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Zonal flow reversals in two-dimensional Rayleigh-Bénard convection
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Using long-time direct numerical simulations, we analyze the reversals of the large scale
zonal flow in two-dimensional Rayleigh-Bénard convection with a rectangular geometry
of aspect ratio �. We impose periodic and free-slip boundary conditions in the streamwise
and spanwise directions, respectively. As Rayleigh number Ra increases, large scale flow
dominates the dynamics of a moderate Prandtl number fluid. At high Ra, transitions are
seen in the probability density function (PDF) of the largest scale mode. For � = 2, the
PDF first transitions from a Gaussian to a trimodal behavior, signifying the emergence
of large scale flow reversals, where the flow fluctuates between three distinct states: two
states in which a zonal flow travels in opposite directions and one state with no zonal
mean flow. Further increase in Ra leads to a transition from a trimodal to a unimodal PDF
which demonstrates the disappearance of the zonal flow reversals. On the other hand, for
� = 1, the zonal flow reversals are characterized by a bimodal PDF of the largest scale
mode, where the flow fluctuates only between two distinct states with zonal flow traveling
in opposite directions.
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I. INTRODUCTION

Large scale zonal flow in buoyancy-driven convection is found in the atmosphere of Jupiter [1–3],
in the Earth’s oceans [4–6], in nuclear fusion devices [7,8], in laboratory experiments [9–11],
and recently in numerical simulations of Rayleigh-Bénard convection [12–15]. This large scale
flow can undergo abrupt transitions, seemingly randomly, after very long periods of apparent
stability [16,17].

Such transitions have been observed in a wide range of turbulent flows, including flow
past bluff bodies [18,19], von Kármán flow [20–22], reversals in a dynamo experiment [23],
Rayleigh-Bénard convection [24,25], Taylor-Couette flow [26], experiments on two-dimensional
(2D) turbulence [27], and Kolmogorov flow [28]. In the turbulent regime, the broken symmetries
of the flow can be restored statistically [29]. However, these flows undergo transitions, which lead
to different flow states as a control parameter increases, and correspond to spontaneous symmetry
breaking in a system far from equilibrium.

In Rayleigh-Bénard convection, such transitions have also been observed in the form of reversals
of the large scale flow in various setups [30–32]. In particular, reversals of the large scale circu-
lation (LSC) in an enclosed rectangular geometry have been observed in several experiments and
numerical simulations [33–40].

In this article, we report on the reversals of the large scale zonal flow that emerge in 2D
Rayleigh-Bénard convection. These transitions occur between long-lived metastable states on a
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fluctuating background, and thus resemble phase transitions in condensed matter physics [41].
Thus, the present work could be of interest to a wider range of fields beyond fluid dynamics.
Moreover, the zonal flow reversals are found in the classical Rayleigh-Bénard convection setup
of a rectangular geometry, with periodic and free-slip boundary conditions in the streamwise and
spanwise directions, respectively. On this idealized setup, the flow field can be decomposed into
convenient basis functions, which allow further theoretical development.

II. PROBLEM DESCRIPTION

We adopt the Boussinesq approximation, assuming constant kinematic viscosity ν, and thermal
diffusivity κ . The resulting equations governing 2D Rayleigh-Bénard convection, written in terms
of the stream function ψ (x, y, t ) and the perturbation θ (x, y, t ) from the steady state temperature,
are

ψt + ∇−2{ψ,∇2ψ} = gα∇−2θx + ν∇2ψ, (1)

θt + {ψ, θ} = �T

πd
ψx + κ∇2θ, (2)

where { f , g} = fxgy − gx fy is the standard Poisson bracket. Our spatial domain is bounded
vertically by y ∈ [0, πd] and horizontally by x ∈ [0, 2πL]. The imposed boundary conditions
are periodic in x and free slip in the y direction, specifically ψ (x, y, t ) = ψ (x + 2πL, y, t ),
θ (x, y, t ) = θ (x + 2πL, y, t ), and ψ = ψyy = θ = 0 at y = 0, πd . The three nondimensional pa-
rameters are the aspect ratio � = 2L/d , the Prandtl number Pr = ν/κ , and the Rayleigh number
Ra = αg�T (πd )3/(νκ ), where α is the thermal expansion coefficient, �T is the temperature
difference between the top and bottom plates, and g is the gravitational acceleration. In this study,
we fix Pr = 30 and consider � = 1 and 2 for Ra ranging from 104 to 107.

We perform direct numerical simulations (DNSs) by integrating Eqs. (1) and (2) using the
pseudospectral method [42]. Based on the numerical code from [28,43] we decompose the stream
function into basis functions with Fourier modes in the x direction and sine modes in the y direction,
viz.,

ψ (x, y, t ) =
Nx/2∑

kx=−Nx/2

Ny∑
ky=1

ψ̂kx,ky (t )eikxx/L sin (kyy/d ), (3)

where ψ̂kx,ky is the amplitude of the (kx, ky) mode of ψ , and (Nx, Ny) denotes the number of aliased
modes in the x and y directions. We decompose θ in the same way. A third-order Runge-Kutta
scheme is used for time advancement and the aliasing errors are removed with the two-thirds
dealiasing rule [44]. For Ra < 106 a resolution of Nx = Ny = 128 is used, while for Ra � 106,
we fix the resolution to Nx = Ny = 256. All our runs were integrated to at least 104 eddy turnover
times. Integrations for such very long times are necessary to accumulate reliable statistics for the
zonal flow reversals. To verify our findings, some runs were repeated at a finer resolution.

We are interested in quantifying the transitions of the large scale flow as the Rayleigh number is
increased. Thus, we consider the largest scale mode ψ̂0,1(t ), defined as

ψ̂0,1(t ) = 1

π2Ld

∫ 2πL

0

∫ πd

0
ψ (x, y, t ) sin (y/d ) dy dx. (4)

The emergence of ψ̂0,1 spontaneously breaks the centerline symmetry about y = πd/2 to form a
zonal mean profile. The onset of the ψ̂0,1 mode is currently being studied in detail and will be
reported elsewhere.
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(a) (b)

FIG. 1. (a) Time series of the normalized large scale mode ψ̂0,1 for � = 2 and (b) their corresponding PDFs
for different values of Ra.

III. RESULTS

We first focus on simulations of an anisotropic domain with � = 2. Time series of ψ̂0,1 normal-
ized appropriately (using the depth πd and the rms velocity urms = 〈|∇ψ |2〉1/2

x,t where 〈·〉x,t denotes a
spatiotemporal average) and their corresponding probability density functions (PDFs) are displayed
in Fig. 1 for different values of Ra.

At Ra = 2 × 106, the time series is turbulent with the amplitude of ψ̂0,1 fluctuating randomly
around the zero mean. This is an example of nonshearing convection as ψ̂0,1 does not break the
centerline symmetry in a statistical sense, i.e., 〈ψ̂0,1〉 = 0, where 〈·〉 denotes a time average. The
PDF of this time series (blue squares) is close to Gaussian. For nonshearing convection, the resulting
flow is characterized by the usual convection rolls.

At Ra = 4.5 × 106, the PDF (green diamonds) has three distinct peaks. This follows the first
bifurcation where the system transitions from an approximate Gaussian to a trimodal distribution
with two symmetric maxima either side of the peak around ψ̂0,1 = 0. This behavior is related to
the emergence of two symmetric shearing states, and the time series is characterized by abrupt and
random transitions between these two states (i.e., 〈ψ̂0,1〉 > 0 and 〈ψ̂0,1〉 < 0) and the nonshearing
state (i.e., 〈ψ̂0,1〉 ≈ 0).

For Ra = 6.4 × 106 we get random reversals of the large scale flow with a PDF (green circles)
which is again trimodal. The system now spends longer intervals in the symmetric shearing states,
and the corresponding peaks in the PDF are therefore stronger compared with the peak at 〈ψ̂0,1〉 ≈ 0.
As we keep increasing Ra, the reversals become rarer until we get to a transition where no more
large scale flow reversals are observed. This is seen in the case with Ra = 9 × 106 where the system
was never observed to reverse, remaining stuck in one of the shearing states, and the corresponding
PDF (red hexagons) is unimodal with a nonzero mean. The PDF for the largest Ra = 9 × 106

chooses either a positive or negative value of ψ̂0,1 depending on the initial condition. This uni-
modal distribution indicates that ensemble averaging is not equivalent to time averaging for this
system.

To understand the flow structure of the different states, in Fig. 2 we plot the zonal mean flow
profile

U (y, t ) = − 1

2πL

∫ 2πL

0
ψy(x, y, t ) dx (5)

normalized with urms, for the flow with Ra = 6.4 × 106. The light-colored curves indicate in-
stantaneous realizations of the zonal mean flow profile at different times. These times correspond
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FIG. 2. Time averaged zonal mean flow profiles when 〈ψ̂0,1〉 < 0 (blue), 〈ψ̂0,1〉 ≈ 0 (green), and 〈ψ̂0,1〉 > 0
(red) for Ra = 6.4 × 106 and � = 2. The light-colored curves represent instantaneous zonal mean flow profiles
and the thicker curves are the averages of these.

to 〈ψ̂0,1〉 < 0 for the light blue curves, to 〈ψ̂0,1〉 > 0 for the light red curves, and to 〈ψ̂0,1〉 ≈ 0
for the light green curves. The thicker blue, red, and green curves are the time averages of the
corresponding light-colored curves. The shear developed in the two shearing states is antisymmetric
with respect to the centerline y/(πd ) = 1/2. When 〈ψ̂0,1〉 > 0, we observe strong eastward and
westward moving flow in the upper half (1/2 < y/πd < 1) and lower half (0 < y/πd < 1/2) of the
domain, respectively. The opposite is true when 〈ψ̂0,1〉 < 0, while there is no time-averaged zonal
mean flow when 〈ψ̂0,1〉 ≈ 0 even though some instantaneous profiles can be considered having fairly
strong shear due to the fluctuations of ψ̂0,1 around zero. The transition between the two shearing
states denotes the reversals of the large scale zonal flow, which occur on a time scale much longer
than the eddy turnover time.

To quantify the instantaneous heat transport, we consider the time-dependent Nusselt number,

Nu(t ) = 1 + πd

κ�T
〈θψx〉x, (6)

where 〈·〉x denotes a spatial average. Within the regime of zonal flow reversals, we observe
significant reduction in the heat transport while the system is in a shearing state. Figure 3 shows
instantaneous realizations of the temperature field T = �T (1 − y/πd ) + θ along with the time
series of the normalized ψ̂0,1 and Nu at Ra = 6.4 × 106. In shearing states such as in Figs. 3(a)
and 3(c), the shear prevents thermal plumes from traversing the domain, decreasing the convective
heat transport. In nonshearing states such as in Fig. 3(b), the shear is not strong enough to suppress
thermal plumes, and convection rolls are sustained, promoting convective heat transport. This
observation is supported further by the time average values that the Nusselt number takes in Fig. 3
depending on when the system is in a shearing or nonshearing state, with 〈Nu〉 = 24.3 or 34,
respectively.

Now, we explore the effect of the aspect ratio on the transitions of the large scale mode by
considering an isotropic domain with � = 1. At Ra = 6 × 105 the time series of ψ̂0,1/(πdurms)
is characterized by abrupt and random transitions between two symmetric shearing states [see
Fig. 4(a)].
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FIG. 3. The top row of figures shows instantaneous realizations of the temperature field T = �T (1 −
y/πd ) + θ for Ra = 6.4 × 106 and � = 2. The middle and bottom rows have associated time series for ψ̂0,1

and Nu(t ) respectively, with times (a), (b), and (c) annotated.

In contrast with the case where � = 2, we no longer observe a transition to a nonshearing state
within the regime that zonal flow reversals occur. In addition, the bifurcation diagrams of 〈ψ̂0,1〉
for � = 2 [Fig. 4(b)] and � = 1 [Fig. 4(c)] demonstrate that the nature of bifurcations with respect
to the Rayleigh number depends on the aspect ratio. For � = 2, we observe two bifurcations in

FIG. 4. (a) Time series of ψ̂0,1 for Ra = 6 × 105 and � = 1. Bifurcation diagrams for (b) � = 2 and (c) � =
1. Error bars show one standard deviation in the time series of ψ̂0,1. The nonshearing, shearing, and reversing
regimes are highlighted by ( ), ( ) and ( ), respectively.
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the system as Ra increases. As we have already seen, the first bifurcation designates the onset of
random zonal flow reversals between two symmetric shearing states and a nonshearing state, and is
characterized by the transition from a Gaussian to a trimodal distribution for the time series of ψ̂0,1

[see Fig. 1(b)]. The second bifurcation is characterized by the transition of a trimodal to a one-sided
unimodal distribution, which designates the disappearance of zonal flow reversals in the system.
On the other hand, for � = 1 we observe three bifurcations [see Fig. 4(c)]. In this case, the first
bifurcation occurs from a nonshearing state to a persistent shearing state, and this is characterized
by a transition from a Gaussian to a one-sided unimodal distribution of ψ̂0,1. The second bifurcation
for � = 1 is the one that designates the onset of random zonal flow reversals. However, note here
that the transition is from a one-sided unimodal distribution to a bimodal distribution of ψ̂0,1 as
it can be inferred from Figs. 4(a) and 4(c). Finally, the third bifurcation for � = 1 is the one that
designates the disappearance of zonal flow reversals with a transition from a bimodal to a one-sided
unimodal distribution. Note that when � = 1 the regime of zonal flow reversals occurs at values
of Ra which are an order of magnitude smaller than when � = 2. Moreover, as the aspect ratio
decreases, shearing states emerge at lower Rayleigh numbers [see Fig. 4(c)], in agreement with
recent results [15].

IV. CONCLUSIONS

In summary, for a moderate Prandtl number fluid in 2D Rayleigh-Bénard convection, we observe
the emergence of a large scale zonal flow, whose dynamics are dominated by the largest scale mode
ψ̂0,1. As the Rayleigh number increases, we find large scale flow transitions between long-lived
metastable states within the turbulent regime of the system. These transitions are seen in the PDF of
the time series of the ψ̂0,1 mode. For aspect ratio � = 2, the PDF transitions first from a Gaussian
to a trimodal distribution, signifying the onset of reversals between two symmetric shearing states
and a nonshearing state. The zonal flow reversals suppress the convective heat transfer as thermal
plumes are not able to traverse the layer. Then, as Ra increases further, a second transition occurs
from a trimodal to a one-sided unimodal distribution, where reversals cease to exist for the whole
duration of the simulation. For � = 1, similar flow transitions are observed but the reversals in this
case occur between two symmetric shearing states giving a bimodal PDF for the large scale mode.
A similar set of bifurcations on a turbulent background leading to the emergence and disappearance
of reversals in the large scale zonal mean flow has been observed in other contexts [28,45–47], and
hence we believe that they are generic.

In this article, we have focused on the parameter range in which the dynamics of zonal flow
reversals are observed. The physical mechanism behind the reversals of the large scale zonal flow
remains an open question. The truncated Euler equations could be one way to theoretically under-
stand these dynamics further like in [28,45]. Nevertheless, it should be noted that the mechanism
for zonal flow reversals must differ markedly from the one that has been used to explain reversals of
the LSC in Rayleigh-Bénard convection in a box geometry with no-slip walls, where the boundary
layers [34] and vortex reconnection [37] play a crucial role for reversals. With free-slip walls, it has
been suggested that the nonlinearity in the temperature equation plays a vital role on the reversals of
the LSC [39]. However, buoyancy only does work on the vertical flow, meaning that the dynamics
of the ψ̂0,1 mode partially decouples from the temperature equation since ∂x (̂θ0,1(t ) sin (y/d )) = 0.
This issue, and a wider parameter space, is explored in an ongoing study, which we aim to report in
detail in the near future.
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