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Coupled triads in the dynamics of internal waves:
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In a linearly stratified fluid, two sets of resonant triads with one member in common,
hence coupled, can arise for a wide range of wave numbers where all five waves travel
in the same direction. The nonlinear dynamics is investigated by deriving the evolution
equations of slowly varying wave packets. The dependence of the interaction coefficients
on the channel depth and the buoyancy frequency are explicitly demonstrated. Coupling
may produce instabilities with growth rates bigger than those displayed by either triad
in isolation. Similar properties are expected for layered fluids with shear currents. By
drawing on a recent link between modulation instability and the occurrence of rogue waves,
surprisingly large displacements in the interior of the fluid are thus more likely. For applica-
tions to oceanography, the interaction coefficients of the evolution equations will affect the
magnitude of the actual amplitude of an internal rogue wave. Computations indicate that
displacements much larger than those of surface rogue waves are possible. From a more
theoretical perspective of wave resonance through the Madelung representation, special
ranges of dynamical phase angles are identified for the existence of time invariants. Finally,
numerical simulations of a simplified system are performed to highlight the spontaneous
generation of modes due to coupling.
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I. INTRODUCTION

Wave interaction can serve as a mechanism in conveying information as well as energy, and as
such constitutes a significant factor in the dynamics of surface and internal waves. Triad resonance
involving three waves satisfying special constraints in the angular frequencies and wave numbers has
been studied intensively [1,2]. Pure gravity waves will not allow such resonance, but incorporation
of capillarity will permit these triads to occur. For a two-layer fluid, this resonance can occur
among surface and interfacial waves [3]. If linearly stable or unstable modes are permitted, the
evolution equations will be slightly modified to account for this energy loss (gain) but the flexibility
in choosing the appropriate modes is further enhanced [1,4]. In a linearly stratified ocean, a case
of focus in the present study, only linearly stable modes may be allowed. Envelope equations
which describe the slow evolution of the wave packets due to resonant interactions are useful
tools in studying the dynamics. While these versions of resonance in layered and stratified fluids
typically involve modes moving in opposite directions, in special situations all three participating
waves can propagate in the same direction [5]. If the fluid is continuously stratified, the choice of
participating modes is even wider. A special case of hyperbolic secant buoyancy frequency profile
allows analytical solutions [6]. Such resonance can also be demonstrated experimentally [7,8].
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Triad resonance for internal waves has been studied from the perspective of physical oceanogra-
phy, as a possible explanation for the cascade of energy from large-scale internal tides to motions
of a smaller scale [9,10]. Subharmonic resonance, also widely termed as parametric subharmonic
instability, where a given wave train or beam generates further trains of half the frequency of the
original unit, has generated intense attention [11–13]. Effects of mean flow and rotation, factors
of particular relevance in the geophysical context, have been incorporated [14,15]. In addition to
connections with hydrodynamic surface and internal waves, review article on triads for a general
setting in physics has been given [16].

The focus of the present work will be sets of coupled triads, or more precisely, a pair of triads with
a common member. Hence five distinct waves will be participating in the dynamics of evolution. As
examples, early works in the literature on coupled triads address the aspects of “explosive” growth
and marginally unstable modes from the perspective of plasma physics and atmospheric science
[17,18]. In the realm of fluid mechanics, sets of coupled triads have been considered for surface
(internal) waves and also stochastically from the viewpoint of a large ensemble of waves via a
Hamiltonian approach [19].

The effects of linear or otherwise arbitrary shear currents on properties of surface waves have
also been studied extensively [20,21]. From the perspectives of resonance, the occurrence of triads
for a sheared fluid with three-dimensional effects has been demonstrated [22]. For a two-layer fluid
with linear current in one or both layers and a wavy seabed, triads and weakly nonlinear evolution
equations have been given too [23].

Remarks on the theoretical studies of coupled triads in the context of general physics are in order.
If two pairs of triads share two members in common, i.e., only four distinct waves are present,
significant theoretical advances can be achieved. As examples, there may be Hamiltonian systems
with Lax representation [24], and a “solitonic sector of the parameter space” can exist [25]. If
the two pairs of triads share only one member in common, the role that common member plays
in each triad may affect the dynamics dramatically [26–28]. The magnitudes of the difference of
the phase angles from these complex-valued wave envelopes will dictate the evolution of the wave
profile. A more precise measure of this difference, known as the “dynamical phase,” will be defined
in the subsequent analysis (Sec. VI B) [29]. In the language of dynamical systems, the governing
equations can be shown to be “integrable” through consideration of a Hamiltonian [26]. The widely
studied nonlinear Schrödinger equation in fluids, optics, and plasma possesses peculiar properties in
a multiwaveguide setting. Coupling produces stronger modulation instability than waveguides alone
themselves. We shall show that this statement holds true for coupled triads too.

The goal of the present work is to highlight the existence of new coupled triads for interfacial and
internal waves, and in particular, those arising from the presence of stratification or shear current.
We focus on triads with participating waves moving in the same directions. For different wave
packets to have significant interactions or possibly energy exchanges, their group velocities should
not differ widely in magnitude, otherwise the packets will separate before any dramatic nonlinear
effects can be observed. In optics, this separation is frequently termed “walk-off effect” [30]. Hence
it is desirable to have interacting modes to move in the same direction and similar group velocities
if possible. In practice this might not be achieved perfectly, since the wave numbers and frequencies
(and hence group velocities) are dictated by the resonance condition.

The sequence of presenting the topics can now be explained. Typical examples with minimal
algebraic complexity are discussed (Sec. II and Appendix E). The first example is a single-layer
stratified fluid with constant buoyancy frequency confined within a channel with rigid walls. The
dispersion relation is a rational function involving quadratic polynomials. The second example
is a two-layer, piecewise homogeneous fluid with a free upper surface. A linear shear current is
permitted in the upper fluid. The dispersion branches of the surface and interfacial modes moving
against the current might approach each other, but never actually intersect. This configuration can
readily generate coupled triads with all five modes traveling against the shear flow.

The evolution equations for modulated envelopes are derived by multiple-scale perturbation
theory (Sec. III). The usage of amplitude equations is justified for slowly varying approximations.
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Numerically, we shall evaluate for simplicity only the interaction coefficients for the continuously
stratified fluid case. The relative signs of these interaction coefficients are critical to the dynamical
properties [3,6,10,16].

The importance of studying multiple triads is that such coupled triads will lead to either enhanced
instability, or new instability which is otherwise absent if each component triad evolves in isolation
(Sec. IV). Recently there is intensive interest in the connection between modulation instability and
the occurrence of rogue waves. Such new instability due to coupling might be a valuable indicator
for the onset of these surprisingly large displacements. The actual derivation of rogue waves for
isolated triads has been given in the literature but the significance in fluid dynamics has not been
fully examined (Sec. V). We first examine the issues from a theoretical standpoint and contrast
the amplification factor with the Peregrine soliton of the nonlinear Schrödinger equation. From a
practical standpoint, we use the numerical values of the interaction coefficients of the evolution
equations to estimate the amplitude of an “internal rogue wave.” Preliminary computations show
that such amplitude can be much larger than that of a surface rogue wave.

As a simplified model to scrutinize the general dynamics, we focus on a reduced system by
considering only the temporal evolution (Sec. VI). Theoretically, the Madelung representations
are utilized, and special parameter regimes are identified where an invariant in addition to the
Manley-Rowe relations may exist. The development of the amplitude in time is then approximated
by differential equations considerably more complicated than those of elliptic functions for the
isolated triad case. Computer simulations are performed to demonstrate the energy-exchange mech-
anisms and spontaneous generation of signals previously absent from the initial conditions. Finally,
conclusions are drawn (Sec. VII).

II. EXAMPLE OF COUPLED TRIADS

We focus on coupled triads where the common member is a “parent” wave (k3, ω3 below). A
parent wave is the one resulting from the interaction of the other two modes, i.e., one with wave
number (k) and frequency (ω) being sum of the other two modes. Modes 1, 2, 4, 5 will be termed
“daughter” waves in this terminology:

k3 = k1 + k5, ω3 = ω1 + ω5, and k3 = k2 + k4, ω3 = ω2 + ω4, k1 �= k2. (1)

We must remark that this terminology of naming “parent–sibling–daughter” is not uniform in
the literature. Equation (1) represents a theoretical setting for a general wave-number vector k . In
subsequent discussion, we restrict the attention to the case of horizontal propagation and shall use a
scalar wave number k. Examples involving a continuously stratified fluid will be discussed. With the
Boussinesq approximation, small-amplitude disturbance is governed by the Taylor-Goldstein equa-
tion with vertical velocity (v) and eigenfunction φ(z) given as (c = phase speed, ε = a (numerically
small) amplitude parameter, c.c. = complex conjugate)

v = εφ(z) exp [i(kx − ωt )] + c.c. + O(ε2), (2)

(U − c)

(
d2φ

dz2
− k2φ

)
− d2U

dz2
φ + N2φ

U − c
= 0. (3)

Vertical propagation is excluded due to the presence of rigid walls. N2 is the square of the
buoyancy frequency for a background density profile ρ̄(z):

N2 = − g

ρ̄

d ρ̄(z)

dz
. (4)

In the absence of shear flow [i.e., U (z) = 0], the Taylor-Goldstein equation [Eq. (3)] can
be simplified considerably for a fluid with constant buoyancy frequency N0. We exclude wave
propagation in the vertical direction by considering a rigid-wall channel of depth H. The dispersion
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FIG. 1. The dispersion relation, angular frequency ω versus wave number k, for a fluid of constant
buoyancy frequency N0 with m being the mode number (N0 = 1, H = 1).

relation is [10,31] (Fig. 1)

ω2 = k2N2
0(

k2 + m2π2

H2

) , c = ω/k. (5)

The eigenfunction of Eq. (3) attains a remarkably simple form of

φ(z) = sin (mπz/H ), φ(0) = φ(H ) = 0, m = mode number. (6)

The integer m will be termed the “mode number.” Physically it will represent the number of nodes
(“m − 1” point(s) of zero displacement) in the profile of the vertical velocity [Eq. (6)]. Theoretically
“m” will define the vertical velocity and eigenfunction profile. The interaction coefficients in the
nonlinear analysis will be determined from the solvability condition in a perturbation expansion. As
an illustrative example of coupled triads, we consider a set involving modes m = 1, 3, 5 and another
set involving modes 2, 3, 4 (Figs. 2 and 3), with mode 3 as the common member [Eqs. (1) and (5)].
A graphical search starts with a fixed point on one branch of the dispersion curves. We draw the

FIG. 2. Graphical construction of a triad.
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FIG. 3. Schematic diagram of coupled triads [Eqs. (1) and (5)] with all five participating waves traveling
in the same direction. A solid dot on the m = 3 branch represents the common member, with modes 1, 5, 3
forming one triad and modes 2, 4, 3 the other triad.

various branches of the dispersion curves using this fixed point as the new origin of a Cartesian
plane. We then search for intersection points with other branches in the original drawing [1]. The
dispersion branches represented by Eq. (5) are convex upwards, with decreasing magnitude with
increasing m. In general, intersection of branches according to this graphical construction scheme
for various values of m can be found (Figs. 2 and 3). Analytically, we can also confirm the existence
of resonance for, say, a “k3 = k1 + k5” triad by solving the equation

(k1 + k5)/[(k1 + k5)2 + 9π2/H2]1/2 = k1/
[
k2

1 + π2/H2
]1/2 + k5/

[
k2

5 + 25π2/H2
]1/2

(7)

for input parameters of k1, k5. Typically there are two roots for k5 for a given k1. We shall choose
the numerically smaller root for discussion (Fig. 4), as large values of wave numbers will not work
well for asymptotic scaling for subsequent analysis of slowly varying wave packets.

Given a fixed depth of oceanic waveguide, there are many families of internal modes defined
through the vertical velocity eigenfunction of the Taylor-Goldstein equation. These modes from
the various families may satisfy the triad resonance condition, i.e., sum of frequencies and wave

FIG. 4. Computations of the triad resonance condition, Eq. (7), for typical input parameters (k1 = 0.5)
showing the existence of two possible values for k5. We adopt the smaller roots (k5 = 2.8787) in subsequent
calculations.
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TABLE I. Representative numerical examples of coupled triad resonances in a uniformly stratified fluid.

Grouping of Wave Angular Mode number of
the triads number k frequency ω the internal wave m

First set: k3 = k1 + k5 k1 = 0.5000 ω1 = 0.1572 m = 1
ω3 = ω1 + ω5

k3 = 3.3787 ω3 = 0.3375 m = 3
k5 = 2.8787 ω5 = 0.1803 m = 5

Second set: k3 = k2 + k4 k2 = 0.9277 ω2 = 0.1461 m = 2
ω3 = ω2 + ω4

k3 = 3.3787 ω3 = 0.3375 m = 3
k4 = 2.4510 ω4 = 0.1914 m = 4

numbers of two modes being equal to those of the third member. More precisely, we give some
concrete examples for the numerical values for the participating modes in Table I [m refers to the
mode number, Eqs. (5) and (6)]:

The angular frequency ω being positive (negative) refers to a wave moving to the right (left),
respectively. Mode 3 (m = 3) is now the common member of the two triads.

A remark on the choice of buoyancy frequency profile is in order. Obviously, the situation of
constant N is analytically the simplest one and is frequently used in the literature too [9–12]. The
case of a sharply peaked frequency profile

N2 = gβ2sech2(β1z), β1, β2 = real, positive parameters (8)

will permit analytical solutions of the Taylor-Goldstein equation in terms of hyperbolic secant and
tangent functions [6]. From the viewpoint of applications, Eq. (8) provides a plausible model in
oceanography, as the buoyancy frequency can be large in the thermocline but weak in the abyss [9].
Such studies will constitute the future extension of the present work. Another example of coupled
triads will be a two-layer fluid with a shear current [32–35]. This will be further discussed in Sec. VII
and Appendix E.

A note on the instability of nonlinear dynamical systems might be useful. For the widely studied
nonlinear Schrödinger equation applicable to fluid mechanics and optics, modulation instability
refers to the growth of small-amplitude disturbances imposed on a plane or continuous wave (or
Stokes wave in the hydrodynamic surface wave context). This instability arises from the interplay
of dispersive and nonlinear effects. Obviously, growth of linear disturbances cannot sustain forever
and typically periodic motions like the intensively studied Fermi-Pasta-Ulam-Tsingou recurrence
(FPUT) [36] may occur.

For three-wave interactions, instability may refer to the spontaneous generation of one wave
component of a triad when only two of this resonance group are present initially. For the case where
two members of the triad have wave number and frequency half of those of the third member, this
scenario is described as subharmonic resonance [1,9]. For optics, a member strong in intensity and
capable of producing other members of the triad through resonant interaction is termed the “pump
beam.”

Amplitudes of the wave components of triads will typically satisfy constraints or conservation
laws of the Manley-Rowe relations [1]. When amplitude of one member grows, the energy of the
other components will decrease correspondingly, unless these waves belong to the “explosive triads”
category. These issues have been discussed in the literature [1,9]. However, one aspect perhaps
still deserves studies in the future, i.e., the dynamics of breather/pulsating modes and recurrence
phenomena of the FPUT type.
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III. NONLINEAR EVOLUTION OF THE TRIAD RESONANCE

To study the dynamics further, we shall conduct the nonlinear analysis for one of the previous
examples, namely the continuously stratified case. The procedure of multiple-scale perturbation
theory applied to slowly varying wave trains is standard [2,27], and the explanation will be brief.

The second-order perturbation expansion for the horizontal velocity would be

u = ε
∑

m

u(m)
1 exp (i�m) + ε2

∑
m

u(m)
2 exp (i�m), �m = kmx − ωmt, m = 1, 2, 3, 4, 5, (9)

where the summation extends over all five relevant modes, ε is the small-amplitude parameter, and
only relevant terms in the derivation are kept at O(ε2). The induced mean flow will only be needed in
the derivation of a nonlinear Schrödinger equation. Similar expansion schemes apply to the vertical
velocity, density, and pressure.

The first-order or linear approximation for the fluid dynamics quantities of velocities and density
are (	m satisfying the Taylor-Goldstein equation [Eq. (3)]):

v
(m)
1 = Bm	m(z), u(m)

1 = iBm

km

d (	m(z))

dz
, ρ

(m)
1 = i

dρ̄(z)

dz

Bm	m(z)

km(U − cm)
, Bm = Bm(x̂, τ ), (10)

where Bm is the slowly varying amplitude expressed in slow scales of space and time,

x̂ = εx, τ = εt . (11)
In working out the second-order [O(ε2)] terms in the perturbation expansion for each mode, there

will be additional contributions in the inhomogeneous side of the differential equations owing to the
triad resonance condition [Eq. (1)], which effectively means that

�3 = �1 + �5, �3 = �2 + �4. (12)

These inhomogeneous terms must satisfy the solvability conditions as required by the Fredholm
alternative theorem, i.e., they must be orthogonal to the null space of the adjoint operator (or the
Taylor-Goldstein equation in this case). This constraint will now yield the evolution equations in the
slow timescale τ :

(1) First pair of triad:

∂B1

∂τ
+ cg1

∂B1

∂ x̂
= r1B3B∗

5;
∂B5

∂τ
+ cg5

∂B5

∂ x̂
= r5B3B∗

1; (13a)

(2) Second pair of triad:

∂B2

∂τ
+ cg2

∂B2

∂ x̂
= r2B3B∗

4;
∂B4

∂τ
+ cg4

∂B4

∂ x̂
= r4B3B∗

2; (13b)

(3) Common member:

∂B3

∂τ
+ cg3

∂B3

∂ x̂
= r3aB1B5 + r3bB2B4, (13c)

where cgm is the group velocity of the m th mode, m = 1, 2, 3, 4, 5. The interaction coefficients “r”
are computed by rather lengthy formulations described in Appendix A. The values of wave numbers
(k1 to k5) involved in the figures below range from 0.5 to 8.0, with larger numbers associated with
the higher-order modes like m = 3, 4, 5. The values of angular frequencies (ω1 to ω5) range from
0.15 to 0.65.

It will be instructive to investigate the dependence of these interaction coefficients on the fluid
dynamics input parameters, namely the channel depth and buoyancy frequency. For the purpose
of comparison, the common member of the coupled triads is fixed, but the wave numbers of other
participating members may vary. In general, the coefficients may change substantially with the depth
H, but the variations tend to level off for the limits of small and large values of H (Fig. 5).
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FIG. 5. Variation of the interaction coefficients with the channel depth H.

On the other hand, the variation of the interaction coefficients “r” [Eq. (13)] with the buoyancy
frequency can be given analytically. Indeed, it is remarkable that this dependence is completely
linear, as illustrated in Fig. 6. This has been verified both numerically and theoretically, with details
given in Appendix B. With the increase in buoyancy frequency, oscillations will be enhanced in
general. Hence, wave interaction phenomena would take place more rapidly too.

IV. NEW MODULATION INSTABILITY DUE TO COUPLING

A. Overview and formulation

For an isolated, single triad involving three modes, two modes can generate the initially absent
third mode of the triad [1,2,9]. This process will still be loosely termed “instability” in the literature,
even though the “energy” (as measured by the Manley-Rowe relations) of the three-wave system
is conserved. Terms like parametric instability and subharmonic instability (for the special case
where the two daughter modes have frequency and wave number half of those of the parent) have
also been used. A special case is a plane wave for one mode, while the other two modes of the
triad are numerically small in amplitude. Disturbances (or “modulations”) on the plane-wave train
may generate instability and growth of the other two modes. Following the terminology of the

FIG. 6. Direct proportional relation between the interaction coefficients r and the buoyancy frequency N
for various fluid scenarios. For each value of N, the configuration under investigation is a stratified fluid with
constant buoyancy frequency N = N0.
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widely studied nonlinear Schrödinger equation and wave packets in fluids and optics, we term this
growth phase a “modulation instability” of a triad. The features of coupling are the occurrence of
additional bands of instability and the enhancement of instability rates, even if an isolated triad
displays instability.

Self-interaction and the narrow-band assumption of the four-wave interaction process lead to the
nonlinear Schrödinger equation, and a comparison with the present situation is instructive. Coupled
nonlinear Schrödinger equations can give rise to new instability, and this result was established
in a general physical setting in the 1980s [37]. In the context of hydrodynamic waves, two wave
trains propagating obliquely to each other have been used to model “crossing sea states” [38].
These scenarios are important in ocean engineering, as field data indicate that such sea states
are frequently present for many maritime disasters and accidents. Our goal is to demonstrate this
enhanced instability due to coupling occurs for coupled triads in the dynamics of internal waves too.
The calculations using realistic values of wave numbers and interaction coefficients will be involved
and lengthy formulas will be reported in Appendix C.

Starting with Eqs. (13a)–(13c), we first establish the plane-wave configurations theoretically as

Bj = ρ j exp[i(ξ j x̂ − ζ jτ )], j = 1, 2, 4, 5

B3 = iρ3 exp[i(ξ3x̂ − ζ3τ )], (14)

with ρn, ξn, ζn, n = 1, . . . 5, being the amplitude, wave number, and angular frequency of the plane
waves, respectively. The dispersion relation is

ζ j = cgjξ j − r j
ρ3ρl

ρ j
[for triad pairs ( j, l )]

ζ3 = cg3ξ3 + r3a
ρ1ρ5

ρ3
+ r3b

ρ2ρ4

ρ3
. (15)

In accordance with the standard procedure on studying modulation instability, we now introduce
small disturbance:

Bj = ρ j (1 + ρ ′
j ) exp[i(ξ j x̂ − ζ jτ )], j = 1, 2, 4, 5

B3 = iρ3(1 + ρ ′
3) exp[i(ξ3x̂ − ζ3τ )]. (16)

The primes denote small disturbances. Substituting Eq. (16) into Eq. (13) and linearization yield
stability formulation of five algebraic equations (Appendix C). To obtain the criterion of instability,
one further assumes

ρ ′
j = Pj + iQ j (ρ ′

j )
∗ = Pj − iQ j j = 1, .., 5, (17)

and looks for normal modes through

Pj = p j exp[i(Kx̂ − �τ )], Qj = q j exp[i(Kx̂ − �τ )], j = 1, .., 5. (18)

For instability to occur, the 10 algebraic equations must admit nontrivial solutions for pj , q j .
The resulting 10×10 determinant will give the criterion of instability. For comparison, the corre-
sponding matrices for an isolated triad involving modes (1, 5, 3) and modes (2, 4, 3) are also given
(Appendix C).

B. Coupling-induced and coupling-enhanced instabilities

The terms “baseband” (“passband”) instability will be adopted, corresponding to long (finite)
wavelength instability respectively, with the former associated with the occurrence of rogue waves
[34].
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FIG. 7. Both the (1, 5, 3) and (2, 4, 3) triads are unstable by themselves, but coupling produces an even
stronger instability.

1. First example

We first demonstrate that coupled triads can lead to enhanced instabilities compared with those
displayed by isolated triads. For the purpose of illustration we adopt the modes with wave numbers
indicated in earlier sections where the interaction coefficients are given by

r1 = 4.189(10−3), r2 = −7.618(10−3), r3a = −4.144(10−2),

r3b = 9.410(10−2), r4 = −1.719(10−2), r5 = 6.315(10−3),

cg1 = 3.066(10−1), cg2 = 1.541(10−1), cg3 = 8.850(10−2),

cg4 = 7.524(10−2), cg5 = 6.058(10−2).

Both triads exhibit instability by themselves. However, a coupled state will produce a stronger
instability (Fig. 7). The amplitudes of the plane waves are given by ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 10.

2. Second example

The interaction coefficients in the previous example are small in absolute magnitude, and are thus
inconvenient in illustrating a coupling-induced instability. Hence we adopt these parameter values
to illustrate the existence of new instability (Fig. 8):

cg1 = 0.5, cg5 = 1, cg3 = 0, cg2 = 1, cg4 = 2,

r1 = 1, r5 = −1, r2 = 1, r4 = −1, r3a = 1, r3b = 1,

ρ1 = 2, ρ5 = 1, ρ2 = 2, ρ4 = 1, ρ3 = 0.5,

ξ1 = −12.5, ξ5 = 13.5, ξ2 = −5.25, ξ4 = 6.25, ξ3 = 1,

ζ1 = −6.5, ζ5 = 14.5, ζ2 = −5.5, ζ4 = 13.5, ζ3 = 8,

and for comparison, the configuration and input parameters for the uncoupled cases are

r1 = 1, r5 = −1, r3a = 1, ρ1 = 2(2)1/2 = 2.828, ρ5 = (2)1/2 = 1.141, ρ3 = 0.5,

r2 = 1, r4 = −1, r3b = 1, ρ2 = 2(2)1/2 = 2.828, ρ4 = (2)1/2 = 1.141, ρ3 = 0.5.
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FIG. 8. Triads on their own exhibit passband instability only. Top: isolated (1, 3, 5) triad; Middle: isolated
(2, 3, 4) triad. Bottom: Coupling induces baseband (small wave number) instability (solid curve) and additional
passband instability (dotted curve).
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We loosely name an instability branch as a “baseband” branch as long as that curve indicates
instability in the long wave-number regime. That region is the critical portion in association with
the existence of rogue waves.

V. ROGUE MODES FOR INTERNAL WAVES

A. Motivation and background

While rogue waves as unexpectedly large displacements have been studied intensively for surface
waves, similar inquiries on internal modes in the oceans have not been fully examined. The few
existing works focus on the long wave regimes, using the Gardner equation as a model, which
basically is a Korteweg–de Vries equation with both quadratic and cubic nonlinearities [39–41].
We propose that studying “rogue internal waves” in the finite-wavelength regime using the triad
equations will provide a fruitful direction of research. It will be instructive to contrast with studies
of rogue events for surface waves using the well-established nonlinear Schrödinger equation [42].

B. Theoretical consideration

Unlike the more widely known Peregrine soliton of the nonlinear Schrödinger equation, rogue
waves for the three-wave interaction process have only been derived recently [43] and the fluid
dynamics implications have not been fully examined. The Peregrine soliton has a maximum
amplitude of three times the background plane wave [27]. The higher-order rogue waves of the
nonlinear Schrödinger equation have maximum displacements being an odd integer multiple of the
background, i.e., amplification factors of five and seven for the second and third-order rogue waves.
The second-order rogue wave has been experimentally realized in a laboratory [44].

In contrast, the rogue waves for even an isolated triad in a normalized form, i.e.,

∂�1/∂τ + V1∂�1/∂ x̂ = �2�3
∗, ∂�2/∂τ + V2∂�2/∂ x̂ = −�1�3,

∂�3/∂τ + V3∂�3/∂ x̂ = �2�1
∗, (19)

display a much higher degree of algebraic complexity. More precisely, their forms are [43]

�1 = 2qδ1

[
1 + 3

√
3u∗

0θ
∗u1

|u0|2 + |u1|2 + |u2|2
]

exp[i(K1x̂ + qτ )],

�2 = 2qδ2

[
1 + 3

√
3u∗

0θu2

|u0|2 + |u1|2 + |u2|2
]

exp[i(K2x̂ − qτ )],

�3 = 2iqδ3

[
1 + 3

√
3u∗

1θ
∗u2

|u0|2 + |u1|2 + |u2|2
]

exp[i(K2 − K1)x̂ − 2iqτ ]. (20)

The auxiliary expressions are

u0 = γ1 + γ2ς1 + γ3(η − iθ∗), u1 = γ1 + γ2(ς1 + θ∗) + γ3
(
η + θ∗ς1 + i

√
3
)
,

u2 = γ1 + γ2(ς1 + θ ) + γ3(η + θς1), ς1 = −2q(τ + iρ1x̂), η = (
ς2

1

)
/2 − 2iqρ2x̂,

ρ1 = θ/V1 − θ∗/V2, ρ2 = 1/V1 − 1/V2,

K1 = q

(
1

V1
− 2

V2

)
, K2 = q

(
2

V1
− 1

V2

)
,

θ = (−
√

3 + i)/2,

δ1 =
√

1 − V2

V1
, δ2 =

√
V1

V2
− 1, δ3 = V1 − V2√

V1V2
= δ1δ2,
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FIG. 9. Rogue waves for the three components an isolated triad (intensities |�n|2, n = 1, 2, 3 vs space and
time). Left column: Profile with one peak (γ3 = 0). Right column: Profile with two peaks (γ3 = 1); γ1 = γ2 =
q = 1, V1 = 2, V2 = 1.

where the group velocities need to satisfy a constraint V1 > V2 > V3. On moving in a frame with
velocity V3, we can set V3 = 0. There are four free parameters, namely, γ1, γ2, γ3, and q. V1, V2

are actually not free parameters as they are dictated by the choice of resonant modes. The most
important input is γ3, as γ3 being zero (nonzero) will imply a quadratic (fourth-order) polynomial
in the denominator of Eq. (20) and a wave profile of one (two) peak(s), respectively. A full analysis
on the maximum displacement for various γn will be left for a future work. Generally speaking, the
amplification factor is 2 for γ3 = 0, but will be in the range of 2.0 to 3.0 for γ3 �= 0 (Fig. 9). The
intensity of the energy, typically proportional to the square of the amplitude, will be four times the
background for γ3 = 0.

C. Practical consideration

While the theoretical consideration might be a topic of interest to nonlinear science, a practical
question might be “how large can an internal rogue wave be?.” To address this issue, a crude
comparison with surface rogue waves modeled by the nonlinear Schrödinger theory would be an
instructive exercise. Extensive field and computational studies have produced “hindcast” studies of
rogue waves measured at the oil platforms in the North Sea in Europe. One famous example of such
oceanic rogue waves is the Draupner Wave with an amplitude as high as 25 m [45].

If we make the assumption that the Draupner Wave can be modeled by the Peregrine soliton
of a nonlinear Schrödinger model, this 25-m amplitude is at least plausible because a rogue wave
with three times a background plane wave of say about 8 m will achieve this height. A rough
calculation of the coefficients of the nonlinear Schrödinger equation with the water depth conditions
relevant to the Draupner case reveals numbers with magnitude unity, and hence no rescaling is
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FIG. 10. Scaling factor for converting the dimensional triad system [Eq. (13)] to a nondimensional one
like Eq. (19), implying that the magnitude of an internal rogue wave can attain big amplitude due to the large
scaling factor.

necessary. We also recognize that there are intense debates on the applicability of the Schrödinger
theory as opposed to other mechanisms, e.g., quadratic interactions of waves [46]. Such debates
actually highlight the merit of the present approach using resonant interactions, as the evolution
equations under consideration actually display quadratic nonlinearities. However, we shall defer
detailed investigations of these issues to the future.

Hence we shall just compute an order of magnitude of such an internal rogue wave due to
triad resonance. To go from actual fluid dynamics setting of Eqs. (13a) and (13c) to a theoretical
description of Eq. (19), one must rescale by

B1 = �1/(|r3a|r5)1/2, B3 = �2/(r1r5)1/2, B5 = �3/(r1|r3a|)1/2.

Hence even though the “normalized” �n might attain an amplification of two times the back-
ground, the interaction coefficients must also be accounted for. Taking typical values from Sec. III,
we take as illustrative example the potential magnification ratio for the common member of the
triads B3, i.e., 1/(r1r5)1/2 (Fig. 10). This amplification ratio can attain values of a few hundreds
as the depth takes up values typical of a realistic ocean. Hence displacements due to such internal
rogue waves can potentially be tremendous.

VI. DYNAMICS AND SIMULATIONS OF A SIMPLIFIED MODEL

A. Overview

To describe the full dynamics of this system of interacting waves, a full simulation of Eqs. (13a)–
(13c) is probably required. Nevertheless, we still hope to capture the main nonlinear physics of
energy transfer between triads by ignoring the spatial dependence or the group velocity component,
thus effectively looking at the intriguing behavior of the system at a reduced “manifold” [21]. In
other words, we focus on the time dependence first. A similar approach has also been adopted in the
studies of stratified flows where the buoyancy frequency takes the form of the square of a hyperbolic
secant [6]. Alternatively, we interpret this approximation as searching for a pattern depending on
time only or working in a configuration where the spatial dependence is periodic or varying on an
even slower scale asymptotically.

We shall first perform a theoretical analysis, deriving a few counterparts of the Manley-Rowe
type conservation laws for a single triad [1]. The general coupled triad case probably is not
“integrable” theoretically. Nevertheless, there are special parameter regimes where an additional
invariant, resembling a “Hamiltonian” of the equations of motion, may exist. The evolution of
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the amplitudes is then approximated by differential equations considerably more complex than the
isolated triad case, and cannot be solved by elliptic functions.

A remark on the comparison and contrast with previous theoretical works on coupled triads is
in order. Investigations on the coupled triad equations have been conducted in the literature, where
the common member can either be a parent or a daughter wave [26,27], as explained in Sec. II.
The emphasis is usually on the case of interaction coefficients being all unity (or in a 1:2 ratio).
As the results of Sec. III show, these interaction coefficients vary widely in magnitude and cannot
in general be scaled all to unity. Numerical simulations for the case where the common member
was the daughter wave [k1, k2, k4, k5 of Eq. (1)] had been performed [24,25]. Here the analysis is
conducted for the case where the common member is the parent wave [k3 of Eq. (1)]. The role of the
relative difference in phase angles of the complex wave envelopes again proves to be significant.

These simulations also elucidate the transfer of energy among triads, in particular highlighting
how modes absent initially can be excited by others. This spontaneous generation is especially
striking as modes grow due to members from the other triad, the common member serving as the
catalyst in the energy transfer.

B. Analytical formulation

Following the notations earlier in the literature [1], we first normalize the amplitudes such that
most of the interaction coefficients have magnitude unity. This can be achieved by implementing
“Bm = (scaling constant) Am” in Eq. (13), m = 1, 2, 3, 4, 5, i.e., we study

dA1

dτ
= s1A3A∗

5,
dA5

dτ
= s5A3A∗

1, s2
1 = s2

5 = 1,

dA2

dτ
= s2A3A∗

4,
dA4

dτ
= s4A3A∗

2, s2
2 = s2

4 = 1,

dA3

dτ
= s3aA1A5 + s3bA2A4. (21)

In general, only five out of the six interaction coefficients (“sn”) can be scaled to ±1. For
convenience we leave s3b as an arbitrary parameter, and study how the evolution of wave profiles
can be affected by varying the values of s3b in Sec. VI C.

If only one set of triad is present, say A2 = A4 = 0, explosive growth may occur if all the
interaction coefficients “s” are of the same sign. Conversely, periodic and localized solutions are
possible if one coefficient has a sign different from the other two [1].

To understand the analytical structures and also to formulate a system convenient for the purpose
of numerical simulations, we adopt the Madelung representations

Am = bm exp (iηm), m = 1, 2, 3, 4, 5, θ1 = η1 + η5 − η3, θ2 = η2 + η4 − η3. (22)

The quantities θ1, θ2 will be termed dynamical phase factors or simply “dynamical phase.”
Straightforward calculations now give

db1

dτ
= s1b3b5 cos θ1,

db5

dτ
= s5b1b3 cos θ1,

db2

dτ
= s2b3b4 cos θ2,

db4

dτ
= s4b3b2 cos θ2, (23a)

db3

dτ
= s3ab1b5 cos θ1 + s3bb2b4 cos θ2, (23b)

dθ1

dτ
= −

[
s1b3b5

b1
+ s5b3b1

b5
+ s3ab1b5

b3

]
sin θ1 − s3bb2b4

b3
sin θ2, (23c)

dθ2

dτ
= −

[
s2b3b4

b2
+ s4b2b3

b4
+ s3bb2b4

b3

]
sin θ2 − s3ab1b5

b3
sin θ1, (23d)
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and “bm” can attain negative values in this formulation. Simple manipulation gives

s1b1
db1

dτ
= s5b5

db5

dτ
, s2b2

db2

dτ
= s4b4

db4

dτ
. (23e)

Using Eq. (23e), a few Manley-Rowe type “conservation laws” similar to those of isolated triads
can be readily derived [1], e.g.,

s1
[
b2

1 − b2
1(0)

] = s5
[
b2

5 − b2
5(0)

]
, s2

[
b2

2 − b2
2(0)

] = s4
[
b2

4 − b2
4(0)

]
. (24)

Without further constraint, Eqs. (23a)–(23d) are generally not “integrable.” Illustrative numerical
simulations from the perspective of mode generation and energy transfer will be discussed in
Sec. VI C. Here we highlight possible analytical progress for special cases:

Special case s3a = s3b = s3 = ±1
For the conservation law involving the common member, i.e., the k3, ω3 mode, we consider only

the special case s3a = s3b = s3 = ±1. With this assumption, we readily derive

s3
[
b2

3 − b2
3(0)

] = s1
[
b2

1 − b2
1(0)

] + s2
[
b2

2 − b2
2(0)

]
, (25a)

or alternatively,

s3
[
b2

3 − b2
3(0)

] = s5
[
b2

5 − b2
5(0)

] + s4
[
b2

4 − b2
4(0)

]
. (25b)

Special case for a possible additional invariant
The quantity

� = b1b3b5 sin θ1 + λb2b3b4 sin θ2 (26)

may become an additional invariant of the dynamics under special circumstances. For an isolated
triad with b2 = b4 = 0, b1b3b5 sinθ1 is well established as a Hamiltonian. In the present scenario
of coupled triads, the time rate of change of � [Eq. (26)] will be zero if one of the following
holds:

(a) θ1 = θ2 = 0 for all τ, (27a)

(b) dθ1/dτ = dθ2/dτ, or θ2 − θ1 = Mπ, M integer; (27b)

(c) s3a = λS3b. (27c)

For case (a), θ1 = θ2 = 0 holds for all time and this situation was studied earlier [23]. The
governing equations for the amplitudes bm, m = 1, 2, 3, 4, 5, will be associated with cubic
polynomials, solvable by elliptic functions in special cases. Case (c) is more involved and will
be deferred for future studies.

We shall just treat case (b). We cannot prove analytically that θ2–θ1 remains small or tends
to zero if this quantity starts off with a small value initially. Similarly, we cannot define the
precise initial conditions which will lead to solutions approaching Eq. (27b) for large time. Instead
we shall just provide numerical evidence in Sec. VI C to substantiate this conjecture that there
are solutions approaching the regime of θ2–θ1 = Mπ , M integer. Assuming that Eq. (27b) is
valid, we can derive an approximate evolution equation for the amplitude which is drastically
different from that of the elliptic functions. It is worthwhile to document the intriguing dynamics
here.
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If the time derivative of � [Eq. (26)] is zero, we can in particular choose λ to be +1 and −1.
Hence further constants of motion can be identified as

�1 = b1b3b5 sin θ1, �2 = b2b3b4 sin θ2.

For simplicity we just consider the case θ2–θ1 = even multiple of π . Equations (23c) and (23d)
collapse into

s1b5

b1
+ s5b1

b5
= s2b4

b2
+ s4b2

b4
. (28)

We now take

X (τ ) = s1
[
b2

1 − b2
1(0)

]
, Y (τ ) = s2

[
b2

2 − b2
2(0)

]
. (29)

The governing equation for X(τ ) is considerably more complicated than the classical elliptic
function, and technical details are described in Appendix D.

C. Numerical simulations

While relevant information on the analytical structures of the coupled triads can be extracted
from the time invariants and conservation laws, physical insight on the exchange of energy might
as well be directly obtained by numerical simulations. For such purpose we go back to Eq. (13) and
study how localized pulses in one set of triads can excite displacements in the other set.

From the numerical values obtained in Sec. III and the normalization procedure described at the
beginning of Sec. IV, five out of the six interaction coefficients (sn) can in general be scaled to ±1.
For convenience we leave s3b as an arbitrary parameter. For cases (1) through (3), we shall study
Eq. (23) with these interaction coefficients:

s1 = +1, s2 = −1, s3a = −1, s3b = +1, s4 = −1, s5 = +1, (30)

except for case (4) (see Fig. 14) and case (5) (see Fig. 15) below. For case (4), we look at the
dependence on the parameter s3b, and for case (5) we study other combinations of sign patterns of
the interaction coefficients.

In terms of numerical procedure, Eqs. (23a)–(23d) are integrated forward in time using a standard
fourth-order Runge-Kutta scheme. Typically, a time step of 0.01 is utilized. Initially (τ = 0) a mode
may be absent (bn = 0), present as a small noise (bn = 0.0001), or given a prescribed amplitude
(bn = 1). We now describe a few representative scenarios.

(1) The common member of the two coupled triads exciting all the participating modes:
With b3(0) = 1, and bn(0) = 0.0001, n = 1, 2, 4, 5, θ1 = θ2 = π/2, for the k3 = k1 + k5 and

k3 = k2 + k4 resonance, i.e., only the common member of the two triads is present initially, all
modes nevertheless display periodic oscillations subsequently (Fig. 11).

(2) Energy transfer arising from the coupling of triads through the common member:
The initial conditions are now chosen to be

b1(0) = 1, b5(0) = 1, b2(0) = b4(0) = 0.0001, b3(0) = 0.01, θ1 = θ2 = π/2.

In other words, all members of the k3 = k2 + k4 triad are negligible initially, including the com-
mon member with wave number k3. At subsequent time, the remarkable features are that the mode
A3 is generated and eventually the A2, A4 modes appear too. Energy has thus successfully flowed
from one triad to another through a common member (Fig. 12). Further numerical simulations for
still larger values in time show that energy flows periodically between the two triads.

Another intriguing feature is the temporal development of the dynamical phase factors, θ1, θ2,
or more precisely their difference, θ1–θ2. While each phase oscillates sinusoidally, the quantity
θ1–θ2 asymptotically approaches a constant, numerically very close to −π (Fig. 12). This dataset
provides strong computational evidence that θ1–θ2 being an integer multiple of π will constitute
special regimes for the nonlinear dynamics.
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FIG. 11. The common member of the two coupled triads excites all the participating modes. Modes
classified as “present (absent)” initially will be given amplitude 1.0/0.0001 at time τ = 0. Only the common
member A3 with wave number k3 is present initially. The normalized interaction coefficients are given by
s1 = +1, s2 = −1, s3a = −1, s3b = +1, s4 = −1, s5 = +1.

(3) Critical roles of the dynamical phase in the evolution of the wave profile:
The dynamical phase factors θ1, θ2 [Eq. (22)] highlight the role of the polar angles of the

complex-valued envelopes in the Madelung representations. It has been established that such factors
will drastically influence the temporal development of the wave profiles [25,47]. Here we confirm
this feature for coupled triad resonance with the parent wave as the common member, by displaying
different wave shapes for distinct combinations of dynamical phase factors, namely, θ1 = π/2,
θ2 = 0 versus θ1 = 0, θ2 = π/2 at τ = 0 (Fig. 13).

(4) Effect of the magnitude of the interaction coefficients:
In general, six interaction coefficients cannot all be scaled to ±1 in the evolution of five waves.

For this purpose, we study the effect of varying s3b while the other five interaction coefficients are
taken to have magnitude unity. To illustrate this variation we take values as given by Eq. (26) except
for two different scenarios:

(i) s3b = 3 [Fig. 14(a)], and
(ii) s3b = 15 [Fig. 14(b)].
The wave profiles are clearly different and hence the evolution will critically depend on the

magnitude of the interaction coefficients. Energy exchange and excitation of modes will still take
place, perhaps just in different forms.

(5) Partial or minimal transfer of energy:
Flow of energy among the triad modes is not automatic and depends critically on the mechanism

of coupling, i.e., the values of the interaction coefficients of the dynamical system [Eqs. (21)–(23)].
As an example we consider the combination

s1 = +1, s2 = −1, s3a = −1, s3b = +1, s4 = −1, s5 = −1.

Although this combination differs from that of the constant buoyancy frequency case, it is
conceivable that such patterns can arise from other stratified flows. For this particular case, energy
present initially in the mode A3 can only be transmitted to A2 and A4, while A1 and A5 remain
effectively at zero amplitude (Fig. 15).
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FIG. 12. (a) Energy transfer arises from the coupling of two triads through the common member. Initially
only A1, A5 have finite amplitude with |A1| = 1, |A2| = 0.0001, |A3| = 0.01, |A4| = 0.0001, |A5| = 1. A
magnified view for b3 is inserted on the right to show the numerically small (but nonzero) initial condition.
Energy flows from the k3 = k1 + k5 triad to the k3 = k2 + k4 triad through the common member A3 with wave
number k3. (b) The temporal evolution of the dynamical phase factors θ1, θ2: While each phase oscillates
sinusoidally, the difference θ1–θ2 approaches asymptotically the value of −π for large time.

VII. DISCUSSION AND CONCLUSIONS

Coupled triads with all five modes traveling in the same direction are demonstrated to exist for
internal waves in a stratified fluid with a constant buoyancy frequency N0. Qualitatively similar
phenomenon can occur for a two-layer fluid with a linear shear, and the details are described in
Appendix E. Evolution equations are derived for the first example. The dependence of the interaction
coefficients, for various coupled triads with a fixed common member, on the channel height and the
buoyancy frequency is elucidated. For simplicity, vertical or oblique propagation of internal waves
is excluded.

Coupling may produce enhanced or new instabilities, especially in the long-wavelength regime
(known as “baseband instability”). This feature is important as recent works highlight the connection
between baseband instability and the possible onset of rogue waves. Analytical solutions for rogue
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FIG. 13. Effect of the dynamical phase factors [Eq. (22)] in the evolution of the wave profiles. Top: θ1 = 0,
θ2 = π/2; Bottom: θ1 = π/2, θ2 = 0. Initial conditions are b1 = b5 = 1, b2 = b4 = 0.0001, b3 = 0.001.

waves of an isolated triad have been obtained recently in a general physical context. For applications
to oceanography, important issues involve the evolution timescale and quadratic nonlinearities, in
sharp contrast with the intensively studied cubic nonlinear Schrödinger model for surface rogue
waves. Issues like resonance, harmonic generation, and energy transfer among modes are critical in
the studies of internal waves [48].

In the theoretical context, by employing the Madelung representations, conservation laws for
the wave amplitudes similar to the classical Manley-Rowe relations can be established. While the
general evolution equations might not be integrable, there are special parameter regimes for the
possible existence of an additional invariant resembling the Hamiltonian of motion. One intriguing
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FIG. 14. (a) Effect of varying interaction coefficients; values as given by Eq. (30), except that s3b = 3. (b)
Same as (a) except that s3b = 15.

case arises when the difference of the dynamical phase factors of the two triads differs by an integer
multiple of “π .” The approximate governing equation for the amplitude then deviates drastically
from the one for an elliptic function of an isolated triad. In terms of gaining physical insight
directly, numerical simulations demonstrate the spontaneous generation of modes in one triad by
wave trains from the other triad. Through these simulations we provide computational evidence
that the dynamical phase factors can approach asymptotically to integer multiple of π for large
time. Finally, we also demonstrate that the temporal developments of the wave profiles will depend
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FIG. 15. An example of partial or minimal transfer of energy, as only modes of one triad A2, A3, A4 are
excited. The interaction coefficients have sign patterns as s1 = +1, s2 = −1, s3a = −1, s3b = +1, s4 = −1,
s5 = −1.

critically on the magnitudes and sign patterns of the interaction coefficients. Hence the precise fluid
mechanics input for wave resonance is crucially important.

It is instructive to point out the various possible extensions of the present work, as these
discussions will highlight the merits as well as the limitations of this scope of studies. We have
performed the nonlinear analysis for the case where the common member of the two triads is
the parent wave. From the dispersion curves (Fig. 1), locating multiple triads where the common
member is the daughter wave should be conceptually straightforward. The evolution equations for
the nonlinear dynamics will follow patterns of Eq. (13) but with different combinations of quadratic
nonlinearities. More importantly, the interaction coefficients will likely display another pattern of
signs and magnitudes. As a result, different stability regimes and rogue wave features will emerge,
but details will be reported in a future publication. In terms of the analytical context, a detailed
comparison on the time invariants and characters of exact solutions between the two cases would be
valuable [14,15].

Extensions to include configurations with the buoyancy frequency being spatially dependent
should be attempted. A special case is N2 [Eq. (4)] being the square of the hyperbolic se-
cant [6]. Isolated triad resonance has been studied, but coupled triads ought to exist. This
also will allow us to extend the consideration to the case of infinite or semi-infinite domains
geometrically.

Nonlinear evolution equations should be derived for the two-layer shear flow case too, especially
near the “mode interactions” region (Fig. 16). Both the “interfacial” and “surface” wave modes have
nearly “flat” dispersion branches there, i.e., points of zero group velocities. Previous works discuss
possible instability regime or an infinitely deep lower fluid, but do not address this exchange of
identity region [49,50]. Comparisons and contrasts with existing results in the literature of internal
waves would be a valuable exercise, especially on the intensively studied issue of parametric
subharmonic instability [11–13]. Results from the present case of linearly stratified fluid display
coefficients of opposite signs for each set of triad in the coupled cases, and hence “explosion” is
unlikely. For other density profiles, these sign patterns will be addressed in future research works.
Additional complications like critical layers may also arise [51].
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FIG. 16. (a) Schematic diagram of a two-layer fluid with shear flow in the upper layer. (b) Dispersion
relation (angular frequency ω vs wave number k) for surface and interfacial waves for a moderate linear shear
current Fz, F = 0.4. (c) “Close-up (zoom-in)” view of the region where the dispersion branches approach each
other. (d) Schematic diagram of new coupled triad resonances by drawing the dispersion branches, “broken
line” for the backward-moving interfacial mode and “dotted line” for the backward-moving surface mode,
with a mode represented by a small circle as the common member of the coupled triads. Two distinct long
waves (modes with small wave numbers) can participate in these resonances.

To apply the knowledge and trend here to a realistic ocean setting, we have to adjust the values
of the wave number, buoyancy frequency, and channel depth utilized in this theoretical framework
to relevant values in physical oceanography. The effects of shear currents, density stratification,
and perhaps topography can be properly assessed [10,11,14,15,52]. Other issues of engineering
significance, e.g., hydroelastic effects [53] and bathymetry [54], can be incorporated. We look
forward to studying all these exciting directions for multiple triads, Fermi-Pasta-Ulam-Tsingou
recurrence, and interaction phenomena for internal waves [36,55,56–58].
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APPENDIX A: NONLINEAR EVOLUTION OF TRIADS

The interaction coefficients can be computed by applying the Fredholm alternative theorem
to the second-order perturbation expansion of the equations of motion. Quadratic nonlinearities
and slow time evolution constitute the main ingredients. For a resonance involving k3 = k1 + k5,
ω3 = ω1 + ω5 [Eq. (1)], we term the k3 and the k1/k5 modes as the parent and daughter modes, re-
spectively. We give examples of the formulation for quadratic nonlinearities involving combinations
of “parent plus daughter” and “two daughters.” The remaining coefficients can be deduced by cyclic
changes of subscripts and superscripts.

We employ the symbols H0, H1, H2 to denote the quadratic nonlinearities arising from the
incompressible condition, x-momentum, and z-momentum equations of motion. We then add
superscripts to represent the wave pairs responsible for the particular interactions. Hence (1, 5)
stand for interaction of mode 1 and mode 5 in generating mode 3 according to Eq. (1).

For interactions arising from two daughters mode k1 and k5, the nonlinearities are

H(1,5)
0 = u(1)ρ (5)ik5 + u(5)ρ (1)ik1 + v(1)(ρ (5) )z + v(5)(ρ (1) )z,

H(1,5)
1 = u(1)u(5)ik5 + u(5)u(1)ik1 + v(1)(u(5) )z + v(5)(u(1) )z,

H(1,5)
2 = u(1)v(5)ik5 + u(5)v(1)ik1 + v(1)(v(5) )z + v(5)(v(1) )z, (A1)

where u, v, ρ stand for the linear, first-order x velocity, z velocity and density, with no subscripts
and/or superscripts to minimize the complexity of notations.

For interactions arising from a parent wave k3 and a daughter mode k5, the nonlinearities are

H(3,5)
1 = u(3)[ik5u(5)]∗ + [u(5)]∗[ik3u(3)] + v(3)

[
u(5)

z

]∗ + [v(5)]∗u(3)
z ,

H(3,5)
2 = u(3)[ik5v

(5)]∗ + [u(5)]∗[ik3v
(3)] + v(3)

[
v(5)

z

]∗ + [v(5)]∗v(3)
z ,

H(3,5)
0 = u(3)[ik5ρ

(5)]∗ + [u(5)]∗[ik3ρ
(3)] + v(3)

[
ρ (5)

z

]∗ + [v(5)]∗ρ (3)
z . (A2)

For a generalized interaction involving daughter modes, km and kn, the nonlinearities are

H(m,n)
0 = u(m)[iknρ

(n)] + [u(n)][ikmρ (m)] + v(m)[ρ (n)
z

] + [v(n)]ρ (m)
z ,

H(m,n)
1 = u(m)[iknu(n)] + [u(n)][ikmu(m)] + v(m)

[
u(n)

z

] + [v(n)]u(m)
z ,

H(m,n)
2 = u(m)[iknv

(n)] + [u(n)][ikmv(m)] + v(m)
[
v(n)

z

] + [v(n)]v(m)
z ,

where the linear horizontal (vertical) velocities, density are

u(m) = i

km
(φm)zBm, v(m) = φmBm, ρ (m) = i

km

ρ̄zφm

U − cm
Bm,

The eigenfunction φm satisfies the Taylor-Goldstein equation [Eq. (3)].
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To evaluate a typical interaction coefficient like r1 given in Eq. (13a), calculations involving the
Fredholm alternative theorem give

r1 = r1n

r1d
, r1n =

∫ H

0

[
1

i

∂H(3,5)
1

∂z
+ 1

i

g

ρ̄(z)

H(3,5)
0

(U − c1)
− k1H(3,5)

2

]
φ1dz,

r1d = 1

k1

∫ H

0

[
2N2

(U − c1)2 − Uzz

U − c1

]
φ2

1dz. (A3)

One can easily write formulas like

r jn =
∫ H

0

[
1

i

∂H(m,n)
1

∂z
+ 1

i

g

ρ̄(z)

H(m,n)
0

(U − c j )
− k jH(m,n)

2

]
φ jdz,

r jd = 1

k j

∫ H

0

[
2N2

(U − c j )2 − Uzz

U − c j

]
φ2

j dz,

for other types of interactions.

APPENDIX B: EFFECTS OF THE BUOYANCY FREQUENCY N0

For a stratified fluid of constant buoyancy frequency N0 within a channel of depth H, the
interaction coefficient r j [Eq. (13)] will be proportional to the square of N0. This can be readily
demonstrated analytically. As example, take r1 of Eq. (A3). As the phase speed c1 is proportional to
N0 for the case of no shear [U (y) = 0], N0 will be eliminated in the first term in the integrand. As a
result, r1d will be independent of the buoyancy frequency N0.

For the numerator, the integral of the terms in connection with H1
(3,5), H2

(3,5) will be zero, as
expressions like (l , m, n being integers)

∫ H

0
sin

(
lπz

H

)
sin

(mπz

H

)
cos

(nπz

H

)
dz = 0

are involved. Finally, the nonzero contribution comes from H0
(3,5), which can be reduced to an

expression proportional to the square of the buoyancy frequency. The assertion is thus established.
The feature is also verified numerically by our computer codes.

APPENDIX C: NEW INSTABILITY DUE TO COUPLING

The linearized stability equations arising from small disturbances imposed on plane waves are

ρ1ρ
′
1(−iζ1) + ρ1

∂ρ ′
1

∂τ
+ cg1

(
ρ1ρ

′
1iξ1 + ρ1

∂ρ ′
1

∂ x̂

)
= ir1ρ3ρ5[ρ ′

3 + (ρ ′
5)∗],

ρ2ρ
′
2(−iζ2) + ρ2

∂ρ ′
2

∂τ
+ cg2

(
ρ2ρ

′
2iξ2 + ρ2

∂ρ ′
2

∂ x̂

)
= ir2ρ3ρ4[ρ ′

3 + (ρ ′
4)∗],

iρ3ρ
′
3(−iζ3) + iρ3

∂ρ ′
3

∂τ
+ cg3

(
(iρ3ρ

′
3)(iξ3) + iρ3

∂ρ ′
3

∂ x̂

)
= r3aρ1ρ5(ρ ′

1 + ρ ′
5) + r3bρ2ρ4(ρ ′

2 + ρ ′
4),
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ρ4ρ
′
4(−iζ4) + ρ4

∂ρ ′
4

∂τ
+ cg4

(
ρ4ρ

′
4iξ4 + ρ4

∂ρ ′
4

∂ x̂

)
= ir4ρ3ρ2[(ρ ′

2)∗ + ρ ′
3],

ρ5ρ
′
5(−iζ5) + ρ5

∂ρ ′
5

∂τ
+ cg5

(
ρ5ρ

′
5iξ5 + ρ5

∂ρ ′
5

∂ x̂

)
= ir5ρ3ρ5[ρ ′

3 + (ρ ′
1)∗],

By separating into real and imaginary parts, we obtain

ζ1ρ1Q1 + ρ1
∂P1

∂τ
+ cg1

(
−ξ1ρ1Q1 + ρ1

∂P1

∂ x̂

)
+ r1ρ3ρ5(Q3 − Q5) = 0,

−iζ1ρ1P1 + iρ1
∂Q1

∂τ
+ cg1

(
iξ1ρ1P1 + iρ1

∂Q1

∂ x̂

)
− ir1ρ3ρ5(P3 + P5) = 0,

ζ2ρ2Q2 + ρ2
∂P2

∂τ
+ cg2

(
−ξ2ρ2Q2 + ρ2

∂P2

∂ x̂

)
+ r2ρ3ρ4(Q3 − Q4) = 0,

−iζ2ρ2P2 + iρ2
∂Q2

∂τ
+ cg2

(
iξ2ρ2P2 + iρ2

∂Q2

∂ x̂

)
− ir2ρ3ρ4(P3 + P4) = 0,

ζ3ρ3P3 − ρ3
∂Q3

∂τ
+ cg3

(
−ξ3ρ3P3 − ρ3

∂Q3

∂ x̂

)
− r3aρ1ρ5(P1 + P5) − r3bρ2ρ4(P2 + P4) = 0,

iζ3ρ3Q3 + iρ3
∂P3

∂τ
+ cg3

(
−iξ3ρ3Q3 + iρ3

∂P3

∂ x̂

)
− ir3aρ1ρ5(Q1 + Q5) − ir3bρ2ρ4(Q2 + Q4) = 0,

ζ4ρ4Q4 + ρ4
∂P4

∂τ
+ cg4

(
−ξ4ρ4Q4 + ρ4

∂P4

∂ x̂

)
+ r4ρ3ρ2(Q3 − Q2) = 0,

−iζ4ρ4P4 + iρ4
∂Q4

∂τ
+ cg4

(
iξ4ρ4P4 + iρ4

∂Q4

∂ x̂

)
− ir4ρ3ρ2(P3 + P2) = 0,

−iζ5ρ5P5 + iρ5
∂Q5

∂τ
+ cg5

(
iξ5ρ5P5 + iρ5

∂Q5

∂ x̂

)
− ir5ρ3ρ1(P3 + P1) = 0,

ζ5ρ5Q5 + ρ5
∂P5

∂τ
+ cg5

(
−ξ5ρ5Q5 + ρ5

∂P5

∂ x̂

)
+ r5ρ3ρ1(Q3 − Q1) = 0.

After the normal mode separation of Eq. (14), the formulation is reduced to a matrix form:

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

q1

q2

q3

q4

q5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,
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APPENDIX D: GOVERNING EQUATION FOR THE ADDITIONAL INVARIANT

Regarding the calculation for the additional invariant of Eq. (23), we define a new expression

f (X ) = s1b5

b1
+ s5b1

b5
. (D1)

By taking the square of Eq. (21), we obtain

b2
4

b2
2

+ 2s2s4 + b2
2

b2
4

= f 2(X ). (D2)

Straightforward algebra now gives

b4
2 + [

2s2s4b2
4 − f 2(X )b2

4

]
b2

2 + b4
4 = 0,

or

b2
2 =

[ f 2(X ) − 2s2s4] ±
√

[ f 2(X ) − 2s2s4]2 − 4

2
b2

4.

Finally, we arrive at

Y = Yn

Yd
,

Yn = 1

2
b2

4(0){[ f 2(X ) − 2s2s4] ±
√

[ f 2(X ) − 2s2s4]2 − 4} − b2
2(0),

Yd = 1

s2
− 1

2s4
{[ f 2(X ) − 2s2s4] ±

√
[ f 2(X ) − 2s2s4]2 − 4},

f 2(X ) =
X
s5

+ b2
5(0)

X
s1

+ b2
1(0)

+
X
s1

+ b2
1(0)

X
s5

+ b2
5(0)

+ 2s1s5. (D3)

The actual evolution equation of the amplitude is given by(
dX

dτ

)2

= 4b2
1b2

3b2
5cos2θ = 4b2

1b2
3b2

5 − 4�2
1,

or (
dX

dτ

)2

= 4

[
X

s1
+ b2

1(0)

][
X

s5
+ b2

5(0)

][
(X + Y )

s3
+ b2

3(0)

]
− 4�2

1, (D4)

where Y is defined via Eq. (D3).

APPENDIX E: TWO-LAYER FLUID WITH A SHEAR CURRENT

As another example of coupled triads with all five waves moving in the same direction, a two-
layer fluid with a linear shear current in the upper layer is considered. The upper (lower) fluid has a
depth of unity (h) and density ρ (unity) respectively (Fig. 16). A linear shear current Fz is assumed
to be established in the upper layer. With g being gravity, the linear dispersion relation for angular
frequency ω and wave number k can be computed by the standard kinematic and dynamic boundary
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conditions:

ω4[cosh(k) coth(kh) + ρ sinh(k)] + ω3[−2Fk cosh(k) coth(kh) − 2Fkρ sinh(k)

+ F coth(kh) sinh(k)] + ω2[−gk cosh(k) + F 2kρ cosh(k) + F 2k2 cosh(k) coth(kh)

− F 2ρ sinh(k) + F 2k2ρ sinh(k) − F 2k coth(kh) sinh(k) − gk coth(kh) sinh(k)]

+ ω[−Fgk sinh(k) + 2Fgk2 cosh(k) − 2Fgk2ρ cosh(k) − F 3k2ρ cosh(k) + F 3kρ sinh(k)

+ 2Fgkρ sinh(k)] + gk2[F 2(sinh(k) − k cosh(k)) + g sinh(k)](1 − ρ ) = 0. (E1)

There will in general be two surface modes and two interfacial modes. With the presence of
a current, eventually sufficiently short waves cannot propagate upstream. The dispersion branch
for the backward surface mode bends due to the current and comes close to that of the backward
interfacial mode. There is an “exchange of identity” and the branches never actually intersect
(Fig. 16) [1].

There is a substantial literature on such two-layer shear flows, including the case of triad
resonance [32]. We just highlight the remarkable feature at this exchange of identity point. Standard
graphical construction of triad resonance will reveal the existence of coupled triads with two modes
of small wave numbers (Fig. 16), due to the small size of the “gap.” ‘Long wave–short wave
resonance” with multiple short waves and one common long wave has been studied in the literature
[33,34]. The present configuration suggests one scenario with two long wave modes, and will open
up exciting directions for such long wave dynamics to be pursued in future studies [35].
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