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While the computation of the boundary-layer thickness is straightforward for canonical
equilibrium flows, there are no established definitions for general nonequilibrium flows.
In this paper, a method is developed based on a local reconstruction of the inviscid
velocity profile UI [y] resulting from the application of the Bernoulli equation in the
wall-normal direction. The boundary-layer thickness δ99 is then defined as the location
where U/UI = 0.99, which is consistent with its classical definition for the zero-pressure-
gradient boundary layers. The proposed local-reconstruction method is parameter-free and
can be deployed for both internal and external flows without resorting to an iterative
procedure, numerical integration, or numerical differentiation. The superior performance
of the local-reconstruction method over various existing methods is demonstrated by
applying the methods to laminar and turbulent boundary layers and two flows over airfoils.
Numerical experiments reveal that the local-reconstruction method is more accurate and
more robust than existing methods, and it is applicable for flows over a wide range of
Reynolds numbers.

DOI: 10.1103/PhysRevFluids.6.024608

I. INTRODUCTION

For both experiments and simulations of viscous flows, it is crucial to be able to define and
compute the boundary-layer thickness δ, i.e., the wall-normal distance beyond which viscous effects
are negligible. Due to the fact that the outer layer of a turbulent boundary layer and the entire laminar
boundary layer are self-similar with respect to δ, it is typically a required input for models of laminar
and turbulent flows, e.g., Coles’s law of the wake [1] and more recent descriptions of the turbulent
velocity profile [2–4]. In addition, defining δ is necessary to compute integral measures of the
boundary layer, e.g., the displacement thickness δ∗ and momentum thickness θ as the length scales
associated with the near-wall mass and momentum deficits, and the boundary-layer shape factor
H = δ∗/θ , which are useful for the analysis [5–11] and modeling [12–14] of pressure-gradient
flows.

For zero-pressure-gradient boundary layers (ZPGBLs), the flow approaches a free-stream ve-
locity U∞ as the wall-normal distance y → ∞. The boundary-layer thickness δn is defined as the
wall-normal distance y at which n % of U∞ is attained, i.e.,

U

U∞

∣∣∣
y=δn

= n

100
, (1)

where n = 99 is typically adopted.
However, the above definitions are not applicable to canonical flows (e.g., boundary layer flows)

with pressure gradients or flows over complex geometries. Taking the flow over a curved plate, for
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instance, the classical ZPGBL definitions do not correctly delimit the region where viscous effects
are important, since the inviscid solution features wall-normal gradients in the mean velocity field.

In more general flows, U does not approach a constant asymptote at the boundary-layer edge.
Once δ is defined, the boundary-layer edge velocity can be defined as Ue = U [y = δ] and the
displacement and momentum thicknesses can be truncated to only include contributions from the
viscous region of the flow.

In this paper, various existing methods for defining δ for general nonequilibrium flows are ana-
lyzed and a method based on the application of the Bernoulli equation in the wall-normal direction
is proposed. The remainder of this paper is organized as follows. In Sec. II, the existing methods
for computing the boundary-layer thickness are reviewed and their corresponding limitations are
analyzed. In Sec. III, the present method based on stagnation pressure is developed. In Sec. IV, the
performance of the proposed method is compared with existing methods and the shortcomings of
existing methods are demonstrated. Concluding discussions and remarks are given in Sec. V.

II. A BRIEF REVIEW OF EXISTING METHODS FOR DETERMINING δ

In this section, several widely used or recently developed methods for computing the boundary-
layer thickness are reviewed and the limitations of each method are analyzed. Methods not
quantitatively evaluated in this paper are relegated to Appendices. Specifically, the methods based
on composite velocity profiles [3,15] are discussed in Appendix A, those based on intermittency
thresholds [16–18] are discussed in Appendix B, and those based on assumed inviscid profiles are
discussed in Appendix C.

A. Mean-vorticity-based methods

Based on the assumption that the free-stream flow is irrotational, the mean-vorticity-based
methods identify the edge of the rotational viscous boundary layer as the boundary-layer thickness.
Recalling Lighthill’s [19] “generalized velocity,”

Ũ =
∫ y

0
−�zdy′, (2)

where �z = ∂V/∂x − ∂U/∂y denotes the mean vorticity component in the spanwise direction,
Spalart and Watmuff [5] assert that the integral for Ũ∞ = Ũ [y → ∞] converges since the vorticity is
assumed to vanish in the inviscid region outside the boundary layer. However, since a semi-infinite
integration domain is practically not available, an initial guess on the upper limit of integration
is required, and it is necessary to iteratively recompute on a larger domain until convergence is
established. Nonetheless, this method has been successfully deployed by Tamaki et al. [20] for the
flow over an airfoil at a near-stall condition.

Two cognate methods for finding both δ and Ue have been proposed by Coleman et al. [21] and
Uzun and Malik [10].

1. The ˜U∞ method

The approach of Coleman et al. [21] determines δn by finding the wall-normal distance at which

Ũ

Ũ∞

∣∣∣
y=δn

= n

100
. (3)

This approach is referred to as the Ũ∞ method hereafter. In Fig. 1, distributions of the mean
streamwise velocities for two cases are plotted as well as those of the corresponding generalized
velocities for comparison. yp denotes the furthest point from the wall in the wall-normal profile;
it is an arbitrary length scale. While the mean streamwise velocities continue to vary as y → yp,
the generalized velocity Ũ achieves a constant asymptotic value as the flow becomes irrotational.
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FIG. 1. Included are a profile from the suction side of a NACA 4412 airfoil [22] at the angle of attack (AoA)
= 5◦ and the Reynolds number based on the chord length Rec = 106 at the streamwise location x/c = 0.72
(upper) and a profile from a NACA 0012 airfoil [23] at AoA = 0◦ and Rec = 400 000 at the streamwise location
x/c = 0.90 (lower). Distributions of the mean streamwise velocity (black solid lines) from simulations and the
generalized velocity (blue dashed lines) computed using Eq. (2) versus the wall-normal coordinate y normalized
by the airfoil chord c. Blue triangles indicate the locations y = δ99 identified from Eq. (3). Note that Up denotes
the velocity at the furthest point from the wall in the wall-normal profile.

This permits the robust deployment of Eq. (3) even though Ũ∞ is evaluated at a finite wall-normal
distance in practice.

2. The −y�z threshold method

In the approach of Uzun and Malik [10], a threshold for −y�z is empirically connected to the
desired δn, i.e.,

−y�z

max(−y�z )

∣∣∣
y=δn

= C�, (4)

where C� is an empirical parameter that depends on the choice of n. For instance, for δ99, C� = 0.02
is suggested [10]. This approach is henceforth referred to as the −y�z threshold method. In Fig. 2,
distributions of −�z and −y�z profiles are plotted versus the wall-normal distance. While −�z is
monotonically decreasing, the profile of −y�z features multiple peaks and achieves its maximum
in the outer portion of the boundary layer. Since the −y�z profile crosses the threshold C� typically
at two locations, i.e., near the wall (not shown in log scale) and in the vicinity of the boundary-layer
edge, the furthest point from the wall that satisfies Eq. (4) is typically adopted, as suggested by Uzun
and Malik [10]. The main shortcoming of this method is the sensitivity to the empirical threshold,
although an optimal choice may deliver decent results as discussed in Sec. IV.

The consistency of mean-vorticity-based methods with the classical ZPGBL definition of δ de-
pends on the approximation that ∂V/∂x � ∂U/∂y, which is valid in the limit that the boundary-layer
thickness δ is much less than the distance from the flat-plate leading edge, which holds in the limit
of large Rex = Uex/ν. Therefore, the deployment of the mean-vorticity methods to flows with low
Reynolds numbers is questionable.

Another disadvantage is that the mean-vorticity-based methods rely on the data of ∂V/∂x, which
is typically not available from existing databases of simulations or experiments although can be
reported from future work straightforwardly.
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FIG. 2. Distributions of the mean z vorticity �z (black solid lines) and the boundary layer sensor −y�z

[10] (red dashed lines) versus the wall-normal coordinate y normalized by c. The red diamonds indicate the
locations y = δ99 identified from Eq. (4). Included are a profile from the suction side of a NACA 4412 airfoil
at AoA = 5◦ and Rec = 106 [22] at the streamwise location x/c = 0.72 (left curves and symbols) and a profile
from a NACA 0012 airfoil at AoA = 0◦ and Rec = 400 000 [23] at the streamwise location x/c = 0.90 (right
curves and symbols).

B. Methods based on a mean-shear threshold

In the mean-shear-based methods, the boundary-layer thickness δ is defined as the wall-normal
distance y, where the mean shear ∂U/∂y drops below an arbitrary threshold. A special case of this
method, henceforth referred to as the max method, is when the threshold is set to be zero, such that
y = δ occurs at the maximum of U [y]. This method is widely used and recently has been applied to
an airfoil at a near-stall condition by Asada and Kawai [8]. However, this choice of threshold may
never be crossed if the mean streamwise velocity profile is monotonically increasing, e.g., in the
flow over a NACA 0012 airfoil in Fig. 1. For general scenarios, a positive threshold is preferred.
On the other hand, it is worth noting that the mean shear must be appropriately nondimensionalized
such that the same threshold can be deployed for a wide range of flows.

For laminar flows, an appropriate non-dimensionalization is

∂U/U∞
∂y/δ

∣∣∣
y=δn

= Cl , (5)

where Cl is the laminar threshold. Concerning the special case of a Blasius boundary layer, the
threshold can be analytically given as the wall-normal distance y = δn satisfying U/U∞ = n/100
(see Sec. IV A).

For turbulent flows, the conventional nondimensionalization of the mean shear is in wall units,
which are defined as the wall shear stress τw = τ |y=0, the wall friction velocity uτ = √

τw/ρ, and
the wall viscous unit δv = ν/uτ . For this nondimensionalization, an arbitrary threshold of 0.001 is
adopted by Vinuesa et al. [15].

However, this nondimensionalization does not lead to a general threshold constant. Considering
the fully turbulent flow over a flat plate with a pressure gradient, the boundary layer can be described
by Coles’s wall-wake law [1] as

U + = 1

κ
ln(y+) + B + 2


κ
sin2

(
πy

2δ

)
, (6)
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where κ , B, and 
 are empirical parameters. The superscript + refers to quantities nondimension-
alized via δv and uτ . Examining this correlation near the boundary-layer edge implies that

∂U +

∂y+
∣∣
y=δn

≈ 1

κReτ

, (7)

where the friction Reynolds number Reτ = δuτ /ν. Multiplying Eq. (7) by Reτ suggests that
the following mixed nondimensionalization is appropriate for the application of the mean-shear
threshold method to turbulent flows, i.e.:

∂U +

∂y/δ

∣∣
y=δn

= Ct , (8)

where Ct is the turbulent mean-shear threshold. This analysis implies that Ct ≈ 1/κ for velocity
profiles that are well described by Eq. (6).

Theoretically, the mean shear can be decomposed into a viscous part (as discussed above) and
an inviscid part resulting from the streamline curvature in the free stream. While both parts decay
with wall-normal distance, the viscous part has positive magnitude and decays with a length scale
of δ, whereas the inviscid part can have an arbitrary sign and a decay length scale that is typically on
the order of the local radius of curvature R of the geometry. The inviscid contribution to the mean
shear can be negligible when δ � R, which, however, is not guaranteed for the flow over a thin
airfoil at moderate Reynolds number. In practice, the mean-shear-based methods provide no way to
distinguish the viscous and inviscid contributions to the mean shear, such that the above guidelines
for setting the threshold based only on the viscous part are not generally applicable. These methods
will only succeed when the inviscid contribution is small and the threshold constant is set to be
greater than the inviscid part. In other words, for the case with a monotonically increasing velocity
profile, there is no guarantee that a given threshold will be crossed.

This observation motivates the present method proposed in Sec. III, which relies on the local re-
construction of the inviscid solution. Moreover, the local-reconstruction method works directly with
the velocity profile instead of the mean shear due to the fact that the mean shear is comparatively
more sensitive to noise in the velocity profile.

Technically, there exist two additional drawbacks for the mean-shear-based methods: (i) Since
both the laminar and the mixed nondimensionalizations depend on δ, δ must be computed iteratively,
unless the threshold constant is selected to be zero. It is worth noting that for a general mean velocity
profile, there is no guarantee that these iterative methods will converge. (ii) Although, in principle,
a reliable choice for Cl and Ct may exist based on the dimensional analysis above for the fully
turbulent and fully laminar boundary layers, respectively, the extension for transitional flows is
challenging since neither nondimensionalization is valid in the transitional regime.

C. The diagnostic-plot method

Vinuesa et al. [15] proposed an approach for determining the boundary-layer thickness, which is

based on the diagnostic plot [24] of the streamwise turbulence intensity
√

u′2/Ue versus the mean
streamwise velocity U/Ue. Alfredsson et al. [24] claim that the diagnostic plot becomes nearly
universal as y → δ. Moreover, Drózdz et al. [25] assert that the diagnostic plot can be generalized

to nonequilibrium flows by considering
√

u′2/(Ue

√
H ) versus U/Ue. Indeed, the collapse of various

velocity profiles in Fig. 4 of Ref. [15] is impressive even though the theoretical basis for the collapse
has not yet been established. Based on the observed asymptotic behavior of the diagnostic plot,
Vinuesa et al. [15] further define the boundary-layer edge δ99 as the wall-normal distance at which√

u′2/(Ue

√
H ) = 0.02. However, since the criterion for determining δ depends on the boundary-

layer edge velocity Ue, an iterative procedure and an appropriate initial guess for δ are required.

One advantage of this method is that it only requires
√

u′2 and U statistics as inputs, which
are commonly available in existing databases of experiments and direct numerical simulations.
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However, for large-eddy simulations (LESs), the turbulence intensity
√

u′2 (unlike the mean velocity
U ) is typically under-resolved with coarse meshes and features strong resolution dependence.
Consequently, the boundary-layer thickness estimate from the diagnostic-plot method depends
on the LES mesh resolution. On the other hand, in a Reynolds-averaged Navier-Stokes (RANS)

simulation, the turbulence intensity
√

u′2 is modeled with built-in modeling errors, rendering the
performance of the diagnostic-plot method dependent on the RANS model.

The main shortcoming of the diagnostic-plot method is that the threshold constant of 0.02 is
empirical. For an external flow with free-stream turbulence or an internal flow, to find an optimal
threshold constant may be rather challenging if it does exist. Similarly, the threshold needs to be
properly recalibrated for determining δn with n 
= 99. Moreover, this approach is unsuitable for
laminar flows since the turbulence intensity is zero across the entire boundary layer. In other words,
the deployment of diagnostic-plot method should be restricted to fully turbulent boundary layers
with a quiet free stream.

III. LOCAL-RECONSTRUCTION METHOD FOR IDENTIFYING THE BOUNDARY-LAYER
THICKNESS

In this section, we propose a method to identify the boundary-layer thickness, which (i) does
not require numerical integration, numerical differentiation, or empirical thresholds, (ii) has a
guaranteed solution without resorting to an iterative procedure, (iii) is applicable at all Reynolds
numbers for internal and external flows with or without freestream turbulence, and (iv) only relies
on the mean velocity profiles U [y] and V [y] and the mean pressure profile P[y] as inputs.

The proposed new definition for the boundary-layer thickness is given by

U

UI

∣∣∣
y=δn

= n

100
, (9)

where UI [y] denotes a local reconstruction of the inviscid mean streamwise velocity profile. This
method is a generalization of the ZPG definition for δ given by Eq. (1). The two definitions are
equivalent for a ZPGBL, where the inviscid solution is simply a constant, i.e., UI [y] = U∞.

Formally, the inviscid velocity profile can be obtained by solving the Euler equations and impos-
ing no-penetration boundaries contoured to the local displacement thickness computed in a viscous
simulation. However, since the displacement thickness depends on the boundary-layer thickness,
this approach is impractical. On the other hand, in this paper, a simpler and more computationally
efficient local reconstruction of the inviscid solution UI [y] is proposed. The approach begins by
defining the stagnation pressure for an incompressible steady flow as

Po = P + 1
2ρU 2

m, (10)

where P is the static pressure and the velocity magnitude squared U 2
m = U 2

I + V 2 is computed from
the reconstructed mean streamwise velocity UI and the mean wall-normal velocity V in the 2D local
reference frame.

While the no-penetration boundary condition, i.e., V [y = 0] = 0, applies for both inviscid and
viscous flows, the no-slip boundary condition, i.e., U [y = 0] = 0, applies only to viscous flows. As
a result, the reconstructed inviscid mean streamwise velocity profile UI [y] deviates from U [y] near
the wall, where the viscous effects dominate. Meanwhile, the wall-normal velocity profile V [y] and
the mean pressure profile P[y] feature a much weaker dependence on viscous effects. For a flat-plate
pressure-gradient boundary layer, ∂P/∂y ≈ 0 and V ≈ 0 in both the viscous and the inviscid cases.

Considering a hypothetical irrotational, inviscid flow that has V [y] and P[y] profiles equivalent
to those of the corresponding viscous flow, the Bernoulli equation may approximately apply
globally rather than just along streamlines. Therefore, the corresponding streamwise velocity UI [y]
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FIG. 3. Distributions of the stagnation pressure Po and the dynamic pressure (a), and the velocity profile U
and the locally reconstructed inviscid velocity profile UI (b) versus the normalized wall-normal coordinate y/c.
The maximum stagnation pressure (a) and the boundary-layer edge (b) are indicated with the black hexagram
and the green square, respectively. The data is from the suction side of a NACA 4412 airfoil at AoA = 5◦ and
Rec = 106 [22] at the streamwise station x/c = 0.20.

is obtained from Bernoulli’s equation following

UI = ±
√

2

ρ
(Po,ref − P[y]) − V 2[y], (11)

where Po,ref denotes the total pressure at a reference location specified below. The sign of UI should
be chosen to match that of U [y = δ]. (In practice, it is recommended for attached flows that the
boundary-layer thickness be computed from the squares of Eqs. (11) and (9) to dispense with the
square root operator).

The rationale is that the viscous effects are approximately confined to the boundary layer, i.e., the
flow is nearly inviscid and irrotational outside of the boundary layer with y > δ. This implies that
Po,ref is nearly a constant across the domain with y > δ. Taking the flow over an airfoil, for instance,
as shown in Fig. 3(a), the dynamic pressure varies continuously whereas the stagnation pressure
preserves a constant asymptote outside of the boundary layer. Meanwhile, one unique choice of
Po,ref is given by setting Po,ref = max(Po), which is achieved at a wall-normal distance y > δ. Since
Po is a measure of the flow’s capacity to do work, it typically decreases as a wall is approached. This
choice of Po,ref guarantees that the model has the correct behavior in channel and pipe flows, as will
be discussed in Sec. IV E.

The locally reconstructed inviscid solution UI [y] given by Eq. (11) is plotted for the flow over
a NACA 4412 airfoil [22] in Fig. 3(b). As expected, the inviscid solution UI [y] has excellent
agreement with the viscous solution U [y] outside the boundary layer. The boundary-layer thickness
δn is then estimated to be the location where UI departs from U by 100 − n percent. In this paper,
the boundary-layer edge velocity is taken to be Ue = U [y = δn]. The choices of Ue = UI [y = δn] or
Ue = UI [y = 0] are also reasonable [10,26].

As shown in Figs. 4(a) and 4(b), the local-reconstruction method is successfully deployed to
two additional challenging cases, one of which the velocity profile is monotonically increasing.
It is observed that the total pressure achieves a maximum near the boundary-layer edge and the
locally reconstructed inviscid solution agrees well with the viscous solution outside the boundary
layer. The estimates of the boundary-layer thickness are qualitatively consistent with the results in
Fig. 3(b). More quantitative assessments of the performance of the local-reconstruction method will
be presented in Sec. IV.
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FIG. 4. Distributions of the stagnation pressure Po and the dynamic pressure (a), and the velocity profile
U and the locally reconstructed inviscid velocity profile UI (b) versus the normalized wall-normal coordinate
y/c. This is the same as Fig. 3 except that one profile is from the suction side of a NACA 4412 airfoil at AoA
= 5◦ and Rec = 106 [22] at the streamwise station x/c = 0.72 (left curves and symbols) and the other profile
is from a NACA 0012 airfoil at AoA = 0◦ and Rec = 400 000 [23] at the streamwise station x/c = 0.90 (right
curves and symbols). The maximum stagnation pressure (a) and the boundary-layer edge (b) are indicated with
the black hexagram and the green square, respectively.

Note that in experiments and coarse simulations alike, small spurious oscillations in the velocity
profile can occur. For this reason, the search for U/UI = n/100 should begin at the wall and proceed
in the wall-normal direction. As with other methods for computing δn, the value of n must be selected
reasonably. n = 99 is typically used but this value can be further reduced to ensure robustness in the
presence of noisy data. The present method can be readily generalized for compressible flows and
the reader is referred to Appendix D for details.

A related method computes δn based on a threshold for the total pressure [27]. However, the
present method is preferable since it works directly with velocity and therefore can recover the
classical definition of δn in a ZPG boundary layer and is not sensitive to a rescaling of the magnitude
of pressure.

IV. PERFORMANCE ASSESSMENTS OF THE PROPOSED AND THE EXISTING METHODS

In this section, the methods discussed in Secs. II and III will be assessed by deploying to the
analytical Blasius boundary layer and the well-resolved numerical simulation database in Table I.

TABLE I. Well-resolved simulation database from various flows for model evaluation. Included are ZPG-
BLs, two flows over airfoils with specified AoA, and an adverse pressure gradient boundary layer (APGBL)
with six different pressure gradient conditions. The ranges of friction Reynolds number Reτ , the inner
pressure-gradient parameter α = (δv/τw )dP/dx, the outer pressure-gradient parameter β = (δ∗/τw )dP/dx,
and the boundary layer shape factor H are also provided.

Type of flow Reτ 1000α β H Sources

Turbulent ZPGBLs [446, 2479] [ 0.00, 0.00] [ 0.00, 0.00] [1.36, 1.46] [28–30]
NACA 4412 suction side AoA = 5◦ [290, 679] [ 1.45, 61.7] [ 0.072, 13.7] [1.49, 1.92] [22]
NACA 0012 AoA = 0◦ [131, 371] [ 2.23, 18.8] [ 0.061, 1.71] [1.55, 1.69] [23]
NACA 4412 pressure side AoA = 5◦ [198, 583] [−1.32, −0.11] [−0.004, −0.14] [1.41, 1.56] [22]
Turbulent APGBL [202, 920] [−2.34, 31.3] [−0.570, 4.43] [1.57, 1.91] [6]
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A. Analysis of a laminar boundary layer

Since there is no well-established definition of the boundary-layer thickness in complex flows,
it is instructive to first assess the methods by considering the laminar Blasius boundary layer, for
which there is an established definition of the boundary-layer thickness given by Eq. (1).

Recalling the Blasius similarity variable

η = y

√
U∞
2νx

, (12)

where x denotes the distance from the flat-plate leading edge, and defining the nondimensional
function f [η] such that

U

U∞
= f ′[η], (13)

the laminar boundary layer equations reduce to the Blasius ordinary differential equation (ODE),
i.e., f ′′′ + f f ′′ = 0. To close the ODE, the boundary conditions are f [0] = f ′[0] = 0 and f ′[η →
∞] → 1. On the other hand, the continuity equation implies that the wall-normal velocity profile is
given by

V

U∞
= (η f ′ − f )√

2Rex
, (14)

where Rex = U∞x/ν.
As discussed above, only four of the introduced methods are suitable for laminar problems,

i.e., the Ũ∞ method, the −y�z threshold method, the mean-shear threshold method, and the local-
reconstruction method.

1. The ˜U∞ method applied to a laminar boundary layer

For the Ũ∞ method, the definition of the generalized velocity in Eq. (2) can be nondimensional-
ized as

Ũ

U∞
=

∫ y

0

(
∂ (U/U∞)

∂ (y′/δ)
− ∂ (V/U∞)

∂ (x/δ)

)
d (y′/δ). (15)

Substituting the Blasius velocity profiles from Eqs. (13) and (14) into Eq. (15) leads to the following
relation:

Ũ

U∞
=

∫ η

0

(
f ′′ + η f ′ − f

Rex

)
dη. (16)

The Ũ∞ method[see Eq. (3)] assumes that the integral in Eq. (16) converges. The limit of the
integrand as η → ∞ can be evaluated as

lim
η→∞

(
f ′′ + η f ′ − f

Rex

)
= 1.217

Rex
, (17)

based on the Blasius boundary conditions, i.e., f ′[η → ∞] → 1, f ′′[η → ∞] → 0, and f [η →
∞] → η + C∞, where C∞ ≈ −1.217 is a universal constant [31]. The integrand in Eq. (16) does
not vanish in the limit η → ∞ and approaches the Rex-dependent value of 1.217/Rex. Therefore,
this method is incompatible with the laminar boundary layer equations since the solution of the
Blasius equations has finite z vorticity �z = −1.217/Rex in the free stream whereas the Ũ∞ method
assumes the z vorticity vanishes in the free stream.

For illustrative purposes, the Ũ∞ method can be applied to the laminar boundary layer if the
integral for Ũ∞ is truncated. Using the exact Blasius solution, the integral is artificially truncated at
δ99 in this application.
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2. The −y�z threshold method applied to a laminar boundary layer

The −y�z threshold method given in Eq. (4) can be written in terms of the Blasius solution as

η f ′′ + η2 f ′/Rex − η f /Rex

max(η f ′′ + η2 f ′/Rex − η f /Rex )

∣∣∣
η=ηδn

= 0.02. (18)

Although there are typically at least two solutions to Eq. (4), below Rex ≈ 610, there is only one
solution near the wall and no solution near the boundary-layer edge due to the overly large threshold
constant. In other words, below this critical Reynolds number, the method breaks down because the
vorticity decays to a finite value instead of vanishing completely as expected, with a similar reason
detailed in the previous subsection.

3. The mean-shear method applied to a laminar boundary layer

When the mean-shear method is applied to the Blasius boundary layer, the laminar nondimen-
sionalization in outer units, given in Eq. (5), is applicable. Expressing this equation in terms of the
Blasius solution leads to

∂U/U∞
∂y/δ

∣∣∣
y=δn

= ηδn f ′′
δn

= Cl , (19)

where ηδn and f ′′
δn

are the values of η and f ′′ evaluated at the boundary-layer edge. From the classical
definition of the boundary-layer thickness in Eq. (1) and the definition of f ′ in Eq. (13), y = δn

occurs when f ′ = n/100. By consulting the tabulated Blasius solution (see, e.g., Ref. [31]), ηδ99 ≈
3.5, f ′′

δ99
≈ 0.02, implying that Cl ≈ 0.07 corresponds to n = 99. While the optimal choice of the

parameter Cl can be derived for Blasius boundary layers, it may vary in more general laminar flows.

4. The local-reconstruction method applied to a laminar boundary layer

Since the boundary layer approximation implies that ∂P/∂y ≈ 0, the maximum stagnation
pressure P0,max = P0,∞. As such, the locally reconstructed inviscid solution from Eq. (11) can be
expressed as

UI [y] = ±
√(

U 2∞ + V 2∞
) − V 2[y]. (20)

The positive branch is adopted since the Blasius solution U [y] is always positive. Substituting
Eq. (14) leads to

UI [y] = U∞

√
1 +

(
(η∞ f ′∞ − f∞)√

2Rex

)2

−
(

(η f ′ − f )√
2Rex

)2

. (21)

After evaluating limη→∞(η f ′ − f ) as before, the expression

UI = U∞

√
1 + 1.2172 − (η f ′ − f )2

2Rex
(22)

holds. A Laurent series expansion of Eq. (22) indicates that as Rex → ∞, (UI − U∞)/U∞ ∼ 1/Rex.
Consequently, considering the new definition for δn [given in Eq. (9)] based on UI and the classical
definition [given in Eq. (1)] based on U∞, their difference decays like 1/Rex.

In Fig. 5, the relative errors between the computed and the classical definitions of the boundary-
layer thickness for the Blasius boundary layer are plotted versus the Reynolds number Rex between
100 and 106. It is observed that the error from the Ũ∞ method remains almost constant for the entire
Reynolds number range because its integral must be artificially truncated. The error from the −y�z

threshold method is relatively large because the empirical threshold constant suggested for turbulent
flows [10] is inappropriate for laminar boundary layers. In fact, as mentioned above, the boundary-
layer thickness is not identified in the regime with Rex < 610. Note that the mean-shear method is
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FIG. 5. Distributions of the relative error between the computed and the classical definitions of the
boundary-layer thickness versus the Reynolds number Rex for the Blasius boundary layer. Included are the
results from the Ũ∞ method (blue dotted line), the −y�z threshold method (red dash-dotted line), and the
local-reconstruction method (green solid line) for computing δ and a 1/Rex reference (black dashed line). Note
that the integral in the Ũ∞ method is artificially truncated at the analytical boundary-layer edge so a converged
solution is possible for this flow.

exact in the laminar boundary layer and its error therefore is not shown in Fig. 5. The error from
the local-reconstruction method is significantly lower than those from both of the mean-vorticity
methods and decays as 1/Rex as expected.

As a result, both the local-reconstruction method and the mean-shear threshold method are
appropriate for deployment in laminar boundary layers. However, the local-reconstruction method
is preferred over the mean-shear method since the local-reconstruction method does not require
calibration using the exact solution and thus is more generally applicable.

B. Analysis of the zero-pressure-gradient turbulent boundary layer

In this section, the above discussed methods for computing the boundary-layer thickness are
applied to the turbulent ZPGBL, which, like the Blasius boundary layer, has an agreed-upon
definition of δ given by Eq. (1).

As shown in Fig. 6, for the four considered methods, i.e., the two mean-vorticity-based methods,
the mean-shear method, and the local-reconstruction method, the relative errors between the com-
puted and the classical definitions of the boundary-layer thickness are plotted versus the friction
Reynolds number. The mean-shear method is normalized in inner units and a threshold constant
of 1 × 10−3 is adopted following Vinuesa et al. [15]. It is observed that the two methods that
rely on empirical threshold constants, i.e. the mean-shear method and the −y�z threshold method,
generate large errors (∼ 10%). Meanwhile, the local-reconstruction method and the Ũ∞ method are
considerably more accurate with negligible errors for all considered Reynolds numbers.

C. Qualitative model assessment for the flow over airfoils

Since there is no established definition for the boundary-layer thickness δ in complex flows, it is
challenging to quantitatively assess the performance of various methods. On the other hand, in many
scenarios, a qualitative examination is important and sufficient for turbulence model development.

Considering the flow over the suction side of a NACA 4412 airfoil at the AoA = 5◦ and the
Reynolds number based on the chord length Rec = 106, Fig. 7 shows the estimates for δ99 from
the five previously discussed methods at five different streamwise stations. Note that the results
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FIG. 6. Distributions of the relative error between the computed and the classical definitions of the
boundary-layer thickness versus the friction Reynolds number Reτ . Included are the results from the
local-reconstruction method (green squares), the Ũ∞ method (blue triangles), the −y�z threshold method
(red diamonds), and the mean-shear threshold method (purple circles). The cases plotted are ZPGBLs of
Refs. [17,28,30]. The mean-vorticity-based methods cannot be deployed with the data of Ref. [30] because
the vorticity statistics are not reported.

from the Ũ∞ method, the diagnostic-plot method, and the local-reconstruction method are mutually
consistent. The results from the max method, as the special case of the mean-shear threshold
method with the threshold constant of zero, are also consistent, except at the most downstream
station where the velocity profile is monotonically increasing. Meanwhile, the −y�z threshold
method systematically predicts a boundary-layer thickness larger than the others, implying that the
threshold suggested by Uzun and Malik [10] is not optimal for this case. Similar conclusions also
hold when deploying these methods to the flow over a symmetric NACA 0012 airfoil at AoA = 0◦
and Reynolds number Rec = 400 000, as shown in Fig. 8.

0.003 0.01 0.03 0.1
0.6

0.8

1

1.2

FIG. 7. Distributions of the mean streamwise velocity (black solid lines) versus the wall-normal coor-
dinate y for various profiles from the suction side of a NACA 4412 at AoA = 5◦ and Rec = 106 detailed
in Table I. These wall-normal profiles originate from the airfoil surface at the streamwise stations x/c =
0.20, 0.37, 0.55, 0.72, 0.90 (from top left to bottom right). The estimates of the boundary-layer edges (and
the corresponding edge velocities) are plotted with symbols as indicated in the legend.
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FIG. 8. Distributions of the mean streamwise velocity (black solid lines) versus the wall-normal co-
ordinate y for various profiles from a symmetric NACA 0012 at AoA = 0◦ and Rec = 400 000 detailed
in Table I. These wall-normal profiles originate from the airfoil surface at the streamwise stations x/c =
0.21, 0.37, 0.55, 0.72, 0.90 (from top left to bottom right). The estimates of the boundary-layer edges (and
the corresponding edge velocities) are plotted with symbols as indicated in the legend.

On the contrary, for the flow over the pressure side of the NACA 4412 airfoil at AoA = 5◦ and
Reynolds number Rec = 106, the conclusions are quite different. As shown in Fig. 9, only the results
from the diagnostic plot method and the local-reconstruction method are equivalent. Qualitatively,
these methods seem to identify the boundary-layer edge in a manner that is consistent both between
the five considered profiles and the predictions in Figs. 7 and 8. On the other hand, the Ũ∞ method
severely under-predicts δ99 at the most upstream station and overpredicts δ99 at other stations. The
−y�z threshold method also overestimates δ99. As expected, the max method is unreliable, since

0.003 0.01 0.03 0.1

0.9

0.95

1

FIG. 9. Distributions of the mean streamwise velocity (black solid lines) versus the wall-normal coordinate
y for various profiles from of a NACA 4412 at AoA = 5◦ and Rec = 106. This is the same as Fig. 7 except
that included profiles are from the pressure side of the airfoil (see Table I for details) and the wall-normal
profiles originate from the airfoil surface at the streamwise stations x/c = 0.21, 0.37, 0.54, 0.72, 0.89 (from
left to right). The estimates of the boundary-layer edges (and the corresponding edge velocities) are plotted
with symbols as indicated in the legend.
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FIG. 10. Distributions of the mean streamwise velocity U and the generalized velocity Ũ (a), the mean
vorticity �z, the −y�z boundary layer sensor, and the threshold constant (b), the stagnation pressure Po and
the dynamic pressure 0.5ρU 2

m (c), and the mean velocity U and the locally reconstructed inviscid solution UI

(d) versus the wall-normal coordinate y for the pressure side of a NACA 4412 airfoil at AoA = 5◦ and Rec =
106 detailed in Table I. All data is from the streamwise location x/c = 0.21. The estimates of the boundary-
layer edges from the respective methods (a), (b), (d) and maximum stagnation pressure (c) are plotted with
symbols. The subscript p denotes quantities evaluated at the furthest point from the wall in the wall-normal
profile.

several of the profiles are monotonically increasing and their maxima lie at yp, a length scale that is
not intrinsically connected to the boundary-layer thickness.

To investigate the reason for the failure of the mean-vorticity-based methods on the pressure
side of the airfoil, the flow is further analyzed at the most upstream (i.e. x/c = 0.21) and the most
downstream (i.e., x/c = 0.89) stations from Fig. 9. At the station x/c = 0.21, as shown in Fig. 10(a),
the generalized velocity does not achieve a constant value as y → ∞. In fact, Ũp is about 10% less
than the peak value of Ũ , which leads to an underprediction of δ99. For the −y�z threshold method,
as shown in Fig. 10(b), the distribution of the −y�z profile is as expected. The over-prediction
of δ99 is mainly attributed to the choice of the threshold constant. Despite the fact that the mean
vorticity does not vanish as y → ∞ as shown in Fig. 10(b), it is observed that the stagnation pressure
approaches a constant value outside the boundary layer, as shown in Fig. 10(c). As a result, the
locally reconstructed invicid UI profile agrees well with the viscous solution U in the freestream
region and the divergence of these profiles indicates the location of the boundary-layer edge, see
Fig. 10(d). On the other hand, the failure of the Ũ∞ method is mainly because of the sensitivity
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FIG. 11. This is the same as Fig. 10 except that the data is taken from wall-normal profiles originating from
the airfoil surface at the streamwise station x/c = 0.89. The estimates of the boundary-layer edges from the
respective methods (a), (b), (d) and maximum stagnation pressure (c) are plotted with symbols.

to the finite positive vorticity present outside the boundary layer. For the flow over an airfoil, it is
expected that the vorticity will vanish outside the boundary layer. However, simulations of airfoils
commonly use stretched stranded meshes, which are coarse in the streamwise and wall-normal
directions near the boundary-layer edge. This can lead to relatively large errors in computing the
spatial derivatives in the definition of the mean vorticity. Though the far-field vorticity observed in
Fig. 10(b) may be spurious, it is a concern that the mean-vorticity-based methods are sensitive to
this error.

At the downstream station x/c = 0.89, both mean-vorticity-based methods behave anomalously.
As shown in Fig. 11(a), the Ũ profile fails to achieve a constant value as y → yp. Also, the
mean vorticity outside the boundary layer is sufficiently large such that, as shown in Fig. 11(b),
−y�z increases as y → yp. Such a distribution is in conflict with the assumption of the −y�z

threshold method that the boundary-layer edge is the furthest point from the wall at which
−y�z/max(−y�z ) < 0.02. Also, there is no rigorous justification that this threshold value can be
achieved if the far-field vorticity is sufficiently large. As remarked above, although the presence
of vorticity outside the boundary layer is likely spurious, it presents a robustness concern for the
mean-vorticity-based methods. On the other hand, the local-reconstruction method performs well
when deployed in this case. As shown in Figs. 11(c) and 11(d), the stagnation pressure achieves a
constant asymptote, and the boundary-layer edge is reasonably detected.
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FIG. 12. Distributions of the mean streamwise velocity (solid lines) in panel (a), and the stagnation (solid
lines) and dynamic pressure (dashed lines) in panel (b) versus the wall-normal coordinate y for various
streamwise stations in a turbulent APGBL [6] with details specified in Table I. These wall-normal profiles
originate from the airfoil surface at the streamwise stations x/Lx = 0.09, 0.27, 0.44, 0.62, 0.79, 0.97 (from
left to right), where Lx denotes the length of the plate. The subscript Ly refers to quantities evaluated on the
domain boundary at y = Ly. In panel (a), the estimates of the boundary-layer edges (and the corresponding
edge velocities) are plotted with symbols as indicated in the legend. In panel (b), the maxima of the stagnation
pressure profiles are also indicated with symbols.

D. Analysis of a pressure gradient boundary layer and far-field viscous effects

In this section, the various methods for computing the boundary-layer thickness are applied to a
flat-plate APGBL from the well-resolved simulation database of Bobke et al. [6]. Although viscous
effects are typically negligible for y > δ in an APGBL, in this database, vorticity does not vanish
completely and the stagnation pressure also does not asymptotically approach a constant value in
the far-field.

Estimates for the boundary-layer thickness are shown in Fig. 12(a) for an APGBL [6] (referred to
as case m18 therein). The diagnostic-plot and the local-reconstruction methods provide consistent
predictions of the boundary-layer thickness for all six streamwise stations considered. The max
method also provides a consistent estimate except at the streamwise station with a monotonically
increasing profile. On the other hand, the Ũ∞ method systematically underpredicts δ99, while the
−y�z threshold method erroneously computes δ99 ≈ Ly with significant errors for most cases,
where Ly is the extent of the domain in the wall-normal direction. In Fig. 12(b), distributions of
the stagnation pressure and the dynamic pressure are plotted versus the wall-normal coordinate.
The profiles achieve the global maxima in the interior of the domain and the local minima at y = 0
and y = Ly. The local-reconstruction method, however, can handle such scenarios robustly.

To explain the failure of the mean-vorticity-based methods in Fig. 12(a), the second streamwise
station at x/Lx = 0.27 is examined in detail. As shown in Fig. 13(a), the generalized velocity Ũ
continuously decays rather than achieving a constant asymptote as y → Ly, which is the reason for
the systematic underestimate of δ99 by the Ũ∞ method in Fig. 12(a). In Fig. 13(b), the −y�z profile
is shown to cross the threshold three times, whereas this threshold is typically assumed to only
be crossed twice [10]. As indicated by Fig. 13(c), it is the third crossing that leads to the wrong
identification of δ99 ≈ Ly. As shown in Fig. 13(d), the locally reconstructed inviscid solution UI

agrees well with the velocity U profile in the middle area of the domain. Moreover, as expected, the
UI profile departs from the U profile near the wall and in the vicinity of the top boundary, due to
the fact that viscous effects are significant in both of these regions. Nonetheless, the boundary-layer
edge is well identified by the local-reconstruction method for this critical case.
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FIG. 13. Distributions of the mean streamwise velocity U and the generalized velocity Ũ (a), the mean
vorticity �z, the −y�z boundary layer sensor, and the threshold constant (b), the mean velocity U and the
locally reconstructed inviscid solution UI (d) versus the wall-normal coordinate y for the turbulent APGBL
[6] detailed in Table I. Panel (b) is reproduced in panel (c) on zoomed linear axes. All data is taken from the
streamwise station at x/Lx = 0.27. The estimates of the boundary-layer edges (and the corresponding edge
velocities) from the respective methods are plotted with symbols.

E. Consistency in channel and pipe flows

For a symmetric, fully developed channel or pipe flow, the boundary-layer thickness is con-
ventionally defined as the half-height of the geometry. However, most above mentioned existing
methods for computing δ may not recover this behavior. Although a programmatic way of comput-
ing δ is hardly needed for a fully developed channel or pipe flow, in complex or developing internal
flows, such as a serpentine duct with separation, the boundary-layer thickness is no longer trivially
defined by the geometry. This motivates interrogating each method for computing δ to see if the
expected behavior is recovered in a canonical internal flow, as this is a necessary condition for a
reliable prediction in complex internal flows.

Specifically, the intermittency-threshold and diagnostic-plot-based methods assume that the
intermittency and turbulence intensity, respectively, decay below a predefined threshold at
the boundary-layer edge. However, there is no guarantee that these thresholds will be crossed at the
centerline of a fully-developed channel or pipe flow. On the other hand, the fully-developed nature
of channel and pipe flows implies that �z = ∂U/∂y and Ũ = U since V = 0. This implies that the
−y�z threshold method and the mean-shear-threshold method correctly identify the centerline as
the boundary-layer edge if the corresponding thresholds are properly set to zero. By construction,
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TABLE II. Potentially unfavorable features (indicated by the × symbol) for the existing methods discussed
in Sec. II, Appendix A, and Appendix B and the local-reconstruction method developed in Sec. III. The total
number of potentially unfavorable features of each method is tabulated. ∗ additional data refers to any statistics
other than U [y].

Ũ∞ −y�z Mean-shear Diagnostic Composite Intermittency

Local-
recon-

struction
Method method threshold threshold plot profiles threshold method

Integral-based × ×
Computes derivatives or
standard deviations

× × × × ×

Employs empirical data × × × × ×
Requires iteration × × × ×
Requires high Re and/or a
quiet free stream

× × × × ×

Requires additional data∗ × × × × ×
Total 5 4 3 6 3 4 1

the Ũ∞ method fails in a fully developed channel or pipe flow due to the fact that the generalized
velocity Ũ continuously varies in the entire domain rather than asymptotically approaching a con-
stant value. For the local-reconstruction method, since (∂P/∂y)[y] = V [y] = 0, the peak stagnation
pressure occurs at the centerline, implying that the locally reconstructed UI is equal to the centerline
velocity U . Consequently, the predicted boundary-layer thickness δ100 corresponds to the half height
of the channel as expected. Note that the above discussions apply to both turbulent and laminar flows
in channels and pipes.

F. Comparative evaluation

To evaluate the robustness and the general applicability of the methods discussed above, the
potentially undesirable features of each method are summarized in Table II. The columns of the
table refer to the existing methods reviewed above and the proposed local-reconstruction method.
The rows of the table are discussed in a line-by-line manner below.

The first row indicates whether the method requires numerical integration, which may introduce
numerical truncation error that scales with the spatial resolution of the data. The second row
indicates whether the method relies on the computation of spatial derivatives or standard deviations,
as such operations are sensitive to noise. The third row indicates whether the method employs
empirical coefficients or profiles. The fourth row indicates whether the method invokes an iterative
procedure, and thus requires an initial guess for the boundary-layer thickness. Although an iterative
method may converge in simple applications, convergence for general velocity profiles can not
be guaranteed. The fifth row indicates whether the method is restricted to high-Reynolds-number
turbulent boundary layers with a quiet free stream. The last row indicates whether the method
requires additional data besides the mean streamwise velocity profile U [y]. For instance, the
intermittency-threshold method and the diagnostic-plot method require time-resolved data, which
may be unavailable in experiments or RANS simulations.

As shown in Table II, the various existing methods feature much more undesirable properties than
the local-reconstruction method, indicating the lack of robustness and the general applicability. The
local-reconstruction method is devoid of unfavorable characteristics with the exception of requiring
additional data, i.e., the V [y] and P[y] profiles, which are, however, often reported.
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V. CONCLUSIONS

Although the boundary-layer thickness can be rigorously computed in ZPGBLs, for flows with
curved geometries or other nonequilibrium effects, there exist no agreed-upon definitions for
the boundary-layer thickness and edge velocity. In this paper, the limitations of various existing
methods for computing the boundary-layer thickness are analyzed and contrasted with the proposed
local-reconstruction method. Without relying on any empirical parameters, the local-reconstruction
method employs the Bernoulli equation to locally reconstruct the inviscid velocity profile from the
pressure and wall-normal velocity profiles and identifies the boundary-layer edge by comparing
the reconstructed inviscid velocity profile with the viscous velocity profile. When deployed to the
laminar and turbulent ZPGBLs, quantitative assessment reveals that only the local-reconstruction
method achieves negligible errors without parameter tuning. Moreover, the proposed method is
readily applied to more complex flows, e.g., flows over airfoils and an adverse pressure gradient
boundary layer with far-field vorticity, with a consistent predictive capability.
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APPENDIX A: METHODS BASED ON COMPOSITE PROFILES

The boundary-layer thickness can be computed by assuming that the mean streamwise velocity
profile has a functional form that depends on δ and by fitting this function to the mean velocity
data. For turbulent flows, the assumed functional form of the velocity profile is referred to as a
composite profile [15] because typically the profile is composed of an inner law of the wall and
an outer law of the wake, e.g., Coles’s wall-wake formula [1], given by Eq. (6). More elaborate
composite profiles (e.g., Ref. [3]) have been proposed since, but in this Appendix, Coles’s law
[1] is considered for illustration purposes. Given the velocity profile U [y] from an experiment or
simulation, the parameters, i.e., κ , B, 
, and δ in Eq. (6), can be determined by a least-squares
fitting of the composite profile to the mean velocity data. Depending on the regime, a subset of
these parameters may be specified from well-established correlations to reduce the dimensionality
of the data fitting.

Vinuesa et al. [15] used the composite profile proposed by Nickels [3] to compute the boundary-
layer thickness for the flow over a 2D airfoil. It was found that an iterative method is required and
that the fitted composite profile does not agree well with the input velocity profile when the Reynolds
number is low or the pressure gradient is strong. In other words, the resulting estimate for δ is only
accurate insofar as the composite profile is rigorously applicable to the flow being considered. Due
to the lack of general applicability, the composite-profile-based methods are not investigated in this
paper.

APPENDIX B: METHOD BASED ON AN INTERMITTENCY THRESHOLD

For a turbulent boundary layer with a quiescent free stream, the boundary-layer thickness can
be determined using a sensor based on the intermittency, which is defined locally as the fraction of
time that the flow is turbulent. Common criteria for classifying the local flow as turbulent or laminar
are to define empirical thresholds for the instantaneous vorticity magnitude |ω| = | �∇ × �u| or the
instantaneous enstrophy ω · ω. For instance, Jimenez et al. [17] label the local flow as turbulent
when the instantaneous vorticity magnitude |ω|+ � 5 × 10−3, and laminar otherwise, resulting
in a binary value distribution at every instance in space and time. Subsequently, the distribution
of the intermittency function γ can be obtained by time averaging this binary field. At last, the
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boundary-layer thickness is defined as the wall-normal distance at which the intermittency drops
below a second empirical threshold. As shown by Murlis et al. [16], and Li and Schlatter [18], an
intermittency threshold constant of 0.3 correlates with δ99 well.

An obvious weakness of this approach is the reliance on two empirical threshold constants.
In addition, this method may fail in external flows with strong free-stream turbulence since the
prescribed thresholds might never be crossed. Also, this method does not function for laminar and
transitional flows since the intermittency is always zero in the laminar portion of boundary layer.

Moreover, the data required to deploy this method may not always be available. For instance, the
intermittency distribution is rarely measured in experiments [15]. In LESs, since intermittency is
not a mesh-convergent statistic, the estimate of the boundary-layer thickness depends on the mesh
resolution even if the mean velocity profile is well resolved. Nonetheless, the intermittency threshold
method has been successfully deployed in LESs [18]. Also, this method is not applicable in RANS
simulations, where the intermittency is typically not modeled.

APPENDIX C: METHODS BASED ON ASSUMED INVISCID PROFILES

The boundary-layer thickness can be estimated by assuming a functional form for the velocity
profile that applies for y > δ. For example, Kim and Simon [26] studied the spatially developing
boundary layer over a curved plate and assumed that the flow outside of the boundary layer recovers
the inviscid solution, which can be characterized by the hyperbola

UI,hyper = UI,hyper[y = 0]

1 − yk
, (C1)

where k is the signed curvature of the surface. (Note that this profile neglects the perturbation by the
displacement thickness which will perturb the effective geometry shape seen by the outer flow.) Kim
and Simon [26] determined UI,hyper[y = 0] by a least squares regression of two velocity samples at
wall-normal distances that are assumed to be outside the boundary layer. To validate this method,
the two data samples nearest the end of profile Up[y = yp] are chosen in this paper. Finally, this
profile is used to estimate the boundary-layer thickness according to Eq. (9).

A simplified version of this approach assumes that, outside the boundary layer, UI approaches
the linear asymptote,

UI,linear = my + UI,linear[y = 0], (C2)

where the slope m and the intercept UI,linear[y = 0] can be determined by fitting two velocity samples
in the same manner as above.

The reconstructed velocity profiles outside the boundary layer from these two methods and the
present method [as given by Eq. (11)] are shown in Fig. 14 for two of the previously considered data
sets. In both cases, the present method for computing UI based on the Bernoulli equation leads to a
significantly more accurate reconstruction of the velocity field U outside the boundary layer. This
implies that the present method, which leverages the wall-normal pressure profile, is more generally
applicable than the two simplified models.

APPENDIX D: GENERALIZATION OF THE LOCAL-RECONSTRUCTION METHOD FOR
COMPRESSIBLE FLOWS

The local-reconstruction method presented in Sec. III can be readily generalized for compressible
flows by replacing the stagnation pressure Po with the stagnation enthalpy ho. Based on the
assumption that the free-stream flow is inviscid and non-heat-conducting outside the boundary layer,
the stagnation enthalpy ho is approximately constant, i.e.,

ho = h + U 2
m

2
= const, (D1)
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FIG. 14. Distributions of the velocity profile U , the locally reconstructed inviscid velocity profile UI ,
and the hyperbolic and linear approximations of UI versus the normalized wall-normal coordinate y/c. The
boundary-layer thicknesses implied by Eq. (9) based on the three approximate inviscid solutions are indicated
with squares, diamonds, and circles, respectively. All data are from a NACA 4412 airfoil at AoA = 5◦ and
Rec = 106 [22]. Specifically, the data are extracted from the suction side at the streamwise station x/c = 0.72
(a) and the pressure side at x/c = 0.21 (b).

where h is the sensible enthalpy. Similar to the definition in incompressible flows, the locally
reconstructed invicid solution is U 2

I = U 2
m − V 2. Then, UI [y] can be written in terms of V [y], h[y],

and the reference stagnation enthalpy h0,ref as

U 2
I [y] = 2(h0,ref − h[y]) − V 2[y]. (D2)

For a calorically perfect gas h = CpT , where Cp is a constant specific heat, the expression

UI [y]2 = 2γ

γ − 1

(
Pref

ρref
− P[y]

ρ[y]

)
+ U 2

ref + V 2
ref − V 2[y] (D3)

holds. Since the stagnation enthalpy is constant across shock waves, the present method can be
deployed in flows containing shock waves, implying its potential extension to complex high-Mach
flows [32].
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