
PHYSICAL REVIEW FLUIDS 6, 024701 (2021)

Scaling of the translational velocity of vortex rings behind conical objects
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Ring vortices are efficient at transporting fluid across long distances. They can be found
in nature in various ways: they propel squids, inject blood in the heart, and entertain
dolphins. These vortices are generally produced by ejecting a volume of fluid through a
circular orifice. The impulse given to the vortex rings moving away results in a propulsive
force on the vortex generator. Propulsive vortex rings have been widely studied and
characterized. After four convective times, the vortex moves faster than the shear layer
it originates from and separates from it. When the vortex separates, the circulation of
the vortex reaches a maximum value, and the nondimensional energy attains a minimum.
The simultaneity of these three events obfuscates the causality between them. To analyze
the temporal evolution of the nondimensional energy of ring vortices independent of their
separation, we analyze the spatiotemporal development of vortices generated in the wake of
cones. Cones with different apertures and diameters were accelerated from rest to produce
a wide variety of vortex rings. The energy, circulation, and velocity of these vortices were
extracted based on time-resolved velocity field measurements. The vortex rings that form
behind the cones have a self-induced velocity that causes them to follow the cone, and they
continue to grow as the cone travels well beyond the limiting vortex formation timescales
observed for propulsive vortices. The nondimensional circulation, based on the vortex
diameter, and the nondimensional energy of the drag vortex rings converge after three
convective times to values comparable to their propulsive counterparts. This result proves
that vortex pinch-off does not cause the nondimensional energy to reach a minimum value.
The limiting values of the nondimensional circulation and energy are mostly independent
of the cone geometry and translational velocity and fall within an interval of 10% around
the mean value. The velocity of the vortex shows only 6% of variation and is the most
unifying quantity that governs the formation of vortex rings behind cones.

DOI: 10.1103/PhysRevFluids.6.024701

I. INTRODUCTION

Vortex rings are ubiquitous phenomena widely observed in nature. Many sea creatures produce
vortex rings to propel themselves efficiently. Squids, scallops, and salps eject water through a
circular orifice, producing a high-velocity vortex ring and thus thrust [1,2]. Some fish release vortex
rings in their wake by oscillating their tail and pectoral fins [3]. Vortex rings are also efficient at
transporting fluid. The blood injected in the left ventricle of the heart forms a vortex ring, and any
imperfection in the formation process is symptomatic of severe heart disease [4]. Extinguishing
powder can be transported on distances superior to 100 m to extinguish oil well fires, by shooting a
vortex ring along the axis of the burning gusher [5].
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Vortex rings introduced above may be classified as propulsive vortices. They are generated by
ejecting fluid through a circular orifice, or around a fin, and move away from the body they originate
from. The momentum given to the fluid results in a propulsive force acting on the body. A second
family of vortex rings emerges from this classification. Vortices are passively generated in the
wake of a moving axisymmetric body. We refer to them as drag vortices. They are involved in
slowing down the fall of dandelions, improving the seeding on long distances [6]. Vortex rings also
form in the wake of parachutes when they deploy and can lead to the collapse of the parachute if
not properly considered [7]. Vortex rings have been studied numerically and experimentally. The
classical apparatus to study propulsive vortices is to push a volume of fluid out of a cylinder with
a piston. A shear layer forms at the exit of the cylinder, then rolls up to create the vortex ring.
Time is measured in a nondimensional form T ∗ as the ratio between the length of fluid pushed by
the piston and the diameter of the exit. The vortex reaches a maximum circulation � at T ∗ ≈ 4,
also known as the vortex formation time. This timing is consistently reported for circulation-based
Reynolds numbers �/ν superior to 2000, and for various piston acceleration profiles [8]. When the
circulation reaches a maximum, the vortex no longer accepts vorticity from the shear layer, and this
process is referred to as vortex separation.

A first explanation to the separation is derived from the Kelvin-Benjamin variational principle: a
steadily translating vortex ring is the maximum state of kinetic energy E on a isovortical sheet with
constant impulse I [9]. This approach led to the computation of the energy of the vortex with respect
to its impulse and circulation, E∗ = E/

√
I�3. The vortex separates when the nondimensional

energy E∗ delivered by the piston falls below the energy of a steadily translating vortex ring
[8]. The limiting nondimensional energy is consistently found at 0.3 ± 15% for circulation-based
Reynolds numbers above 2000 [10]. The nondimensional energy quantifies the vorticity distribution
inside the vortex. The lower the value of E∗, the more uniform the vorticity distribution is. For
a Hill’s spherical vortex, E∗ has a low value of 0.16. When the shear layer starts to roll up, for
T ∗ < 1, vorticity is concentrated near the vortex core and E∗ has values above one. As the piston
moves, more vorticity accumulates in the vortex and spreads towards the cylindrical symmetry axis,
decreasing the value of E∗. There is a practical limit to the spreading of the vorticity, represented by
this limit of E∗ = 0.3. A possible interpretation of the vortex separation emerges from the study of
the stability of vortex rings. Dynamical system analysis [11] and perturbation response of vortices
from the Norbury family [12] showed that vorticity close to the axis of symmetry gets shed in the
tail of the vortex, where the shear layer connects to the vortex. This could prevent the accumulation
of additional vorticity by the vortex.

The second explanation for the vortex separation is based on a kinematic argument. The vortex
separates when it is traveling faster than the shear layer. The velocity of the shear layer is usually
estimated to half of the piston velocity [13]. For E∗ ≈ 0.3 the critical separation velocity was
calculated at 59% of the piston velocity [14]. The translational velocity of the vortex ring depends
on its nondimensional energy. Saffman [15] estimated the velocity U0 of a viscous steady vortex
ring by the relation

E = 2U0I − 3

8
D0�

2 (1)

with D0 being the diameter of the vortex ring. This equation is equivalent to

U0 = �

πD0

(
E∗√π + 3

4

)
. (2)

Both energetic and kinematic explanations to the vortex separation are connected, and it is not
obvious to assess the causality between vorticity spreading, vortex velocity, and vortex separation.

The tools developed to study propulsive vortices have not been as extensively applied to the
analysis of drag vortices. An apparent reason is that drag vortices do not separate in the same
timescale. Drag vortex rings are usually studied by accelerating a flat plate or a disk in a fluid
[16,17]. During the first convective times, the vortex created in the wake of the disk develops in a
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(a) (b)

FIG. 1. (a) Sketch of the cone and the ring vortex generated in its wake indicating the relevant experimental
parameters: cone diameter D, cone aperture α, and constant final cone translation velocity U . The direction of
U indicates the upward motion of the cone in the quiescent volume of water. (b) Raw image of the seeding
particles accumulating in the main vortex ring and highlighting the small-scale shear layer vortices. This raw
image was taken after seeding particles had settled on the cone and was not used for processing.

similar way as propulsive vortices. Around T ∗ = 4 the circulation starts increasing at a lower rate,
but does not converge, and is not followed by vortex separation [18]. For diameter-based Reynolds
numbers ranging from 1600 to 4000, the nondimensional energy decreases down to values between
0.28 and 0.35 [19]. Later, past T ∗ = 10, azimuthal instabilities break the axisymmetry and lead to
separation of the vortex.

We propose to experimentally extend the analysis performed on propulsive vortices to drag
vortices. Cones of different apertures, diameters, and velocities will be translated to produce a wide
variety of vortex rings in their wake. The nondimensional energy will be measured to assess if it
converges to a lower limit when the vortex stays close to its feeding shear layer. This information
will help us to understand the causality between vortex separation, vortex velocity, and vorticity
distribution in a propulsive vortex ring. A scaling of the vortex circulation, energy, and velocity will
be performed to identify the most relevant parameters among the geometry and the kinematics of
both the cone and the vortex.

II. EXPERIMENT

A cone is immersed in water and translated along its axis of symmetry [Fig. 1(a)]. The translation
is performed by a belt-driven linear actuator, powered by a NEMA 17 stepper motor. The cones are
3D printed, their diameters D range from 3 cm to 9 cm, and their aperture α from 30◦ to 90◦. They
are accelerated at 3 m s−2 from rest, up to velocities U ranging from 0.35 m s−1 to 0.70 m s−1. The
duration of the acceleration phase varies from 0.12 s to 0.22 s between the fastest and the slowest
moving cones. A series of 18 experiments were conducted, with diameter-based Reynolds numbers
ReD = UD/ν comprising between 1 × 104 and 6 × 104.

Particle image velocimetry (PIV) is carried out in a symmetry plane in the wake of the cone dur-
ing its translation. The water is seeded with 30 μm aluminium oxide particles which are illuminated
with two light-emitting diodes (LEDs). Figure 1(b) shows a raw image from one of the cameras,
which clearly pictures concentrations of seeding particles indicating small-scale shear layer vortices
that accumulate into a large-scale coherent ring vortex. The high concentration of particles in this
image is the result of the deposit of the particles on the cone during a break in the measurements.
This image serves as a beautiful visualization of the main vortex ring and the small-scale shear
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layer vortices that feed into it but is not suitable for PIV analysis. Only measurement series with
homogenous seeding particle distributions have been considered for further analysis.

A field of view of 18 cm × 36 cm is recorded at 1000 fps by two high-speed cameras, each
recording one half of the cone trajectory with a definition of 1024 px × 1024 px. The cameras are
positioned such that the fields of view touch but do not overlap. The images are processed with
a multigrid algorithm and a final interrogation window size of 24 px × 24 px with an overlap of
60%, producing a grid of 100 × 200 velocity vectors with a physical resolution of 1.8 mm between
adjacent vectors. This vector spacing corresponds to 6% of the smallest cone diameter.

The length L traveled by the cone is recorded and used here to define the nondimensional timing
of the experiment: T ∗ = L/D. The cones reach their maximum velocity U after T ∗ = 0.22 for large
slow cones and after T ∗ = 2.34 for small fast cones. For reference, the nondimensional time at
which the vortex properties converge is around T ∗ ≈ 3. Particle image velocimetry gives access to
the velocity field (u, v), from which the vorticity field ω is derived. The stream function ψ , later
used to compute the energy of the vortex, is obtained by integrating the Cauchy-Riemann relations
in cylindrical coordinates:

u = 1

r

∂ψ

∂r
, v = −1

r

∂ψ

∂z
. (3)

III. RESULTS

A. Spatial and temporal development of a drag vortex ring

The results presented in this section focus first on the detailed analysis of a single experiment,
for a cone of aperture α = 45◦, diameter D = 6 cm, and velocity U = 0.5 m s−1. The corresponding
Reynolds number ReD = 3 × 104 is in the middle range of the study. Results from all the experi-
ments are compared in the next section.

When the cone is pulled up, fluid moves around it and high-velocity gradients rise at the tip
of the cone. A shear layer forms and rolls up behind the cone, creating a vortex ring in the wake.
With a diameter-based Reynolds number superior to 1 × 104, the shear layer breaks into small-scale
vortices (∼1 mm) due to a Kelvin-Helmholtz instability. The smaller vortices are directly visible on
the raw image from the camera [Fig. 1(b)], but are smaller than the output PIV resolution of 1.8 mm.
These instabilities have no effect on the accumulation of vorticity in the vortex [10,20].

The vortex contour is determined using Lagrangian methods. A finite-time Lyapunov exponent
(FTLE) analysis has been applied to accurately delimit vortices produced by various vortex genera-
tors [21–24]. The vortex is delimited by the positive FTLE ridge and the base of the cone (Fig. 2).
This contour contains not only vortical fluid but also entrained fluid with low or zero vorticity.
Nonvortical fluid is pulled along in the wake of the cone during the initial acceleration from rest.
This nonvortical fluid initially sits below the cone, delimited by the virtual line in Fig. 2(a). The
integration of this line trajectory delimits the volume of nonvortical fluid from the volume of vortical
fluid injected in the vortex at the tip of the cone. The nonvortical volume of fluid, indicated by light
gray area in Figs. 2(b)–2(f), is entrained and progressively mixed with the vortical fluid. At T ∗ = 0.5
[Fig. 2(b)], the nonvortical fluid accounts for 38% of the volume of the vortex. At T ∗ = 3 [Fig. 2(g)]
there is no more nonvortical fluid. Vorticity has then fully spread throughout the vortex.

The consequences of the spreading of the vorticity are analyzed by calculating the vortex
circulation � = ∫∫

ω dr dz. The surface integration is performed on each side of the r = 0 axis,
on the domain delimited by the FTLE contour and the cone base. The absolute values obtained on
both sides of the symmetry axis are averaged to obtain a final circulation value. The nondimensional
circulation �/UD increases up to values around 2.3 [Fig. 3(e)]. The growth rate of the circulation
�̇ decreases progressively. Around T ∗ = 1, a maximum growth rate �̇ = 1.2U 2 is reached. After
T ∗ = 3 the rate stabilizes around �̇ = 0.06U 2. The stabilization starts when the nonvortical volume
of fluid V0 inside the vortex volume V vanishes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Growth of a vortex ring in the wake of a translating cone of D = 6 cm, α = 45◦, ReD = 3 × 104.
The green line delimits the contour of the vortex based on FTLE. The light gray area from (b) to (f) highlights
the nonvortical volume of fluid in the vortex and outlines the spreading of vorticity over time.

Similar observations where made on vortex rings generated by piston cylinders: at T ∗ = 4,
the circulation reaches a maximum �/UD ≈ 2.3 and the vorticity spreads up to the cylindrical
symmetry axis. The vortex separation for propulsive vortices is attributed to the tail shedding
resulting from the vorticity spread [8]. In the present experiment, no separation occurs because
the vortex translational velocity is directed towards the cone. The vortex stays in the vicinity of the
shear layer and keeps growing and accumulating vorticity after T ∗ = 3 [Figs. 3(c) and 3(d)].

The extension of the vortex is quantified by observing the vortex center (Z0, R0), calculated as

Z0 =
∫∫

ωzr2 dr dz∫∫
ωr2 dr dz

, R2
0 =

∫∫
ωr2 dr dz∫∫
ω dr dz

, D0 = 2R0. (4)

024701-5



GUILLAUME DE GUYON AND KAREN MULLENERS

(a) (b) (e)

(c) (d)

FIG. 3. Vorticity field and vortex boundary in the wake of a translating cone with α = 45◦, D = 6 cm,
and U = 0.5 m s−1 at (a) T ∗ = 1, (b) T ∗ = 2, (c) T ∗ = 3, and (d) T ∗ = 4. (e) Temporal evolution of the
nondimensional vortex circulation �/UD and the volume of nonvortical fluid V0 relative to the total vortex
volume V . The gray area indicates the acceleration phase of the cone.

The integrations are performed on each half of the r = 0 axis, on the domain delimited by the FTLE
contour and the cone base. The absolute values obtained on both sides of the symmetry axis are
averaged to obtain the final values. Positions are given relative to the base of the cone [Fig. 4(b)].

The vortex center [Fig. 4(a)] quickly moves away from the cone and has traveled a distance of
0.22D at T ∗ = 1. It progressively slows down, and for T ∗ > 3, the vortex center moves away from
the cone and the axis of symmetry at a more constant velocity. A distance of 0.03D is covered
between T ∗ = 4 and T ∗ = 5. The increase of the vortex diameter suggests that the cone diameter
is not the most suitable parameter for nondimensionalization of the circulation. Using the vortex
diameter D0, the nondimensional circulation reaches a maximum value of 2.2 at T ∗ = 3 and stays
constant, whereas the nondimensional circulation based on D continues to grow [Fig. 4(b)]. The
term �/D0 has the dimension of a velocity and is featured in Eq. (2). It quantifies the influence of
the vortex circulation and dimension on the velocity of the ring.

The other parameter that influences the velocity of the vortex ring is the nondimensional energy
of the vortex E∗. It represents the energy E relative to impulse I and circulation �:

I = π

∫∫
ωr2 dr dz, E = π

∫∫
ψω dr dz, E∗ = E√

I�3
. (5)

The nondimensional energy quantifies the distribution of the vorticity inside the vortex. It is
compared to a more statistical definition of the vorticity distribution: the standard deviation of the
vorticity σω relative to its average ω̄. The evolution of E∗ and σω/ω̄ are presented in Fig. 5(a). The
nondimensional energy and relative vorticity distribution have a similar evolution, and an empirical
relation σω/ω̄ = 2.3E∗ + 0.5 can be derived. Although this relation is specific to this experiment,
it confirms that E∗ is a valid quantifier of vorticity distribution. During the first convective time, the
shear layer starts to roll up and vorticity is concentrated in the vortex core. Nondimensional energy
has high values around 0.7. As vorticity keeps accumulating in the vortex, E∗ continuously drops
towards a limiting value of 0.3, reached at T ∗ = 3. A minimal value between 0.27 and 0.35 was also
observed for vortex rings generated by piston cylinders [8,25,26] and corresponds to the moment
when the vortex separates from its feeding shear layer. This limit on E∗ answers one of the questions
that motivated this experiment: the nondimensional energy of a vortex ring does not decrease further,
even if it stays connected to its feeding shear layer. Contrary to vortex rings generated by piston
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(a) (b)

(c)

FIG. 4. (a) Trajectory of the vortex center relative to the cone for α = 45◦, D = 6 cm, and U = 0.5 m s−1.
(b) Parametrization of the vortex center. (c) Circulation of the vortex, nondimensionalized using the cone
diameter D and the vortex diameter D0. The gray area indicates the acceleration phase of the cone.

(a) (b)

FIG. 5. (a) Temporal evolution of the nondimensional energy and relative vorticity distribution. The gray
area indicates the acceleration phase of the cone. (b) Theoretical and measured velocity of the vortex, relative
to the maximum cone velocity. The evolution of the translation velocity of the cone is added for reference.
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cylinders, vorticity still accumulates in the vortex at a low rate, without a noticeable effect on the
vorticity distribution.

The quantities �/D0 and E∗ characterize, respectively, the overall vorticity present in the vortex
and the distribution of the vorticity in the vortex. Both reach a limiting value at T ∗ = 3. As a
consequence, the theoretical translational velocity U0 of the vortex ring, derived from Saffman [15],
also reaches a steady value:

U0 = �

πD0

(
E∗√π + 3

4

)
. (6)

The theoretical velocity Eq. (6) is compared with the measured vortex velocity uvortex, obtained
by averaging the axial velocity component inside the vortex volume. Both theoretical and measured
velocities converge to a value of 0.9U [Fig. 5]. The theoretical velocity underestimates the measured
velocity during the transient phase, due to the fact that Eq. (6) is valid only for a steady vortex ring.

Since the vortex stays attached to the cone, the velocity deficit of the vortex compared to the cone
should not be interpreted as a vortex separation, but rather as an increase of the vortex volume.

B. Scaling of the vortex characteristics

The influence of the cone geometry and kinematics on the vortex circulation, nondimensional
energy, and velocity are analyzed in this section. A discussion of the influence of the vortex detection
method on the integral values and an estimation of the experimental uncertainty is presented in the
Appendix A. All experiments are sorted by their circulation-based Reynolds number. As seen in
the previous section, the circulation does not reach a clear maximum, but �/D0 does. We therefore
introduce a Reynolds number Re� = �D

νD0
based on the maximum value of �/D0.

Different cone apertures were used, from α = 30◦ to α = 90◦ (flat disk). The trajectory of the
vortex center is extracted for four cones of different aperture and identical diameter D = 6 cm and
velocity U = 0.5 m s−1 [Fig. 6]. The four trajectories show an increase of the vortex diameter past
T ∗ = 2. A larger cone aperture leads to a larger vortex diameter because the cone deviates the flow
more in the radial direction. At T ∗ = 3 the vortex radius ranges from D0 = 0.88D at α = 30◦ to
D0 = 1.1D at α = 90◦.

The maximum nondimensional circulation �/UD0 is calculated for all cases and presented in
Fig. 6(b). All values presented in Figs. 6(b)–6(d) are obtained after the cone has reached its final
constant velocity. The average value is 2.26, with variations of ±9%. Cones with an aperture of 90◦,
or disks, exhibit lower nondimensional circulations. For structural reasons they are not strictly disks:
they have a thickness of 0.06D and a reverse sweep of 30◦. This sweep is believed to be responsible
for the lower nondimensional circulation of the disk compared to the cones. The effect is reversed
for the nondimensional energy. Disks have slightly higher values [Fig. 6(c)]. The Nondimensional
energy converges on average to a minimum of 0.3, with variations of ±12%.

The nondimensional circulation and energy are largely independent on the Reynolds number.
Similar behavior is observed for vortices generated by piston cylinders. For various simulations
with Re� > 2000, nondimensional circulation and energy were recorded to have variations of,
respectively, ±10% and ±15% [10].

From the circulation and the nondimensional energy, the theoretical velocity U0 of the vortex
ring is computed [Eq. (6)]. The relative velocity U0/U has an average of 0.93, within an interval
of ±6% [Fig. 6(d)]. The interval of variation is smaller than the ones of �/UD0 (±9%) and E∗
(±12%). The variations in nondimensional circulation and nondimensional energy compensate to
produce a regular relative velocity. In particular the disks, which have higher nondimensional energy
and lower circulation, have a relative velocity equivalent to the cones. This suggests that the cone’s
velocity is a better scaling parameter than the nondimensional circulation or energy.
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(a) (b)

(c)

(d)

FIG. 6. (a) Vortex center trajectories for four aperture angles, at D = 6 cm and U = 0.5 m s−1. (b–d)
Maximum circulation, minimum nondimensional energy, and maximum theoretical vortex velocity for all
experiments. The gray lines indicate the average value across all parameter variation. The error bars reflect
the uncertainty on the converged values quantified as explained in Appendix B. The shape of the markers
indicates the final translation velocity of the cone: �: U = 0.35 m s−1, �: U = 0.5 m s−1, 
: U = 0.65 m s−1.
The size of the markers reflects the diameter of the cone: ◦: D = 3 cm, ©: D = 6 cm, ©: 9 cm.

IV. CONCLUSION

A vortex ring produced by a piston cylinder simultaneously separates, reaches a minimal
nondimensional energy, and outpaces its feeding shear layer. The simultaneity of these three events
obfuscates the causality between them. To analyze the temporal evolution of the nondimensional
energy of ring vortices independent of their pinch-off, we focused on vortices generated in the wake
of cones. Cones with different apertures and diameters were accelerated from rest to produce a
wide variety of vortex rings. The initial development and growth of these vortex rings were studied
experimentally using time-resolved velocity field measurements.

The vortex rings that form behind the cones have a self-induced velocity that cause them to follow
the cone beyond the typical vortex formation timescales observed for vortex rings emanating from
a piston cylinder apparatus. Another difference is that propulsive vortex rings reach a maximum
in circulation but the circulation of drag vortex rings keeps increasing and does not reach a clear
plateau. However, for T ∗ > 3, the circulation of drag vortices increases proportionally to the vortex
size, and the circulation nondimensionalized by the vortex diameter �/UD0 converges to a limiting
value between 2.05 and 2.45. The nondimensional energy is linearly related to the relative standard
deviation of the vorticity, demonstrating that E∗ is a measure of vorticity distribution inside the
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(a) (b)

(c) (d)

FIG. 7. (a) Vorticity field at T ∗ = 3 and contours used to compute vortex characteristics including the
FTLE ridge (—), isocontour of vorticity |ωD/U | = 1 (—), and a rectangular box (—). (b) Temporal evolution
of the nondimensional circulation, (c) nondimensional energy, and (d) theoretical vortex velocity relative to
the cone velocity. The inset in (b) zooms in on the convergence for the circulation calculated within the FTLE
boundary. The black line indicates the average value between T ∗ = 3 and T ∗ = 5 and is considered as the
converged circulation result. The amplitude of the variations are outlined by the gray rectangle, and this is
considered as the uncertainty for the measured circulation values.

vortex ring. At the start of the vortex formation, vorticity is concentrated near the vortex core and E∗
is at its highest. In time, the vortex grows and the vorticity distribution spreads, which is reflected
by a decrease in E∗. The nondimensional energy converges around T ∗ = 3 to a minimum value
between 0.27 and 0.35. Similar values of nondimensional circulation and energy were observed for
vortices produced by piston cylinders. This results proves that vortex pinch-off does not cause the
nondimensional energy to converge to a minimum value.

The nondimensionalized energy, circulation, and velocity of the ring vortices reach constant
values independent of the cone diameter, aperture angle, and translational velocity when scaled
based on the vortex diameter instead of the cone diameter. The limiting values of the circulation and
the energy experience variations of 9% and 12% across the tested parameter range. These variations
compensate each other to produce a constant vortex velocity of U0 = 0.93U ± 6%. The difference
between the vortex velocity and the cone velocity does not indicate vortex separation but is the result
of the spatial growth of the vortex. The vortex velocity is the most unifying quantity to scale and
predict the development of vortex rings behind various cone geometries.

APPENDIX A: SENSITIVITY TO THE VORTEX DETECTION METHOD

To estimate the uncertainty of the scaling values computed in this article [Eqs. (4) and (5)] and
their sensitivity to the selection of the integration contour, we compare here the results for three
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different integration contours. The contour that is used for the final results presented in Fig. 6 is
the FTLE contour. In addition to the FTLE contour, we consider here the iso-vorticity contour
|ωD/U | = 1 and a rectangular contour of dimensions 1.8D × D [Fig. 7(a)]. The iso-vorticity
contour is slightly wider than the FTLE one and contains also vorticity patches outside of the FTLE
contour that will be convected into the wake. The rectangular box is the easiest contour to use, but
it will also contain vorticity that should not be considered as part of the vortex. The rectangular
and vorticity contours both contain more vorticity that the FTLE contour encloses, resulting in
higher circulations and larger vortex diameters. At T ∗ = 4, the nondimensional circulation is,
respectively, 7% and 4% higher than with the FTLE method [Fig. 7(b)]. The effect is reversed for
the nondimensional energy, as the vorticity added by the larger contours is of low value and more
uniform than in the vortex core [Fig. 7(d)]. For the rectangular and the iso-vorticity contour, E∗ is,
respectively, 16% and 9% lower. Variations in circulation and nondimensional energy compensate
in the computation of the velocity [Fig. 7(c)]. Both the rectangular and the iso-vorticity contour
result in the same converged velocity value within 3% of the one computed on the FTLE contour.
The standard deviation of the bias introduced by the choice of the integration contour is 1.5% for
the tested parameter space and can be considered constant and does not affect the conclusion of the
paper.

APPENDIX B: ACCURACY OF THE CONVERGENCE

The nondimensional circulation, energy, and vortex velocity presented in Figs. 6(b)–6(d) are all
extracted from their converged values. The converged value is obtained by averaging the quantity
between T ∗ = 3 and T ∗ = 5 [Fig. 7(b)]. The full range of variations measured between T ∗ = 3 and
T ∗ = 5 determines the uncertainty on the convergence value and is represented by the error bars
in Figs. 6(b)–6(d). The maximum uncertainty is 3% for the nondimensional circulation, 4% for the
nondimensional energy, and 1% for the relative velocity of the vortex.
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