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The dynamics of fluids deep in stellar interiors is a subject that bears many similarities
with geophysical fluid dynamics, with one crucial difference: the Prandtl number. The
ratio of the kinematic viscosity to the thermal diffusivity is usually of order unity or more
on Earth, but is always much smaller than one in stars. As a result, viscosity remains
negligible on scales that are thermally diffusive, which opens the door to a whole new
region of parameter space, namely, the turbulent low Péclet number regime (where the
Péclet number is the product of the Prandtl number and the Reynolds number). In this
review, I focus on three instabilities that are well known in geophysical fluid dynamics
and have an important role to play in stellar evolution, namely, convection, stratified shear
instabilities, and double-diffusive convection. I present what is known of their behavior
at low Prandtl number, highlighting the differences with their moderate and high Prandtl
number counterparts.
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I. INTRODUCTION

A. Stellar structure and evolution (abridged)

Stars have long fascinated human beings, but our modern understanding of stellar structure and
evolution is only about 100 years old. By and large, the vast majority of stars are almost spherical
balls of gas in quasihydrostatic and thermal equilibrium, the combination of which dictates their
structure. Nuclear reactions in the high-density stellar core heat the plasma to extremely high
temperatures, therefore maintaining the enormous hydrostatic pressure needed to prevent the star
from collapsing gravitationally. The heat is transported from the core to the stellar surface either
by radiative diffusion or convection (whichever is most efficient), and from there is radiated into
space for us to observe. A star’s spectrum can provide a wealth of information about its structure.
The spectrum itself is usually quite close to that of a black body, therefore revealing the star’s
surface temperature. The luminosity depends on the star’s emitting surface area, which can be used
to measure its radius. Often, individual emission or absorption lines are also observed on top of the
black-body spectrum. Their wavelength can reveal the composition of the surface layers of the star,
while their width can provide information on the surface gravity and (in some cases) rotation or
magnetic fields.

Of course, stars are not exactly in a steady state, since the nuclear reactions required to heat up
the core gradually change their internal composition. However, these reactions are usually much
slower than the thermal evolution timescale, which is why a quasistatic model is appropriate.
The most common nuclear fusion reaction transforms hydrogen into helium (but others can also
take place depending on the temperature and density within the core). This reaction is extremely
stable and slow, and sets the star’s aging rate. The star reaches its end-of-life phase after exhausting
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all the hydrogen in the core. As such, its lifespan is sensitively dependent on the inward flux of
hydrogen fuel into the core, from advection by large-scale flows or small-scale turbulent mixing,
for instance. Note that while these flows can rarely be directly measured, indirect evidence of their
presence can sometimes be found in the star’s spectrum. Indeed, the same fluid dynamical processes
that fuel the core also transport various nuclear fusion or fission products and by-products (such as
lithium, beryllium, boron, carbon, nitrogen, and oxygen and their respective isotopes) from the core
back to the surface, which can be detected spectroscopically.

Through this highly abridged description of stellar structure and evolution (see, e.g., Refs. [1,2]
for more detail), we see that modeling stars relies on accurately accounting for both microphysical
and macrophysical transport processes. Statistical mechanics, nuclear physics, and quantum me-
chanics are required to model the plasma’s equation of state, compute the nuclear reaction rates,
and quantify radiative diffusion coefficients for heat transport. Fluid mechanics, on the other hand,
is required to model heat and chemical transport by convection as well as any other possible source
of turbulence in convectively stable regions. Due to historical events of the 1930s–1970s, scientific
understanding of microphysical processes involved in nuclear reactions and radiative heat transport
are very well understood. The fluid dynamics of stellar evolution, however, remains relatively poorly
constrained in comparison.

B. Stellar fluid dynamics

Today, the general consensus is that many of the remaining discrepancies between stellar models
and observations can be attributed to inadequate or missing prescriptions for turbulent transport.
Turbulence in stars arises from two classes of instabilities: thermal convection on the one hand, and
all other instabilities of stably stratified fluids on the other hand (see, e.g., the graduate textbooks
by Stix [3] for the solar interior and by Kato and Fukue [4] for stars more generally). Convection
is by far the most important fluid dynamical process in stars. As discussed above, it transports heat
outward, and in many cases forces the stratification to become almost adiabatic, thus setting the
density structure of the star (and therefore its size, given a certain mass). Almost all stars contain a
region that is convectively unstable; assuming a chemical composition that is close to solar, lower
mass stars (M� � 0.4M�) are fully convective, solar-type stars (0.4M� < M� < 1.3M�) have an
outer convection zone surrounding a stably stratified core, intermediate mass stars (1.3M� � M� �
10M�) have a convective core surrounded by a stably stratified envelope, and higher mass stars
can even have multiple convective regions. As such, convection was, for the longest time, the only
dynamical process accounted for in all stellar evolution models.

Outside of convective regions, by contrast, many different kinds of instabilities can occur.
Double-diffusive instabilities, for example, are commonly invoked; these can be of the fingering
kind, in regions that are stably stratified in temperature, but unstably stratified in composition, or
of the oscillatory or layered kind, in regions that are unstably stratified in temperature but stably
stratified in composition (see the reviews [5,6]). Centrifugal instabilities and shear instabilities are
also likely prevalent, since stars are known to be the seat of substantial differential rotation (see the
review by Zahn [7], for instance). By contrast, other fluid instabilities that are commonly studied in
geophysics, such as the baroclinic instability and many others, are much less often discussed—not
because they are not important, but rather, because they have not yet been appreciated by the stellar
community (with some exceptions; see Ref. [8], for instance). Instead, the focus has been to better
understand the vast range of possible magnetohydrodynamic instabilities (see the review by Mestel
[9]), such as the various types of Tayler instabilities [10,11], joint instabilities of magnetic fields
and differential rotation (e.g., Refs. [12,13]), and magnetic buoyancy instabilities [14,15]. In what
follows I shall therefore focus only on three types of instabilities that are of interest to both the
geophysical and astrophysical communities—convection, shear instabilities, and double-diffusive
instabilities—and ask the simple question: how do these differ between the different settings?

To answer this simple question, one needs to appreciate the similarities and differences between
stellar fluids and geophysical fluids. The main difference is not the compressibility of the plasma,
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or its composition. In fact, deep in stellar interiors, fluid flows are sufficiently slow as to be almost
incompressible, and the mean free path of photons is sufficiently short that radiative transfer can be
approximated by a diffusion term in the heat equation. As such, ignoring magnetic fields (although
see Sec. VI), the governing equations for stellar fluid dynamics deep below the surface are actually
identical to those typically used in atmospheric dynamics, namely,

∂u
∂t

+ u · ∇u = − 1

ρm
∇ p̃ + αT T̃ gez + ν∇2u, (1)

∇ · u = 0, (2)

∂T̃

∂t
+ u · ∇T̃ + βT w = κT ∇2T̃ , (3)

where u = (u, v,w) is the velocity field, ρm is the mean density of the fluid, p̃ is the pressure per-
turbation away from hydrostatic equilibrium, T̃ is the temperature perturbation away from radiative
equilibrium, αT is the coefficient of thermal expansion, g is gravity, ν is the kinematic viscosity,
βT = dTrad/dz + g/cp is the potential temperature gradient (where dTrad/dz is the temperature
gradient the star would have if it were in radiative equilibrium and cp is the specific heat at constant
pressure), and κT is the thermal diffusivity. This set of equations was formally derived by Spiegel
and Veronis [16] and generalizes the Boussinesq approximation to weakly compressible fluids. It is
valid as long as the height of the stellar region modeled is much smaller than the local density scale
height, and the flow velocities are much smaller than the local sound speed. Close to the surface, both
the sound speed and the density scale height become quite small, and the approximation is not valid.
Farther down in the interior, however, the density scale height is similar to the star’s radius, and the
sound speed increases rapidly with the increasing temperature, so the Spiegel-Veronis-Boussinesq
approximation holds.

I would therefore argue that, other than the presence/absence of topography and magnetic
fields, the only really fundamental difference between stellar and geophysical fluid dynamics is
the Prandtl number Pr = ν/κT , which is typically of order unity or larger in geophysical flows,
but is asymptotically small in stellar interiors. This is because radiative diffusion greatly increases
thermal transport but adds only a small contribution to momentum transport, so κT � ν in stars, and
Pr ranges between 10−9 and 10−5 at most.1 With Pr = O(1) or Pr � 1, a turbulent flow is always
close to adiabatic (i.e., thermally nondiffusive). When Pr � 1 on the other hand, thermal diffusion
can become important even when viscosity is negligible, and this fundamentally changes the nature
of fluid instabilities and associated turbulence, as I demonstrate below. As such, there is no reason
to expect that any of the well-accepted models for turbulent transport in geophysical flows apply in
stellar interiors, and as I shall demonstrate, almost none of them do. This is particularly true for the
three types of instabilities highlighted earlier, namely, convection, double-diffusive convection, and
shear instabilities.

In what follows, I will first briefly introduce historically relevant ideas about thermal convection
at low Prandtl number in Sec. II, before moving on to instabilities of stably stratified regions. Since
the latter often (but not always) have a low Péclet number (where the Péclet number is the ratio
of the thermal diffusive timescale to the thermal advection timescale), it is this property rather
than the low Prandtl number that defines their behavior, as shown in Sec. III. Section IV then
discusses in turn both vertical and horizontal shear instabilities, and Sec. V summarizes our work
on double-diffusive instabilities, in both cases at low Prandtl number. Section VI provides a very
brief discussion on the need to include rotation and magnetic fields when modeling astrophysical
flows, and Sec. VII concludes with a reflection on the importance of multidisciplinary work, and the

1Except in cases where the plasma is degenerate, which is a much less frequent situation. Even then, Pr ∼
10−2.
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fundamental role that the Woods Hole Geophysical Fluid Dynamics (GFD) summer program has
played in transforming the field of stellar fluid dynamics.

II. THERMAL CONVECTION AT LOW PRANDTL NUMBER

As discussed earlier, thermal convection is the only fluid dynamical process that is accounted
for in all modern stellar evolution models. The standard model for convection in stars is called
“mixing-length theory,” and in its present form originated from the work of Erika Böhm-Vitense
[17]. The model is, at heart, very simple. In the bulk of the convection zone, a rising or sinking
parcel of fluid is assumed to travel coherently for one mixing length l before disintegrating and
mixing its heat content with the background. The convective potential temperature flux carried by
the parcel is Fconv ∼ vconvl|βT | (noting that βT < 0 for convective regions), where the parcel velocity
is estimated by balancing its kinetic and potential energy, to be vconv ∼

√
αT g|βT |l2. Combining the

two leads to

Fconv ∼ √
αT gl2|βT |3/2. (4)

By introducing a Rayleigh number based on the mixing length l as Ral = αT |βT |gl4/(κT ν), we see
that

Fconv ∼ −(RalPr)1/2βT κT = (RalPr)1/2 βT

dTrad/dz
Fdiff , (5)

where Fdiff = −κT dTrad/dz is the diffusive temperature flux. This implies that, within the context of
the mixing-length model for stellar convection, the Nusselt number (i.e., the ratio of convective to
diffusive fluxes) scales as

Nu ∼ (RalPr)1/2. (6)

Mixing-length theory has been used by stellar astrophysicists for more than 60 years to model stellar
convection, with the mixing length l usually chosen to be a fraction of the local pressure scale height.
Additional physics are invoked to constrain the prefactors, deal with complex boundary conditions
and implement the convective flux prescription (4) in stellar evolution codes, but these do not modify
the main result substantially.

Meanwhile, around the same time as Vitense’s work, Priestley [18] and Malkus [19] were attack-
ing the problem of heat transport in Rayleigh-Bénard convection (RBC; i.e., thermal convection
between two parallel plates held at different temperatures), with geophysical applications in mind.
Both independently came to the conclusion that the Nusselt number in RBC should scale as

Nu ∼ Ra1/3, (7)

where here

Ra = αT |βT |gH4

κT ν
, (8)

and H is the distance between the plates. Priestley’s derivation relies on dimensional analysis,
while Malkus’s treatment assumes that the turbulence would organize itself in such a way as to
maximize the heat transport. A similar scaling law was obtained again later by Howard [20],
who considered the stability of the thermal boundary layers near the plates. At a cursory glance,
laboratory experiments (see, e.g., Ref. [21]) seem to provide evidence for the 1/3 power law for
RBC at least for Rayleigh numbers up to 1014, albeit for fluids that have an O(1) Prandtl number.
Whether the Nu versus Ra scaling deviates from this law above 1014 or not is currently controversial
[22,23].

As a young astrophysicist in the 1950s, Edward Spiegel was keenly interested in convection,
which was the subject of his Ph.D. thesis. Encouraged by George Batchelor to meet Willem
Malkus, Spiegel rapidly realized that the geophysical community was leaps and bounds ahead of the
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astrophysical community in terms of understanding and modeling turbulent flows. He then began
to collaborate with many in that field (cofounding the Woods Hole GFD program with Stommel,
Malkus, Veronis, Stern, Howard, and Keller), and in the process became one of the very first
astrophysicists to apply modern (rigorous, nonlinear) fluid dynamical techniques to the study of
astrophysical flows.

Being aware of both Vitense’s and Malkus’s work, Spiegel noted that they were incompatible
at low Prandtl number, and concluded that Malkus’s theory does not apply in that limit [24].
Instead, he proposed that Nu ∝ (RaPr)1/2 in that case (while not explicit, this scaling is implied
in Ref. [25]), which can easily be recovered using the domain scale H for the mixing length l in
Vitense’s argument; see (6). A similar result (with additional logarithmic corrections in Ra) was
obtained by Kraichnan [26] in the limit of very low Prandtl number and very high Rayleigh number,
assuming that the thermal boundary layer near the rigid wall is turbulent instead of being laminar.
Today, the Nu ∝ Ra1/2 law has become known as the Ultimate Regime in RBC and is discussed
in both low and moderate Pr limits. Experimentally, the Ultimate Regime has been rather elusive.
Laboratory experiments at low Prandtl number are notoriously difficult, and achieving very high
Rayleigh numbers is a serious engineering challenge. However, recent works appear to validate the
Ultimate Regime scaling, in RBC with rough boundaries (for which the boundary layer becomes
turbulent at lower Rayleigh numbers; see Ref. [27]) and in internally heated convection (where the
heat source is detached from the boundaries; see Refs. [28–30]). Whether this scaling would emerge
in standard RBC at low Prandtl number remains to be determined.

In an attempt to attack the problem more formally Spiegel [24] proposed the first asymptotic
model for convection at very low Prandtl number using an expansion of the Spiegel-Veronis-
Boussinesq equations in the limit of Pr � 1 (see also Ref. [31]). Considering a fluid flow between
two parallel horizontal plates held at fixed temperatures Tm + 	T/2 and Tm − 	T/2, separated by
a distance H , he nondimensionalized equations (1)–(3) using the unit length H , the unit time H2/ν

(which is the viscous timescale across the domain), the unit velocity ν/H , and the unit temperature
(κT ν)/(αT gH3) to get

∂û
∂t

+ û · ∇û = −∇ p̂ + Pr−1T̂ ez + ∇2û, (9)

∇ · û = 0, (10)

∂T̂

∂t
+ û · ∇T̂ − Raŵ = Pr−1∇2T̂ , (11)

where Ra is given by (8), recalling that βT < 0 for RBC. Spiegel then assumed that one may expand
each of the dependent variables as a power series in the Prandtl number, namely,

T̂ = T̂0 + PrT̂1 + · · · , (12)

û = û0 + Prû1 + · · · . (13)

Substituting this in Eqs. (9)–(11), we have, order by order,

T̂0 = 0, (14)

∂û0

∂t
+ û0 · ∇û0 = −∇ p̂ + T̂1ez + ∇2û0, (15)

−Raŵ0 = ∇2T̂1, (16)

assuming that û0 remains O(1) in the Pr expansion.
These reduced equations, if valid, clearly show that the dynamics of low Prandtl number thermal

convection must be fundamentally different from those of standard Pr = O(1) convection. First and
foremost, (14) shows that temperature fluctuations must be small, namely, O(Pr), which implies
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that this type of convection cannot affect the background temperature profile to lowest order. This
finding is consistent with the reduced expression for the temperature equation (16), in which the
convective heat flux (which would normally arise from nonlinearities in the temperature equation)
is absent at this order. Taken together, we see that the mechanism usually thought to be responsible
for the saturation of RBC at Pr = O(1) (i.e., the modification of the linear background temperature
profile by the convective flux into one which has a reduced gradient in the core of the fluid, and
an enhanced gradient in thin thermal boundary layers; see, e.g., Ref. [32]), cannot operate here.
Instead, the nonlinear saturation must proceed through the only remaining nonlinearities, which are
in the momentum equation. As such, it is clear that Malkus’s theory for heat transport in RBC [19],
which relies on arguments of maximization of the convective flux, cannot apply within the context
of the low Prandtl number approximation. This is also true for Howard’s model [20], which relies
on the presence of diffusive thermal boundary layers surrounding an almost adiabatic region—this
is not possible here, since the mean stratification must remain almost linear.

Going back to the asymptotic equations, solving for T̂1 and substituting it back into the momen-
tum equation (15) leads to

∂û0

∂t
+ û0 · ∇û0 = −∇ p̂ − Ra∇−2ŵ0ez + ∇2û0. (17)

This shows that the only relevant input parameter characterizing the flow in the low Prandtl number
approximation is the Rayleigh number Ra, independently of the Prandtl number. Dominant balance
between the nonlinear terms and the buoyancy term (for a more rigorous approach; see Spiegel [24])
implies that the typical nondimensional flow velocity ŵrms should be proportional to Ra in this limit.
Moreover, since T̂ = PrT̂1 = −RaPr∇−2ŵ, we then find that the typical temperature fluctuations
T̂rms should be proportional to Ra2Pr. Finally, these can be used to estimate a Nusselt number as

Nu ∼ ŵrmsT̂rms

RaPr−1 ∝ (RaPr)2, (18)

(see also Refs. [26,33]).
Spiegel [24], however, immediately realized that there are serious limitations to the applicability

of the low Prandtl number equations, when applied to thermal convection. Indeed, this scaling law
appears to be at odds with the existence of a formal upper bound to the Nusselt number of the form
Nu < CRa1/2 (uniformly in Pr); see Refs. [34,35]. This implies that Eq. (18) must break down at
large Ra, and as discussed by Spiegel, this is indeed the case. To see why, recall that the low Prandtl
number approximation is valid only provided the velocities are o(Pr−1). Since ŵrms ∝ Ra, it follows
that we need Ra = o(Pr−1), while at the same time satisfying Ra > Rac ∼ O(103), the critical
threshold for the onset of convection. This means that unless Pr is really minuscule, the regime of
applicability of Spiegel’s low Prandtl number approximation for thermal convection is very limited.
Once Ra becomes O(Pr−1) or larger, the approximation breaks down, and one presumably recovers
the mixing length theory scaling Nu ∝ (RaPr)1/2 [25].

As such, it remains unclear whether Spiegel’s low Prandtl number approximation [24] is useful
to model stellar convection. And yet, the legacy of his asymptotic approach to studying low Prandtl
number fluids lives on, with one crucial modification—as discussed below.

III. LIGNERES’S LOW PÉCLET NUMBER APPROXIMATION

One of the main reasons for the limited applicability of Spiegel’s low Prandtl number equations
for thermal convection is that turbulent velocities rapidly become very large as the Rayleigh number
increases, hence invalidating the assumption that these should be o(Pr−1) in Eq. (13). In 1999,
Francois Lignières independently rediscovered these equations, but further noted that they should
remain valid for a much wider range of parameter space when applied to model the dynamics of
stably stratified fluids, where an increase in stratification tends to lower the turbulent velocities.
Crucially, he also argued that the correct expansion parameter ought to be the Péclet number instead
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of the Prandtl number [36]. This is perhaps obvious in hindsight: if the goal of the expansion is to
neglect the convective terms in the thermal energy equation, then the latter must be smaller than the
desired dominant balance in the equation, namely, that between the advection of the background
potential temperature, and diffusion. For this to be the case, the ratio between the convective term
u · ∇T̃ and the diffusion term κT ∇2T̃ must be small, so we need

Pet = Urmsl

κT
� 1, (19)

where Urms is the rms velocity of the flow, and l here is the typical scale of the turbulent eddies.
Lignières’s derivation of the low Péclet number approximation therefore begins with normalizing
Eqs. (1)–(3) using Urms as the velocity scale, l as the flow scale, and βT l as the temperature scale
(assuming βT > 0 this time since the fluid is stably stratified), which leads to

∂û
∂t

+ û · ∇û = −∇ p̂ + BT̂ ez + Re−1
t ∇2û, (20)

∇ · û = 0, (21)

∂T̂

∂t
+ û · ∇T̂ + ŵ = Pe−1

t ∇2T̂ , (22)

where B = N̄2l2/U 2
rms is a buoyancy parameter (the square of an inverse Froude number), and N̄ =√

αT βT g is the usually defined buoyancy frequency associated with the background stratification.
Assuming, in the same spirit as Spiegel [24], that

T̂ = T̂0 + Pet T̂1 + · · · , (23)

û = û0 + Pet û1 + · · · , (24)

then, order by order, we have

T̂0 = 0, (25)

∂û0

∂t
+ û0 · ∇û0 = −∇ p̂ + BPet T̂1ez + Re−1

t ∇2û0, (26)

ŵ0 = ∇2T̂1. (27)

As in Spiegel [24], Lignières finds that the lowest order temperature fluctuations must be zero [see
(25)], which demonstrates that the turbulence cannot cause any large deviations of T from the back-
ground state. Consistent with that, the convective terms again disappear from the thermal energy
equation (27). This approximation is valid only provided û0 ∼ O(1), but crucially, this condition is
now implicitly satisfied from the nondimensionalization selected. We then have, successively,

û = û0, (28)

T̂1 = ∇−2ŵ0 = ∇−2ŵ, (29)

∂û
∂t

+ û · ∇û = −∇ p̂ + BPet∇−2ŵez + Re−1
t ∇2û. (30)

This shows that the temperature and the velocity fluctuations are again intimately related to one
another. Crucially, this causes a reduction in the dimensionality of parameter space whereby B and
Pet only ever appear together. As such, stratified flows at low turbulent Péclet number depend on
only two quantities: the product BPet , and the turbulent Reynolds number Ret . Going back to the
original dimensional system, we have

βT w = κT ∇2T̃ , (31)
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FIG. 1. Left: Angular rotation rate in the solar interior, in nHz, measured using helioseismology. Figure
adapted from Larson and Schou [40]. Right: Envelope and core rotation rates of stars, measured using
asteroseismology, as a function of surface gravity, which is a proxy for stellar age. Figure adapted from Aerts
et al. [38].

and so the low Péclet number approximation leads to

∂u
∂t

+ u · ∇u = − 1

ρm
∇ p̃ + N̄2

κT
∇−2wez + ν∇2u, (32)

∇ · u = 0, (33)

showing that the dimensional combination of parameters N̄2/κT must always appear together. As
I demonstrate below, this has fundamental consequences for the dynamics of fluid instabilities in
stably stratified, low Péclet number regions of stars, notably shear instabilities and double-diffusive
instabilities.

IV. STRATIFIED SHEAR INSTABILITIES

Shear is as omnipresent in stars as it is in the Earth’s oceans and atmosphere. It exists on a
huge range of scales and can take many forms, depending on its source. On the largest scales, the
source of shear (in radiative zones) is almost always the star’s differential rotation, which in turn
comes from angular momentum conservation and transport by large-scale flows. It could also be
driven by the thermal wind (i.e., horizontal gradients of temperature driving shear along the star’s
rotation axis), by tidal torques (if the star has a companion), or by magnetic torques. On intermediate
scales, shear can be driven by meridional flows or large-scale internal waves. Until the 1980s, direct
observational evidence for stellar shear was scarce; instead, its presence was generally inferred from
stellar evolution models, which predict the development of substantial radial shear from angular
momentum conservation as the star’s core and envelope differentially expand and shrink. That has
dramatically changed since the advent of helioseismology and more recently, asteroseismology,
which now allow us to measure (or at least, estimate) the internal rotation profile of the Sun [37]
and quite a few other stars (see the review by Aerts et al. [38]); see Fig. 1. From these measurements,
we know that stars exhibit both radial and latitudinal rotational shear [39]. In what follows, I shall
therefore address both the effects of vertical and horizontal shear, ignoring for now the effects of
rotation and magnetic fields–even though these are likely quite crucial to a complete understanding
of the dynamics of stellar shear instabilities (see Sec. VI for a short discussion of their effects).
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A. Vertical shear

1. Context

Vertical shear instabilities are an important source of diapycnal mixing in stratified geophysical
flows and have been studied in this context for more than 100 years. As laid out by Richardson
[41], the excitation and sustainability of turbulent perturbations to a stratified shear flow simply
depends on the local energetics. If the kinetic energy transferred from the mean flow to the
perturbations during a mixing event is larger than their potential energy cost, then the turbulence
can be maintained. Otherwise, the perturbations must eventually decay. This is controlled by the
local gradient Richardson number

J = N2

S2
, (34)

where N is the buoyancy frequency associated with the local total vertical potential temperature
gradient βT + dT̃ /dz, and S is the absolute value of the local vertical shearing rate. Richardson
[41] argued that the quantity J must drop below a certain threshold of order unity for turbulent
perturbations to be maintained. While his argument was based on energetics, and can therefore be
viewed as a statement on the nonlinear stability of the flow, Miles [42] and Howard [43] later
formally proved that a necessary condition for linear instability of adiabatic perturbations in a
unidirectional stratified shear flow is that J should drop below 1/4 somewhere in the fluid. Both
approaches thus point to the fact that one needs

J < Jc where Jc ∼ O(1) (35)

for shear instability. It is important to note, however, that the adiabaticity of the perturbations is a
key assumption of both Richardson’s nonlinear argument and Miles and Howard’s linear argument.
As demonstrated by Townsend [44], radiative losses can relax this criterion, by reducing the
relative buoyancy of the perturbations compared with the background, and therefore reducing their
potential energy cost. More precisely, he showed that provided the thermal adjustment timescale
of the perturbations to the background is fast enough (i.e., provided Sttherm � 1 where ttherm is the
cooling/heating timescale of the perturbations), then the new criterion for instability should be

J < O

(
1

Sttherm

)
, (36)

instead of J < O(1). This Richardson-Townsend criterion thus allows for instability for J � 1
provided ttherm � S−1.

Meanwhile, and until the 1970s, vertical shear instabilities in stars had been given very little
attention, presumably for two reasons. First, since shear on the largest scales is usually due to
the star’s differential rotation, the latter can hardly be ignored. When accounted for, rotation can
either stabilize or destabilize the large-scale shear, while driving a variety of centrifugal instabilities
depending on the direction of the angular momentum gradient [45–48]. As such, much of the
focus of research in those days was on centrifugally driven instabilities, rather than on pure shear
instabilities. Second, the typical values of the Richardson number derived from stellar evolution
calculations are usually exceedingly large, ranging from 104 and up. This is not entirely surprising:
very roughly, if the shear is due to differential rotation then S ∼ ξ�� where ξ is a small number
(otherwise, the star would have counter-rotating regions, which is rather unlikely). Then, assuming
N 	 N̄ (recall that N̄ characterizes the mean stratification),

J 	 N̄2

S2
∼ g

ρ̄

|∂ρ̄/∂r|
ξ 2�2

�

∼ g

ξ 2r�2
�

∼ v2
esc

ξ 2v2
rot

, (37)

where ρ̄(r) is the background radial density profile, vesc = √
2gr is the gravitational escape velocity

at a radius r, and vrot = r�� is the linear velocity associated with the star’s rotation at the same
position. We need vrot � vesc for the star to be gravitationally bound, and since ξ must be small, J
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is always very large. With the standard Richardson criterion in mind, it was therefore thought that
shear instabilities would not be relevant in stellar interiors.

2. Zahn’s stability criterion for diffusive shear instabilities

This perception changed, however, primarily thanks to Jean-Paul Zahn. Zahn was an astrophysi-
cist with broad interests in stellar hydrodynamics, who worked in New York with Spiegel in the late
1960s before moving back to France. While Spiegel’s primary interest was convection, Zahn was
more interested in the dynamics of stellar radiative zones, including small-scale turbulent mixing
as well as transport by large-scale flows. Following Townsend’s work on the effect of radiative
losses on stratified shear flows in the atmosphere, Spiegel and Zahn [49] proposed that similar
processes may be relevant in stellar interiors. Zahn [7] (see also Refs. [50,51]) quantified this idea
by arguing that since stellar interiors are optically thick, the thermal adjustment timescale ttherm

should be related to the thermal diffusivity κT and the characteristic size l of perturbations as

ttherm = l2

κT
. (38)

Using this in Eq. (36), Zahn obtained

J < O

(
κT

Sl2

)
→ JPel < O(1) provided Pel � 1, (39)

where Pel = Sl2/κT is the Péclet number based on the local shear and the eddy scale l . Naively,
one may therefore argue that by taking l to be as small as possible, Pel � 1 and JPel < O(1) can
always be satisfied. This would suggest that any amount of shear could become unstable. However,
this is not the case: Zahn further noted that perturbations cannot be so small as to become viscously
controlled. He therefore also required that the Reynolds number based on the same eddy scale
should be greater than a certain threshold for instability, which he estimated to be O(1000) based
on available laboratory experiments at the time. Mathematically,

Rel = Sl2

ν
> Rec ∼ O(103). (40)

Combining the two yields the requirement that

JPel

Rel
< O

(
Re−1

c

) → JPr < (JPr)c, (41)

where (JPr)c ∼ O(10−3). We therefore see that, according to Zahn’s criterion [7], stratified shear
instabilities can exist for fairly large J in the low Prandtl number environments of stellar interiors.
Taking Pr ∼ 10−6, for instance, instabilities should be present up to J ∼ 103.

It is important to note, however, that Zahn’s argument does not derive from any rigorous linear
stability analysis; instead, it can be viewed on a par with Richardson’s original discussion of the
energetics of stratified turbulence. As such, it is particularly important to check its validity. Its form,
however, is not unexpected when viewed from the perspective of the low Péclet number asymptotic
equations [36], which are relevant here since Zahn explicitly assumes that Pel � 1. Indeed, looking
at Eq. (32), we see that the only relevant dimensional parameters and groups of parameters are ν

and the combination N̄2/κT , together with the amplitude S of the background shear.2 The only way
to create a nondimensional quantity involving the Richardson number N2/S2 (noting that N 	 N̄ in
the low Péclet number limit) using the available dimensional parameters is (N̄2/κT )(S2/ν)−1, which
is indeed JPr.

2Since the eddies are supposedly small, they can know about only the background shear rather than other
large-scale properties of the flow.
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FIG. 2. Left: Volume-rendered snapshot of the nondimensional vertical velocity field in a simulation of
stratified plane Couette flow using the LPN approximation. Adapted from Fig. 2 of Garaud et al. [56]. Right:
Measurements of the nondimensional turbulent diffusivity (expressed as a Nusselt number) for a passive scalar
in the same simulations, as a function of JPr measured in the bulk of the shear layer. Note how the turbulence
disappears as JPr → (JPr)c 	 0.007. Figure created from the data presented in Garaud et al. [56].

It took 40 years, however, for technological advances in high-performance computing to enable
the scientific community to test Zahn’s theory. Even today, computational limitations (especially
in three dimensions, which is necessary for a reliable test) force us to use simulation parameters
that are very far from those of stellar interiors (where Pr � 1 and Re � 1). The first attempt at
testing Zahn’s theory using DNS was presented by Prat and Lignières [52] (see also Refs. [53,54])
for the case of a homogeneous shear flow. Later, we attacked the same problem using different
model setups: Garaud and Kulenthirarajah [55] studied the stability of a stratified Kolmogorov flow
(i.e., sinusoidal flow) driven by a body force, while Garaud et al. [56] considered a stratified plane
Couette flow (see Fig. 2). Remarkably, all of these studies came to the same conclusion: in the
limit where the turbulent Péclet number is small, turbulence cannot be sustained if JPr > 0.007
everywhere in the flow. The same result was obtained using both the standard equations at low Péclet
number and the low Péclet number (LPN) asymptotic equations (32). The agreement in the stability
threshold identified in these very different kinds of DNS is quite remarkable and fully validates
Zahn’s criterion [7] for stratified shear instabilities at low Péclet number. However, whether this
criterion still applies for all low Prandtl number flows, including those that have a large outer scale
Péclet number Pe (where Pe = S̄L2/κT , with L a measure of the width of the shear layer and S̄ is its
mean shear) as Zahn originally intended, remains an open question.

A completely independent formal approach to the question was also proposed in Ref. [57]
(based on the Woods Hole GFD summer program project of Tobias Bischoff, who was a fellow in
2013), where we used energy stability arguments to demonstrate that for sufficiently large Reynolds
number, any perturbation to a low Péclet number Kolmogorov flow must decay unless JPr < (JPr)E ,
where (JPr)E ∼ O(1) is a constant. This criterion has the same form as Zahn’s criterion (41),
albeit with a constant that is O(1) on the right-hand side instead of ∼0.007. Note that the energy
stability argument begins with the LPN approximation (32), rather than the standard equations
(1)–(3). Indeed, using the standard equations would only provide an energy stability criterion that
is independent of the Richardson number. This is because it is always possible to initialize the flow
with perturbations that locally reduce the stratification to the point where J drops below 1, which
then permits the development of shear instabilities. By contrast, the LPN approximation does not
allow substantial modification of the background stratification (see Sec. III) and instead imposes
a very tight constraint between the vertical velocity field and the temperature fluctuations. This
constraint restricts the parameter space of allowable perturbations, and therefore provides an energy
stability bound that depends on the stratification.
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3. Zahn’s model for vertical mixing by vertical shear instabilities

Later, Zahn became interested in quantifying the rate of mixing by shear-induced turbulence in
stellar interiors [58]. In this now classic 1992 paper, he put forward a simple model for the turbulent
mixing coefficient D for vertical shear instabilities (this derivation could equally apply to a turbulent
compositional diffusivity, or a turbulent viscosity). To do so, he first noted that, from a dimensional
perspective,

D ∝ Sl2, (42)

where l is the typical size of energy-bearing eddies in the turbulent flow and S is the local shearing
rate (recall that S is positive by definition). As we saw earlier, perturbations on a scale l can grow
provided JPel < O(1), so Zahn suggested one should use the largest possible value of l for which
this statement holds. This quantity is now known as the Zahn scale and satisfies

J
Sl2

Z

κT
∼ O(1) → lZ ∼

√
κT S

N̄2
. (43)

It is not difficult to see that this is in fact the only length scale that can be constructed from the
dimensional groups N̄2/κT and S (ignoring viscosity), so the form of lZ should not come as a
surprise. It is, however, strikingly different from the length scale often associated with high Reynolds
number stratified turbulence in geophysical flows, namely, U/N̄ [59,60]; see more on this later.
Using lZ in Eq. (42), we obtain

D ∝ Sl2
Z = CZ

κT

J
, (44)

where CZ is a constant of order unity. This estimate should hold as long as lZ is much smaller than
other available characteristic scales of the fluid, say, L (such as the local density scale height, or the
scale height of the background shear, etc.), and as long as the flow is indeed unstable, that is, when
JPr < (JPr)c [see Eq. (41)]. This stability criterion, incidentally, can now easily be shown to be
equivalent to lZ > lν , where łν is the scale below which viscous effects become important, i.e., the
scale for which Reν = Sl2

ν /ν = Rec [see Eq. (41)]. As such, (44) should be valid as long as there is
a separation of scales satisfying

lν � lZ � L. (45)

There have been several attempts at comparing Zahn’s turbulent mixing prescription with DNS,
notably by Prat and Lignières [53], Prat et al. [54], and Garaud et al. [56]. Most of these focused
on cases where the outer scale Péclet number is small, ensuring that the turbulence is in the low
Péclet number regime. The comparison between theory and experiments is numerically challenging,
because the condition (45) requires a very large dynamical range to be satisfied. In fact, it is not
entirely clear that any of the DNS presented to date actually reach such a clear separation of scales,
but at least those at the highest available Reynolds numbers have L > 20lν , and therefore approach
it. For sufficiently high Reynolds numbers, the turbulent diffusivities measured by Prat et al. [54]
and Garaud et al. [56] are again remarkably consistent, despite using very different model setups.
For all simulations at low Péclet number where (45) is satisfied, (44) holds with CZ ∼ O(0.1).
This is a tentative result, however, that will need to be confirmed with simulations at much higher
Reynolds number, of O(106) at least; see Ref. [56]. It is also interesting to note that in all of the DNS
performed in which both are measured, the turbulent diffusivity for a passive scalar and the turbulent
viscosity are consistent within 10% or 20%—in other words, the turbulent Schmidt number is close
to one. As such, when valid, Zahn’s model (44) should provide a good order of magnitude estimate
for both the turbulent diffusivity and the turbulent viscosity in stars (assuming rotation and magnetic
fields can be ignored, which is not necessarily the case; see Sec. VI).
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4. Stellar implications

In summary, there seems to be a wealth of evidence in favor of Zahn’s stability criterion (41)
for low Péclet number vertical shear flows in stars. There is also tentative evidence that his model
for turbulent mixing by vertical shear instabilities (44) may apply for low Péclet number flows,
although simulations with a much larger dynamical range will be required to establish whether
this result is robust. However, it remains to be determined whether the stability criterion and the
turbulent mixing prescription are valid more generally for all shear flows at low Prandtl number as
originally proposed in Zahn [7] and Zahn [58].

From a stellar perspective, this current restriction on the applicability of Zahn’s models to low
Péclet number shear layers is unfortunate. Indeed, it is not possible to compute the turbulent Péclet
number without knowing the actual eddy size, and the latter cannot be observed. As a result, we do
not know, simply from observations, whether the flow satisfies the LPN approximation or not (which
is a necessary condition for Zahn’s models to apply). At best, we can compute the outer scale Péclet
number Pe based on the observed shear and use it as an upper limit to the turbulent Péclet number.
But as discussed by Garaud and Kulenthirarajah [55], with reasonable assumptions on the amplitude
of the shear, Pe is likely very large in stars [see Eq. (57) below for a quantitative estimate], except
perhaps in the outer layers of the most massive stars, where κT can be in excess of 1015 cm2/s. Deep
in the interior of solar-type or intermediate mass stars, for instance, Pe is of the order of 105–108 so
Zahn’s models cannot be safely applied (yet). In order to do so, one would need to demonstrate that
small-scale perturbations to the large-scale shear can always be excited nonlinearly, which would
then result in a much lower turbulent Péclet number. This is an open question that remains to be
addressed and will require simulations in much wider computational domains and at much higher
Reynolds number than presently available.

Even assuming that Zahn’s estimate (44) holds generally for any low Pr flow, the general
conclusion is that vertical shear instabilities are not a particularly important source of turbulent
mixing in stars, for two reasons. First, combining the criterion JPr < 0.007 with Pr ∼ 10−6 implies
that J cannot be larger than about 104 for instability to occur. While some stellar shear layers do
indeed satisfy this (e.g., the solar tachocline has N̄2 ∼ 10−6 s−2 and S̄ ∼ 10−5 s−1, so on average
J ∼ 104), this is uncommon for the reasons discussed in Sec. IV A. Second, even if the flow is
unstable according to (41), we have

D 	 CZ

(JPr)c

(JPr)c

JPr
ν 	 10

(JPr)c

JPr
ν (46)

using the estimated numerical values of CZ ∼ O(0.1) and (JPr)c ∼ O(0.01). As such, unless JPr �
(JPr)c, the turbulent viscosity is predicted to be only one or two orders of magnitude larger than
its microscopic counterpart. The same is true for the turbulent diffusivity of a scalar field, since
the microscopic compositional diffusivity is usually of the same order as ν. As such, we are forced
to conclude that stratified vertical shear instabilities in low Prandtl number stellar fluids are not a
substantial source of turbulent transport for momentum or composition.

B. Horizontal shear

1. Context

The effect of horizontal shear on mixing in stratified fluids is much less straightforward than that
of vertical shear, but the two are not unrelated. Consider for instance a unidirectional, vertically
invariant, horizontal shear flow of the form U (y)ex, where ex is the streamwise direction, and y
is the spanwise direction. A two-dimensional (2D) perturbation to this flow, which takes the form
of horizontal motions only, is unaffected by stratification. As such, this 2D perturbation will be
linearly unstable provided U (y) satisfies the standard criteria for 2D, unstratified shear instabilities
(see, e.g., Ref. [61]). One may therefore argue that horizontal shear instabilities are much easier to
trigger than vertical shear instabilities. However, the same 2D motions cannot cause any vertical
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mixing, so the latter must result from three-dimensional (3D) perturbations, which are, by contrast,
directly affected by the stratification. The goal is therefore to understand how these 3D motions are
driven, what form they take, and how much diapycnal mixing they can cause.

On Earth, evidence for vertical mixing in (mostly) horizontal shear flows is quite clear from both
laboratory experiments [62–65] and numerical experiments [60,66]. In all cases, small-scale vertical
shear is an essential component of the process and can appear for a variety of reasons, either because
the driving mechanism for the horizontal motions is not vertically invariant, or because 3D modes of
instability are also excited [64,66,67]. In itself, this vertical shear might not be sufficient to trigger
vertical shear instabilities, because the gradient Richardson number constructed using the shear
and the mean background stratification remains very large. However, by virtue of nonmonotonic
buoyancy flux laws [68,69], the stratification crucially rearranges itself to contain alternating regions
that are more weakly and more strong stratified, respectively—as a set of layers and interfaces.
The weaker stratification within the layers locally decreases the gradient Richardson number below
unity, allowing the flow to become turbulent. The turbulence, in turn, mixes the layers and maintains
the interfaces so the process is essentially self-sustaining [70].

It has been shown both experimentally, theoretically and numerically, that in the limit where
viscosity is negligible, the thickness of these layers scales as Uh/N̄ , where Uh is the rms amplitude
of the horizontal flow (see, e.g., Refs. [59,60,62–64]). This scaling is again not surprising: in
geophysical environments where viscosity is negligible, so is the thermal diffusivity since Pr ∼ O(1)
or larger, and the only available dimensional parameters of the system are the characteristic scale of
the horizontal flow L, the amplitude of this flow Uh (or, the horizontal shear Sh ∼ Uh/L, depending
on the model setup), as well as the mean stratification N̄ . The only length scale that can be
constructed from Uh and N̄ independently of L is Uh/N̄ .

From the discussions presented in Sec. III, however, it is quite clear that a pathway to turbulence
involving the formation of layers and interfaces is prohibited at low Péclet number, since the back-
ground stratification cannot be modified in that limit. Furthermore, since the relevant dimensional
parameter is N̄2/κT (rather than N̄ and κT separately), the quantity Uh/N̄ cannot be the appropriate
length scale for low Péclet number flows, as we already found in the case of vertical shear (see
Sec. IV A 3). In other words, the dynamics of horizontal shear instabilities in stars must be quite
different from those on Earth.

The first model for turbulent mixing induced by horizontal shear instabilities in stellar interiors
was proposed by Zahn, in the same 1992 paper that introduced the mixing coefficient for vertical
shear instabilities [58]. Zahn argued that the presence of horizontal shear would drive primarily 2D
motions, which rapidly decouple in the vertical direction owing to the very low plasma viscosity.
These now layerwise horizontal motions become unstable to diffusive vertical shear instabilities

when their characteristic vertical scale lv drops below the Zahn scale, i.e., when lv =
√

κT S
N̄2 , where

here S = Uh/lv . Solving for lv yields the new scaling

lv =
(

κT Uh

N̄2

)1/3

, (47)

which is (again) the only length scale that can be constructed from the dimensional quantities Uh and
N̄2/κT (see Sec. III; here the low Péclet number approximation is implicit since the vertical shear
instabilities are assumed to be diffusive). Zahn further assumed that the amplitude of the horizontal
motions can be obtained from the viscous dissipation rate ε using the usual Kolmogorov scaling
ε ∝ U 3

h /lv , ultimately leading to the conclusion3 that

lv =
(

κT ε1/3

N̄2

)3/8

and Uh =
(

κT ε3

N̄2

)1/8

. (48)

3Note that Zahn never explicitly wrote lv and Uh as such, but it can be inferred from his calculation.
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Lignières [71] recently provided an alternative explanation for this scaling, which may feel more
familiar to geophysical fluid dynamicists. In high Péclet number flows, he recalls, the effects of
stratification begin to affect the turbulence above the Ozmidov scale lO, which is the scale at which
the eddy turnover timescale l/u(l ) equal the buoyancy timescale N̄−1. Below the Ozmidov scale,
the turbulence satisfies the usual Kolmogorov scaling relating the dissipation rate to the turbulent
spectrum ε ∝ u(l )3/l . Together,

lO
u(lO)

= N̄−1 and ε = u3(lO)

lO
⇒ lO =

(
ε

N̄3

)1/2

. (49)

For low Péclet number flows, on the other hand, Lignières argues that this argument needs to be
modified to account for the fact that the buoyancy timescale is no longer N̄−1, but (by dimensional
analysis) κT /N̄2l2. Equating this with the eddy turnover timescale, with the same constraint from
the energy dissipation rate, he defines a modified Ozmidov scale lOM as

lOM

u(lOM )
= κT

N̄2l2
OM

and ε = u3(lOM )

lOM
⇒ lOM =

(
κT ε1/3

N̄2

)3/8

. (50)

This recovers (48), as mentioned earlier, and provides insight into the balance of timescales required
in deriving lv .

Zahn [58] then used the derived length scale and velocity amplitude to compute a vertical
turbulent mixing coefficient, which is

D ∝ lvUh ∝
(

κT ε

N̄2

)1/2

. (51)

This predicted scaling is interesting, because it depends only on the stratification as N̄−1, compared
with the mixing coefficient for vertical shear instabilities, which scales as N̄−2. As such, it is possible
that horizontal shear instabilities may actually provide a more efficient source of mixing in stars than
vertical shear instabilities in the limit of strong stratification.

2. Direct numerical simulations of horizontal shear instabilities at low Prandtl number

Having worked on the problem of vertical shear instabilities for a few years, I decided to tackle
the more complicated problem of horizontal shear instabilities in 2018. By chance, Colm-cille
Caulfield and I were both planning to attend the GFD program that summer. Caulfield has done
extensive work on stratified turbulence with application to the oceanographic context, and had re-
cently studied stratified horizontal Kolmogorov flows at Pr ∼ O(1) [66]. Together with GFD fellow
Laura Cope, we extended that work to the low Pr limit, which paved the way to a comprehensive
analysis of Zahn’s model for turbulent mixing by horizontal shear flows in stars. As we discovered
[72,73] the story is substantially more complicated than Zahn foresaw.

As a natural continuation of prior work [55,66], we studied the dynamics of horizontal Kol-
mogorov flows in a vertically stratified fluid. The governing equations are given by (1)–(3), with
the addition of a body force of the form F = F0 sin(ksy)ex to drive the horizontal shear. Using
a nondimensionalization based on the outer scale of the flow k−1

s , the predicted amplitude of
the horizontal flow Uh = √

F0/ρmks, and the temperature scale k−1
s βT , we arrive at equations

very similar to (20)–(22), with B = N̄2/U 2
h k2

s , Ret replaced by an outer scale Reynolds number
Re = Uh/νks and Pet replaced by an outer scale Péclet number Pe = Uh/κT ks. Note that the quantity
Uh turns out to be a good estimate for the horizontal rms velocity, hence the choice to keep the same
notation as in the previous section. For typical parameters of the interiors of main sequence stars of
a few solar masses or less, Re, Pe, and B are all much larger than one, with Pe = PrRe � Re [73].
For the outer layers of very high mass stars, by contrast, Re � 1 while Pe < 1 [55]. These estimates
show that both Pe � 1 and Pe < 1 regimes are relevant in stellar contexts.
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FIG. 3. Snapshots of the horizontal (left) and vertical (right) velocity field in a simulation of horizontal
shear flow at Re = 600, Pe = 0.1, B = 6000, discussed in Cope et al. [72]. The meanders of the horizontal
flows are visible on the left and generate substantial shear, which drives vertical shear instabilities on small
scales (right).

As predicted by Zahn [58], in Cope et al. [72] we found that the mean horizontal flow rapidly
becomes unstable to quasi-2D perturbations, that take the form of vertically modulated horizontal
meanders. These decoupled meanders induce some vertical shear, that can become unstable and
cause vertical mixing, depending on the stratification. For weakly stratified flows, the turbulence
behaves as if temperature was a passive scalar, and is unaffected by stratification. For more strongly
stratified flows, both vertical eddy size and rms vertical velocity are reduced by the stratification,
while the horizontal rms velocities remain essentially unaffected (see Fig. 3). For even more
strongly stratified flows, the vertical shear between the meanders is progressively stabilized, first
intermittently, and then entirely. Beyond this qualitative picture, however, the results are sensi-
tively dependent on the emergent turbulent Péclet number of the vertical fluid motions, given by
Pet = wrmslv/κT , where wrms is the vertical rms velocity and lv is the vertical eddy scale. This is
irrespective of Pe, although we always have Pet = (wrms/Uh)(lvks)Pe < Pe.

In the limit where Pet � 1 and the flow is strongly stratified (B > 1),

lv ∝ B−1/3k−1
s and wrms ∝ B−1/3Uh, (52)

independently of Re or Pe; see Ref. [73]. This would then imply a turbulent mixing coefficient

D ∝ lvwrms ∼ B−2/3k−1
s Uh ∝

(
N̄2

U 7/2
h k1/2

s

)−2/3

, (53)

so D ∝ N̄−4/3, which decays a little faster than Zahn’s prediction (51), but not as fast as the mixing
coefficient for vertical shear instabilities (44). In addition, this kind of turbulence appears to be
capable of inducing a non-negligible heat flux (compared with the diffusive flux), estimated to be
[73]

FT ∝ − Uh

Bks
βT ∝ −U 3

h ks

αT g
. (54)

Note that the heat flux is downward in stably stratified fluids, and usually has the opposite sign to
the conducted (radiative) flux since the temperature gradient T0z is negative in stars.

To my knowledge, these scalings are different from any other proposed to date, but naturally
arise from a dominant balance between nonlinear terms and forcing in the horizontal component of
the momentum equation, hydrostatics in the vertical direction, and a balance between the nonlinear
terms u · ∇T̃ and the background advection term βT w in the temperature equation (see Ref. [73]
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for details). The fact that the vertical eddy scale in Eq. (52) is not given by Uh/N̄ , for instance, is
particularly surprising since in this limit both Reynolds and Péclet numbers are relatively large, and
one may expect geophysically relevant scaling arguments such as those of Brethouwer et al. [60]
to apply. However, it is worth noting that the Uh/N̄ scaling is formally applicable only when the
buoyancy Reynolds number defined as Reb = ε/νN̄2 is very large, and it is likely that the present
simulations (for which Reb ranges from 3 to 20 in the regime of interest) are not in that limit yet. As
such, these results remain to be confirmed in the future.

From (52), we see that the turbulent Péclet number Pet = wrmslv/κT must decrease with de-
creasing Pe or increasing B. The critical Pet = 1 transition occurs when B ∝ Pe3/2, irrespective of
Re (or the Prandtl number). When Pet � 1, the flow dynamics are well represented by the LPN
approximation, and depend only on Re and the product BPe, for the reasons described in Sec. III.
Various dynamical regimes exist, including a low Péclet number stratified turbulence regime, an
intermittent regime, and a viscous regime, each following a distinct set of scaling laws discussed by
Cope et al. [72]. In the turbulent low Péclet number stratified regime, for instance, the vertical eddy
size and vertical rms velocity scale as

lv ∝ (BPe)−1/3k−1
s , and wrms ∝ (BPe)−1/6Uh, (55)

leading to a turbulent mixing coefficient

D ∝ lvwrms ∝ (BPe)−1/2k−1
s Uh ∝

(
N̄2

U 3
h ksκT

)−1/2

. (56)

These scalings can be explained from a dominant balance between nonlinear terms and forcing in
the horizontal component of the momentum equation (as before), nonlinear terms and buoyancy
force in the vertical component of the momentum equation, and finally, the LPN balance in the
thermal energy equation. We find that they do recover Zahn’s prediction (51) assuming that the
viscous dissipation ε is given by the Kolmogorov scaling U 3

h ks (which remains to be determined).
We therefore confirm that D ∝ N̄−1 in this regime, suggesting that mixing can remain important
even when the stratification is strong.

For very large values of B, finally, the vertical shear gradually becomes more stable, and the
volume fraction of the domain occupied by turbulent flow decreases (see Ref. [72] for more details).
Instead, viscously dominated flow structures emerge, with a vertical scale proportional to Re−1/2.
Vertical mixing in that regime is essentially negligible.

3. Stellar implications

Using values of κT , N̄ , Uh, and ks that are somewhat typical4 of the deep interiors of main
sequence stars with masses around 1M�, we have

Re = 1014

(
Uh

104 cm/s

)(
k−1

s

1011 cm

)(
ν

10 cm2/s

)−1

,

Pe = 108

(
Uh

104 cm/s

)(
k−1

s

1011 cm

)(
κT

107 cm2/s

)−1

, (57)

B = 108

(
Uh

104 cm/s

)−2( k−1
s

1011 cm

)2(
N̄

10−3 s−1

)2

,

4Aside from the mean horizontal flow velocity Uh, which can vary significantly, the typical values of κT and
N̄ do not change too much over the interior of the star, except perhaps close to the edge of the convection zone
where N̄ → 0. These values do not change much with stellar mass either, in the range ∼0.5M� to ∼10M�; the
value of ks is taken to be of the order of 2π over the stellar radius, which does not change too much either.
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so that, in the high Pet regime,

D ∝ 1029/3

(
Uh

104 cm/s

)7/3( k−1
s

1011 cm

)−1/3(
N̄

10−3 s−1

)−4/3

cm2/s, (58)

while in the low Pet regime

D ∝ 107

(
Uh

104 cm/s

)3/2( N̄

10−3 s−1

)−1(
κT

107 cm2/s

)1/2( k−1
s

1011 cm

)−1/2

cm2/s. (59)

We see that in both cases, unless Uh � 104 cm/s, D is significantly larger than the microscopic
viscosity ν 	 10 cm2/s (and the microscopic diffusivity for a chemical tracer, which is of the
same order of magnitude), suggesting that horizontal shear instabilities in either regime could be
a substantial source of vertical mixing in stars, just as it is in the ocean and in the atmosphere on
Earth. Of course, these results do not yet account for the effects of rotation or magnetic fields which
are expected to be important in stars (see Sec. VI and, e.g., Refs. [58,73] for a discussion of these
effects).

In summary, we saw that a small Prandtl number is very favorable to the development of shear
instabilities in strongly stratified fluids because it allows for the existence of a new regime which
is both almost inviscid yet also thermally diffusive, i.e., such that Pel = PrRel � 1 � Rel on some
length scales l . In this regime, thermal diffusion reduces the stabilizing effects of stratification and
the instability can thrive, albeit at small scales. This conclusion, as we shall now see, applies to
double-diffusive instabilities as well.

V. DOUBLE-DIFFUSIVE INSTABILITIES

A third group of instabilities that are of interest to both astrophysical and geophysical commu-
nities are double-diffusive instabilities. These were discovered by Stommel et al. [74] and Stern
[75], in the context of their research in physical oceanography. Stern [75] realized that because the
density of seawater depends on both temperature and salinity, which diffuse at very different rates,
two new kinds of instabilities exist that can destabilize a statically stable density stratification (even
more were discovered later; see, e.g., Refs. [76,77]). More generally, the same is true of any fluid
whose density depends on multiple components that diffuse at different rates. The simplest model
setup that supports double-diffusive instabilities is that of an unbounded fluid with a background
potential temperature gradient βT and a background salinity (or any slow diffusing compositional
field C) gradient βC (see Refs. [78,79]). The dimensional equations governing the fluid are as in Eqs.
(1)–(3), with the added contribution of the compositional perturbations C̃ to the buoyancy field, and
a second advection diffusion equation:

∂u
∂t

+ u · ∇u = − 1

ρm
∇ p̃ + (αT T̃ − αCC̃)gez + ν∇2u, (60)

∇ · u = 0, (61)

∂T̃

∂t
+ u · ∇T̃ + βT w = κT ∇2T̃ , (62)

∂C̃

∂t
+ u · ∇C̃ + βCw = κC∇2C̃, (63)

where αC = ρ−1
m (∂ρ/∂C)T , and κC is the compositional diffusivity. For salt water, the diffusivity

ratio τ = κC/κT = O(0.01).
Stern [75] discovered the so-called fingering instability based on the experiment of Stommel

et al. [74]. This form of double-diffusive convection can take place when temperature (or, more
generally, the most rapidly diffusing scalar) is stably stratified while salt (or, the more slowly

030501-18



JOURNEY TO THE CENTER OF STARS: THE REALM …

diffusing scalar) is unstably stratified. Stern argued that a small vertically displaced parcel of fluid
would rapidly equilibrate thermally with its surroundings. This reduces the stabilizing impact of
the temperature stratification (as it did for the diffusive shear instabilities) and allows in this case
the unstable salinity gradient to drive what is essentially haline convection, albeit on small scales.
In a footnote, Stern [75] also mentioned that a related oscillatory instability would exist when the
stratifications are reversed, namely, when temperature is unstably stratified, while salinity is stably
stratified. Indeed, in the absence of the temperature field, a vertically displaced parcel of fluid
would merely excite stable internal gravity waves in the stably stratified salinity field. However,
in a destabilizing temperature gradient, the diffusive thermal adjustment of the parcel with the
ambient temperature provides an additional source of buoyancy that serves to gradually amplify
the oscillation (see, e.g., Fig. 1 of Ref. [5]). The linear instability theory for this oscillatory type
of double-diffusive convection was presented by Walin [80]. Double-diffusive instabilities in their
various forms (see more on this later) are thought to be significant sources of diapycnal mixing
in the tropical ocean, where fingering takes place, and in the polar oceans, where the oscillatory
instability and its subcritical manifestations take place [79].

Double-diffusive instabilities were introduced to the astrophysical community in the early 1960s,
with the GFD program playing a central role in disseminating the ideas.5 In stars, helium and/or
other heavier atomic species play the role of salt, while the ionized hydrogen plasma plays the
role of the ambient fluid. The fingering instability takes place in stably stratified radiative zones in
the presence of an unstable compositional gradient, that could be caused either by material falling
onto the surface of the star from accreting planets or from a more evolved binary companion, or
created in situ by some nuclear reactions. The instability was, to my knowledge, first invoked as
a possible mixing mechanism in stars by Ulrich [82], although reference to it in the astrophysical
literature dates back to the work of Goldreich and Schubert [48], who discovered a double-diffusive
version of centrifugal instabilities and noted its strong analogy with the thermohaline problem. The
oscillatory instability on the other hand takes place in regions of the star close to a convective core,
where nuclear fusion reactions can create a stabilizing compositional gradient. It was first discussed
in the stellar context by Kato [83] and Spiegel [84], who realized its connection with a related
problem in stellar astrophysics called semiconvection [85].

I have recently reviewed the topic of double-diffusive instabilities at low Prandtl number in two
different venues (the reader is referred to Ref. [5] for a review addressed to fluid dynamicists, and to
Ref. [6] for a review addressed to stellar astrophysicists). Rather than repeating what can be found
elsewhere, I shall therefore focus here on describing the main differences between high and low
Prandtl number double-diffusive systems, while garnering insight from what we have just learned
about low Péclet number flows.

A. Fingering instabilities

Using a linear stability analysis, Stern [75] established that the criterion for linear instability to
fingering convection depends on the so-called density ratio

R0 = αT βT

αCβC
. (64)

5Willem Malkus, who worked on the problem early on, introduced fingering instabilities to his colleague
Peter Goldreich at UCLA. Goldreich attended GFD in 1966. Spiegel also introduced fingering instability to
his colleague Sylvie Vauclair in the 1970s, who went to on discuss their importance in planet formation [81].
Meanwhile, Spiegel and Kato were interested in the oscillatory double-diffusive problem, with Kato and Walin
both fellows of the GFD program in 1964.
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A fluid is fingering-unstable provided

1 < R0 <
κT

κC
= τ−1. (65)

Note that the fluid is unstable to multi-component convection when R0 � 1, and linearly stable if
R0 > τ−1. The linear stability bound is sharp, and coincides with the energy stability bound [86,87].
In stars, the diffusivity ratio is usually very small, and notably smaller than the kinematic viscosity,
so τ < Pr � 1. Fingering convection can therefore take place over a huge range of density ratios
[88].

Regardless of the Prandtl number, the typical length scale associated with the fingering instability
is usually of the order of

d =
(

κT ν

αT |βT |g
)1/4

, (66)

which is the scale on which the thermal Rayleigh number would be equal to one. In the ocean, the
fingers initially develop as thin columns of fluid (hence their name), with alternating warm/salty
water flowing down, and cold/fresh water flowing up. The growth rate of fingering modes λfing is
the solution of a cubic equation [see, e.g., Radko [79], Eq. (2.2)], and must usually be computed
numerically. The velocity field within the fingers grows exponentially until a secondary shearing
instability develops and disrupts them, causing saturation. As discussed by Radko and Smith [89]
in the geophysical context, and Brown et al. [90] in the astrophysical context (see also Ref. [91]), it
is possible to predict the vertical velocity within the fingers at saturation, wfing, simply by requiring
a balance between the primary fingering growth rate, and the secondary (parasitic) shear instability
growth rate.

Indeed, prior to the saturation of the primary instability, the flow field associated with the
developing fingers is purely vertical, and varies sinusoidally in the horizontal direction on the
characteristic length scale d . The growth rate of the shear instability between the fingers λshear

depends on the amplitude of the vertical flow speed wfing, and can be computed by linear stability
analysis [89]. Setting λfing = Kλshear (wfing) then provides an implicit equation for the finger velocity
at saturation, wfing. The constant K is finally estimated by fitting the model predictions to the data.
The Radko and Smith model was very successful in predicting the fingering fluxes measured in
DNS for a wide range of density ratios, Prandtl number, and diffusivity ratios.

For geophysically relevant values of Pr, and density ratio of order unity, both DNS and laboratory
experiments agree that the turbulent temperature flux can be up to two orders of magnitude larger
than the diffusive flux, while the salinity flux can be up to four orders of magnitude larger than the
diffusive flux. In the light of what we saw earlier, this implies that the thermal Péclet number is
large, and that the instability can, in principle, drive the formation of layers and interfaces. This
is in fact exactly what happens: for low density ratios, fingering convection is now known to
drive the formation of thermohaline staircases, which are stacks of well-mixed fully convective
layers separated by thin fingering interfaces. Observed in the ocean [92–94], and in laboratory
experiments [95,96] the process by which these layers form was finally clarified by Radko [97]
(see also Ref. [98]), who discovered a new mean-field instability he called the γ -instability, driven
by an imbalance between the turbulent salt and temperature fluxes (see Ref. [79] for a review of all
processes that lead to the formation of layers in oceanographic double-diffusive convection). These
thermohaline staircases are particularly important for diapycnal mixing in the tropical ocean, where
they are observed to significantly increase vertical transport compared with regions where fingering
convection alone takes place [99].

As R0 increases, the turbulent fluxes of temperature and salinity decrease, and eventually drop
to zero at R0 = 1/τ . For salt water, the turbulence is already very weak (and the thermal Péclet
number is small) beyond R0 	 20. Based on what we learned in Sec. III one may then naturally
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propose a reduced model for fingering convection using the LPN approximation [36]. Replacing the
temperature equation with its approximate form (31), we then have

∂u
∂t

+ u · ∇u = − 1

ρm
∇ p̃ +

(
N̄2

κT
∇−2w − αCgC̃

)
ez + ν∇2u, (67)

∇ · u = 0, (68)

∂C̃

∂t
+ u · ∇C̃ + βCw = κC∇2C̃. (69)

These reduced equations were in fact formally derived by Radko [100] and Xie et al. [101], using
asymptotic expansions of the governing equations for fingering convection near marginal stability
(i,e. as R0 → τ−1). However, DNS demonstrate that the region of validity of these equations can be
much larger than what the asymptotic theory suggests (e.g., for salt water it is valid for R0 as low as
∼20, rather than in the strict limit R0 → 100).

Meanwhile, in the low Prandtl number limit of stars, Brown et al. [90] noted that several
simplifications to the Radko and Smith [89] model can be made. First, it is possible to solve the
cubic for the fingering growth rate analytically using an asymptotic expansion for Pr, τ � 1, leading
to the estimate that

λfing 	
√

Pr

R0

κT

d2
+ O(Pr) (70)

in most of the unstable range except near marginal stability, where λfing drops to zero. Second, since
viscosity is negligible on the fingering scale (again because Pr � 1), the shear instability growth
rate λshear is independent of ν and can be shown purely on dimensional grounds to be proportional
to wfingd−1. Equating the primary and parasitic instability growth rates as before, we find that

wfing ∝ dλfing 	
√

Pr

R0

κT

d
when Pr � 1. (71)

From that, we can estimate a Péclet number based on the basic finger properties, to be

Pefing = dwfing

κT
	

√
Pr

R0
. (72)

Note that a much more detailed asymptotic analysis can be found in Brown et al. [90] if required.
Since Pr is small and R0 is always larger than one (and can be very large indeed), we see that
fingering convection at low Prandtl number always has Pefing � 1 at all values of the density ratio.
This implies, in particular, that (67)–(69) are always a good description of fingering convection in
stars. It also implies that thermocompositional staircases cannot spontaneously form from the basic
fingering instability in that case, since low Péclet number flows cannot modify the background
temperature profile significantly. This conclusion was already reached by Traxler et al. [102], and
further quantified by Garaud et al. [103], by performing a detailed analysis of Radko’s mean-field
theory [97] applied to low Prandtl number fingering convection. However, as demonstrated above,
we can arrive at the same inevitable conclusion using very simple dimensional arguments.

The fact that thermocompositional staircases cannot naturally arise in low Prandtl number
fingering convection has important implications for stellar structure and evolution. On the one hand,
this means that the theory of Brown et al. [90] is sufficient to estimate turbulent mixing by fingering
convection in stars. This implies that the turbulent mixing coefficient, for low to moderate values of
R0, is

Dfing ∝ wfingd 	 Cfing

√
Pr

R0
κT for R0 � τ−1, (73)
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where the constant Cfing was estimated by Brown et al. [90] to be approximately equal to 10 (see
also Ref. [6]). This formula recovers the functional form of the original model proposed by Ulrich
[82] and is actually quite close in both form and magnitude to the model of Kippenhahn [104]. The
mixing coefficient obtained, just as in the case of shear instabilities, is an appropriate estimate for
both the turbulent viscosity and the turbulent diffusivity of the scalar C [105] [except in the limit
R0 → τ−1, where Eq. (73) is not valid]. For values of R0 and Pr appropriate for stellar interiors,
Dfing ranges from one to three orders of magnitude larger than the microscopic counterparts ν and
κC (which are of the same order of magnitude, roughly). This has implications, for instance, for
observations of the abundance of various chemical species at the surface of red giant branch stars,
of planet-bearing stars and of some metal-rich white dwarf stars (see the review [6] and references
therein for more detail).

B. The oscillatory regime

Walin [80] established that the criterion for linear instability to the so-called oscillatory double-
diffusive convection (ODDC; this term was apparently coined by Spiegel) is

1 < R−1
0 <

ν + κT

ν + κC
= Pr + 1

Pr + τ
. (74)

The quantity R−1
0 is referred to as the “inverse density ratio.” Here the fluid is unstable to multi-

component convection when R−1
0 � 1, and linearly stable if R−1

0 > (ν + κT )/(ν + κC ). Note how,
in contrast with the fingering case, viscosity now affects the linear stability threshold.

For salt water, where Pr ∼ O(10), that threshold is very close to one, so the range of inverse
density ratios for linear instability is almost negligible. However, as shown by Veronis et al.
[106] (see also Ref. [107]), there exists a subcritical branch of instability that persists for R−1

0 �
(ν + κT )/(ν + κC ). Physically speaking, this is easy to understand: any finite amplitude perturbation
that locally reduces the stable salt stratification can allow thermal convection to develop more
easily.6 Ultimately, the fluid develops one or more convective layers, separated by stably stratified
diffusive interfaces. This is the more common form taken by this instability in geophysical flows,
as demonstrated in laboratory experiments by Turner [108] and Linden and Shirtcliffe [109] and
numerical experiments by Carpenter et al. [110]. Thermohaline staircases associated with a stable
salt stratification and an unstable temperature stratification are also well documented in the polar
oceans and in volcanic lakes [111,112]. These staircases typically have an underlying inverse density
ratio ranging from 2 to 10, which is stable according to (74).

At low Prandtl number, viscosity is negligible on the scales over which thermal diffusion is
effective, which means that the marginal stability threshold for the linear oscillatory double-diffusive
instability is very large [R−1

0 ∼ O(τ−1) ∼ 106 or larger, as in the fingering case]. As such, this
instability is dynamically relevant, by contrast with the geophysical context where it is not. Almost
any region that has an unstable potential temperature gradient can therefore be the seat of ODDC,
even when the stabilizing compositional stratification is extremely strong [83,84].

The nonlinear saturation of the primary instability in ODDC remains an open question. Ad
hoc models for the turbulent compositional flux induced by ODDC were proposed by Stevenson
[113] and Langer et al. [114], but neither appear to fit recent DNS results of Mirouh et al.
[115] (see Ref. [6] for a comparison). For low inverse density ratios, my former graduate student
Ryan Moll showed that a model similar to the Brown et al. [90] model for fingering convection (i.e.,
equating the primary instability growth rate to the growth rate of parasitic shear instabilities) can
explain the turbulent flux data (personal communication). At larger inverse density ratios, however,
this model does not work and largely underpredicts the turbulent fluxes. The instability appears

6Note that several other linear instability mechanisms can also interact with ODDC to give rise to layering,
such as the one identified by Radko [77].
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FIG. 4. Left: Snapshots of the compositional perturbations C̃ in a DNS of ODDC at R−1
0 = 1.15, Pr = τ =

0.3, presented in Wood et al. [120], at two instants in time, showing the formation of layers and their subsequent
mergers. Right: Nusselt number as a function of RaLPr in many different DNS of ODDC at varying R−1

0 , Pr
and τ , showing the scaling Nu ∝ (RaLPr)1/3. Figure adapted from Garaud [5].

to saturate instead through the generation and interaction with large-scale shearing modes (often
called “jets”), as demonstrated by Paparella et al. [116] (another GFD project) using a truncated
modal analysis, and by Moll et al. [117] using 3D DNS. It is interesting to note that in the same
limit thermal diffusion becomes dominant, so the truncated model (67)–(69) is expected to be a good
approximation for the dynamics of the system. To my knowledge, this has not been explored yet.
In short, a comprehensive theory of the nonlinear saturation of ODDC is still lacking, but several
encouraging avenues exist that ought to be further investigated.

An important outcome of the numerical experiments performed by my research group over the
years, starting with the exploratory work of Rosenblum et al. [118], is the discovery that ODDC at
low R−1

0 undergoes a spontaneous transition to layered convection through Radko’s γ -instability
(see above). The γ -instability takes place whenever the ratio γ of the total buoyancy flux due
to compositional transport, to the total buoyancy flux due to potential temperature transport, is a
decreasing function of R−1

0 . As demonstrated by Mirouh et al. [115], the range of inverse density
ratios for which this is the case increases as the Prandtl number and diffusivity ratio both decrease,
suggesting that layered double-diffusive convection should be prevalent in stellar interiors (see the
reviews [5,6]), especially in the vicinity of convective cores [119].

Wood et al. [120] and Moll et al. [121] performed a series of DNS of ODDC in the layered
regime, at low Prandtl number. We found that in a staircase composed of multiple layers with
roughly equal heights L, subject to a mean potential temperature stratification βT and a mean
compositional stratification βC (so the potential temperature and compositional jumps across each
interface are 	T = |βT L| and 	C = |βCL|, respectively), the Nusselt number is proportional to
(RaLPr)1/3, where RaL is the layer-based thermal Rayleigh number

RaL = αT |βT |gL4

κT ν
. (75)

The heat flux might also depend more weakly on the inverse density ratio and the diffusivity ratio,
but the available data are too limited to conclusively propose any scaling (see Fig. 4). This scaling
law is consistent with the notion that, in the absence of solid boundaries (and their associated viscous
boundary layers), the heat flux should become independent of Pr for asymptotically low Pr.

The simulations of Wood et al. [120] and Moll et al. [121] are still preliminary, but are the only
ones to my knowledge to study layered double-diffusive convection at low Prandtl number in the
absence of solid boundaries (which do not exist in stars). Simulations in a bounded domain (between
solid plates) were presented by Biello [122], Zaussinger and Spruit [123], and Zaussinger and Kupka
[124] and behave quite differently, which is expected. Generally speaking, much more remains to be
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done to understand and fully characterize layered double-diffusive convection a low Prandtl number.
Taller and wider computational domains, as well as significantly higher resolution, will be needed
to probe a larger region of parameter space in terms of Pr, τ , R−1

0 and layer height, to confirm or
challenge the scaling laws proposed by Wood et al. [120]. It also would be particularly interesting
to see whether one eventually recovers the Ultimate Regime of convection as RaL increases. Finally,
note that the simulations of Wood et al. [120] at low R−1

0 suggest that thermocompositional staircases
are not a stable configuration in the long term, because individual layers have a tendency to merge
over time until a single fully convective layer remains (see Fig. 4). Whether this is an artifact of the
boundary conditions used, or a genuine property of layered double-diffusive convection, needs to
be established.

The answer to these questions have important implications for stellar and planetary astrophysics.
Layered double-diffusive convection in the vicinity of the convective cores of intermediate and
high-mass stars, as demonstrated by Moore and Garaud [119], helps transport hydrogen into the
core, which, as mentioned in Sec. I, fuels its nuclear reactions, prolongs the lifetime of the star,
and increases the size of the core prior to its end-of-life stage (supernova or red giant). This in turn
impacts the ultimate redistribution of metal-enriched material in the host galaxy, with implications
for star formation and cosmology. In the interior of giant planets, Moll et al. [121] (see also
Refs. [125,126]) showed that the presence or absence of double-diffusive layers can control the rate
at which the convective envelope erodes the primordial rocky or water-rich core. Again, this has
potentially observable consequences and needs to be taken into account in models of the formation
and evolution of planets. More examples of the importance of ODDC in astrophysics are discussed
in Garaud [6].

VI. MAGNETIC FIELDS AND ROTATION

Before concluding, a few remarks are perhaps in order. It was my goal in this review to present a
few instabilities that are of particular interest to both geophysical fluid dynamicists and to the stellar
astrophysics community, while emphasizing fundamental differences in the emergent turbulence
that are due solely to the fluid’s Prandtl number. In choosing to focus on a few selected topics
only, I have had to ignore many others that also play an important role in both stars and in the
Earth’s oceans, atmosphere, and/or molten interior. These include, in no specific order, topics such
as centrifugal instabilities, large-scale meridional circulations, gravity waves and Rossby waves,
penetrative convection, and the generation of magnetic fields by dynamo action (among others).
More importantly, I have neglected to include the effects of rotation and magnetic fields on the three
types of instabilities discussed in this review. This choice was made for pedagogical purposes, but
by doing so I have vastly oversimplified the physics to the point that many of the results presented
cannot be directly applied to model stellar interiors. In what follows, I provide a very brief glimpse
into the various ways in which rotation and magnetic fields can change the results presented in the
previous sections.

A. Rotation

All astrophysical and geophysical systems are rotating to a greater or lesser degree, and rotation
needs to be taken into account whenever the Rossby number of the flow, defined as Ro = U/L�

(where U and L here are the characteristic velocity and length scale of the dominant eddies,
respectively, and � is the local rotation rate), is of order unity or lower. Conservation of angular
momentum in an inviscid rotating system strongly constrains the range of dynamics allowed. On
the one hand, gradients of angular momentum can have a stabilizing or destabilizing effect on
certain types of perturbations, and therefore constrain both the linear and nonlinear development
of instabilities. On the other hand, the Taylor-Proudman constraint forces all components of a very
low Rossby number flow to be invariant along the rotation axis, so the resulting turbulent dynamics
become almost 2D. The effect of rotation on all three kinds of instabilities discussed in this review
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is generally relatively well understood at Pr ∼ O(1), but, to my knowledge, there are very few
instances in which the regime combining Ro < 1 and Pr � 1 has been considered.

Significant progress has recently been made in improving our understanding of the impact
of rotation on Rayleigh-Bénard convection at Pr ∼ O(1), thanks to a combination of numerical
experiments and laboratory experiments, as well as the development of reduced asymptotic models
(see reviews of the topic in, e.g., Refs. [127,128]). A key result of the last decade is the identification
of a new rotationally constrained, yet fully turbulent convective regime, that emerges past the onset
of convective instability. In this regime, the Nusselt number scales as Nu ∝ Prχ (RaE4/3)α , where
E = ν/2�H2 is the Ekman number, and α and χ are two exponents that depend on the nature of
the system boundaries (no slip versus stress free). Whether this regime exhibits similar scaling laws
at low Prandtl number remains to be established, and it will be interesting to see whether some of
Spiegel’s [24] asymptotic arguments apply for rotating convection.

Relatively little is known about the effects of rotation on double-diffusive instabilities at low
Prandtl number (although there are some preliminary studies [129,130]), with one notable excep-
tion, which is the Goldreich-Schubert-Fricke (GSF) instability [48,131]. The GSF instability is a
doubly diffusive centrifugal instability (where the angular-momentum gradient is destabilizing, and
the thermal stratification is stabilizing) that is increasingly recognized as an important source of
angular momentum transport in stars. It bears many similarities with fingering convection, and has
recently been studied in depth by Barker, Jones and Tobias [132,133]. By nature, the GSF instability
exists only when the Prandtl number is small, and, in two dimensions, is an almost exact analog
of the fingering instability. As such, it lends itself well to some of the asymptotic arguments and
reduced modeling described in Sec. V A.

Finally, to my knowledge there has not yet been any systematic analysis of the influence of
rotation on the nonlinear development of stratified shear instabilities (vertical or horizontal) at low
Prandtl number. Linear stability analyses demonstrate the existence of several modes of instability
(including, depending on the model setup, baroclinic modes, GSF modes, and shearing modes
that are rotationally constrained; see, for instance, Refs. [134,135]). The recent MS thesis of my
former student Eonho Chang, which is currently under preparation for publication [136], presents a
preliminary analysis of the nonlinear development of low Péclet number vertical shear instabilities
in the presence of rotation, and their interaction with centrifugal instabilities. His work reveals
the existence of several different parameter regimes, depending on the relative strengths of the
rotation and the stratification, including some that are, respectively, rotationally dominated, shear-
dominated, or controlled by the GSF instability, and some that exhibit quasiperiodic excursions from
one regime to the other. Since many of these regimes are likely relevant to stellar evolution, we will
need to dedicate time and resources in the future to better characterize and quantify their properties.

B. Magnetic fields

Magnetic fields are not thought to be relevant in the dynamics of the Earth’s oceans and
atmosphere, but are fundamentally important in stellar interiors. Indeed, the very high conductivity
of the plasma usually implies that all but the smallest-scale or weakest fluid motions have a large
magnetic Reynolds number, which in turn implies that the flow can exponentially amplify magnetic
fields by dynamo action (see, e.g., Ref. [137] and the excellent recent lecture by François Rincon
[138]). The energy of the magnetic field usually grows to reach some fraction of the total turbulent
kinetic energy of the flow and the Lorentz force becomes dynamically significant, modifying the
properties of the turbulence in a way that saturates the dynamo instability. We therefore see that, by
nature, magnetic fields necessarily play a leading-order role in turbulent stellar plasmas, and should
never be ignored: if a dynamo is excited, then the transport properties of the turbulence (momentum
transport, heat transport, compositional transport) are likely affected by the field.

Convective dynamos are by far the most widely discussed types of stellar dynamos, and are
usually the source of a star’s observable magnetic field [9]. Since convection draws its energy from
the unstable stratification (a finite reservoir of potential energy), and since the field is amplified by
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converting kinetic energy into magnetic energy, the dynamo process might naturally be expected
to reduce the efficiency of convective heat transport somewhat. However, Yan et al. [139] recently
showed that the effect is fairly small, and that the presence of a small-scale dynamo does not seem
to affect the Nu(Ra) scaling law of hydrodynamic convection. This likely explains why the standard
mixing length theory of Böhm-Vitense (see Sec. II) is generally quite successful at modeling stellar
convection, despite ignoring magnetic fields entirely. It is worth noting, however, that saturation
of the convective instability in Spiegel’s asymptotically low Prandtl number regime [24] is due to
the turbulent stresses in the momentum equation (rather than convective fluxes in the temperature
equation, which is the more classic scenario). As such, the dynamo field may influence the heat
flux much more significantly in the limited region of parameter space where his equations are valid,
namely, Rac < Ra � Pr−1; see Sec. II.

For instabilities taking place in stellar radiative zones (e.g., stratified shear instabilities and
double-diffusive instabilities), one needs to distinguish between the impact of the small-scale
dynamo field generated locally by the turbulence resulting from the instability itself, and the impact
of a large-scale “external” magnetic field that exists independently of the instability. These two cases
are quite different, as the former affects only the nonlinear development of the instability, while the
latter can also impact its initial exponential growth.

Relatively little is known so far about the impact of magnetic fields on double-diffusive instabil-
ities in stars. From the perspective of linear theory, a large-scale externally imposed magnetic field
quenches perturbations that vary along the direction of the field, but leaves those that are invariant
along the field free to grow normally [140]. As such, the fastest-growing modes in both fingering
and ODDC instabilities are unaffected. Beyond linear theory, however, the story becomes a lot
more complex. To my knowledge, there is no published study on the impact of magnetic fields on
ODDC, so the question remains entirely open. In the fingering case, on the other hand, recent work
by Peter Harrington and myself [141] has demonstrated that the presence of a large-scale vertical
magnetic field (i.e., aligned with gravity) can actually enhance vertical compositional transport
by fingering convection, because it suppresses the parasitic instabilities that normally saturate
the fingers. However, it is not clear what would happen if the external field were inclined, or in
the absence of an externally imposed large-scale field. The question of momentum transport by
magnetized fingering convection also remains to be addressed.

Finally, studying (or even merely reviewing) the interaction between an externally imposed mag-
netic field and stratified shear instabilities is a momentous task, owing to the large dimensionality
of parameter space. As mentioned in Sec. I, instabilities arising from the combination of magnetic
fields and shear can take many different forms depending on the model geometry. A perhaps more
approachable question would be to quantify the impact of a locally generated dynamo field on the
transport properties of the shear-induced turbulence presented in Sec. IV, but to my knowledge,
even that still remains an outstanding question. Small-scale turbulence seems to be able to drive a
small-scale dynamo in stellar radiative zones provided the turbulence is sufficiently strong (i.e., the
magnetic Reynolds number Rm = UL/η is sufficiently large, where η is the magnetic diffusivity)
and sufficiently 3D [142]. This dynamo field can therefore quite plausibly affect the predicted
turbulent mixing coefficients discussed in Sec. IV. As a matter of fact, there is a growing amount of
evidence suggesting that the Maxwell stresses associated with the small-scale dynamo sometimes
have a tendency to oppose the Reynolds stresses of the turbulence, even when the field saturates
substantially below equipartition (see, e.g., Ref. [143] for evidence in 2D β-plane simulations with
a weak mean field and Refs. [144,145] in 3D simulations of magnetized rotating convection in a
spherical shell). As such, the results presented in Sec. IV on momentum transport in low Prandtl
number stratified turbulence are most likely not applicable in magnetized plasmas.

VII. PERSPECTIVE: THE IMPORTANCE OF MULTIDISCIPLINARY PROGRAMS

As we discovered, an asymptotically small Prandtl number causes various instabilities that are
common in stellar interiors to behave very differently from their geophysical, moderate-to-high
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Prandtl number counterparts. As such, the field of stellar fluid dynamics is a gold mine of interesting
projects for young scientists, especially thanks to high-performance computing. And, yet, it remains
the case today that most stellar astrophysicists do not receive a rigorous training in fluid dynamics,
and so these enticing projects are just waiting to be investigated by those who do.

In this respect, I cannot overstate the fundamental role that multidisciplinary science programs,
such as the Woods Hole Geophysical Fluid Dynamics summer program (GFD), have played
in moving the field of stellar astrophysics forward. The modern view of stellar fluid dynamics
presented in this paper began with a meeting between Ed Spiegel and Willem Malkus, which
eventually led to Spiegel’s participation as one of the seven founding members of GFD. The program
founders believed in the importance of multidisciplinary research, around the central themes of
applied mathematics and fluid dynamics, and GFD was never just about geophysical flows. They
continued to invite, year after year, many of the foremost astrophysical fluid dynamicists, as well
as aspiring graduate students and postdocs in astrophysics, to join them for a summer or more. The
early years welcomed giants of the field, such as my advisors Douglas Gough and Nigel Weiss,
as well as Steven Balbus, Peter Goldreich, Andy Ingersoll, Bob Stein, Jean-Paul Zahn, and many
others. They went on to use these more rigorous fluid dynamical approaches in their own research
on stellar and planetary fluid dynamics, and in turn inspired their postdocs and students (including
myself) to do the same.

Despite this, stellar fluid dynamics has remained a fairly marginal aspect of stellar astrophysics,
not least because fluid motions in stars (other than the Sun) are quite difficult to observe. As such,
the validity of a turbulent mixing prescription, or of a model for wave-induced transport or for
large-scale flows, can be tested only indirectly by studying their impact on the few observable
surface properties of the star (e.g., chemical species abundances or surface rotation rate, among
others). Since these properties depend on a combination of many different processes, some known
and others most likely unknown, it is rarely possible to disentangle their contributions. Thankfully,
asteroseismology, combined with precision astrometry and data science, is slowly beginning to
change this status quo, and stellar astrophysics will need to adapt accordingly by finally accepting
that stars are fluid objects that are at least as dynamically complex as our own Earth’s oceans and
atmosphere.
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