With this simplification, we study the linear stability of a channel flow of
electrolyte in the limiting current regime and provide quantitative prediction of the critical velocity
of the imposed flow needed to fully suppress electroconvection and its morphological consequences.

EC instability of a fully developed channel flow can also be observed at the interface between
two fluids of different conductivities in a strong electric field [52–54]. In these studies, the applied
electric field acts parallel to the flow, and the diffusive mixing layer between the two fluids plays
the role of a space charge layer. At higher voltages, the flow exhibits a sequence of transitions
from steady to time periodic and then to aperiodic, chaotic states [54], similar to the flows near an
ion-selective membrane [49,50]. Stability analysis shows that the onset of the convective instability
occurs when the electroviscous velocity is strong enough to compete with diffusion and disturb the
mixing layer [52,53]. As we will see later, this mechanism is different from the flow near an ion-
selective membrane, where the instability can be suppressed by a strong imposed flow. Interactions
between the electrohydrodynamic instability and the imposed flow at high Reynolds numbers were
also studied for their applications in electrostatic precipitators for particulate emission reduction and
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bioaerosol sampling, electrohydrodynamic pumps and mixers, flow control by injecting ions, and
heat transfer enhancement [55]. Zhang and coworkers studied the instabilities of a Poiseuille flow
of nonconducting dielectric fluid with a unipolar ion injection at a high Reynolds number [56–58].
In their studies, the ions are directly injected near one of the channel walls to create a layer of large
charge density. Their results showed that increasing the strength of the electric field changes the
modes of the unstable waves [58]. The instability of the flow is complicated due to the coexistence
of two types of instability mechanisms, electrohydrodynamic and inertial mechanisms.

In this work, we consider the interaction between the electrohydrodynamic instability and an
imposed flow which is perpendicular to the applied electric field. The fluid inertia is negligible
and the only mechanism of instability is electrohydrodynamic caused by the formation of the space
charge layer. Compared to previous studies, a distinct feature of this work is that the double layer and
space charge layer near the ion-selective surface are extremely thin compared to the channel width.
For example, in a typical aqueous electrolyte of concentration 1–103 mol/m3, the thickness of the
double layer is around 0.1–1 nm, the space charge layer is around 1 μm, and the channel width is
typically around 1 mm. The smallest and largest length scales differ by six orders of magnitude. As
mentioned before, the bulk analysis uses a slip velocity to replace the thin layers, but its results are
only qualitatively correct at small wave numbers. In the full analysis, the widely adopted Chebyshev
collocation spectral method is numerically unstable because the discretized eigenvalue problem
becomes highly ill conditioned with more than 100 collocation points. To resolve this issue, we
use the ultraspherical spectral method [59] to solve both the base and perturbed equations in the
full analysis. A detailed comparison between the two approaches are made for both the EC and
EC/Morph stability problems.

In most experiments, the EC instability mainly occurs in the flow-electric field plane because the
confinement in the third direction restricts the out-of-plane wave vectors from occurring. Therefore,
we only consider the two-dimensional flow instabilities in the flow-electric field plane. To simplify
the problem, we neglect the entrance region and only consider the modal instability of the fully
developed flow. This simplification is valid when the ion concentration polarization along the flow
occurs rapidly under a relative strong electric field. Two problems will be considered, the purely EC
instability with planar surface and the EC/Morph instability in the presence of an evolving electrode
surface. For the EC problem, our goal is to understand the influence of the imposed flow on the
modes at different wave numbers and find the critical conditions to partially or fully suppress the
EC modes. The mechanism by which the imposed flow suppresses the EC instability is investigated.
For the EC/Morph problem, we will see that the imposed flow attenuates the morphological signal
of the electroconvective instability while leaving the Mullins-Sekerka instability modes nearly
unaltered. For both problems, the analysis is compared with experimental and simulation results
from the literature. In the following, we describe the problem setup and the governing equations in
Sec. II. In Sec. III, we conduct the bulk analysis and use the resulting analytical solution to gain a
physical understanding of the instability. Then, we will consider the full problem by numerically
solving the eigenvalue problems in Sec. IV. The physical mechanisms by which the imposed flow
alters the instabilities will be discussed. A detailed comparison between the two analyses will be
performed to evaluate the viability of the bulk analysis. Summary and conclusions are presented
in Sec. V.

II. PROBLEM SETUP AND GOVERNING EQUATIONS

As shown in Fig. 1, we consider a pressure-driven flow of a binary univalent electrolyte in a
channel of width 2L. The applied voltage V is perpendicular to the flow direction and buoyancy
effects are neglected. The channel walls only allow a nonzero cation flux, and we will consider two
types of surfaces, ion-selective membranes which allow only an EC instability and metal electrode
surfaces with interacting EC and Morph instabilities. We only consider the Morph instability of
the anode surface where ions are deposited, since experiments show that the stripping process on
the cathode surface is typically uniform. Figure 2 shows the distribution of ion concentration and
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FIG. 1. Schematic of a fully developed cross flow of an electrolyte between two ion-selective surfaces.

potential for fully developed ion transport. The base state is assumed to be quasisteady because
the perturbation typically grows much more quickly than the variation of the concentration field.
In the base state, the electrolyte inside the channel has three regions at the limiting current: the
quasielectroneutral bulk region with a linear ion concentration profile, the equilibrium double layer
at the top surface, and the nonequilibrium double layer which has an extended space charge layer at
the bottom surface. We neglect the entrance region of the flow and consider the temporal instability
of the fully developed region with a uniform space charge layer.

Following the precedent of previous studies [12,15,16,18], we neglect complications such as
nonideal solution effects and preferred orientation of ion deposition and apply the equations for
ideal ion transport to capture the basic physical trends. The governing equations of the problem
include the Nernst-Planck equations for the conservation of ion concentration, the Poisson equation
for the electrical potential, and the Stokes equation for the incompressible fluid. In nondimensional
form, the equations are

∂C+

∂t
+ Pe(u · ∇)C+ = 1 + D

2
∇ · (∇C+ + C+∇�), (1a)

∂C−

∂t
+ Pe(u · ∇)C− = 1 + D

2D
∇ · (∇C− − C−∇�), (1b)

−2δ2∇2� = C+ − C−, (1c)

−∇p + ∇2u + (∇2�)∇� = 0, ∇ · u = 0, (1d)
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FIG. 2. Distributions of (a) ion concentration and (b) potential of the full base state solution at V = 25,
which has a nonequilibrium double layer with a space charge layer at y = 0, an equilibrium double layer at
y = 2, and a quasielectroneutral bulk region in between. The bulk analysis only considers the bulk region. The
normalized double layer thickness is δ = 10−4 and the current is I = 2.0241.
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where C+ and C− are cation and anion concentrations, � is potential, p is pressure, and u is fluid
velocity. D = D+/D− is the ratio of the cation and anion diffusivities, δ =

√
εε0RT/2F 2C0/L is

the dimensionless double layer thickness, L is the half interelectrode distance, ε is the dielectric
constant, ε0 is the vacuum permittivity, R is the ideal gas constant, T is temperature, F is Faraday’s
constant, and C0 is the average ion concentration. Pe = U0L/D0 is the Peclet number, U0 =
εε0(RT/F )2/ηL is a characteristic velocity derived by balancing the characteristic Maxwell stress
εε0(RT/F )2 and the viscous stress ηU0/L, η is the fluid viscosity, and D0 = 2D+D−/(D+ + D−) is
the average ion diffusivity. Following Ref. [14], lengths are nondimensionalized by L, velocity by
U0, time by L2/D0, ion concentration by C0, potential by RT/F , and stress by ηU0/L.

We now discuss the boundary conditions at the two surfaces. On a nonfixed ion-selective surface,
such as metal electrodes, the ion deposition and stripping continuously change the average heights
of the surfaces. We choose a reference frame moving with the same velocity as the cathode surface
which has uniform stripping. In this frame, the deformation of the anode surface is perturbed around
y = 0, and the cathode surface is fixed at y = 2. The growth of the anode surface is represented by
y = h(x, t ). At the two surfaces, the conditions for ion concentration, potential, and fluid velocity
are

C+|y=h = Cs, C+|y=2 = C′
s, n · (∇C− − C−∇�)|y=h,2 = 0, (2a)

�|y=h = 0, �|y=2 = V, (2b)

n · u|y=h = 1

Pe

∂h

∂t

1

|n · ey| , n · u|y=2 = 0, (I − nn) · u|y=h,2 = 0, (2c)

1 + D

2

(
∂C+

∂y
+ C+ ∂�

∂y

)∣∣∣∣
y=h

− I = 1

vm

∂h

∂t

1

|n · ey| . (2d)

In Eq. (2a), we assume the electrochemical potential of the cation is at equilibrium on the electrode
surfaces and therefore the cation concentration is fixed. Its specific value does not qualitatively
change the results and Cs = C′

s = 1 is used in this study. This equilibrium condition is valid when
the rate coefficient for ions passing through or depositing on the surface is much larger than the ion
transport rate coefficient. The surfaces are impermeable to anions. n is the unit normal vector of the
anode surface pointing into the electrolyte. Equation (2b) is the condition for the applied potential.
For the ion-selective membrane, this condition is valid in the fully developed regime when the
current reaches a constant. In Eq. (2c), ey is the unit y vector, and I is the identity matrix. The first
equation indicates that the growth of the anode generates a normal velocity of the electrolyte, while
the other equations are the usual no-slip and no-penetration conditions of the fluid. Equation (2d)
indicates that the growth rate of the perturbed anode surface is determined by the local cation flux
minus the constant base state current I . Here, vm = v∗

mC0 is the dimensionless molar volume of the
metal and v∗

m is the dimensional molar volume. The volume change of the solution during charge
and discharge is neglected. For ion-selective membranes without a Morph instability, h ≡ 0 and
Eq. (2d) becomes a trivial condition.

The governing equations (1) with boundary conditions (2) are first solved for the base state. In
the base state, h = 0, and the pressure-driven flow, ion concentrations, and electric field change only
along the y direction, so that the equations become

1 + D

2

(
∂C+

∂y
+ C+ ∂�

∂y

)
= I,

∂C−

∂y
− C− ∂�

∂y
= 0, (3a)

−2δ2 ∂2�

∂y2
= C+ − C−, (3b)
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with boundary conditions

C+|y=0 = Cs,

∫ 2

0
C−dy = 2, (4a)

�|y=0 = 0, �|y=2 = V. (4b)

The fluid exhibits Poiseuille flow with u = Umy(2 − y) and v = 0, where Um is the maximum fluid
velocity. Eqution (3a) states that in the base state the current I is driven by the cation flux and the
anion flux vanishes at any cross-section plane in the electrolyte. In Eq. (4), the condition for the
anion means that its total concentration is conserved inside the channel due the no flux conditions
on both surfaces. The full base state governed by Eq. (3) requires a numerical solution. Figure 2
shows the full base state solutions for ion concentration and potential at steady state at the limiting
current. Here, δ = 10−4 and V = 25. The full base state solution has three parts: a nonequilibrium
double layer which includes a space charge layer at y = 0, an equilibrium double layer at y = 2, and
a quasielectroneutral bulk region. The imposed velocity has no influence on the base state ion flux in
the fully developed channel flow, while it interacts with the linear stability perturbations and affects
the EC/Morph instability. The base state solution of the bulk region will be discussed in Sec. III.

The bulk analysis deals with the approximate solution of Eq. (3) by taking advantage of the
condition δ � 1. In a typical electrochemical system, the normalized double layer thickness is
10−7 < δ < 10−3, and the difference between cation and anion concentrations is of order δ2 in the
bulk region. The space charge layer thickness δs ∼ (δV )2/3 is also small as long as the overpotential
V � | ln δ| [14]. In the bulk analysis, the effects of these thin layers are replaced by electroosmotic
slip velocities [12–14]. To establish a physical understanding of the effects of the imposed cross
flow on the linear instability, we will first discuss the bulk analysis in Sec. III. The full analysis will
later be considered in Sec. IV.

In typical experiments with aqueous electrolytes, the half interelectrode distance is around
1 mm, the double layer thickness ranges from 0.1 to 1 nm, the dynamic viscosity η = 10−3 Pa s,
the dielectric constant of water ε = 80, ion concentration C0 = 0.01–1 M, the ion diffusivity
10−9 m2/s, the ion transference number tc = D+/(D+ + D−) = 0.4, the molar volume of the metal
atom v∗

m = 1.3 × 10−5 m3/mol. Here, we have cited parameters for lithium ions, but the specific
values do not affect the qualitative results in this study. The applied voltage is 1–5 V, and the
typical velocity in a microchannel is up to 104 μm/s. Based on these parameters, we choose
Pe = 0.35, D = 0.67, vm = 0.013, Um = 0 ∼ 104, and δ = 10−5–10−3 for this study.

III. BULK ANALYSIS

In the bulk region, the cation and anion are assumed to have equal concentrations in both the
base and perturbed states. Following a previous analysis [14], we introduce the electrochemical
potential for the anion μ = ln C − � with C = C+ = C−. The base state electrical potential � =
ln C + V − 2 ln 2 becomes singular as y tends to zero due to complete depletion, and this treatment
avoids directly solving the electrical potential. The governing equations (1) become

∂C

∂t
+ Pe(u · ∇)C = ∇2C, (5a)

∂C

∂t
+ Pe(u · ∇)C = D + 1

2D
∇ · (C∇μ), (5b)

−∇p + ∇2u = 0, ∇ · u = 0. (5c)

The first two equations are linear combinations of the Nernst-Planck equations (1a) and (1b) for
the cation and anion, and the third condition is the Stokes equations without the electric force. The
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boundary conditions become [14]

C|y=h = 0, (2 ln C − μ)|y=2 = V + ln Cs, (6a)

∂μ

∂y

∣∣∣∣
y=h,2

= 0, (6b)

v|y=h = 1

Pe

∂h

∂t
, v|y=2 = 0, (6c)

u|y=h = −V 2

8

∂2C
∂y∂x
∂C
∂y

∣∣∣∣
y=h

, u|y=2 = 2 ln 2
∂μ

∂x

∣∣∣∣
y=2

, (6d)

(D + 1)
∂C

∂y

∣∣∣∣
y=h

− I = 1

vm

∂h

∂t
. (6e)

In Eq. (6a), the first condition indicates that the anion is completely depleted from the anode surface,
and the second condition represents the continuity of the chemical potential of the cation across the
double layer near the cathode. Equation (6b) represents the zero-flux condition for anion on both
electrodes. Equation (6c) is the same as its counterpart in (2c), the growth of the perturbed anode
surface equals the normal velocity of the electrolyte, while the cathode surface is fixed in the moving
frame of reference. In Eq. (6d), the first equation represents the second-kind osmotic slip velocity
developed at the edge of the space charge layer near the anode, and the second equation represents
the first-kind osmotic slip velocity at the edge of the equilibrium double layer near the cathode.
Detailed derivations for the slip velocities are given in previous works [12,13]. Equation (6e), which
is simplified from (2d) using the condition of equal migration and diffusion fluxes, indicates that the
growth rate of the perturbed surface is caused by the perturbation in the cation flux.

As mentioned before, two types of problems will be considered in this section. The first problem
is the purely EC instability with h ≡ 0 and the second problem is an interacting EC and Morph
instability. The base state solutions for the two problems are exactly the same. In the rest of the
paper, we use capital letters (C±, M, and �) to represent the base solution, and small letters for the
perturbed variables (c±, μ, φ, u, v, and h). By directly solving Eq. (5), it is easy to find the base
state of the ion concentration and chemical potential for anion is

C = y, M = 2 ln 2 − V, (7)

with limiting current I = 2.
We next perform a linear stability analysis to the base state solution. The ion concentration, chem-

ical potential, and velocity are perturbed as c = C + εc(y)eikx+σ t , μ = M + εμ(y)eikx+σ t , u =
Umy(2 − y) + εu(y)eikx+σ t , v = εv(y)eikx+σ t , and the anode surface h = εh(y)eikx+σ t , where ε � 1
is a small perturbation. The perturbed governing equations are

σc + ikPeUmy(2 − y)c + Pev = c′′ − k2c, (8a)

σc + ikPeUmy(2 − y)c + Pev = D + 1

2D
(yμ′′ + μ′ − k2yμ), (8b)

v(4) − 2k2v′′ + k4v = 0, (8c)

where the prime denotes the derivative with respect to y. k is the wave number, and σ is the complex
eigenvalue whose real part σr determines the growth rate of the perturbation and whose imaginary
part determines the wave speed uc = −σi/k. The pressure-driven flow causes an ion advection along
the flow direction. The perturbed boundary conditions on the two surfaces are

c(0) + h = 0, c(2) − μ(2) = 0, (9a)

μ′(0) = 0, μ′(2) = 0, (9b)
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v(0) = σ

Pe
h, v(2) = 0, (9c)

v′(0) = −V 2

8
k2c′(0), v′(2) = 2 ln 2k2μ(2). (9d)

c′(0) = σ

(D + 1)vm
h. (9e)

In the following, we will first discuss the purely EC instability and then the EC/Morph instability.
For small or large (k � 1 or k � 1) wave numbers or when the perturbed flow is negligible (v � 1),
we will analytically solve the equations (8). For arbitrary wave number k, the equations will be
numerically solved using the Chebyshev collocation method [60].

A. Electroconvection problem

In this subsection, we consider the purely EC instability. We will first discuss the asymptotic
solutions for the mode with the largest growth rate for k � 1, k � 1, and v � 1. Then, we show
the results for arbitrary wave numbers by numerically solving Eqs. (8).

1. Small wave number, k � 1

In the limit of small wave number (k � 1), the ion concentration and chemical potential are
expanded as c = c0 + kc1 + k2c2 + · · · and μ = μ0 + kμ1 + k2μ2 + · · · , the normal velocity v =
k2v2 + · · · because of the slip velocity condition (9d), and the growth rate σ = σ0 + kσ1 + k2σ2 +
· · · . The leading order solutions are unaffected by the pressure-driven flow, and the results are given
by Rubinstein et al. [14]:

c0 = y, μ0 = 2, v2 =
(

V 2

16
+

(
ln 2 − V 2

32

)
y

)
(y − 2)y, (10)

with the leading order growth rate σ0 = 0. From the continuity equation iku + v′ = 0, the slip
velocity us = u(0) = iV 2k/8 is of order k. This is because the perturbation of the ion concentration
occurs over the entire bulk region and it has an O(1) normal gradient. The perturbed tangential
velocity is directly induced by the two slip velocities in opposite directions at the top and bottom
surfaces and it creates fluxes of alternating signs normal to the channel surface by inducing EC
vortices.

The effects of the pressure-driven flow arise in higher order equations. For each order, the basic
steps are to first calculate c in terms of μ, then substitute it into Eq. (8b), and integrate the equation
with boundary conditions (9b) to derive σ . In the end, the growth rate is found to be

σ = −2i

3
PeUmk +

[
Pe

(
V 2 + 32 ln 2

48

)
− D + 1

D
− 8

945
Pe2U 2

m

]
k2 + · · ·. (11)

This result recovers the previous result [14] when Um = 0. In the presence of the Poiseuille flow,
the small wave-number perturbation propagates with the average fluid velocity 2PeUm/3, in which
the prefactor Pe exists because time is scaled by L2/D0 instead of L/U0. The growth rate is reduced
at order k2. The O(k) ion concentration and chemical potential are

c1 = iPeUm

(
D − 4

45(D + 1)
y − y3

9
+ y4

6
− y5

20

)
, (12)

μ1 = − iD

D + 1
PeUm

(
y4

8
− 4y3

9
+ y2

3

)
. (13)

The asymptotic solution for k � 1 arises due to the finite distance between the two electrode
surfaces. It can be either stable or unstable, depending on Pe, D, and Um. The imposed flow always
reduces the growth rate of the mode for k � 1. This result is consistent with the full analysis.
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2. Negligible electroconvection, v ≈ 0

Because of the pressure-driven flow, the EC velocity is negligible below a critical wave number.
The eigenmode is solved by c′′ = [−a + a2(y − 1)2]c with a2 = −ikPeUm and σ + k2 = a2 − a.
The growth rate is

σ = −(k2 +
√

kPeUm/2) + i(−kPeUm +
√

kPeUm/2); (14)

i.e., this mode is always stable and its wave speed is the maximum fluid velocity PeUm. The ion
concentration is

c = e−√
PekUm/8(y−1)2(1−i), (15)

which is a Gaussian distribution at the centerline of the channel. As we will see in the following,
the full analysis has the exact solution for this mode. This center mode is always stable and it
occurs below a transition wave number when the imposed flow is strong enough to overcome the
electroosmotic slip velocity. Above the transition wave number, the electroosmotic slip velocity
dominates the imposed flow and the EC instability is determined by the wall modes.

3. Large wave number, k � 1

For k � 1, the analysis is performed in the vicinity of the anode surface and the interelectrode
distance can be considered as semi-infinite. Introducing the inner length scale z = ky and consid-
ering the perturbations which decay away from the anode, i.e., c(∞) = v(∞) = v′(∞) = 0, the
perturbations are expanded as c = c0 + c1/k + c2/k2 + · · · and σ = k2σ−2 + kσ−1 + σ0 + · · · . In
the inner scale, the momentum equation (8c) becomes v(4) − 2v′′ + v = 0, where the prime now
denotes the derivative with respect of z. Its solution is

v = k2ze−z, (16)

showing that the flow is induced by the slip velocity at the bottom surface only. From the continuity
equation iu + v′ = 0, the tangential velocity u = iv′ and the slip velocity

us = u(0) = ik2. (17)

At high wave number, the slip velocity is of order k2 because the ion concentration disturbance is
concentrated near the anode surface and has an O(k) normal gradient.

To calculate the growth rate, we need to solve the equations for the ion concentration. We find
that σ−2 is not influenced by the imposed flow, σ−1 = c1 = 0, σ0 and σ1 are purely imaginary, and
one has to solve the fourth-order equation for σ2 to see the effects of flow on the growth rate. The
governing equations and the boundary conditions at each order are

c′′
0 − (1 + σ−2)c0 = Pev−2, (18a)

c′′
1 − (1 + σ−2)c1 − σ−1c0 = 0, (18b)

c′′
2 − (1 + σ−2)c2 − σ−1c1 − σ0c0 = 2iPeUmzc0, (18c)

c′′
3 − (1 + σ−2)c3 − σ−1c2 − σ0c1 − σ1c0 = iPeUm(2zc1 − z2c0), (18d)

c′′
4 − (1 + σ−2)c4 − σ−1c3 − σ0c2 − σ1c1 − σ2c0 = iPeUm(2zc2 − z2c1), (18e)

c j (0) = c j (∞) = 0, for j � 0, c′
j (0) =

{−8/V 2, for j = 0,

0, otherwise.
(18f)

The above equations can be directly solved with the first two boundary conditions. Using the third
boundary condition, one can then calculate the growth rate as

σ = σ−2k2 + σ0 + σ1

k
+ σ2

k2
+ · · ·, (19)
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FIG. 3. (a) The spectrum of the purely EC instability in the range 0 � k � 20 at V = 12 and Um = 1000.
The squares highlight the eigenvalues at two wave numbers k = 5 (red) and k = 20 (blue). (b) is a closer view
of panel (a).

with

σ−2 = Pe

8
V 2 −

√
Pe

2
V, (20a)

σ0 = iPeUm

σ−2σ∗
(3σ∗ − 3 − 4σ−2), (20b)

σ1 = iPeUm

2σ 2
0 σ 3∗

[
16(σ∗ − 1) + σ0(27σ∗ − 35) + σ 2

0 (12σ∗ − 19)
]
, (20c)

σ2 = Pe2U 2
m

4σ 3
−2σ

5∗

[
60(1 − σ∗) + σ−2(179 − 149σ∗) + σ 2

−2(178 − 111σ∗) + σ 3
−2(59 − 24σ∗)

]
, (20d)

where σ−2 recovers the result without the imposed flow [12] and σ∗ = √
1 + σ−2. In the presence

of the pressure-driven flow, a perturbation of large wave number propagates with an O(1/k) wave
speed and its growth rate is decreased by an O(1/k2) term. The leading order ion concentration is

c0 = − Pe

σ 2
−2

[2e−√
1+σ−2z + (σ−2z − 2)e−z]. (21)

The imposed flow reduces the growth rate of a perturbation at high wave numbers and the stabilizing
effect becomes less effective as k increases. As we will see in the following, this result is consistent
with the full analysis. The bulk analysis predicts that a full suppression of electroconvection by an
imposed cross flow is impossible. This result is qualitatively different from what we will obtain
from the full analysis.

4. Numerical results for all wave numbers

For arbitrary wave number, we apply a Chebyshev collocation method [60] to numerically
solve Eqs. (8) and (9) for the eigensolutions. Figure 3(a) shows the eigenvalue spectrum for the
purely EC instability for 0 � k � 20, V = 12, and Um = 1000 which corresponds to a velocity
of 470 μm/s in a channel 2 mm wide. As in the high-Reynolds-number channel flow without
electrokinetic effects, the spectrum has three branches of solutions. The A-branch solution of small
wave speed corresponds to the wall mode, the P-branch solution of large wave speed corresponds
to the center mode, and the S-branch solution is the highly damped mode whose wave speed is
the average velocity 2PeUm/3. The P and S branches have very similar structures to those in
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FIG. 4. The complex growth rate [(a) real; (b) imaginary] of the most unstable mode for the purely EC
instability at different velocities at V = 12. The asymptotic solutions for Um = 1000 are derived in Eqs. (11),
(14), and (19) for k � 1, v = 0, and k � 1, respectively.

high-Reynolds-number channel flow without electrokinetic effects [61], indicating that the P and
S modes are mainly caused by the parabolic velocity profile of the Poiseuille flow. The A branch is
the mode which causes the EC instability. Figure 3(b) shows a closer view of the spectrum. At small
wave number, all the modes are stable and the largest growth rate of the perturbations belongs to
the P-branch solution. As the wave number increases, the growth rate of the center mode decreases
while that of the wall mode increases, eventually resulting in an instability. This type of instability
caused by the electroosmotic slip velocity is qualitatively different from the one in a channel flow
due to inertial effects.

We now focus on the mode with the largest growth rate, which determines the linear instability
of the flow. Figure 4 shows the eigenvalues of the most unstable mode as a function of the wave
number k at V = 12. The symbols show the asymptotic solutions for Um = 1000. For both real
and imaginary parts of the growth rate, the abrupt changes in the curves manifest the transition
from the centerline mode to the wall mode with increasing k, and the transition wave number ktr

increases with increasing velocity of the imposed flow. The centerline mode is always stable, while
the wall mode eventually becomes unstable at large k, showing that the imposed flow can only
suppress the electroconvection at large length scales. This effect is directly caused by the relative
importance of the imposed flow and the second-kind electroosmotic slip velocity which causes the
EC instability. The second-kind slip velocity is generated by the tangential gradient of the perturbed
ion concentration [14] and is proportional to k2. At small wave number, the slip velocity is negligible
compared to the cross-flow and the linear instability is determined by the laminar channel flow.
Therefore, the modes decay with σr ∼ −k2 due to the diffusion of the perturbed ion concentration.
At sufficiently large wave numbers, the destabilizing effect of the slip velocity on the concentration
field can always overtake the stabilizing effect due to the imposed flow and therefore leads to the
EC instability. In Fig. 4(b), the centerline mode perturbation propagates downstream with a constant
wave speed uc = −σi/k = PeUm which is exactly the velocity of the imposed flow at the centerline.
The wall mode perturbation has a smaller wave speed uc ∼ 1/k, indicating that near the wall the
small vortices propagate more slowly than the large vortices.

To examine the manner in which modes are stabilized by the imposed flow, we compare
the eigenfunctions of the most dangerous mode at different velocities in Fig. 5. The results are
normalized such that the magnitude of the ion concentration has the same maximum value cmax = 1.
At V = 12 and k = 8, the perturbations grow at Um = 0 and decay at Um = 1000 and 2000. At a
sufficiently high flow rate Um = 2000, the perturbed ion concentration has a Gaussian distribution
at the centerline of the channel. The ion concentration gradients at the two walls are small and
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FIG. 5. Distribution of the perturbed (a) ion concentration and (b) normal velocity of the most unstable
mode for the EC instability at Um = 0, 1000, and 2000, for V = 12 and k = 8. Perturbations grow at Um = 0
and decay at U = 1000 and 2000. The velocity for Um = 2000 is multiplied by 5 × 106. Symbols show the
magnitude of the analytical solutions for v = 0 and k � 1 given in Eq. (15) and Eqs. (16) and (21), respectively.

therefore the induced electroosmotic slip velocities are negligible on both sides. Note that the
velocity for Um = 2000 has been multiplied by 5 × 106 for clarity. In comparison, at Um = 0 the ion
concentration has a large perturbation at the anode surface and induces a strong slip velocity at the
bottom of the channel. The real components of c and v have opposite signs near y = 0. This means
that the increase of the ion concentration generates a local downward flow which flushes more
ions into this region and further amplifies the perturbation. At Um = 1000, the perturbations are
concentrated near the bottom surface. The magnitude of the velocity v is higher than in the case with
Um = 0, while the real part is smaller, showing that the imposed flow suppresses the instabilities by
reducing the coupling between the electroosmotic slip velocity and the ion concentration gradient.

The marginal stability curves in the k − V space at different imposed velocities are com-
pared in Fig. 6(a). At Um = 0, the critical voltage for the pure EC instability is Vcr1 =√

48(1 + 1/D)/Pe − 32 ln 2 = 14.4 for k � 1 and Vcr2 = √
32/Pe = 9.6 for k � 1. As shown in

the previous results, the imposed flow only increases the critical voltage at small wave number, while

k
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FIG. 6. (a) The marginal stability curves in the k − V space at different cross-flow velocities. (b) The
dependence of kcr and ktr on Um at a constant potential V = 12. kcr is the critical wave number at which the
mode becomes unstable; ktr is the transition wave number between centerline and wall modes and has the
minimum growth rate.
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at large k, all the curves reach the same critical voltage. At a fixed voltage, increasing the velocity
Um increases the critical wave number kcr at which the mode becomes unstable. In Fig. 6(b), both
the critical wave number kcr and the transition wave number between the two modes ktr increase as
U 1/2

m at large Um, suggesting that the electroconvection is stabilized when the concentration field is
more influenced by the imposed flow Um than the electroosmotic slip velocity us ∼ k2V 2. As we
will see in Sec. IV C, in order to suppress the EC instability, the imposed flow has to overcome the
perturbed EC velocity and distort the concentration field, causing a sheltering effect. To summarize,
the bulk analysis predicts that the pressure-driven flow can attenuate the small wave-number modes
that would arise in a pure EC instability, and the critical wave number above which modes are
suppressed increases with flow speed as kcr ∼ U 1/2

m .

B. Electroconvection/morphological problem

In this subsection, we consider the interaction between EC and Morph instabilities. In contrast
to the pure EC instability, the EC/Morph instability is always unstable. In the following, we will
first discuss the asymptotic solutions for k � 1 and k � 1, and then show the numerical result for
arbitrary wave number. We also want to point out that the purely Morph instability occurs even at
underlimiting currents. The growth rate in this case follows the same expression as the current result
except that the current I replaces the limiting current Ilim = 2.

1. Small wave number, k � 1

For k � 1, the variables are expanded as c = c0 + kc1 + · · · , μ = μ0 + kμ1 + · · · , v = v0 +
kv1 + · · · , and σ = σ0 + kσ1 + · · · . Unlike the purely EC instability, here the velocity v is directly
caused by the growth of the electrode surface and its leading term is O(1) instead of O(k2).
Therefore, the two highest order equations are v

(4)
j = 0 with boundary conditions v j (0) = σih/Pe

and v′
j (0) = v j (2) = v′

j (2) = 0 for j = 0, 1. The solutions are

v j = (y + 1)(y − 2)2

4Pe
σ jh, for j = 0, 1. (22)

For the ion concentration, the leading order equation and the boundary conditions are

σ0c0 + Pev0 = c′′
0, (23a)

c0(0) + h = 0, c′
0(0) = σ0h

(1 + D)vm
, (23b)

leading to the solution

c0 =
⎛
⎝ √

σ0h

(1 + D)vm
+ 3h

2
√

σ 3
0

⎞
⎠ sinh(

√
σ0y)

− h

4σ0
[6 cosh(

√
σ0y) + 6(y − 1) + (y + 1)(y − 2)2σ0]. (24)

Combining the equations for ion concentration and chemical potential, and using the boundary
conditions μ′

0(0) = μ′
0(2) = 0, one can derive c′

0(2) = c′
0(0) and find the leading order growth rate

at k = 0,

√
σ0 coth

√
σ0 = 1 + 2σ 2

0

3(1 + D)vm
, (25)

where D = D+/D− is the ratio of the cation and anion diffusivities, and vm = 0.013 is the dimen-
sionless molar volume of the lithium metal. In typical electrolytes, D ≈ 1 and vm � 1, the growth
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rate σ0 � 1. Using the approximation
√

σ0 coth
√

σ0 � 1 + σ0/3, we get σ0 � (D + 1)vm/2 for
vm � 1, and the ion concentration c0 � h(y/2 − 1).

As a comparison, the growth rate for the purely EC instability is σ = 0 at k = 0. On the other
hand, the growth rate for the purely Morph instability follows:

coth
√

σ0 =
√

σ0

(1 + D)vm
, (26)

and the approximate solution is σ0 � (D + 1)vm and c � h(y − 1) for vm � 1. The Morph instabil-
ity is intrinsically unstable even at k = 0. This result can be understood from the boundary condition
at the electrode surface. Consider a local peak on the anode surface: The boundary condition
c(0) + h = 0 reduces the ion concentration at the surface and enhances the ion flux by increasing
the local concentration gradient, thereby causing more deposition. Allowing the EC effect smooths
the ion concentration gradient at y = 0 and reduces the growth rate by half. This is the leading order
growth rate of the perturbation, which is not affected by the pressure-driven flow.

The pressure-driven flow affects the eigenvalue at higher orders. Here we only consider the next
order solution with vm � 1, for which the eigenvalue

σ1 � 2iPeUm/3 (27)

is purely imaginary. Like the purely EC mode, the Morph perturbation at small k has a wave speed
equal to the average fluid velocity. However, its propagation is in the opposite direction, against the
imposed flow. This is because the cross flow brings more ions to the windward side of a perturbed
surface, increases the local deposition on this side, and therefore causes the wave to propagate
upstream. Since the applied flow suppresses the electroconvection, we expect the pressure-driven
flow to increase the growth rate for the EC/Morph instability for k � 1.

2. Large wave number, k � 1

For k � 1, the analysis is performed in the vicinity of the depletion anode surface with an
inner scale z = ky and the electrolyte is considered to be semi-infinite. In our previous study on
the bulk region [41], we derived the analytical solution for k � 1 without a flow. The growth rate
monotonically increases with the wave number k, and its scaling depends on the applied voltage. For
V < Vcr2, where Vcr2 = √

32/Pe is the critical voltage for the onset of electroconvection for k � 1,
the growth rate σ ∼ k. For V > Vcr2, the instability is mainly contributed by the EC instability and
σ ∼ k2. The growth rate for the coupled instability in an imposed flow has the same scalings.

For V < Vcr2 = √
32/Pe, we have

σ = kσ−1 + σ0 + σ1

k
+ · · · , (28)

with

σ−1 = (D + 1)vm

1 − PeV 2/32
, (29a)

σ0 = −256(D + 1)2v2
m

1 + PeV 2/32

(1 − PeV 2/32)3
, (29b)

σ1 = (D + 1)3v3
m

16

3 + 5PeV 2/32

(1 − PeV 2/32)5
+ i(D + 1)vmPeUm

4

2 − 7PeV 2/32

(1 − PeV 2/32)2
. (29c)

The imposed flow reduces the growth rate of the EC/Morph instability at high wave numbers.
The wave speed of the perturbation scales as uc = σ/k ∼ O(k−2); the wave can propagate either
downstream or upstream depending on the applied voltage.
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The leading order solutions for the ion concentration and normal velocity are

c = −he−z + PeV 2h

32 − PeV 2
z(z + 1)e−z, (30a)

v = − k2h

8 − PeV 2/4
ze−z. (30b)

Note that the normal velocity boundary condition v(0) = σh/Pe does not affect the leading order
equation since σ ∼ k has a smaller order than the normal velocity v ∼ k2. In other words, the growth
of the anode surface makes a negligible contribution to the fluid velocity. Instead, the flow is mainly
induced by a tangential electroosmotic slip velocity (9d) due to the ion concentration gradient caused
by the surface perturbation.

As a comparison, the growth rate for the purely Morph instability at k � 1 is [41]

σ = (D + 1)vmk (31)

and the perturbed ion concentration is

c = −he−z. (32)

At large wave number, the electroosmotic slip flow increases the growth rate of the Morph insta-
bility, even before the onset of electroconvection. This is because the electroosmotic flow near the
electrode surface increases the ion concentration gradient and therefore enhances the instability.
This result is opposite to the growth rate at small wave number, for which the electroconvection
reduces the growth rate of the Morph instability.

For V > Vcr2, the instability is dominated by electroconvection and the growth rate is

σ = k2σ−2 + · · ·, (33)

with σ−2 = PeV 2/8 −
√

PeV 2/2, which is the same as for the purely EC instability in Eq. (20a).
The leading order solutions for ion concentration and velocity are

c = PeV 2kh

8(D + 1)vmσ−2
[2e−√

σ−2+1z + (σ−2z − 2)e−z], (34a)

v = − σ−2V 2k3h

8(D + 1)vm
ze−z, (34b)

which are the same as Eqs.. (16) and (21) for the purely EC instability.

3. Numerical results for all wave numbers

Figure 7(a) shows the growth rate of the most unstable mode for the purely EC instability, the
purely Morph instability, and the coupled instability. For the Morph instability, the growth rate is
independent of the applied potential since the base state current is a constant I = 2. Its growth rate
scales as σr ∼ (D + 1)vm for k � 1 and σr ∼ (D + 1)vmk for k � 1, and it has a minimum growth
rate at k ≈ 0.3. Allowing the EC instability decreases the growth rate for small k while increasing
it for large k. The pressure-driven flow reduces the effects of electroconvection, it increases the
growth rate of the perturbation for small k, and it decreases the growth rate for k > 1, but eventually
its effect becomes negligible. In Fig. 7(b), the perturbation becomes a traveling wave even without
the onset of the electroconvection due to a nonuniform deposition on the upwind and downwind
sides of the perturbation, and it propagates upstream at small k and downstream at large k. The
electroconvection substantially increases the wave speed of the perturbation at large k.

The imposed flow stabilizes the base state for the coupled instability problem mainly through
mitigating the electroconvection. Figure 8 shows the eigenfunctions of the most unstable mode
for V = 12 and k = 3 at Um = 0, for which EC instability occurs, and Um = 200, for which
electroconvection is suppressed by the imposed flow. The amplitude of the perturbed electrode
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FIG. 7. The maximum growth rate [(a) real; (b) imaginary] of the EC, Morph, and the coupled instabilities
with and without the cross flow. The asymptotic solutions of σi for k � 1 and k � 1 are given in Eqs. (27) and
(29c), respectively.

surface is h = 1. In both cases, the local peak of the anode surface causes a downward flow and an
enhanced ion concentration gradient which brings more ions to the peak and amplifies the instability.
This result is consistent with previous experimental observations that the flow converges at the tips
of the dendrites [24]. The cross flow greatly reduces the ion concentration gradient and the velocity
of the downward flow, therefore reducing the growth rate of the Morph instability.

IV. FULL ANALYSIS

A. Method

So far, we have considered the linear instability of the bulk region, assuming electroneutrality
and using the second-kind electroosmotic slip velocity to replace the thin space charge layer. This
simplification allows us to analytically derive the asymptotic solutions for small and large wave
numbers. The bulk analysis predicts that the imposed flow cannot completely suppress the EC
instability because the ion concentration disturbance caused by the slip velocity us ∼ k2V 2 will
always dominate the stabilizing effect by the imposed flow at large wave numbers. However, the
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FIG. 8. Distribution of the perturbed (a) ion concentration and (b) normal velocity for the most unstable
mode of the EC/Morph instability at Um = 0 and 200, V = 12, k = 3. The results for Um = 0 are multiplied
by 0.01. Symbols show the high-wave-number asymptotic solutions (34).
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TABLE I. Comparison of the largest growth rates at different k for the EC instability derived us-
ing the ultraspherical spectral method and the shooting method, δ = 10−3, V = 25, Pe = 0.35, D = 2/3,
and Vm = 0.

k Ultraspherical spectral method Shooting method

0.1 −0.016096836493756 −0.016096836696248
1 1.279100815430633 1.279100816345562
10 1.103806945236518 × 102 1.103806944029065 × 102

100 −9.996152401785079 × 103 −9.996152401758340 × 103

assumption of thin space charge layer in the bulk analysis is no longer valid at high wave numbers
and it incorrectly predicts an infinite growth rate σ ∼ k2 as k → ∞ for the EC instability [15]. To
understand the effects of the imposed flow on modes at high wave numbers, we now consider the
linear instability of the full region, which includes the double layer and the space charge layer, and
we no longer assume electroneutrality. In the full analysis, the base state is derived by numerically
solving Eqs. (3) and (4). The eigenmodes are then calculated by solving the perturbed equations

σc+ + ikPeUmy(2 − y)c+ + PevC+′ = D + 1

2
[c+′′ − k2c+ − k2C+φ + (C+φ′ + c+�′)′], (35a)

σc− + ikPeUmy(2 − y)c− + PevC−′ = D + 1

2D
[c−′′ − k2c− + k2C−φ − (C−φ′ + c−�′)′], (35b)

2δ2(φ′′ − k2φ) = c− − c+, (35c)

v(4) − 2k2v′′ + k4v = k2((φ′′ − k2φ)�′ − φ�(3)), (35d)

with boundary conditions

(c+ + C+′h)|y=0 = 0, c+|y=2 = 0, (36a)

(c−′ − C−φ′ − c−�′)|y=0,2 = 0, (36b)

(φ + �′h)|y=0 = 0, φ|y=2 = 0, (36c)

v|y=0 = σh

Pe
, v|y=2 = 0, v′|y=0,2 = 0, (36d)

1 + D

2
(c+′ + C+φ′ + c+�′)|y=0 = σh

vm
. (36e)

Both the base state and the perturbed equations are solved using the ultraspherical spectral method
[59]. In contrast to the classical Chebyshev collocation method [60], this method constructs the
matrices in the coefficient space and uses banded operators to greatly reduce the condition number
of the matrices. This allows inclusion of more Chebyshev coefficients to fully resolve the thin double
layers. For the generalized eigenvalue problem, the ultraspherical spectral method is accurate up to
around 6000 coefficients, while the classical Chebyshev collocation method becomes ill conditioned
with more than 100 collocation points. To validate the current method, we first consider the EC
instability of the full region without a flow. Table I shows that the largest growth rates at different
k for the EC instability derived by the ultraspherical spectral method and the shooting method for
δ = 10−3,V = 25 and Vm = 0 are nearly identical. Figure 9 compares the marginal stability curves
obtained with the ultraspherical method to those from a previous study that used a shooting method
[15]. Here Pe = 0.5, D = 1, and Um = 0. The two results agree well with each other. The small
differences are probably because in Ref. [15] the equilibrium double layer near the top electrode
surface is modeled with the first-kind electroosmotic slip velocity, while here it is fully resolved.
We also compared our result with a previous linear stability analysis based on an unsteady base state
for V = 50, δ = 1.414 × 10−3, and Um = 0 [62]. Both studies predict the same wave number for
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FIG. 9. The marginal stability curves for the purely EC instabilities with different double layer thickness,
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√
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lines are obtained with the ultraspherical method. The dashed lines show the results from Ref. [15].

the most unstable mode, confirming the validity of the quasisteady approximation of the base state
in this study.

B. Electroconvection without imposed flow

Before considering the effects of the imposed flow, we first compare the EC instabilities derived
from the bulk and full analysis. Figure 10(a) shows the largest growth rate of the purely EC
instability with different δ at Um = 0. At V = 25, the full analysis predicts stable modes at small
(k < k1) and large (k > k2) wave numbers and unstable modes in between. At V = 25, the bulk
analysis predicts unstable modes at all wave numbers since the voltage is above the critical voltages
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FIG. 10. (a) The dependence of the growth rate σr/k2 on the wave number k for the purely EC instability at
Um = 0, Pe = 0.35, and D = 2/3. Colored lines: full analysis at V = 25 for different double-layer thicknesses.
Black lines: bulk analysis at different voltages. The solid black line (V = 25) reaches σr/k2 = 16.89 at large k,
while the dotted line (V = 10.3) has better agreement with the full analysis at δ = 10−5 for 1 < k < 10. k1 and
k2 represent the two wave numbers at which the growth rate becomes zero. Open circles show the asymptotic
solution σr = −(D + 1)k2/2 as k → ∞. (b) The dependence of k1, k2, and kmax on δ for the full analysis at
V = 25. The red dotted line shows the result of 0.6k2. The dashed line shows the corresponding wave number
of the space charge layer, δs = (9δ2V 2/8)1/3.
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FIG. 11. The perturbed (a) ion concentration (solid, cation; dashed, anion) and (b) velocity for the EC
instability at Um = 0 and k = 5. Lines: full analysis at V = 25. Symbols: bulk analysis at different voltages.

Vcr1 = 14.4 for k � 1 and Vcr2 = 9.6 for k � 1. Its predicted growth rates σr = 2.22k2 for k � 1
and σr = 16.89k2 for k � 1 are much larger than those from the full analysis at the same voltage.
One reason for this result is that the bulk analysis neglects the O(ln δ) potential drop inside the
double layer and space charge layer [13] and therefore overestimates the slip velocity. Reducing the
voltage to smaller values decreases the growth rate for the bulk analysis. For example, adjusting the
voltage to V = 10.3 brings the bulk analysis for 1 < k < 10 closer to the full analysis for δ = 10−5

as shown in Fig. 13. Later, we will see that these two analyses also have similar eigenfunctions.
The bulk analysis at V = 10.3 still quickly deviates from the full analysis at large k and predicts an
infinite growth rate as k → ∞. The deviation occurs at a wave number which is smaller than the
inverse of the space charge layer ε ∼ (δV )2/3 [14], showing that the linear instability of the mode
is strongly influenced by the space charge layer. For k < k1 and k > k2, the full analysis predicts a
stable mode with σr ∼ −k2, indicating that the mode is stabilized by diffusion of the ions inside the
space charge layer. As k → ∞, σr ∼ −(D + 1)k2/2. For an intermediate range of wave numbers,
k1 < k < k2, the full analysis predicts an unstable mode whose growth rate scales as σr ∼ k2 due
to the scaling of the electroosmotic slip velocity. The result is more evident at smaller δ and larger
V , where the perturbation is unstable over a larger range of wave numbers. To better understand
the transitions between stable and unstable modes, we plot k1 and k2 as functions of δ at V = 25 in
Fig. 10(b). The result is composed of two regions. At large δ, the applied voltage V = 25 is well
above the critical voltage for the onset of the EC instability. k1 ∼ O(1), and it slightly increases
with decreasing δ, suggesting that the stabilization of the modes at small wave numbers is related to
the gap between the two electrode surfaces. k2 roughly scales as δ−2/3, meaning that the modes are
stabilized due to the space charge layer whose thickness is δs = (9δ2V 2/8)1/3 [29]. This stabilization
cannot be captured by the bulk analysis. At smaller δ, when the applied voltage V = 25 is close
to the critical voltage, k1 and k2 change more rapidly with decreasing δ and eventually k1 = k2,
reaching the critical wave number for neutral instability. At small δ, k1 and k2 do not follow a
simple scaling law with the gap thickness or the space charge layer thickness, probably because the
potential drop across the double layer and space charge layer has a large effect. The wave number
of the most unstable mode kmax ≈ 0.6k2.

The similarities between the bulk and full analyses for k < k2 are further illustrated through their
eigenfunctions in Fig. 11. Here, we compare the profiles of ion concentrations c+, c−, and normal
velocity v at k = 5. The eigenfunctions are normalized such that the ion concentrations have the
same peak value of c+

max = 1. The overall distribution of the perturbed ion concentration is not
sensitive to the specific values of δ or V in Fig. 11(a). However, the ion concentration distribution
and its gradient near the space charge layer, which determines the slip velocity and the EC instability,
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FIG. 12. The dependence of σr/k2 on vmax/(k2V ). vmax is the maximum normal velocity when the perturbed
ion concentration has the peak value c+

max = 1. Symbol lines show the full analysis results, where each
individual symbol corresponds to a specific wave number k. Increasing k, the transitions from stable to unstable
then to stable modes again correspond to the wave numbers k1 and k2, respectively. Dotted line shows the bulk
analysis results at k = 50 with the voltage V increasing from left to right. The bulk analysis is derived from
Eqs. (16), (20a), and (21).

is strongly dependent on δ and V . In the full analysis, the variation of the cation ion concentration
in the space layer at y = 0 decreases with decreasing δ. Since the velocity field is driven by (c− −
c+)/δ2, the effects of the space charge layer on the ion concentration is not negligible even at
small δ. The magnitude of the slip velocity and the instability is determined by the slope of the
ion concentration outside the space charge layer. The bulk analysis at V = 25 overestimates its
gradient near y = 0 and therefore leads to a much larger velocity that causes a larger growth rate.
By reducing the voltage to V = 10.3, the ion concentration and velocity profiles agree well with the
full analysis results for δ = 10−5, leading to a closer agreement of the growth rate as well. All the
velocities follow the same relation v ∼ ye−ky, meaning that the EC instability is driven by osmotic
slip velocities of the same form but with different magnitudes.

For the unstable mode, the bulk analysis can be made quantitatively comparable with the full
analysis by adjusting the voltage. However, the bulk analysis cannot predict the transition from an
unstable to a stable mode with increasing k. To better understand this transition at k = k2, we plot
the rescaled growth rate σr/k2 as a function of vmax/(k2V ) in Fig. 12. Since the eigenfunctions
can be multiplied by any constant without affecting the result, we normalized the eigenfunctions
such that the ion concentration has the peak value c+

max = 1. The symbol lines show the results of
the full analysis and each individual point represents a specific wave number k. The growth rate
strongly depends on the magnitude of the rescaled velocity vmax/(k2V ). The transition from stable
to unstable mode at k1 depends on δ and V . For δ � 5 × 10−5, V = 25, it occurs at vmax/(k2V ) �
0.3 ± 0.02; for δ = 10−5, V = 25, which is closer to the neutral stability, it occurs at vmax/(k2V ) �
0.23; and at higher voltages, all small wave-number perturbations are unstable and k1 does not exist.
In comparison, the transition from unstable to stable mode at k2 always occurs at vmax/(k2V ) �
0.21 ± 0.01. This result shows that the EC instability is suppressed if the normal velocity is not
strong enough to overcome the ion diffusion and sustain the ion flux from low- to high-concentration
regions. The bulk analysis only shows the transition at k1. It overestimates the transition velocity
vmax/(k2V ) = (

√
5 − 2)e(

√
5−1)/2/

√
2Pe = 0.52348, where the numerical factor is calculated from

the bulk analysis prediction for k � 1. This is because it underpredicts the voltage for the onset of
the EC instability [15].
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growth rate.

C. Effect of imposed flow on electroconvection

We now consider the effects of the cross flow on the EC instability. Figure 13 shows the complex
eigenvalue σ as a function of k at different Um, δ = 10−4 and V = 25. Below the transition wave
number ktr , the perturbation is stable and it propagates downstream with the velocity at the channel
centerline PeUm. The eigenvalue of the mode follows the same asymptotic solution (14) in the bulk
analysis. Above ktr , the EC instability is determined by the wall mode, which has a local maximum
growth rate at k � 34 and the wave speed roughly follows us ∼ 1/k. The predictions of the bulk
[see Fig. (4)] and full analyses for the complex growth rate at relatively small wave numbers are
very similar to one another. Increasing Um delays the transition from the center mode to the wall
mode and reduces the peak value of the growth rate. At a fixed voltage, we also find the transition
wave number scales as ktr ∼ U 1/2

m as in the bulk analysis. In the full analysis, full suppression of the
EC instability is possible in a strong enough flow. This result is qualitatively different from the bulk
analysis.

Figure 14(a) shows the marginal stability curves at different imposed velocities Um for δ = 10−4.
The imposed flow stabilizes the modes at small wave numbers, while it does not affect the transition
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FIG. 14. (a) Marginal stability curves for the purely EC instability at different Um, δ = 10−4. (b) Depen-
dence of the critical voltage Vcr on the velocity of the cross flow Um at different double-layer thicknesses. The
inset shows that the increment of the critical voltage scales as Vcr − Vcr,0 ∼ (Umδ)1/2.
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at large wave numbers or the wave number of the most unstable mode. In Fig. 14(b), the critical
voltage Vcr for the onset of the EC instability increases with increasing Um. At the same velocity,
the increase of the critical voltage is more prominent when the double layer thickness δ is larger,
meaning that suppression of electroconvection by a cross flow is more effective in an electrolyte
with low salt concentration. This is because at the same voltage, the wave number of the most
unstable mode decreases with increasing δ (see Fig. 10), and the imposed flow is more effective
in suppressing the instabilities at small wave numbers. The voltage difference roughly scales as
Vcr − Vcr,0 ∼ (Umδ)1/2, where Vcr,0 is the critical voltage at Um = 0. The imposed flow suppreses EC
instability mode below a wave number k if its strength overcomes the perturbed EC field induced
by the second-kind slip velocity, i.e., Um ∼ k2V 2. The scaling Vcr − Vcr,0 ∼ (Umδ)1/2 suggests that
the EC instability is fully suppressed when the imposed flow stabilizes the mode of k ∼ δ−1/2. This
wave number is lower than k ∼ δ−1

s ∼ (δV )−2/3 corresponding to the space charge layer, suggesting
that the interaction between the imposed velocity and the perturbation field plays a role in stabilizing
the modes of δ−1/2 < k < (δV )−2/3.

The mechanism by which the cross flow suppresses EC modes with wave numbers in the range
δ−1/2 < k < δ−2/3 can be understood from the eigenfunctions of the perturbed ion concentration in
Fig. 15(a). Here, the magnitude of the velocity perturbation is normalized to have the same peak for
each case. It is clear that the imposed flow does not influence the EC velocity; instead it reduces
the magnitude of the concentration field and more importantly it compresses the concentration
perturbation region closer to the space charge layer. The peak of the concentration perturbation
decreases from δc ≈ 0.05 for Um = 0 to δc ≈ 0.025 at Um = 7 × 104, becoming similar to the
space charge layer thickness δs ≈ 0.02. This effect may cause the stabilization of the modes with
δ−1/2 < k < δ−2/3. At Um = 8 × 104, the perturbation completely vanishes near y = 0, showing
that the imposed flow now directly suppresses the modes with k ∼ δ−2/3. In the bulk analysis,
this corresponds to the transition from the A branch to P branch for which the solution has
negligible electroconvection and a Gaussian distribution of concentration, as discussed in Sec. III.A.
Figure 15(b) shows that the imposed velocity decreases δc at all wave numbers. For the modes with
k � δ−1

s , δc ∼ U −1/3
m at large Um. This result, which can be derived by balancing convection of c+

with its diffusion perpendicular to the wall in a boundary layer analysis of Eq. (35), is consistent
with the classical result for a low-Re mass transport [63]. At smaller Um and high wave numbers,
δc exhibits a weaker dependence on Um because other terms, such as diffusion in the tangent
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FIG. 16. Cation concentration distribution and the streamlines of the perturbation fluid velocity in the
purely EC instability at different imposed velocities, δ = 10−4,V = 25, and k = 34.

direction and convection by the perturbed velocity, which is most prominent near the surface,
become important. To better understand this mechanism, we further plot the two-dimensional
(2D) perturbation field in Fig. 16. Here, the plots are normalized such that all the results have
the same maximum normal velocity. At Um = 0, both ion concentration and fluid velocity have
real eigenfunctions, corresponding to stationary vortices which bring more ions from low- to
high-concentration regions and therefore cause the instability when the convective flux is stronger
than the stabilizing effect of ion diffusion. The imposed flow has a small influence on the streamlines
of the disturbance flow and its main effect is on the concentration field. The shear flow near the wall
deforms the ion concentration and generates an inclined shielded region which hinders the ion flux
from low- to high-concentration regions. With increasing velocity, the stretching of the perturbed
ion concentration field becomes stronger and it eventually stabilizes the perturbation.

Finally, we compare our linear stability analysis with results in the literature. In most previous
studies [49–51], electroconvection is always observed because the imposed flow is well below the
minimum velocity to fully suppress the instability. The simulations by Urtenov et al. [49] and
Nikonenko et al. [50] are performed at V = 40–72, Um ≈ 1400–2800, and δ = 10−5–2 × 10−4

showing no signature of stabilization. We estimate that at V = 40, Um ≈ 105 and 106 are needed
to fully suppress the EC instability for δ = 10−4 and δ = 10−5, respectively, thus being consistent
with their results. We also compare the analysis with the simulation results of a developing channel
flow of electrolyte by Kwak et al. [3]. At δ = 1.38 × 10−3, Pe = 0.35, D = 0.67, and V = 22, the
linear stability analysis predicts that the EC instability is stabilized at Um ≈ 207, which is similar to
the simulation result showing that EC vortices are fully suppressed around Um = 180. The difference
may be caused by entrance effects in the simulation.

D. Electroconvective/morphological instability

Figure 17(a) shows the growth rate of the perturbation for the EC/Morph instability at two
different voltages, V = 15 and 25, which are below and above the critical voltage for the onset
of electroconvection, respectively. At V = 15, the full analysis agrees well with the asymptotic
solutions of the bulk problem σr ≈ 1 for k � 1 and σ ≈ k for k � 1. The Morph instability is
directly caused by the cation flux and therefore is not strongly influenced by the space charge layer.

033701-24



SUPPRESSION OF EC AND MORPH INSTABILITIES BY AN IMPOSED CROSS FLOW

k

� r

10-2 100 10210-3

100

103

V=15, Um=0
V=15, Um=5�103

V=15, Morph
V=25, Um=0
V=25, Um=5�103

V=25, Um=0, EC
(D+1)�m/2
(D+1)�m
(D+1)�mk

(a)

2

k

� r

10-2 100 10210-3

100

103

V=15, Um=0
V=15, Um=5�103

V=25, Um=0
V=25, Um=5�103

bulk analysis

(b)

FIG. 17. (a) Maximum growth rate of the EC/Morph instability at δ = 10−4. V = 15 and V = 25 are below
and above the critical voltage for the onset of the EC instability at Um = 0. Symbols show the asymptotic
solutions in Eqs. (25), (26), and (31) for the bulk analysis. (b) Maximum growth rate of the instability with
surface tension at the electrode/electrolyte interface. The bulk analysis result shows the growth rate for the
purely Morph instability at large wave number (39) with C|y=0 = 0.15.

At V = 25, the growth of the ion-depositing surface gains a signature from the EC instability. The
growth rate has a region where σr ∼ k2 due to the EC instability. It reaches a local maximum at
k � 30 and eventually scales as k again as k → ∞. This result is qualitatively different from the bulk
analysis in Ref. [41], showing that the full analysis is necessary to correctly predict the EC/Morph
instability. With a strong cross flow, the local peak of the growth rate due to the EC instability
vanishes.

At sufficiently large wave number, the surface tension of the electrode/electrolyte interface
eventually becomes important and stabilizes the surface. To consider the effects of surface tension,
we replace the boundary condition for the cation in Eq. (2a) by the electrochemical potential balance
at the electrolyte/electrode interface [64],

�θ
C+ + (� + ln C+)|y=h = �θ

m + �m + γ K, (37)

where �θ
C+ and �θ

m are the standard chemical potentials for the cation in the electrolyte and
metal electrode, respectively, and �m is the electrostatic potential of the metal electrode. γ =
γ ∗v∗

m/(LRT ) is the capillary number of the depositing cation. For the lithium metal, the molar vol-
ume of the metal atom is v∗

m = 1.33 × 10−5 m3/mol, the interfacial energy γ ∗ = 1.716 J/m2, and
the dimensionless interfacial energy γ = 9.15 × 10−6. K is the curvature of the electrode surface,
which is positive for a convex projection into the electrolyte. In the base state, Eq. (37) reduces to
the condition (2a) for a constant cation concentration. Here, we still assume C+|y=0 = Cs = 1. For
small perturbations, K = −d2h/dx2 and the boundary condition at the anode surface in Eq. (36a)
becomes

(c+ + C+′
h)|y=0 = hγ k2C+|y=0. (38)

The corresponding growth rate is shown in Fig. 17(b). The surface tension stabilizes the perturbation
for k > 103 and the critical wave number scales as k ∼ γ −1/2 [64]. Similarly, for the bulk analysis,
we replace the first boundary condition in Eq. (9a) by a chemical potential balance condition for the
cation 2(c|y=0 + h)/C|y=0 − μ|y=0 = hγ k2. C|y=0 is the small but nonzero cation concentration at
the edge of the bulk region and here we treat it as a fitting parameter. The growth rate in Eq. (31)
becomes

σ = (D + 1)vmk(1 − C|y=0γ k2/2), (39)
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and the mode becomes stable at kcr = √
2/(γC|y=0). In Fig. 17(b), the bulk analysis matches the full

analysis for large k with a fitting parameter C|y=0 ≈ 0.15. This result shows that the double layer
and the space charge layer have significant effects on the Morph instability at sufficiently high wave
numbers. However, it is not straightforward to directly compare the bulk and full analysis since the
boundaries in the two analyses are different. It is thus important to experimentally determine the ion
concentration at the electrode/electrolyte interface to accurately predict the critical wave number
at which the interfacial energy becomes important using the bulk analysis. To summarize, although
the cross flow cannot eliminate the Morph instability, it does affect the wave number of the most
unstable mode by suppressing electroconvection.

This result is qualitatively consistent with previous experiments which observed the change in
the morphology of metal electrodeposition resulting from suppression of the EC instability. In the
presence of the EC instability, zinc deposition at the microscopic scale displays an orderly alignment
of grain flakes (1 μm by 2 μm by 100 nm) with a preferred orientation, which involves two length
scales, the small wavelength (≈1 μm) determined by an individual grain and the large wavelength
(≈102 μm) set by the groups of arrayed grains with the same orientation. When the EC instability
is suppressed by adding agar gel into the electrolyte, the zinc deposition has a morphology of
randomly oriented grains which only has the small wavelength [37]. This morphology change at
the microscopic scale causes the transition from an ordered dendritic deposition to a dense branch
deposition at the macroscopic scale [36,37]. More recently, Wei et al. [38] showed that lithium
deposition on a planar metal electrode surface transitions from mossy mushroom structures (large
wavelength) to needle-like structures (small wavelength) as electroconvection is suppressed by
adding high-molecular-weight molecules into the electrolyte. Our results predict that similar effects
can be achieved by imposing flow.

V. CONCLUSION

We studied the effects of cross flow on the EC and Morph instabilities in an electrolyte near
an ion-selective surface using two methods. In the bulk analysis, we use the electro-osmotic slip
velocities as the boundary conditions for the bulk region and derive the asymptotic solutions for
small and large wave numbers. In the full analysis, we numerically calculate the base state as well
as the perturbed solution using the ultraspherical spectral method. In both studies, the general effect
of the cross flow is to attenuate the influences of the electroconvection by suppressing the vortices
at small wave numbers near the ion-selective surface. For the purely EC instability, the imposed
flow generates a stable central mode below a critical wave number and decreases the growth rate
of the unstable wall mode at large wave numbers. The transition between the two modes occurs
at the transition wave number kt ∼ U 1/2

m V −1 at which the imposed velocity equals the second-kind
slip velocity. The influence of the imposed flow on the EC instability can be distinguished in three
regimes. For Um < V 2δ−1, the EC modes with k < kt and k > δ−2/3 are suppressed by the flow
and the space charge layer, respectively, while the modes with kt < k < δ−2/3 are unstable. For
Um > V 2/3δ−4/3, all EC modes are suppressed because the imposed flow overwhelms the EC flow at
all wave numbers up to k ∼ δ−2/3, above which the modes are suppressed by the space charge layer.
Interestingly, in the regime in between, all EC modes are also fully suppressed through a different
mechanism. The interaction between the imposed flow and the perturbed concentration field outside
the space charge layer stabilizes the modes of δ−1/2 < k < δ−2/3. More specifically, the shear flow
creates a sheltering effect by distorting the concentration field and prevents the EC vortex-induced
ion flux from low- to high-concentration regions which causes the instability. This effect leads to
the V ∼ (Umδ)1/2 scaling for the increase of critical voltage for the onset of EC instability.

In spite of the imposed flow, a metal electrode adjacent to a Newtonian electrolyte is always
subject to the Morph instability. Its growth rate scales as σ ≈ 1 for k � 1 and σ ∼ k for k � 1.
The onset of the EC instability greatly increases the growth rate of the Morph instability to σ ∼ k2

and generates a local maximum at a moderate wave number (k ≈ 10). In this scenario, the ion
deposition acquires signatures from both Morph and EC instabilities. For example, zinc deposition
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has a microscale morphology of an orderly alignment of grain flakes with a preferred orientation.
This structure has both small (individual grain) and large (ordered structure) wavelengths [37].
The imposed flow increases the growth rate at small wave number (k < 10−1) by increasing the
ion concentration gradient near the electrolyte/electrode interface. At large wave number, the flow
reduces the growth rate mainly by suppressing the EC instability at k ≈ 10. The suppression of the
EC instability removes the EC signature and changes the morphology of the electrodeposition. This
effect is expected to be similar to the results of using gels and polymers to suppress EC flow and
change the deposition morphology [36–38].

The comparison between the analytical treatment of the bulk region and the full stability analysis
shows that the analytical result must be used with caution. For the purely EC instability, the bulk
analysis significantly underestimates the critical voltage and fails to predict the transition from
unstable to stable modes with increasing wave number. When the applied voltage is well above
the critical voltage for the onset of the EC instability, the transition wave number from the full
calculation scales as the inverse of the thickness of the space charge layer k ∼ δ−2/3, a result that
might be anticipated by applying a simple cutoff to the bulk analysis. When the applied voltage is
close to the critical voltage, however, no such relation was found, suggesting a more complicated
interaction between the perturbation and the space charge layer which can only be captured by
the full analysis. For the EC instability without the flow, the perturbed velocity transports more
ions from regions of low concentration to regions of high concentration than predicted by the
bulk analysis. Once the flow is strong enough to overcome the stabilizing effects caused by
ion diffusion and migration, it generates a positive feedback and causes the EC instability. By
studying the transition from unstable to stable modes at various double layer thicknesses and
applied voltages, our result shows that the base state becomes stable when the maximum normal
velocity vmax < 0.22k2V for an ion concentration with a unitary peak. The stabilizing effect of the
imposed flow is not caused by reducing the perturbation velocity. In fact, the magnitude of the
perturbation velocity increases with increasing magnitude of the imposed flow. Instead, the shear
flow deforms the perturbed ion concentration field and generates a shielding effect which suppresses
the ion flux from low- to high-concentration regions. The bulk analysis qualitatively captures these
features but the results are quantitatively different from those obtained with the full analysis. For the
purely Morph instability, the bulk analysis predicts accurate results for both small and large wave
numbers. However, when the surface tension becomes important, the ion concentration distribution
near the ion-selective surface, which must be determined from the full analysis or experimental
measurements, significantly affects the prediction of the critical wave number.
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