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The flow of viscoelastic polymeric fluids through porous media is common in industrial
applications such as oil recovery and groundwater remediation. Polymeric stresses can
lead to an elastic-induced instability of the flow. Here, we numerically study the flow of
a polymeric fluid in a channel consisting of multiple diverging and converging physical
constraints, mimicking the pore bodies and throats of an ordered porous medium. Inertial
stresses here are negligible, and instead the flow is dominated by elasticity and viscosity;
their relative effects are characterized by the Weissenberg number. There is a critical
Weissenberg number below which eddies appear on the top and the bottom of each pore.
Above the critical Weissenberg number, eddies form in different regions of the pores and
multiple distinct unstable flow structures occur. The stretched polymeric chains inside
the pore facilitate eddy formation, whereas relaxed chains lead to eddy-free regions. We
quantify the eddy area and correlations between the flow patterns of different pairs of
pores, as well as polymeric stress and pressure drop across the tortuous channel to better
understand the mechanism behind the observed flow patterns.
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I. INTRODUCTION

Polymers can impart elastic properties to fluids, producing non-Newtonian spatiotemporal flow
features [1–5]. Understanding polymer flow in porous media is of particular importance for en-
hanced oil recovery (EOR) [6] and groundwater remediation [7,8], where polymer additives have
improved the displacement of trapped nonaqueous liquids for collection downstream [9–14]. The
flow of viscoelastic mucus through arrays of pillars (2D porous media) is also important for the
transport of gametes and embryos in the reproductive track [15] and the trapping of inhaled dust
particles in the airways of lungs [16]. In confined geometries, the surrounding porous matrix
strongly affects the spatial and temporal features of the flow [17–21]. For example, the presence
of polymers can induce strong velocity fluctuations, locally increasing viscous forces, and subse-
quently promoting the displacement of trapped liquids [22–26]. Understanding the spatiotemporal
details of these flow fluctuations is important for effective EOR and groundwater remediation, but
also for other emerging applications such as controlling mixing and flow in laboratory-on-a-chip
devices, filtration [27], and extrusion of polymeric resins during 3D printing [28,29]. However, the
onset of flow instabilities and the resulting flow features are highly sensitive to polymer properties,
flow geometry, and imposed flow conditions [30–32]. This sensitivity challenges experimental
observations, leaving many open questions on how to control the flow structure for fluid recov-
ery [1,23,24,33–39].

2469-990X/2021/6(3)/033304(22) 033304-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6639-8961
https://orcid.org/0000-0002-3945-9906
https://orcid.org/0000-0003-2400-1561
https://orcid.org/0000-0003-3301-3193
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.033304&domain=pdf&date_stamp=2021-03-25
https://doi.org/10.1103/PhysRevFluids.6.033304


MANISH KUMAR ET AL.

Between the solid grains of a porous matrix, there are large bodies of fluid-filled void space,
connected to neighboring pore bodies by relatively small throats. These bodies and throats are often
modeled with a series of expansions and constrictions [17,40–42]. Upstream of constrictions, per-
sistent recirculating eddies often form [43–48] to minimize the extensional stresses associated with
polymer chain alignment [49–53]. Polymers are elongated by these curved streamlines, relaxing on
a characteristic timescale λ. For sufficiently high shear rates γ̇ , polymers are advected faster than
they relax, producing strong flow fluctuations at high Weissenberg numbers Wi ≡ λγ̇ [54–58]. This
fluctuating flow is sometimes called “elastic turbulence” because its features are often reminiscent
of traditional inertial turbulence [55–57], despite the absence of inertia, characterized by arbitrarily
small Reynolds numbers Re � 1.

Microfluidic experiments have revealed a variety of complex spatiotemporal flow features pro-
duced by these instabilies [45,46,59–75]. However, in 3D porous media—like those encountered
in EOR and groundwater remediation—the role of higher connectivity, elevated disorder, and
successive pores are expected to significantly alter the flow [21,33,34,76–82]. In particular, the
accumulation of stresses as polymers traverse successive pores can produce spatial variation in
the dominant flow features [43,44,63,64,83,84]. In the interesting case of dense pores, polymers
are advected faster than they relax, kinetically trapping polymers within each pore. Surprisingly,
this trapping can produce a bistability in the flow, where each pore switches stochastically be-
tween two distinct flow structures: an eddy-dominated structure and an eddy-free structure [47].
The emergence of multiple persistent flow structures is consistent with some theoretical predic-
tions [45,85,86] and is hypothesized to occur when polymers within a pore are locally kinetically
trapped in an extended or coiled conformation, respectively, and hence when polymers’ advec-
tion timescale is smaller than relaxation timescale. However, the details of how these structures
arise are unclear, and the role of spatial and temporal correlations between pore-scale flow
structures are still largely unknown. Despite advances in imaging single-polymer conforma-
tions [2,64,87–94], microscopic flow details remain hard to access experimentally in highly unstable
flow.

Here, we uncover the underlying physical mechanisms of this multistability using numeri-
cal simulations. We are able to directly probe the local stress fields, elucidating the physical
mechanisms underlying flow structures. We further observe a new, relatively rare flow structure,
where eddies transiently appear in the center of pores, prompting new experimental investiga-
tions. Finally, we probe spatial correlations on shorter timescales and longer length scales than
possible experimentally, showing that weak positive correlations in flow structures can persist
for many pores. These results help elucidate how the local accumulation of extensional stresses
contribute to the formation of various persistent flow structures in unstable polymer solution flow.
Understanding and controlling these multistable flow structures may aid the application of these
flows to EOR, groundwater remediation, laboratory-on-a-chip devices, filtration, and 3D printing
technologies.

II. PROBLEM SETUP

In this work, we investigate the flow of viscoelastic fluid though a pore constriction array
by performing two dimensional numerical simulations. The geometry used in the simulation to
investigate the elastically induced instability is a channel of width W with wall-centered pillar
obstructions with diameter D (Fig. 1). The center-to-center separation of these pillars in the
x-direction is varied from ls = W for 10 closely spaced pores [Fig. 1] to ls = 8W for two widely
spaced pore throats [Fig. 5(a)]. We also study the flow behavior in a single-pore throat channel made
of a single pair of wall-centered pillars [Fig. 2(a)]. The Reynolds number (Re) and Weissenberg
number (Wi) are the relevant dimensionless numbers. Re represents the ratio of inertial to viscous
stresses and is given as Re = ρUt Lt/η, where η is zero-shear rate viscosity, ρ is fluid density, Ut

is the average fluid velocity through the throat of the pore and length scale Lt is the half-width of
the pore throat [95]. Wi represents the ratio of elastic to viscous stresses and has been defined as
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FIG. 1. The geometry used for numerical simulations. D = 1.6 mm is the diameter of the pillar and
W = 2 mm is the width of the channel. The region enclosed with the square box depicts a sample pore.

Wi = N1/2τw, where N1 is the first normal stress difference and τw is the shear stress. To estimate
Wi, we use a planar rectilinear flow of a shear-thinning fluid obeying the FENE-P constitutive model
through a slit of width same as the width of pore throat [95] and calculate Wi corresponding to
the shear stress at the wall of the channel [96]. We use the time required to inject a single-pore
throat volume fluid as the characteristic timescale, tpv = Vpv/Q, where Vpv = DW − πD2/4 is
the pore throat volume per unit depth and Q is the volumetric flow rate per unit depth of the
channel.

FIG. 2. (a) The streamlines depicting the eddies formation in the upstream of a single throated channel
at Wi = 26. The contour represents the trace of polymeric stress tensor in the channel. (b) x-component of
velocity along the length of channel close to the wall (at a distance �y/W = 0.015 from the wall, where
�y is the height of first grid element next to the wall). (c) The instantaneous and time-averaged length of
eddies at different Wi in the upstream of a single-pore channel. The time is nondimensionalized with timescale
tpv. (d) Power spectral density (PSD) of the normalized eddies’ length (Leddy/W ). Frequency is normalized
with 1/tpv.
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III. GOVERNING EQUATIONS

The transient flow behavior of the incompressible fluid is governed by the conservation of mass
and momentum:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ, (2)

where u, p and τ are the flow field, pressure field and total stress tensor, respectively. The stress
tensor τ consists of solvent stress τs and polymeric stress τp, τ = τs + τp. The solvent stress tensor,
τs, can be obtained as τs = ηs(∇u + ∇uT ), where ηs is the solvent viscosity. We use the FENE-P
constitutive equation to calculated the polymeric stresses [76,97]:

τ p + λ

f

∇
τ p = aηp

f
(∇u + ∇uT ) − D

Dt

(
1

f

)
[λτ p + aηpI], (3)

where λ is the relaxation time of the polymer, ηp is the polymeric contribution to zero-shear rate
viscosity η = ηs + ηp, I is identity tensor, and D

Dt is the material derivative. Function f is given as

f (τp) =
L2 + λ

aηp
tr(τp)

L2 − 3
, (4)

where a = L2/(L2 − 3) and parameter L2 = 3R2
0/R2

e measures the extensibility of the polymer
chains [96,97]. R0 is the maximum allowable length of the polymeric chain and Re characterizes
the equilibrium length of the chain. A typical range of the parameter L2 found in the literature for
FENE-P model is 10-1000 [76,95,97,98] and FENE-P model reduces into an Oldroyd-B constitutive
model in the limit of L2 → ∞. Operator ∇ used in equation (3) represents the upper convective time
derivative and is given by

∇
τ p = Dτ p

Dt
− τ p · ∇u − ∇uT · τ p. (5)

The numerical simulations are performed using a finite volume model using an open-source
framework OpenFOAM [99] integrated with RHEOTOOL [100]. The equations are discretized using
the finite volume method and the log-conformation approach has been used to calculate the poly-
meric stress tensor with higher accuracy and robustness. The relation between the polymeric stress
tensor and conformation tensor is given as

τ p = ηp

λ
( f e� − aI), (6)

where � is the logarithm of conformation tensor. The details of the numerical methodologies and
the code validations can be found here [100,101]. In our simulations, we change the relaxation
time (λ) from 0.02 to 0.5 s to change Wi, while keeping ρ = 1 kg/m3, ηp = 0.99 Pa s, ηs = 0.01
Pa s, L2 = 625, and volumetric flow rate per unit depth of the channel Q = 16.8 mm2/s constant
throughout the study. The width of the pore throat is 2Lt = 0.4 mm and the average fluid velocity
through the pore throat (Ut ) is given as Ut = Q/2Lt = 42 mm/s. These parametric values of fluid
lead to Wi ≈ 10–47. The Deborah number (De = λUt/ls) can also be defined for 2-throats and 10-
pores channels. De ranges from 0.05–1.3 for 2-throats channels and 0.42–10.5 for 10-pores channels
in the present study. The polymer chains do not have sufficient time to relax before reaching to the
next pore in 10 closely placed pores as De > 1 for cases with Wi > 18 and hence the interactions
among the pores are expected. The effect of inertia in our study is negligible as Re is very small,
Re ∼ 10−5. The elasticity number, El = Wi/Re ∼ 106, can be defined to characterise the relative
importance of elasticity and inertia. In the present study, the elastic forces dominate over the inertia
as El(∼ 106) is very large. Therefore, the effect of the change in elastic modulus of fluid due to
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the change in λ does not have any significant effect on the results. We use tpv as the characteristic
timescale in the present study. tpv = 0.07 s is constant due to the fixed flow rate. We performed
simulations for dimensional time t∗

max = 1.0 s, which corresponds to tmax = t∗
max/tpv ≈ 14 and varies

from t∗
max/λ = 50 at Wi = 10 to t∗

max/λ = 2 at Wi = 47. t∗ is dimensional time and t = t∗/tpv is
dimensionless time. The flow converges to steady state for t > 0.2 at Wi = 0.3 (almost Newtonian
fluid) and for fluctuating flows instability becomes fully developed for t > 1 (see the Appendix). We
use time interval t = 2–14 to calculate the statistics. Here, the maximum simulation time (tmax ≈ 14)
is sufficient for the convergence of the statistics. We use 1/tpv to scale the frequency and viscous
stress ηUt/Lt to normalize polymeric stresses and pressure. In the next section, we study the flow
field and elastic-induced instability in the above mentioned geometry (Fig. 1) for three different
cases: a single-pore throat (Sec. IV A), two widely separated pore throats (Sec. IV B) and ten closely
spaced pores (Sec. IV C).

IV. RESULTS AND DISCUSSION

A. Single-pore throat

To investigate the polymeric flow instability in the porous media, we start our study with
a relatively simple geometry. Therefore, first we consider a channel with a single-pore throat
and study the dynamics of polymeric fluid flow in the channel. Eddies appear upstream of the
throat (Supplemental Material, video 1) [102]. At Wi < Wicr these eddies form in both top and
bottom regions. However, above a threshold Wi strong spatial and temporal fluctuations in flow
velocity occur, leading to fluctuations in the position of eddies. Fluctuations are largely suppressed
downstream of the pore throat, and eddy formation is weak [46,47]. We can link these flow features
to underlying polymer conformations by computing the polymeric stress tensor [Fig. 2(a)]. The
trace of polymeric stress tensor [tr(τp)] physically represents the elongation of the polymeric chains
in the solution, where the higher value of trace corresponds to the larger stretching of the chains. In
the high stress regions polymer chains are highly stretched, obstructing the fluid flow crossing the
high stress regions and facilitating the flow separation (i.e., formation of eddies). In the upstream,
the streak of large tr(τp) are detached from the wall and goes into the middle of the constriction,
indicating high polymer elongation, which drives eddy formation upstream of the constriction.
The low value of tr(τp) within the upstream eddy indicates that eddy formation reduces polymer
stress [Fig. 2(a)]. Polymeric chains inside the channel in the downstream of the throat are relaxed
as the high polymeric stress regions occur close to the walls [Fig. 2(a)], which facilitates the
divergence of the flow inside the channel and makes downstream region eddy free. Downstream
of the constriction there appear to be waves of higher polymer extension being advected further
downstream. To quantify the length of eddies (Leddy) upstream of the throat, we plot x-component
of velocity (Ux) at a distance �y/W = 0.015 (�y is the height of first grid element next to the wall)
away from the wall [Fig. 2(b)]. Leddy is the length measured from the first stagnation point (left
most of the throat) to the start of the throat (i.e., x = 0). Thus, Leddy covers all the upstream eddies
shown in Fig. 2(a). If eddies appear on both top and bottom regions, Leddy = max(Ltop

eddy, Lbottom
eddy ). We

have plotted Leddy in the upstream of the pore throat at different Wi [Fig. 2(c)]. The instantaneous
length of eddies fluctuates with time. However, the time-averaged length of eddies along with the
intensity of fluctuations increases as Wi increases [Fig. 2(c)]. These findings are consistent with the
experimental observations [43,45,47,48,50–53,68,83,103–106].

The power spectral density (PSD) of the normalized instantaneous eddy length depicts the
strength of variations of Leddy at different frequencies [Fig. 2(d)]. The dimensionless frequency
spectrum of the fluctuation of Leddy is in the range of 0–9 [Fig. 2(d)]. The PSD of smaller frequencies
is larger than that of higher frequencies. The PSD of larger frequencies increases with Wi, which
shows the increase of temporal fluctuations of Leddy with Wi. We also study the statistics of Leddy at
different Wi in a single throated channel [Fig. 3(a) and 3(b)]. The probability distribution of eddies’
length (Leddy) shows that the range of Leddy increases with Wi [Fig. 3(a)]. We have plotted the mean
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FIG. 3. (a) Probability density function of dimensionless eddy length (Leddy/W ) in a single throated
channel. (b) Mean (μ) and standard deviation (σ ) of normalized eddies’ length.

(μ) and standard deviation (σ ) of normalized eddies’ length (Leddy/W ) to further quantify the range
of eddies’ length [Fig. 3(b)]. The standard deviation monotonically increases with Wi; however,
the slope of σ changes between Wi = 26–30. Therefore, we define Wicr = 28 ± 2 as the onset of
instability in a single throated channel. Figure 3(b) also shows that the mean (μ) of Leddy increases
with Wi. Wicr based on the change in the slope of σ is simply a choice made that does not influence
any of the interpretations, and a different choice made by defining Wicr as the change in the slope
of μ gives similar Wicr values.

B. Two widely separated pore throats

After analyzing the flow dynamics in a channel with a single-pore throat, we consider a channel
with two widely separated pore throats (ls = 8W) (Supplemental Material, video 2) [102]. The
eddies in front of each throat are unstable and the strength of fluctuations increases with Wi [Fig. 4).
Similar to the single throat channel, the detachment of a streak of large tr(τp) from the wall leads to
eddy formation in the upstream of each throat, whereas high tr(τp) close to the wall corresponds to
eddy-free region downstream of the throat [Fig. 5(a)]. We also observe the waves of higher polymer
extension being advected further downstream of each throat. We do not find any strong correlation
between the length of eddies in the upstream of pore throats [Fig. 5(b)]. However, we note that the
time-averaged length of eddies upstream of first pore throat is slightly larger than that of the second
pore throat [Fig. 4). To quantify instantaneous correlation between Leddy of first and second throat,

FIG. 4. The instantaneous and time-averaged length of eddies in the upstream of throat-1 and throat-2 at
different Wi of a double throated channel. Time is normalized with volumetric flow timescale tpv.
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FIG. 5. (a) Streamlines and trace of polymeric stress tensor in a channel with two throats at Wi = 34.
(b) The correlation between instantaneous eddy lengths of throat-1 and throat-2 at Wi = 34 in a channel of two
pore throats. (c) Instantaneous f1,2 and time-average 〈 f1,2〉 value of the correlation function between the eddy
of throat 1 and throat 2 at Wi = 34.

we define a correlation function f1,2 as:

f1,2 = 1 − 2|(Leddy)1 − (Leddy)2|
max((Leddy)1, (Leddy)2)

, (7)

where f1,2 → 1 corresponds to similar eddies upstream of both throats, whereas f1,2 → −1 implies
maximum difference between the length of eddies [Fig. 5(c)]. The polymeric stress relaxation
downstream of the first throat (except in the region very close to the wall, where the polymer
is strongly stretched) can hinder the eddy formation upstream of the second throat [Fig. 5(a)].
Due to large separation between the throats (De < 1), the effect of the first throat on the eddy
formation upstream of the second throat is small. This encourages the study of closely located
throats (De > 1), where high polymeric stress regions formed by one throat can easily interact
with that of neighboring throat. As Wi is increased, the enhanced stretching of polymers leads
to the formation of longer eddies. The difference between the average length of eddies upstream
of first and second throats also increases with Wi [Fig. 4), because the relaxed polymeric stress
region downstream of first throat has stronger impact on the eddies upstream of second throat as Wi
increases.

FIG. 6. Power spectral density of normalized eddies’ length (Leddy/W ) at (a) Wi = 26, (b) Wi = 34, and
(c) Wi = 42.
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FIG. 7. (a) Probability density function of dimensionless eddy length in two widely separated throats
channel. (b) Mean (μ) and standard deviation (σ ) of normalized eddies’ length.

We have also plotted the power spectral density of the normalized eddy length in Fig. 6 to
visualize the fluctuations frequency spectrum. Similar to the single throated channel, the PSD of
Leddy in the double-throated channel also increases with Wi, which corresponds to an increase in the
fluctuations of Leddy with Wi. Figure 7(a) depicts the probability density function (PDF) of eddies’
length in the channel of two widely separated throats. We quantify the standard deviation (σ ) and
mean (μ) of Leddy in Fig. 7(b). Both, σ and μ increase with Wi. We consider Wicr = 28 ± 2 as the
threshold of the instability as the slope of σ changes between Wi = 26–30.

C. Ten closely located pores

The study of single and double throated channels reveal the eddy formation on the upstream of
the throat and the eddy-free region downstream of the throat. These two contradictory behaviors
compete in the region enclosed between closely located throats (i.e., pores) and determine the flow
pattern inside the pore. Here, we study the dynamics of flow of the polymeric fluid inside 10 identical
closely (ls = W ) interconnected pores (Fig. 1). For a Newtonian fluid, stable eddies appear on the
top and bottom of each pore (Appendix). At Wi < Wicr, the flow of polymeric fluid inside the
pores forms eddies on the top and bottom of each pore (see Supplemental Material, video 3) [102],
whereas at Wi > Wicr, the eddy on the top as well as bottom of the pores collapse and reform
(Supplemental Material, video 4) [102]. At Wi = 18(< Wicr ), all the pores in the channel have a
similar eddy pattern [Fig. 8(a)]. Figure 8(b) depicts the snapshot of streamlines across the pores at
Wi = 34(> Wicr ). The pattern of polymeric fluid flow inside the pore at Wi = 34 can be divided
into 4 distinct types [Fig. 8(b)]: (1) eddies on both top and bottom regions of pore (i.e., pore 8), (2)
eddy-free bottom region of pore (i.e., pore 7), (3) eddy-free pore (i.e., pore 9), and (4) eddy-free top
region of pore (i.e., pore 6). These patterns are unstable and interchange frequently (Supplemental
Material, video 4) [102]. Often the size of eddies at Wi > Wicr, when the eddies appear on both top
and bottom of the pore (pore type 1), is different (i.e., pore 2). These coherent flow structures (i.e.,
multistability) [Fig. 8(b)], that are persistent in time despite the underlying unstable flow, have been
also reported in experiments [47].

The flow structure in each pore is closely coupled to the underlying polymeric stress field, which
controls the local rheology. For the flow at Wi = 18 < Wicr, the two regions of high polymeric
stress in the top and bottom of the pore correspond to the regions where the flow separated from
the wall to form eddies [Figs. 8(a) and 9(a)]. The polymer stress profile is similar among the pores
at Wi < Wicr (Wi = 18), therefore we see a similar flow pattern in different pores. At Wi > Wicr,
both the polymeric stress field and the velocity field are unstable and vary between pores [Figs. 8(b)
and 9(b)]. The multistability of the flow pattern inside the pores at Wi = 34 [Fig. 8(b)] can be
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FIG. 8. (a) Instantaneous streamlines in a channel of 10 closely interconnected pores at Wi = 18 and
dimensionless time, t ≈ 6. (b) Instantaneous streamlines in a channel of 10 closely interconnected pores at
Wi = 34 and dimensionless time, t ≈ 10.

explained with the help of corresponding high polymeric stress regions shown in Fig. 9(b). There
are two high stress regions in the middle of the eighth pore, which coincide with the formation
of eddies on the top and the bottom of the pore. Everywhere inside the ninth pore, the polymeric
chains are unstretched (i.e., the high stress regions only occur close to the walls), and hence the
flow diverges in this pore and we do not see any eddy. High polymeric stress occurs in the top
region of the seventh pore, therefore an eddy appears only in the top region of the pore and
the bottom region is eddy free. Conversely, there is a high stress region in the bottom region of
the sixth pore, and therefore the eddy forms only in the bottom region of the pore. Thus, the
stretched polymeric chains inside the pore lead to eddy formation, while coiled chains lead to
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FIG. 9. The snapshot of the trace of polymeric stress tensor at (a) Wi = 18, t ≈ 6 and (b) Wi = 34, t ≈ 10.
These plots of trace of polymeric stress correspond to the streamlines shown in Figs. 8(a) and 8(b), respectively.

eddy-free regions. This explanation also holds for the other pores in Fig. 8(b). Similarly, a streak
of high stress has been observed in the wake of a confined cylinder in a complex fluid [75,84].
The asymmetric flows of polymeric fluids in cross-slot geometries also exhibit streaks of high
stress [107–110].

Now, we study the time dependent behavior of an individual pore. We quantify the area occupied
by eddies on the top and bottom regions of the second pore separately [Fig. 10(a)]. At Wi < Wicr,
we always observe eddies on both the top and bottom regions of the pore [Fig. 10(a)]. Whereas, the
size of both eddies is constant at Wi = 0.3 (Appendix). To visualize the time dependent behavior
of high polymeric stress regions, we plot the contours of trace of polymeric stress tensor across the
channel at the center of the second pore [i.e., along the red line shown in the inset of Fig. 10(a)] in
Fig. 10(b). The peak value of the trace of polymer stress tensor corresponds to the flow-separation
region (i.e., the distance from the wall of the channel, where streamlines separate from the main
flow and form a closed streamline to make eddies). The contour of the trace of polymer stress also
has two distinct regions well inside the pore where the maximum value of polymer stress tensor
occurs, which further supports the presence of two distinct regions where flow separation takes
place [Fig. 10(b)].

The flow pattern inside the pore is transient at Wi > Wicr and each pore can exhibit all 4 kinds
of flow patterns discussed earlier. The area of eddies, whether it is in the top region or bottom
region of the pore, fluctuates [Fig. 10(c)]. The transition from one flow pattern to another can be
easily seen in Fig. 10(c). There are eddies on the top as well as bottom regions of the pore in the
beginning of the simulation (flow pattern type 1), but the area of eddies is not identically equal and
the difference between the area of eddies increases with time. Eventually, the eddy in the bottom of
the pore completely disappears and a new flow state with an eddy only on the top region of the pore
(type 2) emerges. Next, both eddies disappear and the pore becomes completely eddy free (type 3).
Finally, the eddy in the bottom region of the pore again reappears and it leads to the formation of a
different flow state inside the pore, where the top region of the pore is eddy free and bottom region
has eddy (type 4). Thus, the flow patterns of the polymeric fluid inside the pore are transient. Other
pores in the channel also exhibit similar transitions, though the switching between flow states does
not show any clear pattern. As Wi (>Wicr ) increases, the distinct flow structures change even more
frequently.

The time dependent flow patterns inside the pore at Wi > Wicr [Fig. 10(c)] can be explained using
the trace of polymeric stress tensor across the channel at the center of the pore [Fig. 10(d)]. Part I

033304-10



NUMERICAL INVESTIGATION OF MULTISTABILITY IN …

FIG. 10. (a) The ratio of eddy to pore area for “pore 2” as a function of time at Wi = 18. Aeddy is the area
of eddies in a particular half region of the pore, while Apore is the total area of the pore. The streamlines inside
the pore represent the flow pattern at Wi = 18. (b) The contour of the trace of polymeric stress tensor across
the channel at the center of the pore [i.e., along the red line shown in the inset of Fig. 10(a)]. (c) The ratio
of eddy to pore area for “pore 2” as a function of time at Wi = 34. The snapshots of streamlines inside the
pore represent the flow pattern at specific time indicated by red solid circles. (d) The contour of the trace of
the polymer stress tensor across the channel at the center of the pore. The upper limit of time in these plots
(t = 9.5) corresponds to t∗/λ = 13.4 for Wi = 18 and t∗/λ = 3.3 for Wi = 34.

of Fig. 10(d) depicts that there are two distinct regions, approximately equidistant from the walls,
where maximum values of the trace of polymer stress occur. This distribution of stress corresponds
to a pattern where both top and bottom regions of the pore have eddies [pore type 1 in Fig. 10(c)].
Part II has a single region inside the pore with peak value of trace of polymer stress and it lies on
the top region of the pore. The local peak value of trace of polymer stress in the bottom region of
the pore lies close to the wall and is much smaller than the global maximum. This stress distribution
represents the pattern where top region of the pore has an eddy and bottom region of the pore is
eddy free [type 2 in Fig. 10(c)]. In part III, the streaks of peak tr(τp) in both top and bottom regions
of the pore are close to the walls and their peak values are much smaller than the global maximum
of tr(τp) [Fig.10(d)]. In this case, the pore exhibits an eddy-free flow state [type 3 in Fig. 10(c)].
Part IV also has a single region where maximum value of trace of polymer stress occurs, but it lies
on the bottom region of the pore. This stress distribution leads to the pattern where bottom region of
the pore has an eddy and the top region of the pore is eddy free [type 4 in Fig. 10(c)]. Figure 10(d)
also shows that the eddy-free flow state (type 3) exists for a shorter time compared to other flow
states.

We study the correlation between the area of eddies for different pairs of pores. To quantify the
correlation between the area of eddies of two pores, we modify the correlation function [Eq. (7)]
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FIG. 11. (a) Instantaneous f5,6 and time-average 〈 f5,6〉 values of the correlation function between pore 5
and pore 6 at Wi = 34. (b) The time average value of correlation function for different pairs of the pores at
Wi = 34. (c) The value of 〈 fi, j〉, further averaged across the pores of the same separation, as a function of pore
separation at different Wi.

fi, j as

fi, j = 1 − 2|(Aeddy/Apore)i − (Aeddy/Apore) j |
max[(Aeddy/Apore)i, (Aeddy/Apore) j]

. (8)

The value of correlation function fi, j varies from +1 in the case where both the pores have
similar eddy pattern to −1 in the case where one pore has an eddy and the other is eddy free.
The value of fi, j varies with time for any given pair of pores, which indicates the transient nature
of the correlation between the pores [Fig. 11(a)]. Therefore, the pattern of eddies inside the pores
exhibits both positive and negative correlations. We use the time average of fi, j (〈 fi, j〉) to study the
statistics of the correlations between the eddies of two pores in a long time. Figure 11(b) depicts
the time average value of fi, j for different pairs of pores at Wi = 34. There is a relatively stronger
positive correlation between the eddies’ area of the nearby pores and the correlation weakens as
the separation between the pores increases. Conversely, we also notice a relatively weak correlation
between pore-8 and pore-9 (〈 f8,9〉 = 0.17) and relatively strong correlation between pore-1 and
pore-8 (〈 f1,8〉 = 0.6) at Wi = 34 [Fig. 11(b)]. To further investigate the effect of Wi and the pores’
separation on the correlation, we plot 〈〈 fi, j〉〉 as the function of pore separation at different Wi,
where 〈〈 fi, j〉〉 is the value of 〈 fi, j〉 averaged across the pores of the same separation [Fig. 11(c)].
At Wi < Wicr, the correlation between the flow patterns inside the pores is stronger compare to
Wi > Wicr and 〈〈 fi, j〉〉 monotonically decreases as the separation between the pores increases. For
Wi > Wicr, irrespective of separation between the pores, the correlation is weak (i.e., 〈〈 fi, j〉〉 < 0.5)
[Fig. 11(c)].

We have also plotted the probability distribution of the area occupied by eddies inside each
individual pore in the channel of 10 closely located pores at different Wi [Fig. 12(a)]. The value
of Aeddy/Apore ranges 0.1–0.25 at Wi = 18, whereas it varies from 0.0 (eddy-free pattern) to 0.5
at Wi = 47. The eddy does not disappear in either regions of the pore at Wi < Wicr, while often
it disappears at Wi > Wicr. Thus, the area of eddies and flow pattern inside the pores are highly
predictable for Wi < Wicr, but not at Wi > Wicr. We have calculated the standard deviation (σ )
and mean (μ) of Aeddy/Apore in Fig. 12(b) to quantify the fluctuation of eddies’ area. The standard
deviation of eddies’ area increases with Wi for Wi > Wicr and the onset of the increase of σ lies
between Wi = 18–22. Therefore, we consider Wicr = 20 ± 2 as the critical Wi of the multistability.
The threshold Wi, above which multistability appears, for the channel of 10 closely located pores
(Wicr = 20 ± 2) [Fig. 12(b)] is smaller than the channel with single or two widely separated
throats (Wicr = 28 ± 2) [Figs. 3(b) and 7(b)]. When the pores are closer to each other, the onset
of multistability arises at lower Wi, due to the advection of polymer stress between the pores.
Similar observation was reported in experiments [47]. We have also noticed that sometime eddies
appear even at the center of the pore with/without eddies on the top or bottom region of the pore at
Wi > Wicr [Fig. 13). This behavior has not been reported in prior experimental studies.
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FIG. 12. (a) PDF of the ratio of eddies to pore area (Aeddy/Apore) at different Wi for a channel of 10 closely
located pores. Aeddy represents total area occupied by eddies in an individual pore and Apore is the total area of
the pore. Above a threshold Wi, there appears to be multistability, and the eddy areas take on a broad range of
values. (b) Mean (μ) and standard deviation (σ ) of normalized eddies’ area.

The pressure drop of the flow inside the porous media is an important macroscopic property due
to practical application in the field of oil recovery [6] and ground water remediation [7,8]. To un-
derstand the spatial distribution of pressure, we have plotted the contours of dimensionless pressure
(p) in Fig. 14(a) for the flow field shown in Fig. 8(b) (i.e., Wi = 34, t ≈ 10). We have also plotted
the pressure profile along the centerline of the channel [i.e, red solid line in Fig. 14(a)] [Fig. 14(b)]
and at the center of the pore along the width [i.e., dashed yellow line in Fig. 14(a)] [Fig. 14(c)].
The pressure inside the channel does not decrease monotonically due to the converging-diverging
geometry of the channel [Fig. 14(b)]. For the cross-section at the center of an individual pore,
the pressure is maximum at the centerline (i.e., y = 0) of the channel [Fig. 14(c)]. Instantaneous
pressure drop across the channel along the centerline [�p in Fig. 14(a)] is transient due to instability
and the fluctuation intensifies as Wi increases [Fig. 15(a)]. We calculate the time averaged pressure
drop (〈�p〉) along with fluctuations across the channel for a fixed volumetric flow rate at different
Wi [Fig. 15(b)]. The instability inside the pores facilitates the flow and lowers the hydrodynamic

FIG. 13. Eddies at the center of the pore at Wi = 34. (a) Eddy at the center as well as the top and bottom
regions of the pore. Here, the eddy at the center persists in two pores. (b) Eddies at the center and the top region
of the pore, while bottom region is eddy free. (c) Eddies only at the center of the pore. Top and bottom regions
are eddy free.
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FIG. 14. Dimensionless pressure for the flow field shown in Fig. 8(b) (i.e., Wi = 34, t ≈ 10): (a) The
contours of pressure field inside the channel. (b) Pressure along the centerline of the channel [i.e., red solid line
in Fig. 14(a)]. (c) Pressure across the channel at the center of the pore [i.e., dashed yellow line in Fig. 14(a)].

drag, which leads to a smaller pressure drop across the channel as Wi increases [Fig. 15(b)]. To
further understand the mechanism of hydrodynamic drag reduction with increasing Wi, we calculate
the pressure drop across individual pores along the centerline of the channel [specially, pore-8
and pore-9 as depicted in Fig. 14(a)] for the flow state shown in Fig. 8(b). The pressure drop
across an eddy-free pore is smaller than the pressure drop across the pore with eddies [Example:

FIG. 15. (a) Instantaneous and time averaged pressure drop across the channel of 10 pores at Wi = 34.
(b) Averaged pressure drop (〈�p〉) across the channels at different Wi.
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�ppore-9 = 3.45 for pore-9 shown in Fig. 8(b) and �ppore-8 = 4.6 for pore-8 shown in Fig. 8(b)].
Because, the eddy-free pore has larger apparent width involve in the net volumetric flow (i.e., fluid
circulates inside an eddy and does not contribute in any net volumetric flow) and the pressure drop in
the channel is inversely related to its apparent width. The presence of eddy-free pores at Wi > Wicr

leads to smaller pressure drop across the channel, in contrast with a channel at Wi < Wicr where
all the pores have eddies. We have also calculated the pressure drop in single and double throated
channels for the length same as the channel of 10 pores. The pressure drop in the single as well as
double throated channel is much smaller due to lesser constriction and it also decreases with Wi due
to instability [Fig. 15(b)].

V. CONCLUSIONS

The addition of polymers and surfactants to the displacing fluid is essential to the ground water
remediation and enhance oil recovery for addressing rapidly growing demand of water and energy
[111–115]. We numerically study the flow of a polymeric fluid in channels consisting of converging
and diverging physical constraints. We use channels with a single-pore throat, two widely separated
pore throats and ten closely separated pores to study an elastic-induced flow instability at different
Wi. The channels with either a single-pore throat or two widely separated pore throats have unstable
eddies in the upstream of the pore throats whose average length (Leddy) increases with Wi. In the case
of 10 closely placed pores, eddies appear on both top and bottom regions of the pores at Wi < Wicr,
whereas the flow exhibits 4 distinct types of patterns inside the pores at Wi > Wicr. The eddies
on both the top and bottom regions of the pores regularly collapse and reform at Wi > Wicr. This
behavior of eddies leads to flow patterns where eddies appear in either one region, both regions,
or neither region of the pore (eddy free). The high polymeric stress region inside the pore induces
eddy formation, whereas the high stress region close to the walls leads to eddy collapse. There is
a positive correlation between the eddy areas of neighboring pores in the long-time statistics, but
this correlation weakens as the separation between the pores increases. The correlation between
the pores also weakens as Wi increases. The eddy-free pores also lead to reduced hydrodynamic
drag across the channel at Wi > Wicr. Disorder of the porous media is expected to play a large
role in altering the instability, and would be an interesting parameter to consider in a future
study [59,82]. The presence of higher connectivity and elevated disorder in 3D porous media [116]
should also affect the elastic instability.
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FIG. 16. (a) Dimensionless pressure drop across the channel along the centerline at Wi = 0.3 (almost
Newtonian fluid). Flow converges to steady state for t > 0.2. (b) Dimensionless pressure drop across the
channel along the centerline at Wi = 18, 34. Fully developed instability occurs for t > 1.

APPENDIX

1. Start up transient flow

We use pressure drop (�p) across the channel along the centerline as a simple metric to
characterize the transient start up flow. The flow reaches steady state for t > 0.2 at Wi = 0.3 (almost
Newtonian fluid) [Fig. 16(a)]. For fluctuating flows, the meaning of fully developed flow is that
fluctuating quantities have a well-defined mean. The instability becomes fully developed for t > 1
as �p fluctuates around a mean for t > 1 [Fig. 16(b)].

2. Eddy area at Wi = 0.3 (almost Newtonian fluid)

The size of eddies both top and bottom of the pore at Wi = 0.3 becomes time independent for
t > 0.2 [Fig. 17).

3. Flow of nonshear thinning fluid (FENE-CR) inside the pores

We have also performed a simulation for nonshear thinning model (FENE-CR) at relaxation
time λ = 0.2 s, viscosity ratio β = ηs/(ηs + ηp) = 0.01, L2 = 625, and volumetric flow rate per
unit depth of the channel Q = 16.8 mm2/s. These parameters lead to Wi = 16.4 for FENE-CR

FIG. 17. The area of eddies on the top and bottom of “pore-2” at Wi = 0.3.
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FIG. 18. Instantaneous streamlines in a channel of 10 closely interconnected pores at Wi = 16.4 for FENE-
CR constitutive model.

model [118]. This model also exhibits multistability similar to FENE-P model (Fig. 18). Fig-
ure 18(a) shows eddy-free flow state. Figure 18(b) has eddy only on the bottom region of the pore
and top region is eddy free. Figure 18(c) has eddies on both top and bottom region of the pore,
whereas Fig. 18(d) represents the flow state where eddy appears only on the top region of the pore
and bottom region is eddy free. Nonshear thinning fluid (FENE-CR) also exhibits the flow state
wherein the eddy appears at the center of the pore [Fig. 18(e)].
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