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We study the subgrid-scale characteristics of a vorticity-transport-based approach for
large-eddy simulations. In particular, we consider a multidimensional upwind scheme for
the vorticity transport equations and establish its properties in the under-resolved regime.
The asymptotic behavior of key turbulence statistics of velocity gradients, vorticity, and
invariants is studied in detail. Modified equation analysis indicates that dissipation can
be controlled locally via nonlinear limiting of the gradient employed for the vorticity
reconstruction on the cell face such that low numerical diffusion is obtained in well-
resolved regimes and high numerical diffusion is realized in under-resolved regions. The
enstrophy budget highlights the remarkable ability of the truncation terms to mimic the
true subgrid-scale dissipation and diffusion. The modified equation also reveals diffusive
terms that are similar to several commonly employed subgride-scale models including
tensor-gradient and hyperviscosity models. Investigations on several canonical turbulence
flow cases show that large-scale features are adequately represented and remain consistent
in terms of spectral energy over a range of grid resolutions. Numerical dissipation in under-
resolved simulations is consistent and can be characterized by diffusion terms discovered
in the modified equation analysis. A minimum state of scale separation necessary to obtain
asymptotic behavior is characterized using metrics such as effective Reynolds number and
effective grid spacing. Temporally -evolving jet simulations, characterized by large-scale
vortical structures, demonstrate that high Reynolds number vortex-dominated flows are
captured when criteria is met and necessitate diffusive nonlinear limiting of vorticity
reconstruction be employed to realize accuracy in under-resolved simulations.
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I. INTRODUCTION

Coherent structures are prominent in a wide range of turbulent flows including jets [1,2], wakes
[3,4], and atmospheric flows [5,6]. The critical characteristics of such flows are defined to a large
extent by the dynamics of dominant coherent structures, pointing to large-eddy simulation (LES)
as an ideal candidate model. In classical LES, a scale separation is performed typically via a low-
pass filter, and a subgride-scale (SGS) model is imposed to represent the impact of the unresolved
scales on the resolved scales. In practice, the SGS model provides a pathway for energy to dissipate
from the resolved scales because physical dissipation mechanisms (i.e., viscous dissipation at the
Kolmogorov scale) are unresolved. However, the accuracy of LES at high Reynolds numbers is
significantly influenced by discretization errors [7–10], as these errors can be of a similar magnitude
as the SGS model in practical scenarios. Despite this fundamental obstacle, functional [11–18]
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and structural [19–25] LES SGS models are actively developed and applied to practical flows with
varying degrees of success.

An alternate view eschews the explicit modeling of SGS and instead focuses on tailoring
numerical dissipation in the underlying discretization errors. Monotone integrated LES (MILES),
proposed by Boris et al. [26], utilizes functional reconstruction of the convective fluxes in a
monotonicity-preserving finite volume scheme to integrate the effects of the SGS on the resolved
scale. Results from similar numerical methods were also observed by Youngs [27] around the
same time. A more broadly defined methodology, referred to as implicit LES (ILES), requires a
careful consideration of discretization errors. Typically, ILES employs a certain class of numerical
methods, most notably monotonic upwind finite volume methods such as piecewise parabolic [28],
MPDATA [29], total variation diminishing [30], and flux-corrected transport [31], which have
implicit dissipation mechanisms [26,32,33]. In practice, ILES methods are employed on inertially
dominated (e.g., high Reynolds number) dynamics and regularize the under-resolved scales similar
to the way in which shock-capturing, nonoscillating finite volume schemes use weak solutions and
satisfy the entropy condition.

Thorough analysis of the schemes reveals the errors are often similar in form to certain SGS
models [34]. However, the form of the discretization errors does not necessarily have to be similar
to a SGS model provided the dissipation acts on the high wave-number range. Drikakis et al. [35]
characterized the effect of numerical resolution on the dissipation into two categories: (a) When
the solution is well-resolved and an adequate distinction between the start of the inertial range and
the dissipation scales exists, the numerical dissipation should not influence the large scales and the
eddies interacting with the largest scales should be reasonably resolved. The separation of scales
should not depend on the form of the dissipation. (b) The second category involves inadequate
numerical resolution, which is often confronted in engineering applications. Given an inadequate
separation between the large and dissipative scales, the numerical scheme should be designed to
mimic the impact of dissipation on the large scales. Many ILES solutions fall under this category,
including isotropic turbulence [30,36,37], geophysical flows [29,38], jets [26,39,40], and channel
flows [40].

In many vortex-dominated problems, especially those in which the vorticity distribution is
compact [41–43], the vorticity-velocity formulation of the Navier–Stokes equations has the potential
to be advantageous in comparison to the pressure-velocity form [44,45]. Despite the use of a wide
array of Eulerian [46,47], Lagrangian [48,49], and mixed numerical implementations [50,51] of
the vorticity transport equations (VTEs), modeling of unresolved dynamics remains an outstanding
issue. Further, while ILES has been prominently utilized in the context of the velocity-pressure
formulation, the authors are not aware of literature investigating implicit SGS characterizations for
schemes using the vorticity-velocity formulation. The goal of this paper is to explore how tailored
numerical schemes of vorticity-velocity formulation are suitable and can be characterized for ILES.

The vorticity-velocity formulation of the incompressible VTEs is obtained by applying the
curl operator to the momentum equations. While there is an increase to six (three vorticity and
three velocity) variables compared to four (three velocity and one pressure) variables in three
dimensions, the formulation is advantageous in flows with compact vorticity distributions typical
of vortex-dominated flow, as the potential flow regions do not need to be part of the computational
domain. In Eulerian methods, accurate boundary conditions can be developed [43,44,52], allowing
for efficient simulations in a compact domain. Further, the Poisson equation for pressure, normally
a stiff equation, is replaced by the kinematic velocity-vorticity relationship.

Numerical schemes [48,53,54] using the Lagrangian description of the flow field have seen
considerable success and have applied the LES methodology through development of vorticity
SGS models [49,55]. Both Refs. [49,55] introduced eddy-viscosity type SGS models for the
vorticity-velocity formulation using the Lagrangian description. However, Lagrangian frameworks
are not optimal for a wide range of turbulent flows. Furthermore, a priori tests of forced homoge-
neous, isotropic turbulence in Ref. [55] reveal that both vorticity convection and vortex stretching
contribute to SGS dissipation, but the dissipation due to vortex stretching is inadequately captured
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by the SGS model. On the other hand, relatively few Eulerian vorticity numerical schemes have been
developed [46,56,57]. Recently developed upwind finite volume methods for the VTE [45,47,58]
have been shown to efficiently capture and preserve vortical structures with relatively coarse
resolution (a few grid cells spanning vortex cores). Consistent integration of both the vorticity
convection and vortex stretching terms is a prominent feature of schemes in Refs. [45,58]. While
these schemes fit into the philosophy of ILES, an understanding of their SGS behavior has not been
established in the context of turbulent flows.

Margolin et al. [34] used modified equation analysis (MEA) to examine leading order diffusive
and dispersive error terms. Based on a Taylor series representation, the modified equation is the
effective partial differential equation satisfied by the numerical method. Their work specifically
addresses finite volume approaches and thus volume-averaged filtering. The leading terms in the
modified equation are used to elucidate the dissipative effects on the large resolved scales. As
the numerical resolution of the scheme increases, the dissipation should focus on a narrowing
range of high wave numbers and not impact the large scales. Several studies [30,36] emphasized
the calculation of an effective viscosity or Reynolds number for a given grid resolution with
resolved features. Since the filter and dissipation are based on the grid resolution, it is imperative to
understand whether there is a sufficient separation of resolved and dissipation scales. A minimum
state of scale separation is necessary to reproduce high Reynolds number flows with asymptotic
turbulence statistics [36,59]. In this paper, we will examine the utility of a finite volume scheme
for the VTE [45,58], characterize its ILES properties, and provide a methodology to estimate
effective Reynolds numbers. This particular formulation has a number of features pertinent for
ILES: consistent integration of vorticity convection and vortex stretching terms, promoting stability
and accuracy and the ability to represent and preserve sharp gradients. Rigorous characterization of
the SGS behavior in canonical turbulent flows enables the use of VTE-based schemes in complex
vortex-dominated turbulent flows such as in rotorcraft and wind turbine wakes.

We begin the study by introducing the governing and filtered equations in Sec. II. We provide
a description of the numerical scheme and analyze the implicit SGS model in Secs. III and IV,
respectively. We detail the results of numerical experimentation of canonical turbulence flows in
Sec. V. Finally, we conclude our paper and provide details for future studies in Sec. VI.

II. GOVERNING AND FILTERED EQUATIONS

We employ the vorticity-velocity formulation of the Navier-Stokes equations obtained by ap-
plying the curl operator to the incompressible mass and momentum equations. In compact index
notation, the unsteady, three-dimensional incompressible VTEs are as follows (i, j = 1, 2, 3):

∂ωi

∂t
+ ∂

∂x j
(u jωi − uiω j ) = fi + 1

Re

∂2ωi

∂x j∂x j
, (1)

where ui is the velocity and ωi = εi jk∂uk/∂x j is the vorticity, the curl of the velocity where εi jk is
the Levi-Civita tensor. fi is the curl of the body force and Re = UL

ν
is the Reynolds number defined

by a characteristic velocity scale U , characteristic length L, and kinematic viscosity ν. The inviscid
fluxes in Eq. (1) can be rewritten in quasilinear form as follows:

∂ωi

∂t
+ A1

∂

∂x1
ωi + A2

∂

∂x2
ωi + A3

∂

∂x3
ωi = 0, (2)

where the eigenvalues of matrix A1 are λ1 = {0, u1, u1}, A2 are λ2 = {u2, 0, u2}, A3 are λ3 =
{u3, u3, 0}. The eigenvector matrices Ri for Ai are

R1 =
⎡⎣u1 0 0

u2 1 0
u3 0 1

⎤⎦, R2 =
⎡⎣1 u1 0

0 u2 0
0 u3 1

⎤⎦, R3 =
⎡⎣1 0 u1

0 1 u2

0 0 u3

⎤⎦. (3)
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These equations are degenerate in a hyperbolic sense. As an example, if any component of u equals
zero, then the eigenvectors are linearly dependent. This presents difficulties for construction of
stable upwind schemes. This is similar to ideal magnetohydrodynamics, for which Godunov [60]
suggested the addition of a symmetrizing term. Following this idea and Ref. [58], an additional term
is included to stabilize the governing equations. The equations are thus modified in the form

∂ωi

∂t
+ ∂

∂x j
(u jωi − uiω j ) + ui

∂ω j

∂x j
= fi + 1

Re

∂2ωi

∂x j∂x j
, (4)

Included with the VTE due to the incompressible assumption is the solenoidality of both the velocity
and vorticity fields:

∂ui

∂xi
= ∂ωi

∂xi
= 0. (5)

We refer to Eq. (4) as the modified VTE because the final term on the LHS is an additional
term, which is proportional to the divergence of vorticity. Analytically, the term is zero [Eq. (5)],
but numerically, this stabilizes the hyperbolic system of equations. The modification in Eq. (4)
stabilizes the equations with eigenvalues λi = {ui, ui, ui} and the eigenvectors of the canonical basis
vector for R3 [58]. A similar modification is used in the magnetohydrodynamic equations to enforce
a divergence-free magnetic field [61], however, in our context we employ the modification for
numerical stability.

The vorticity-velocity formulation in three dimensions has six unknowns. While the three
vorticity variables are obtained through the VTE, a supplemental equation is needed to obtain the
velocity induced by the vorticity. The vorticity-velocity relationship is written in the form of a
Poisson equation as follows:

∂2ui

∂x j∂x j
= −εi jk

∂ωk

∂x j
. (6)

A. The filtered vorticity transport equations

By spatial filtering the VTE in Eq. (4), we obtain the following filtered VTE:

∂ω̃i

∂t
+ ∂

∂x j
(̃u jω̃i − ω̃ j ũi ) + ũi

∂ω̃ j

∂x j
= f̃i + 1

Re

∂2ω̃i

∂x j∂x j
− ∂τi j

∂x j
, (7)

where ·̃ indicates the spatial filtering or a resolved quantity and the τi j is the SGS vorticity stress due
to the filtering operation. We note that filtering is not performed through an explicit filter function
and we assume that the filtering operation and the derivatives commute. The grid cell of the mesh at
a size � is an implicit physical-space sharp cut-off filter where the velocity and vorticity fluctuations
can only be resolved at a size greater than �. The SGS torque, the divergence of the SGS vorticity
stress, which accounts for the unresolved velocity and vorticity fluctuations, is defined as

∂τi j

∂x j
= ∂

∂x j
[(ũ jωi − ũ jω̃i ) − (ũiω j − ũiω̃ j )] +

[
˜

ui
∂ω j

∂x j
− ũi

∂ω̃ j

∂x j

]
. (8)

The SGS torque term is composed of three different terms: (1) the vorticity transport by unresolved
velocity fluctuations, (2) the unresolved vortex stretching, and (3) the unresolved contributions for
the vorticity divergence modification in Eq. (4). Unlike previous LES schemes for the VTE [49,55]
where there is not an additional vorticity divergence term, the SGS vorticity stress tensor is not
purely antisymmetric. Here, we attempt to rearrange the SGS terms. The first two terms in Eq. (8)
can be combined into a single antisymmetric tensor as follows:

(τi j )a = (ũ jωi − ũ jω̃i ) − (ũiω j − ũiω̃ j ). (9)
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FIG. 1. Sketch of multidimensional scheme using both normal F1 and transverse G2 fluxes.

However, the third term introduced through the vorticity divergence modification cannot be readily
decomposed into an SGS vorticity stress tensor and as such it remains a separate term of the SGS
torque: (

∂τi j

∂x j

)
d

=
˜

ui
∂ω j

∂x j
− ũi

∂ω̃ j

∂x j
. (10)

However, through manipulation, this term can be rewritten as follows:

∂ (τi j )m

∂x j
=

(
∂ω̃ jui

∂x j
− ∂ω̃ j ũi

∂x j

)
− (ω̃ j si j − ω̃ j s̃i j ), (11)

where si j = 1
2 (∂ jui + ∂iu j ) is the strain rate. We can obtain another two portions of the SGS terms.

The first divergence modification contains terms that are similar to the third and fourth terms in
Eq. (9):

(τi j )d = ũiω j − ũiω̃ j . (12)

While the other term contains the strain rate:

∂ (τi j )s

∂x j
= −(ω̃ j si j − ω̃ j s̃i j ). (13)

The practical purpose of these terms in the LES methodology is to provide a pathway of energy
transfer between the resolved scales to the unresolved (subgrid) scales, which is enabled by ensuring
additional dissipation.

III. MULTIDIMENSIONAL UPWIND FINITE VOLUME

We employ a multidimensional upwind finite volume approach to numerically integrate the VTE.
This approach, within the philosophy of the ILES, is similar to Lax-Wendroff-like schemes where
upwind differences are corrected by second-order transverse flux corrections to produce a solution
that is second-order accurate in space and time. Our multidimensional scheme is solved in a series
of dimensional sweeps. The total flux across a cell face in each direction is the sum of several fluxes
accounting for both normal and transverse directional fluxes. A simplified two-dimensional flux is
demonstrated in Fig. 1. The updated vorticity is computed as shown (for clarity vectors are shown
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in bold and ·̃ removed from all variables),

ωn+1
i, j,k = ωn

i, j,k − �t

�x1

[((
F l

1

)n

i+ 1
2 , j,k − (

Fr
1

)n

i− 1
2 , j,k

) − (
(G1)n

i+ 1
2 , j,k − (G1)n

i− 1
2 , j,k

)]
− �t

�x2

[((
F l

2

)n

i, j+ 1
2 ,k − (

Fr
2

)n

i, j− 1
2 ,k

) − (
(G2)n

i, j+ 1
2 ,k − (G2)n

i, j− 1
2 ,k

)]
− �t

�x3

[((
F l

3

)n

i, j,k+ 1
2
− (

Fr
3

)n

i, j,k− 1
2

) − (
(G3)n

i, j,k+ 1
2
− (G3)n

i, j,k− 1
2

)]
, (14)

where n is the time iteration and i, j, k are the indices of the grid cell centers in three directions. The
flux functions F l , Fr are normal directional (with respect to the cell faces) fluxes and are obtained
by solving a generalized Riemann problem developed for the VTE [58]. To account for the fluxes
traveling oblique to the cell faces while simultaneously increasing numerical stability and accuracy,
transverse fluxes are included. The transverse directional flux functions G are computed using the
flux-based wave propagation approach [45]. All flux functions are stored at the cell faces. Note that
both left and right normal flux functions F l

i and Fr
i , respectively, are stored at each cell face, while

a single transverse flux function Gi is stored at each cell face.
First, we detail the normal directional fluxes F l

i , Fr
i , which are determined by allowing the

vorticity to be discontinuous at the cell face. The sharp discontinuity-capturing scheme can be
beneficial for simulating turbulence that is dominated by large coherent structures. In flows such
as these, regions that are dominated by coherent structures can be efficiently captured by compact
vorticity variables. On the other hand, in under-resolved turbulence regions, the scheme adds
additional numerical dissipation (more discussion on this in Sec. IV).

The solution to the generalized Riemann problem for vorticity, which is allowed to be discontin-
uous across the cell face, begins by reconstructing the vorticity stored at the cell center on the cell
face. For simplicity, we will focus on the Riemann problem at cell face (i + 1/2, j, k) and translated
to x1 = 0. The initial condition for the Riemann problem is

ω0(x1, 0) =
{

ωL + (
x1 + 1

2�x
)
sL, if x1 < 0

ωR + (
x1 − 1

2�x
)
sR, if x1 > 0,

(15)

where (·)L at i, j, k, (·)R is at i + 1, j, k, �x is the cell size, s is the slope of the vorticity. Achieving
second-order accuracy via slope reconstruction is beneficial in maximizing the separation of scales
for ILES. In areas of smooth vorticity, a second-order accurate central difference can be used,
however, as with most second-order accurate discontinuity-capturing schemes, an appropriate slope
needs to be used and a limiter is employed. A limiter reduces the slope calculation to a first-order
accurate difference and effectively adds numerical diffusion.

Integrating the VTEs, Eq. (4), with the vorticity reconstruction, Eq. (15), over the space
[− 1

2�x,
1
2�x] × [0,�t], where �t is the time step, a left-moving flux F l

1 and right-moving flux
Fr

1 are obtained at the cell face as follows (Fr,l
2 and Fr,l

3 follow similarly):

F l
1 =

{
u1ω̂

L − uω̂L
1 + 1

2 usL
1�x, if u1 � 0

u1ω̂
R − uω̂R

1 + 1
2 usR

1 �x + u
[

1
2

(
sL

1 − sR
1

)
u1�t + (

ω̃L
1 − ω̃R

1

)]
, if u1 < 0,

(16)

Fr
1 =

{
u1ω̂

L − uω̂L
1 − 1

2 usR
1 �x − u

[
1
2

(
sL

1 − sR
1

)
u1�t + (

ω̃L
1 − ω̃R

1

)]
, if u1 � 0

u1ω̂
R − uω̂R

1 − 1
2 usR

1 �x, if u1 < 0,
(17)

wheres for conciseness, additional vorticity reconstruction variables are created:

ω̂L = ωL + 1
2 sL(�x − u1�t ), ω̂R = ωR − 1

2 sR(�x + u1�t ),

ω̃L
1 = ωL

1 + 1
2 sL

1�x, ω̃R
1 = ωR

1 − 1
2 sR

1 �x.
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Next, we detail the computation of the transverse fluxes. In this scheme, we pursue a flux-based
wave decomposition introduced in Ref. [62], where the flux difference, F l − F r , is rewritten as a
linear combination of eigenvectors. This choice is motivated because the solution to the generalized
Riemann problem is known, is linearly independent in each direction, and can be used directly
without costly manipulations. In this implementation, the fluxes, F l

1 and Fr
1, only need to be

computed once (per time step), and the transverse fluxes are evaluated with that solution. The flux
difference is decomposed into f waves Z p, the flux wave, as follows:

F l − Fr =
m∑

p=0

β prp ≡
m∑

p=1

Z p (18)

and

β = R−1(F l − Fr ), (19)

where the eigenmatrix R is simply the identity matrix [45].
From Eq. (19) and the eigensystem, we obtained a simple relationship for the f waves Z p =

F l − Fr exactly. The relationship allows for the multidimensional wave propagation corrections to
be implemented equivalently to a three-dimensional advection equation described in Ref. [63] if the
f waves are normalized by the eigenvalues λi.

In a multidimensional problem, the fluxes propagate in the transverse x2 and x3 directions,
depending on the wave speed given by the eigenvalues of the Jacobian, which are exactly the
velocities ui at the cell face. The transverse fluxes are implemented by using the f waves and
transverse velocity at the grid cell (i, j, k) and updating the transverse fluxes in surrounding cells.
The most important transverse fluxes are the two-dimensional fluxes given by the following:

(G2)n
I,J− 1

2 ,k = −1

2

�t

�x1
u2Z1, (G3)n

I, j,K− 1
2

= −1

2

�t

�x1
u3Z1, (20)

where n is the time-step iteration and the indices for the grid cell influenced by the transverse flux
are given by

I =
{

i, if u1 > 0

i − 1, if u1 < 0
, J =

{
j + 1, if u2 > 0

j, if u2 < 0
, K =

{
k + 1, if u3 > 0

k, if u3 < 0
.

Additional transverse fluxes are employed, which account for three-dimensional fluxes as well
as higher-order corrections. For a detailed implementation, see Foti and Duraisamy [45].

IV. MODIFIED EQUATION ANALYSIS

In the following, we present the MEA for the multidimensional generalized Riemann problem-
based upwind finite volume scheme. MEA analysis was first proposed in Ref. [64] and subsequently
used to characterize the unresolved scales for ILES [32,34]. The intuition is that in certain classes of
numerical methods, the effects of the unresolved scales can be represented by the truncation error
of the discretization. This analysis must be carefully exploited when considering high Reynolds
number turbulent flows discretized with upwind finite volume schemes. Slope limiting with a
multidimensional scheme yields a complex, nonlinear scheme. In particular, the dissipation is
proportional to the multidimensional interfacial wave jumps. It must also be recognized that in
under-resolved flows, the leading order terms may not necessarily be the best approximator of the
truncation terms.

Due to the complexity of including the exact form of the slope limiter employed in the vorticity
reconstruction in the scheme, two limiting cases of the modified equation are analyzed: (1) the
vorticity at the cell interface is smooth and a second-order central difference can be employed, and
(2) the vorticity at the cell interface is discontinuous and a limiter switches the slope to a first-order
upwind difference.
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The procedure to develop the modified equation begins with expanding the scheme with Taylor
series expansions [33,64]. For example, the scheme in Eq. (14) contains the following, which can
be substituted with a series expansion:

ωn+1
i − ωn

i

�t
= ∂ωi

∂t
+ �t

2

∂2ωi

∂t2
+ �t2

6

∂3ωi

∂t3
+ O(�t3), (21)

where n is the vorticity at t and n + 1 is the vorticity at t + �t . Similarly, all terms in the flux
functions in Eqs. (16), (17), and (20) can be substituted with Taylor series expansions in terms of
vorticity as a function of time t or space x. The accumulation of all expansions in the scheme can
be manipulated to include terms in Eq. (4) as follows:

∂ωi

∂t
+ ∂

∂x j
(u jωi − uiω j ) + ui

∂ω j

∂x j
= ν

∂2ωi

∂x j∂x j
+ Ti j, (22)

where Ti j is the term that includes all second-order accurate and higher terms from the series
expansions not included in the VTE. The remainder is manipulated to substitute temporal derivative
terms with spatial terms using the governing equations. As such, the remainder Ti j is a complex
function that contains many high order spatial derivatives of the vorticity and velocity. In the
philosophy of ILES, the leading order terms in the expansion term Ti j are related to the SGS vorticity
stress Ri j due to truncation as follows:

Ti j = ∂

∂x j
Ri j + O

(
�3

x

)
. (23)

Ti j acts as an implicit subgride-scale model, which is completely dependent on resolved variables.
Note that there is a distinction between the SGS vorticity stress Ri j due to truncation and theoretical
SGS vorticity stress τi j due to filtering. In what follows we demonstrate that by changing the form
of the slope employed in the vorticity reconstruction on the cell face, the modified equation can be
tailored.

First, we examine terms that remain after the VTE is subtracted from the Taylor series expansion
of the scheme in smooth regions and a second-order accurate central difference is employed, i.e.,
sl

1 = 1/(2�x )[ω(x + �x ) − ω(x − �x )]. In turbulent flows in which we are interested, a smooth
spatial region of vorticity often corresponds to a resolved (or nearly resolved) region dominated by
a large-scale coherent vortical structure.

In the MEA, the lowest order remaining terms are second-order accurate terms in space and are
considered to have the largest influence on the scheme. Moreover, these terms can be collected to
implicitly provide a model for the SGS torque. Equation (24) shows the second-order accurate terms
that make up the implicit SGS torque. For clarity in presentation, only the x1 and x2 directions are
shown ( j = 1, 2); however, the third x3 direction follows the same form:

∂R1 j

∂x j
= �2

1

(
1

12
u1

∂3ω1

∂x3
1

− 1

4
u1

∂3ω1

∂x3
1

− 1

8

∂2u1

∂x2
1

∂ω1

∂x1
+ 1

12
u2

∂3ω1

∂x3
2

− 1

4
u1

∂3ω2

∂x3
1

− 1

8

∂2u2

∂x2
2

∂ω1

∂x2

)
,

∂R2 j

∂x j
= �2

2

(
1

12
u1

∂3ω2

∂x3
1

− 1

4
u2

∂3ω1

∂x3
2

− 1

8

∂2u1

∂x2
1

∂ω2

∂x1
+ 1

12
u2

∂3ω2

∂x3
2

− 1

4
u2

∂3ω2

∂x3
2

− 1

8

∂2u2

∂x2
2

∂ω2

∂x2

)
,

(24)

where �i is the grid cell size in the ith direction. All terms are dispersive (containing odd-ordered
derivatives of vorticity) in nature, indicating that in smooth regions where a second-order central
difference is used, there are no second-order accurate implicit diffusive terms (even-ordered deriva-
tives of vorticity), which can act as numerical routes for implicit SGS dissipation. We take a closer
look at the diagonal terms (∂1R11 and ∂2R22) of the SGS torque to obtain some insight into the effects
of the modification of the VTEs and the effect of the antisymmetric and nonsymmetric SGS terms
(due to Eqs. (9) and (10), respectively).
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By rewriting terms in Eq. (24) that are associated with the diagonal terms of Ri j , an antisymmetric
part of the SGS torque associated with Eq. (9), ∂ jRa

i j , can be formed and shown to be equal to zero
in the following:

∂Ra
11

∂x1
= 1

12
�2

xu1
∂3ω1

∂x3
1

− 1

12
�2

xu1
∂3ω1

∂x3
1

= 0,

∂Ra
22

∂x2
= 1

12
�2

xu2
∂3ω2

∂x3
2

− 1

12
�2

xu2
∂3ω2

∂x3
2

= 0. (25)

The remaining leading order terms can be collected into the following:

∂Rd
11

∂x1
= −1

6
�2

2u1
∂3ω1

∂x3
1

− 1

8
�2

1
∂2u1

∂x2
1

∂ω1

∂x1
,

(26)
∂Rd

22

∂x2
= −1

6
�2

1u2
∂3ω2

∂x3
2

− 1

8
�2

2
∂2u2

∂x2
2

∂ω2

∂x2
,

where ∂ jRd
i j is due to the modification term added to the VTE. Terms associated with the off

diagonals of Ri j contain dispersive terms. This modified equation of the scheme near a smooth
vorticity field shows that there is a limiting case that can be used to reduce the amount of numerical
dissipation added by the numerical method, which can control the SGS dissipation and energy
transfer.

The next limiting case employs a limiter to reduce the order of the slope in regions in which
vorticity gradients may be very large. In numerical simulations of turbulence, large gradients and
discontinuities arise in under-resolved regions of the flow where gradients caused by eddies the size
of the grid cell or larger cannot be smoothed by smaller scale eddies that are physically present
in the flow but are not numerically captured. Toward this end, a forward/backward difference is
employed. For example, the slope of the vorticity is calculated as sl

1 = 1/�x[ω(x1) − ω(x1 − �x )].
These eddies transfer energy in a turbulent flow and the reduction in order of the slope essentially
introduces diffusion into the solution to maintain nonoscillatory behavior. The lowest-order terms
remaining from the modified equation are shown in the following (again we limit the result to two
dimensions for clarity but the x3 direction has the same form):

∂R1 j

∂x j
= �1

2
u1

∂2ω1

∂x2
1

+ �2
1

(
−1

8

∂2u1

∂x2
1

∂ω1

∂x1
− 1

6
u1

∂3ω1

∂x3
1

)
+ �1

2
u2

∂2ω1

∂x2
2

+ �2
1

(
−1

8

∂2u2

∂x2
2

∂ω1

∂x2
+ 1

4

∂u2

∂x2

∂2ω1

∂x2
2

− 1

4

∂u1

∂x1

∂2ω2

∂x2
1

+ 1

3
u2

∂3ω1

∂x3
2

− 1

2
u1

∂3ω2

∂x3
1

)
, (27)

∂R2 j

∂x j
= �2

2
u1

∂2ω2

∂x2
1

+ �2
2

(
−1

8

∂2u1

∂x2
1

∂ω2

∂x1
+ 1

4

∂u1

∂x1

∂2ω2

∂x2
1

− 1

4

∂u2

∂x2

∂2ω1

∂x2
2

+ 1

3
u1

∂3ω2

∂x3
1

− 1

2
u2

∂3ω1

∂x3
2

)
+ �2

2
u2

∂2ω2

∂x2
2

+ �2
2

(
−1

8

∂2u2

∂x2
2

∂ω2

∂x2
− 1

6
u2

∂3ω2

∂x3
2

)
, (28)

which include a single first-order accurate in space term and several second-order accurate terms.
We can readily see that this case includes both diffusive and dispersive terms for vorticity. This
indicates that limiting the slope of the vorticity is necessary to add diffusive terms to include
dissipation to solve turbulent flows through an ILES. As with the first limiting case, a few of the
terms in Eq. (27) can be rewritten to show a zero diagonal of an anti-symmetric portion of the SGS
torque in the following:

∂Ra
11

∂x1
= �2

1

(
1

4

∂u1

∂x1

∂2ω1

∂x2
1

− 1

4

∂u1

∂x1

∂2ω1

∂x2
1

+ 1

3
u1

∂3ω1

∂x3
1

− 1

3
u1

∂3ω1

∂x3
1

)
= 0. (29)
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Similarly, terms can be rearranged in ∂2Ra
22 = 0 and ∂3Ra

33 = 0. The rest of the terms in the diagonals
are accumulated in the part of the SGS torque corresponding to the introduction of the vorticity
divergence term modification, which includes a first-order accurate diffusive term.

The analysis reveals that each component in the SGS vorticity stress tensor Ri j contains diffusive
terms. In the following, we select terms from Eq. (27) to explore how the diffusion is present in
the SGS vorticity stress tensor and its similarity to well-known SGS models. We emphasize that
similarities to explicit SGS models are employed to just enhance our understanding of the ILES
dissipation. In complex turbulent flows, the process of limiting the slope and multidimensionality
can affect the actual leading terms of the modified equation such that they may not precisely
mimic the action of explicit SGS models. We show that three separate diffusive SGS vorticity stress
mechanisms are present in the modified equation and can be summed as follows:

Ri j = Rg
i j + Rh

i j + Rt
i j . (30)

The first term is constructed as follows:

∂Rg
12

∂x2
= −1

8
�2

2
∂2u2

∂x2
2

∂ω1

∂x2
+ 1

4
�2

2
∂u2

∂x2

∂2ω1

∂x2
2

, (31)

We can manipulate the terms by introducing another dispersion term and integrating the SGS torque
to obtain a single form for the off-diagonal elements in the SGS vorticity stress tensor, which can
be written in index notion as follows:

Rg
i j = 1

4
�2 ∂u j

∂xk

∂ωi

∂xk
, (32)

where � is the grid spacing in the ith direction. The form of Eq. (32) can be readily seen as a term
similar to tensor-gradient models [15,65,66] for the SGS. These models have been shown to not
be overly dissipative and are often paired with an eddy viscosity model [65,66]. They also provide
both dissipation and backscatter, an important aspect of turbulence, which is not possible in eddy
viscosity-type models. However, when employed alone, the tensor-gradient model can be unstable
[66].

An alternate form for the numerical dissipation can be explored with another group of dispersive
and diffusive terms as shown in the following:

∂Rh
12

∂x2
= −1

2
�2

2u2
∂3ω1

∂x3
2

− 1

4
�2

2
∂u1

∂x2

∂2ω1

∂x2
2

, (33)

where these terms again can be manipulated and integrated. The second numerical dissipation term
for the SGS vorticity stress has the form

Rh
i j = −1

4
�2u j

∂2ωi

∂xk∂xk
. (34)

This term has a form that is similar to hyperviscosity models [49,67], which have the form of
(−1)n+1∇2nu, where n > 1. Reference [67] used the hyperviscosity model for the SGS stress tensor
with ∇ 2̃si j , which was added to a standard Smagorinsky model and motivated by SGS dissipation of
enstrophy. Hyperviscosity models with increasing n have less effect on dissipation and bottleneck
effects shown on the turbulence spectra [68]. However, paired with the tensor-gradient model, it
may provide less dissipation than is observed with standard mixed models.

With these two terms, all of the diffusive terms in the modified equation and SGS torque are
accounted for except the single first-order diffusive term, which appears in both the diagonal and
nondiagonal elements of the SGS vorticity stress tensor. This term can be integrated to show another
form of the numerical dissipation:

Rt
i j = 1

2
�u j

∂ωi

∂x j
. (35)
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These terms show that in the limit of a slope reconstruction with a first-order slope, there are several
modes for additional numerical diffusion that can be used to increase the energy transfer from the
resolved scales to the SGSs and add dissipation.

The two limiting cases for the present scheme show that the dissipation of the scheme can be
controlled using well-designed limiters for specific flows. The present scheme is developed to
conserve coherent vortical structures in flows. When regions of the flow field are dominated by
large coherent structures, which are not subject to the inertial range energy transfer determined
by the SGS stresses, the vorticity tends to be smooth and less implicit dissipation is included.
However, in regions of small-scale vortical structures where the flow field is under-resolved and
discontinuities in the vorticity are present, the dissipation needs to be increased to account for the
energy transfer to the SGSs. This formulation provides a plausible framework to simulate large-scale
features of turbulent flows without providing dissipation at all flow scales, a common problem for
Smagorinsky-like explicit methods.

V. NUMERICAL EXPERIMENTATION

In this section, we discuss results obtained through numerical experimentation of several canon-
ical flows of turbulence in a periodic box. We investigate a Taylor-Green vortex in Sec. V A, forced
isotropic turbulence in Sec. V B, and a temporally evolving jet in Sec. V C. All simulations employ
the multidimensional wave propagation approach described above.

A. Taylor-Green vortex

The Taylor-Green vortex is a well-studied flow field [69–71], which encompasses large struc-
tures, transition, and decaying turbulence, and is used to assess the ability of the scheme to capture
the complexities of vortex stretching and breakdown using under-resolved grids [36,72,73]. The
test case is used to demonstrate how the present scheme can be employed to emulate the dominant
SGSs, most importantly dissipation, from the initial conditions of large coherent structures through
a transition to turbulence at high Re. The initial velocity flow field for the Taylor-Green vortex is
given by

u1(x1, x2, x3) = u0 cos(kx1) sin(kx2) cos(kx3),

u2(x1, x2, x3) = −u0 sin(kx1) cos(kx2) cos(kx3), (36)

u3(x1, x2, x3) = 0,

where u0 = 1 is the velocity scale and k0 = 1 is the length scale of the flow field. Using these scales,
Re = u0/νk0 = 1/ν, where ν is the dynamic viscosity specified for each simulations. Simulations
are designed in a periodic cube with length 2π with a uniform grid. We start by exploring how
well the scheme captures the pertinent physics at Re = 1600 with a nondissipative second-order
central difference (referred to as no-limiter) and a high dissipative limiter, the minmod limiter. The
first limiter is directly related with the results from the modified equation in Sec. IV. On the other
hand, the modified equation for the first-order backward slope detailed in Sec. IV is only similar to
the minmod limiter because the minmod limiter chooses between first-order backward and forward
differences and removes slopes where the backward and forward differences have opposite slopes.

Figure 2 shows the energy spectra of simulations at several grid resolutions (N = 64, 128, and
256) at two time instances tu0k0 = 5, during the transition to turbulence as the large-scale structures
are breaking down, and tu0k0 = 10, near the maximum dissipation. Additionally, a spectral method
solver [21] is employed to provide direct numerical simulation (DNS) comparisons. The DNS
employs 256 spectral modes to fully resolve the flow. In Fig. 2(a), the low wave-number region of the
energy spectra in all simulations is able to be captured accurately compared to the DNS results from
the spectral method regardless of the slope limiter employed. The decline in energy in the spectrum
for each simulation corresponds to the grid resolution where the lowest resolution begins to fall off
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FIG. 2. Energy spectra E (k) of simulations at several under-resolved grid resolutions at Re = 1600 at
(a) tu0k0 = 5 and (b) tu0k0 = 10. Red: no-limiter, black: minmod limiter. The magenta dotted line is the energy
spectra from DNS results.

at lowest wave numbers. This is expected for the under-resolved simulations. The highest resolution
case, while using the same number of degrees of freedom as the DNS, approaches the DNS solution
but has slightly less energy in inertial range modes. Test cases that employ the minmod limiter have
lower energy in modes starting near a wave number k/k0 = 10 compared to the no-limiter limiter.
It becomes noticeable in the lower resolution test cases at lower wave numbers, however, they all
occur in the inertial range. This is due to the dissipative nature of the minmod limiter, which allows
for more implicit dissipation especially in modes that have a wave number comparable to the inverse
size of the grid cell, 1/�x. Figure 2(b) shows similar behavior for the energy spectra; however, the
lowest grid resolution cases show an increased energy at low wave numbers. This can be attributed
to the evolution of the flow at this grid resolution because the number of necessary modes needed
to provide an acceptable solution are higher than the number of modes resolved.

The Taylor-Green vortex is simulated as several higher Re = 2000, 3000, 5000, and an inviscid
case, Re = ∞, in order to investigate the scheme in cases where the impact of viscosity is low
or, in the case of Re = ∞, nonexistent. Figures 3(a) and 3(b) show the energy spectra of each Re
case at tu0k0 = 5 and tu0k0 = 10, respectively, at two different grid resolutions. All simulations
show similar low and high wave-number behavior for all Re at particular grid resolution. All cases
regardless of Re or grid resolution, the largest scales are similar. In fact, the Reynolds number has
little effect on the low wave numbers, while at the high wave numbers, the energy in these modes
increase with Re. This is due to the diminishing effects of the viscosity. However, the spectra clearly
show that the scheme provides a pathways for energy dissipation because there is no build up of
energy in high wave-number modes.

Next, we focus on the dissipation spectra of the simulations, which is directly obtained from the
vorticity flow field. Figure 4(a) shows the dissipation spectra at tu0k0 = 5 has several low wave-
number peaks that are well captured by all simulations with N = 128 or 256 while there is lower
dissipation in most modes for the N = 64 simulations. Overall, compared to the energy spectra, the
dissipation spectra is well captured at all wave numbers, especially for the N = 256 test cases. This
is an indication that these simulations can accurately resolve most of the dissipation. Near the peak
dissipation at tu0k0 = 10, Fig. 4(b) shows that grid resolution and the slope limiter start to have
more effect on the resolved dissipation. The N = 256 no-limiter case dissipation spectrum is very
comparable to the DNS dissipation spectrum at most wave numbers, while the minmod limiter test
case at the same resolution reveals that it can only capture the dissipation spectra at lower wave

024606-12



SUBGRID-SCALE CHARACTERIZATION AND ASYMPTOTIC …

FIG. 3. Energy spectra E (k) of simulations at several under-resolved grid resolutions N = 128 (solid line)
and N = 64 (dashed line) at Re = 1600, 2000, 3000, 5000, and ∞ at times (a) tu0k0 = 5 and (b) tu0k0 = 10.

numbers. A general trend shows that the no-limiter cases have slightly higher dissipation modes.
This is an indication that the no-limiter test cases can resolve slightly more dissipation compared
to the minmod limiter, but we need to investigate further. While the no-limiter can capture slightly
more dissipation, it also does not add any numerical dissipation on the order of �2

x , so it may not be
able to dissipate sufficient energy. The minmod case shows slightly lower dissipation modes in the
spectra, but there is numerical dissipation that is not accounted for in this metric.

The total dissipation, including numerical dissipation, ε = dK/dt , where K = 1
2 〈uiui〉 (〈·〉 indi-

cates averaged over the computational domain) is the kinetic energy, is integrated over the entire
domain and recast into a nondimensional form, ε∗ = ε/k0u2

0. Figure 5(a) shows the temporal
evolution of the dissipation for the N = 256 test cases where both the no-limiter and minmod
limiter cases provide reasonable results compared to the DNS dissipation, which is filtered using
several sharp-cutoff spectral filters with widths including � = 2�x, 4�x, and 8�x. The filtered
DNS dissipation ε̃ is the temporal derivative of the filtered kinetic energy k̃. The filtered kinetic

FIG. 4. Dissipation spectra E (k) from the resolved vorticity of simulations at several under-resolved grid
resolutions at Re = 1600 at (a) tu0k0 = 5 and (b) tu0k0 = 10. Red: no-limiter, black: minmod limiter. The
magenta dotted line is the dissipation spectra from DNS results.
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FIG. 5. The filtered dissipation ε̃∗ as a function of time for (a) N = 256, (b) N = 128, and (c) N = 64. Red
dashed line: no-limiter, black solid line: minmod limiter. The magenta line is the dissipation from DNS results
spatially filtered with a sharp-cutoff spectral filter with several filter widths � = 2�x (solid line), 4�x (dashed
line), and 8�x (dotted line).

energy is obtained by integrating over all wave numbers in the sharp-cutoff spectral filtered energy
spectrum with different filter widths obtained from the DNS at each time step. While there are some
discrepancies, the peak dissipation is captured reasonably well for both cases and is comparable
to the DNS filtered solution at � = 2�x. Figure 5(b), which shows the total dissipation for the
N = 128 cases, reveals that the minmod limiter case out performs the no-limiter case. The minmod
limiter case can reasonably capture the peak dissipation, which is comparable to the N = 256
cases and the filtered DNS dissipation at � = 4�x. Figure 5(c) shows total dissipation for the
N = 64 test cases. Neither results are as reasonable as the higher resolution cases, indicating that
very under-resolved cases may be overly dissipative in certain regimes such as near the maximum
dissipation of the Taylor-Green vortex. On the other hand, the numerical dissipation in a regime
of strong coherent vortex interaction at short times or decaying turbulence at long times are more
reasonably captured in very under-resolved cases. However, this low resolution case demonstrates
evidence of SGS backscatter present in numerics as the numerical dissipation becomes negative
around tu0k0 = 15. These results as well as the dissipation spectra indicate that when the flow is
reasonably under-resolved, the numerical dissipation is necessary. The adequacy of the resolution
will be explored below and is imperative to understand when employing ILES in general. In our
scheme, the numerical dissipation has a form that is qualitatively similar to physically devised
models, an aspect that offers insight in understanding the implicit SGS dissipation mechanisms.

Simulations at several higher Re = 1600, 2000, 3000, 5000, and ∞ reveal the effects of the
numerical dissipation with diminishing viscosity for N = 128 and N = 64 in Figs. 6(a) and 6(b),
respectively. For the N = 128 between the initial condition and maximum dissipation (0 < tu0k0 <

9), all cases share a similar numerical dissipation. The extrema are amplified by the increasing Re,
which suggests that viscosity plays a role in smooth the dissipation. The effects at Re = ∞ shows
the largest discrepancies between the ILES cases and the DNS and suggest that including some
physical viscosity dissipation helps stabilize the scheme. Figure 6(b) shows the N = 64 cases with
increasing Re. The cases corroborate the findings in Fig. 5(c) that a severely under-resolved case
does not necessarily capture the dissipation well for all cases. This will be further explored in further
below.

Next, we provide further analysis to compare the numerical dissipation of the scheme to the form
of dissipation that is obtained through the MEA in Sec. IV. Similar analysis [67,74,75] on how the
resolved vorticity field affects SGS dissipation transport has provided insights into the dynamics of
the flow. We start with presenting the transport equation for the resolved enstrophy Ẽ = 1

2 〈ω̃iω̃i〉 that
is obtained by multiplying Eq. (4) by ωi and filtering. The resolved enstrophy transport equation is
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FIG. 6. The filtered dissipation ε̃∗ as a function of time for (a) N = 128 and (b) N = 64 at Re =
1600, 2000, 3000, 5000, and ∞. The magenta line is the dissipation from DNS results spatially filtered with a
sharp-cutoff spectral filter with several filter widths � = 2�x (solid line), 4�x (dashed line), and 8�x (dotted
line).

given by the following:

∂ Ẽ
∂t

= − ũ j
∂ Ẽ
∂x j︸ ︷︷ ︸
I

+ ω̃iω̃ j̃ si j︸ ︷︷ ︸
II

+ ν
∂2Ẽ

∂x j∂x j︸ ︷︷ ︸
III

− ν
∂ω̃i

∂x j

∂ω̃i

∂x j︸ ︷︷ ︸
IV

− ω̃iũi
∂ω̃ j

∂x j︸ ︷︷ ︸
V

− ω̃i
∂

∂x j
(Ri j )︸ ︷︷ ︸

VI

, (37)

which relates the temporal change in the resolved enstrophy to spatial changes in the vorticity,
velocity, and SGS vorticity stress tensor. The equation contains several mechanisms that balance
the temporal change in resolved enstrophy: (I) convection, (II) amplification by vortex stretching,
(III) diffusion by viscous effects, (IV) dissipation by viscous effects, (V) diffusion by divergence
modification, and (VI) SGS dissipation and SGS diffusion. Term VI can be expanded into two terms
as follows:

ω̃i
∂

∂x j
(Ri j ) = ∂

∂x j
(ω̃iRi j ) − Ri j

∂ω̃i

∂x j
, (38)

where the first term is the diffusion by SGS modes and the second term is the SGS dissipation. This
expansion allows us to investigate the SGS dissipation by terms that are present in the modified
equation. We discretized each derivative (in space and time) using standard three-point second-order
central differencing. Note that vorticity does not need to be discretized, because it is the solution
variable. Every term in Eq. (37) except term VI can be directly calculated from the instantaneous
flow. However, because it is necessary to balance Eq. (37), we can find term VI, which gives us the
exact numerical SGS dissipation and SGS diffusion due to the scheme and slope limiter. Figure 7(a)
shows the temporal evolution of each term in Eq. (37) for the test case with N = 64 employing the
minmod limiter. Near the initial time, the temporal change in the enstrophy is dominated by the
amplification of vortex stretching. At this time, the vortical structures are large and nearly resolved
by the grid resolution and there is very little SGS interactions. However, as the flow progresses
toward the transition to turbulence around tk0u0 = 5, the SGS term begins to increase as a balance to
the amplification by vortex stretching. Around this time, there is non-negligible viscous dissipation,
however, the other terms are small compared to the vortex stretching and SGS terms. This trend
continues toward the maximum dissipation time near tk0u0 = 9 and after as the turbulence begins to
decay. The trend that vortex stretching balances the SGS dissipation is consistent with experiments
of high Reynolds number turbulence [67] with multiprobe hot-wire measurements. Overall, the
SGS term is balanced by the vortex stretching, which indicates that a majority of the dissipation is
provided by the numerical method not the viscosity.
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FIG. 7. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 64 test case
with minmod limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the
temporal evolution of the SGS dissipation and diffusion obtained from the modified equation for the N = 64
test case with minmod limiter.

In Fig. 7(b), the SGS dissipation and SGS diffusion term (VI) in Eq. (37) are compared with the
modeled SGS dissipation and production (i.e., modified equation subgrid dissipation and diffusion)
that uses Ri j = Rt

i j + Rg
i j + Rh

i j from Eqs. (35), (32), and (34), respectively. The temporal evolution
of the modified equation SGS dissipation and SGS diffusion has a similar trend as the numerically
calculated term while there are some discrepancies near the peak dissipation. These discrepancies
arise from (a) the simplified calculation of the modified equation by not incorporating the exact
limiter definition and (b) truncation of the final modified equation to only second-order accurate
terms. The modeled SGS dissipation and modeled SGS diffusion are obtained through Eq. (38),
which shows that SGS dissipation is the dominating term compared to the diffusion.

The balance of enstrophy is also investigated at a higher grid resolution in Fig. 8(a) with N =
128 and the minmod limiter. The temporal evolution of the amplification by vortex stretching term
is the dominant term in the enstrophy balance. Compared to N = 64, the amount of the viscous
dissipation is increased, which is expected because the higher grid resolution resolves more viscous
dissipation. The increased viscous dissipation acts as an offset for the SGS dissipation and SGS
diffusion term, which is comparably less for all simulated time compared to the corresponding
terms in the N = 64 test case. Figure 8(b) shows the comparison of the calculated SGS dissipation
and diffusion term with the modeled SGS dissipation and SGS diffusion. At this resolution, the
model elucidated from the MEA is shown to be well represented because higher order terms in the
modified equation become smaller with higher grid resolution. As with the coarser grid resolution,
the SGS dissipation is dominant compared to the SGS diffusion. Overall, the enstrophy transport
equation analysis shows that the numerical results and the form of the implicit SGS model derived
from the MEA are similar and provides validation for the MEA for this scheme.

The modified equation SGS dissipation and diffusion can be separated into three different terms
based on Eqs. (32), (34), and (35) developed directly from the modified equation. This allows us to
identify which mechanism dominates the dissipation in the ILES. Figure 9(a) shows the temporal
evolution of the three terms for the N = 64 test case with the minmod limiter. Overall, the modified
equation SGS dissipation is driven by terms similar to a tensor-gradient model. Similarly, for the
N = 128 test case with the minmod limiter shown in Fig. 9(b), the tensor-gradient terms in Eq. (32)
are the dominant mechanism for dissipation. In general, these SGS models with tensor gradients
are not overly dissipative and normally are paired with other models. This is consistent with the
SGS dissipation shown herein. The modified equation terms similar to a hyperviscosity model in
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FIG. 8. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 128 test case
with minmod limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the
temporal evolution of the SGS dissipation and diffusion obtained from the modified equation for the N = 128
test case with minmod limiter.

Eq. (34) are shown to contribute to the total SGS dissipation, which enables the total modified
equation SGS dissipation to have a similar temporal evolution as the calculated SGS dissipation
(term VI). The SGS dissipation contribution from Eq. (35) is shown to be relatively less significant
for both resolutions.

Figure 10(a) shows the enstrophy balance for the N = 64 with no-limiter case to show the
temporal evolution of the transport of enstrophy when no limiter is employed in the scheme, which
limits the numerical dissipation. Similar to the limited cases presented in Fig. 7, amplification by
vortex-stretching dominates the evolution of enstrophy but is significantly larger than the limited

FIG. 9. The temporal evolution enstrophy transport of components of the SGS dissipation and diffusion
obtained from modified equation in Eqs. (32), (34), and (35) for (a) N = 64 and (b) N = 128 test cases with
minmod limiter.
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FIG. 10. The temporal evolution of terms in the enstrophy transport equation for (a) N = 64 and (b) N =
128 test cases with no-limiter.

cases. Furthermore, terms IV and V are also augmented compared to the limited case by the lack
of limiter and pathway for dissipation. This has a large influence on the balance and the SGS
dissipation/diffusion term. This term is significantly higher than the limited case and corroborates
the high numerical dissipation observed in Fig. 5(c). Similarly, the N = 128 case shows that the
amplification of vortex stretching is elevated by the lack of limiting. This affects the enstrophy
balance by increasing the remainder calculated in the SGS dissipation/diffusion.

Figure 11 compares the SGS dissipation εSGS with the expected SGS dissipation obtained through
DNS. The latter is obtained by filtering the dissipation spectra Fig. 4 using a sharp-cutoff spectral
filter with a length scale 2π/(N/4 + 1), where N is the grid resolution for each case. Figures 11(a)–
11(c) show the SGS dissipation for the N = 256, 128, and 64 cases, respectively. As expected, as
the length scale of the filter is increased, the total SGS dissipation increases for both the DNS and

FIG. 11. The SGS dissipation εSGS for the Taylor-Green vortex for (a) N = 256, (b) N = 128, and (c) N =
64. The SGS dissipation obtained from the modified equation analysis is shown for the N = 128 and N = 64.
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ILES. The SGS dissipation from both ILES cases (minmod and no-limiter) are lower than the DNS
dissipation, as expected based on the dissipation spectra, which indicated that the total resolved
dissipation smaller than the filter scale is relatively small. The SGS dissipation obtained through the
MEA for the N = 128 and N = 64 cases with the minmod limiter ωi∂ jRi j is included in Figs. 11(b)
and 11(c). The SGS dissipation is relatively similar to that from the filtered DNS for N = 128. It
is, however, underpredicted for N = 64. This provides further evidence with Fig. 5(c) that more
analysis and clarification is needed, especially in the low resolution limit.

Next, to further understand the implicit numerical dissipation and SGS model derived from the
modified equation analysis, we compare several terms of the modified equation to the well-known
Smagorinsky model. A Smagorinsky model [11] was developed in Ref. [55] for the VTE and can
used for closure of Ri j :

∂Ri j

∂x j
= gi = − ∂

∂x j

(
νt

∂ωi

∂x j

)
− ∂νt

∂x j

∂ω j

∂xi
. (39)

The eddy viscosity νt is given by

νt = Cs�
2 |̃S|, (40)

where S̃i j is the filtered strain-rate tensor, Cs is the Smagorinsky constant and |̃S| = (2S̃i j S̃i j )
1
2 .

While the implicit model is shown by MEA to consist of several terms [Eqs. (35), (32), and (34)]
and provide implicit SGS vorticity stress on all tensor elements, the comparable Smagorinsky model
creates an anti-symmetric SGS vorticity stress tensor.

Additional LES cases are simulated using the explicit model in Eq. (39). No limiter is used in the
upwind-based scheme to ensure that the dissipation is enabled through the explicit model; however,
there is still interaction between the scheme dissipation and explicit model dissipation. Several
Smagorinsky constants are employed, including Cs = 0.1 and 0.3, where the former is used in
Ref. [55] with a vortex particle method discretization. Simulations are performed at N = 64 and 128
resolutions of the Taylor-Green vortex at Re = 1600 to compare to the present results. Figures 12(a)
and 12(b) show the numerical filtered dissipation ε̃∗ at N = 64 and N = 128, respectively. The
dissipation is shown to be affected significantly by the Smagorinsky constant. In fact, the constant
used previous studies is shown to be out performed by the ILES. The higher constant, especially in
N = 64 performs slightly better. The discrepancies are affected by the interactions of the modified
equation of the vorticity transport scheme, even if no limiter is employed, and the SGS model.
Further insights into the performance of explicit LES compared to the present implicit model
is shown in the enstrophy transport analysis in Figs. 12(c) and 12(d) for N = 64 and N = 128,
respectively. Results from the explicit LES model suggest that the value of the model coefficient
produces high variability for the SGS dissipation. Moreover, a priori tests of forced homogeneous,
isotropic turbulence [55] reveal that both vorticity convection and vortex stretching contribute to
SGS dissipation, but the explicit eddy-viscosity model does not capture the contribution from vortex
stretch adequately. While the variability may be reduced with a dynamic model [12,55], the overall
simplification, deterministic dissipation through the modified equation, consistent integration of
both the vorticity convection and vortex stretching, and reduced computational effort of the implicit
approach are desirable qualities for a scheme. Furthermore, ILES has been described by one
constant—typically the effective viscosity [76]—to quantify the observed behavior of the simulated
flow field.

Finally, we analyze the scheme by attempting to provide methodology to characterize the
flow field in terms of a numerical effective Reynolds number Re f . In the previous analysis, we
demonstrated that the numerical dissipation of the present schemes and the dissipation predicted
by the modified equation are similar. In what follows, we provide methodology to characterize
the flow to determine if the simulation is sufficiently resolved to provide an accurate solution.
This is particularly important considering the N = 64 simulations where numerical dissipation is
considerably different from DNS dissipation. If the simulation is not sufficiently resolved, then we
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FIG. 12. The filtered dissipation ε̃∗ as a function of time for (a) N = 64 and (b) N = 128 comparing test
case with minmod limiter, two explicit LES cases with Cs = 0.1 and 0.3, and DNS results from a spectral
method. The temporal evolution of the calculated SGS dissipation and diffusion obtained from the present
method, the modified equation, and Smagorinsky model for explicit LES with grid discretization of (c) N = 64
and (d) N = 128.

provide information on what the simulation physically solved. In coarse-grained simulations, such
as LESs either explicit or implicit, where small scales are not directly solved but are modeled, the
Re f can be used to interpret what the simulation physically solved. The methodology is based on
the analysis of an ILES Euler scheme of turbulence flows by Ref. [36]. For incompressible flows
with sufficiently fine grid resolution to be considered a DNS, the numerical dissipation −dK/dt and
resolved dissipation εE = 2ν〈ωiωi〉 are equal. This means that the scales impacted by the numerics
of the scheme are in only in a narrow band of high wave numbers dominated by the viscous scales. In
the under-resolved simulations presented herein, the ratio of the resolved enstrophy and dissipation
is used to characterize the Re f as the following:

Re f = u0

k0ν f
= 〈ω∗

i ω
∗
i 〉

ε∗ . (41)

Figure 13(a) shows the temporal evolution of Re f of several test cases, including some additional
test cases with different Re = u0/k0ν than presented above to understand some general trends. The
additional Re’s included are 800, 2000, 3000, 5000, and an inviscid case where Re = ∞. In each
case, the initial Re f is near the Re, indicating that the initial numerical dissipation and resolved
dissipation are equal. However, the Re f decreases as the enstrophy increases toward a maximum.
The grid resolution of each case has an effect on how the Re f decreases where the largest decreases
can be attributed to the lowest grid resolution cases. In Fig. 13(b), the Re f is selected at t = 5
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FIG. 13. The effective Re, Re f , as a function of twice the enstrophy throughout the runtime of the
simulations for several grid resolutions and viscosities. Re f at (b) t = 5 and (c) maximum dissipation.

when the transition to turbulence is occurring. The Re f is observed to be a function of the physical
viscosity while the grid resolution has a secondary effect. However, the Re f is lower than the
Re, which indicates there is noticeable discrepancy in the numerical dissipation and the resolved
dissipation. The Re f is selected at the location of maximum dissipation for each case and is shown in
Fig. 13(c). The results show that the grid resolution has the largest effect on Re f . The Re f increases
with the grid resolution. Regardless of the slope limiter or Re, all cases show similar behavior.
This suggests that the numerical dissipation is highly affected by the grid resolution compared to
the effects of the viscous diffusion or limiting in the flux functions of the present scheme for the
Taylor-Green vortex. We observe that the N = 128 cases, which have a closer Re f to 800 than 1600,
can be reasonably compared to the results for the Re = 800 in some parts of the evolution of the
flow. At the highest resolution case N = 256, secondary effects of the Re begin to have a larger
effect.

Next, we can use the ratio of the numerical dissipation and the resolved dissipation to create an
effective length scale as follows:

�x f = ε1/2

(ω̃iω̃i )3/4 . (42)

The effective length scale is compared with the Kolmogorov length scale η provide by the DNS at a
Re = 1600 in Fig. 14. The temporal evolution of the effective length scale indicates that before the
transition to turbulence, the flow field is relatively resolved. However, as the large structures begin
to break down, the grid is no longer sufficiently fine to resolve the flow and the effective length scale
become larger than the Kolmogorov scale. The grid resolution has a large effect on the evolution of
the effective length scale.

Further analysis into Re f of the simulations allows us to interpret the effective viscosity ν f with
the Taylor microscale λ which is calculated as follows:

λ = 1

3

3∑
i

√
〈uiui〉/

〈
∂ui

∂xi

∂ui

∂xi

〉
. (43)

The effective Taylor microscale Reλ = u′λ/ν f . Many studies on high-Re turbulence have investi-
gated the relationship between the energy containing eddies in flows with the dissipation especially
using turbulence-resolving DNS or experiments [77–80]. From these efforts, we are able to conclude
that the timescale of the energy-containing eddies u′/L are on the same magnitude as the timescale
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FIG. 14. The ratio of the effective grid spacing and Kolmorgorov lengthscale (from DNS) �x f /η for the
Re = 1600 cases. Red: no-limiter, black: minmod limiter.

of the dissipation rate ε/u′2, where u′ is the characteristic velocity scale and L is the characteristic
length scale. This key finding is especially beneficial for success with under-resolved simulations
where, by resolving large energy-containing eddies, there is some understanding of the magnitude
of the dissipation just based on resolved characteristics. Furthermore, the DNS studies showed that
with a sufficiently high Reλ, the flow reaches a minimum state [81] where turbulence seems to
exhibit self-similar behavior. The minimum state of turbulence flows where the timescale of the
large scales and dissipation in terms of Reλ can be as low as Reλ > 100 [82,83] or Reλ > 200
[77,80]. For the Taylor-Green vortex case with Re = 1600, the maximum Reλ = 140 [70]. This
implies that to reach some self-similarity of small-scale turbulence, the flow must have sufficient
separate scales and the dissipation must occur away from the large scales in the spectral sense.
Referemce [36] used this criteria to characterize ILES schemes for velocity-pressure formulation to
see if a minimum state is reached. Furthermore, well-known relationships for Reλ to a large-scale
ReL exist. Several studies have pointed toward ReL ∼ Re2

λ [84,85].
We present details on the characteristics of several of the Taylor-Green simulations in Table I,

which shows the effective Re at transition to turbulence (t = 5), maximum dissipation (t ≈ 9), and
decaying turbulence (t = 15, 20). Here, we calculate the characteristic velocity as the rms (root-
mean square) of the velocity fluctuations u′ = 〈( 1

3 uiui )1/2〉. The high-resolution cases with N = 256
show that the limiter has minor effects on Re f as also shown in Fig. 13. While only at the transition
stage has the flow field reached a sufficiently high Reλ, this is consistent with ILES simulations
for the Euler equations [36]. The DNS has an initial Reλ = 55 which increases to the maximum
Reλ = 140 [70,76] around t = 9. Reλ ≈ 100 at larger times t > 10 as the turbulence decays. In the
N = 128 test cases, the numerical dissipation provided by the minmod limiter has more effects while
in N = 64, the Re f remains relatively low and does not provide positive results during turbulence
decay, indicating that the grid resolution is not high enough or the dissipation is not enough for this
flow.

B. Forced isotropic turbulence

Next, we consider the numerical experimentation of isotropic turbulence simulation employing
a forcing scheme developed for linear forced turbulence in physical space [86]. Forced isotropic
turbulence provides test cases that allow for velocity and vorticity statistics to be collected over the
simulation, which are used to assess the ILES dissipation and ability to capture turbulence statistics.
A forcing term f̃ = ∇ × ε0/3u′2u, where ε0 is a constant energy injection and u′ = ( 3

2 〈K〉)
1/2

is
the rms velocity updated throughout the simulation, is included in Eq. (4) to maintain a nearly
constant energy after an initial transient time. The energy injection constant is ε0 = 5 × 10−5. The
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TABLE I. Effective Re for ILES of Taylor-Green vortex.

N Limiter t Re f = u0
k0ν f

�x f Reλ = u′λ
ν f

ReL ∼ Re2
λ

256 No-limiter 5.00 774 2.30 × 10−2 98 9692
9.03 1048 1.60 × 10−2 58 3407

15.00 1624 1.61 × 10−2 47 2251
20.00 1704 1.98 × 10−2 43 1871

Minmod 5.00 923 2.16 × 10−2 122 14991
8.30 698 2.13 × 10−2 52 2711

15.00 1135 2.08 × 10−2 47 2226
20.00 1283 2.30 × 10−2 45 2048

128 No-limiter 5.00 639 2.60 × 10−2 86 7527
8.49 589 2.31 × 10−2 42 1819

15.00 1328 1.92 × 10−2 45 2100
20.00 1596 2.04 × 10−2 41 1725

Minmod 5.00 769 2.47 × 10−2 109 11956
8.29 533 2.67 × 10−2 52 2755

15.00 856 2.57 × 10−2 39 1559
20.00 1313 2.39 × 10−2 47 2212

64 No-limiter 5.00 1356 1.84 × 10−2 203 41296
8.23 329 3.28 × 10−2 38 1503

Minmod 5.00 667 2.80 × 10−2 104 10965
8.33 303 3.75 × 10−2 46 2144

simulation cases are initialized using the conditions for isotropic turbulence. It is simulated from
an initial condition, which quickly decays into fully developed turbulence, given in Refs. [87,88]
where the initial energy spectrum takes the form

E (k, 0) = 3

2A

1

kσ+1
p

kσ exp

(
−σ

2

(
k

kp

)2)
, (44)

where kp is the wave number at which E (k, 0) is maximum, σ is parameter, and A is∫ ∞
0 kσ exp(−σk2/2)dk. A flow is initialized with σ = 4 and kp = 3. The ν = 0.0007 gives an initial

Reynolds number based on the length of the side domain, 2π , and the initial velocity fluctuations
of Re = 6 × 103. Grid resolutions are employed in the 2π -sided periodic box with the number of
grid cells per dimension N = 256, 128, 64, and 32 with a minmod limiter for all resolutions. An
additional no-limiter case is employed for the N = 256 resolution based on results above which
show that the N = 256 is nearly resolved for the present initialization.

Several studies [31,36,39] have employed forced turbulence simulations to examine the turbu-
lence statistics, especially to see sensitivities the velocity, vorticity, and strain rates have for ILESs
with different grid resolutions. It has been observed in Ref. [36] for ILESs above a mixing transition
of Reλ > 100 [83], the behavior of the turbulence statistics in terms of velocity probability density
functions (PDFs) begin to approach asymptotic Re statistics. Figure 15 shows the longitudinal and
transverse fluctuating velocity gradients with a comparison to DNS [89] and grid turbulence experi-
mental measurements [90]. The present simulations capture the turbulence statistics well, especially
the high probability statistics for all grid resolutions. The tails of the PDFs, which represent only
a small fraction of the solution, correspond well with higher Reλ DNS and experimental cases,
which suggests that the numerical dissipation in the scheme may be appropriate for simulating
high Re turbulence cases in which intermittency and non-Gaussian behavior at the tail of PDFs are
observed. The negative bias of the longitudinal derivative of the fluctuating velocity is similar to
results present in DNS and experimental flow field statistics. The PDF of the transverse derivative
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FIG. 15. Longitudinal (left) and transverse (right) velocity gradient probability density functions nor-
malized by the rms vorticity ω′ with several grid resolutions. Markers indicate PDFs captured from DNS
results from Ref. [89] are at Reλ = 35, 61, 94, and 168 and experimental measurements from Ref. [90] are at
Reλ = 852. Each PDF is labeled.

of the fluctuating velocity shown in Fig. 15 demonstrates the convergence of the velocity toward
non-Gaussian behavior observed for this quantity. The turbulence statistics indicate that there is
convergence toward high Re turbulence statistics.

Figure 16(a) shows the near-Gaussian behavior, similar to flow fields from DNS results, of the
velocity fluctuations, which show asymptotic convergence as the grid resolution increases. This
also suggests that the effective Re is increasing with the grid resolution, as seen in the Taylor-Green
vortex. The statistics for the magnitude of the vorticity fluctuations are shown in Fig. 16(b), which
suggests that vorticity statistics are better represented compared to the velocity statistics at lower
grid resolutions and for this particular Re. Interestingly, this is not seen for ILES of velocity-pressure
formulations [36], which may suggest that the present scheme designed to preserve vorticity may
enhance the ability of lower grid resolution cases to capture some vorticity statistics more efficiently

FIG. 16. (a) Velocity magnitude, (b) vorticity magnitude, (c) vortex stretching, and (d) strain rate magnitude
probability density function normalized by the rms vorticity ω′ of forcing case for several grid resolutions. The
case N = 256 with no-limiter is shown as a solid cyan line. Marked indicate DNS results from Ref. [91] are at
Reλ = 37, 62, 95, 142, and 168. Each PDF is labeled.
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FIG. 17. Turbulence statistics of the forced turbulence simulations for grid resolutions of N =
256, 128, 64, and 32. Contour lines for each plot are shown at {100, 10−1, 10−2, 10−3}.

and DNS simulations from Ref. [91] have relatively low Reλ. Next, we focus on statistics related
to the resolved enstrophy transport equation shown in Eq. (37). The PDF of the vortex stretching,
σi j = ωisi jω j/|ω|2, shows the convergence of the high probability portion of the PDF and tails that
correspond well with different Re. Furthermore, the PDF of the strain rate magnitude in Fig. 16(d)
shows similar behavior. Overall, the velocity and vorticity statistics display that the turbulence
characteristics have asymptotic convergence and tails of the PDF resemble higher Re statistics with
increasing grid resolution.

The effect of numerics of the ILES on the correlation of turbulence statistics is shown in Fig. 17.
First, Fig. 17(a) shows the joint PDF of the vorticity magnitude and the strain rate magnitude |S|.
The correlation between the two quantities reveals some convergence toward the tails of the PDF for
the three lowest grid resolutions. However, because the N = 256 cases employ a central difference
for the limiter, due to it being nearly resolved, there is a difference between this case and the other
three. Furthermore, the correlations between the vorticity and vortex stretching and the strain rate
magnitude and stretching in Figs. 17(b) and 17(c), respectively, show similar behavior. The statistics
indicate that there is a high probability that the grid resolution does not have an effect on the
statistics of the flow field, while the outlying statistics have some dependence on the resolution
of the simulation.

To further assess the implicit method, invariants of the velocity gradient [92], which is related
to turbulence dissipation, are analyzed. The three invariants of the velocity gradient Ai j = ∂ui

∂x j
are

given as follows:

P = −Aii = 0, R = − 1
2 Ai jA ji, Q = − 1

3 Ai jA jkAki. (45)

Because the first invariant P is zero for an incompressible flow, the velocity gradient is completely
determined by the second and third invariants, R and Q, respectively. The invariants determine the
local flow topology and indicate stretching and stability.

Figures 18(a) and 18(b) show the joint PDF for the N = 64 and N = 128 test cases, respectively.
The invariants are determined at every grid point at t/τ = 10, where τ = u′2/ε is the eddy-turnover
time. Both cases reveal a joint PDF consistent with previous studies of homogeneous turbulence
[92]. Furthermore, the invariants calculated in each simulation corroborate the PDFs of the turbu-
lence statistics in that the overall statistics are captured independent of grid resolution. Increased
grid resolution increases the appearance of outliers and are associated with intermittency, which
should be expected by resolving smaller velocity fluctuations.

Next, three new simulations are introduced with a grid resolution N = 64 but with different initial
Re = 8.4 × 103, 4.2 × 104, and 4.2 × 105. This is obtained by changing the kinematic viscosity.
All other conditions and forcing remain consistent with the N = 64 test case at Re = 6 × 103.
Figure 19(a) shows the longitudinal velocity gradient PDF of the four N = 64 simulations. As the
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FIG. 18. Joint PDF of velocity gradient invariants Q and R normalized by the resolved enstrophy Ẽ of the
forced turbulence simulations for grid resolutions of (a) N = 64 and (b) N = 128. Contour lines for each plot
are shown in log space between 0 and 10−5.

Re number increases, the tails of PDF trend closer to the high Reλ results obtained from DNS
and experimental measurements. Furthermore, Fig. 19(b), showing the transverse velocity gradient
PDF, suggests similar yet nonmonotonic [2] convergence as the Re number increases. The higher
Re demonstrates that a larger scale separation compared to lower Re is achieved at a minimum
state [36] such that the turbulence statistics become asymptotic. The velocity gradient statistics as
a function of Re corroborate the statistics as a function of grid resolution (Fig. 15) to indicate that
asymptotic turbulence and dissipation behavior with ILES and VTE schemes can be realized through
combination of both high initial Re and sufficient grid resolution. This ensure that the turbulence
will have a sufficient separation of scales.

The velocity gradient invariants of the four different Re cases at N = 64 are shown in Fig. 20.
These statistics show that as the Re number increases, the joint PDF of the invariants resembles
the canonical teardrop shape more definitely. The Q-R plot at higher Re compared to Re = 6000

FIG. 19. Longitudinal (left) and transverse (right) velocity gradient probability density functions normal-
ized by the rms vorticity ω′ for grid resolutions of N = 64 at several initial Re numbers. Markers indicate
DNS results from Ref. [89] are at Reλ = 35, 61, 94, and 168. Experimental measurements from Ref. [90] are
at Reλ = 852. Each PDF is labeled.
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FIG. 20. Joint PDF of velocity gradient invariants Q and R normalized by the resolved enstrophy Ẽ of the
forced turbulence simulations for grid resolutions of N = 64 at several Re numbers. Contour lines for each plot
are shown in log space between 0 and 10−5.

resembles the N = 128 case shown in Fig. 18(b) more as the Re increases. This further suggests
that once a minimum state is reached, statistics become asymptotic.

The balance of terms in the enstrophy transport equation introduced in Eq. (37) is shown in
Fig. 21(a) for the N = 64 case to assess the MEA with forced turbulence. Similar to the Taylor-
Green vortex, the amplification via vortex stretching is balanced by SGS dissipation and diffusion.
Figure 21(b) shows that the modified equation SGS dissipation and diffusion are consistent with

FIG. 21. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 64 test case
with minmod limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the
temporal evolution of the SGS transfer and diffusion obtained from the modified equation for the N = 128
test case with minmod limiter.
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FIG. 22. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 128 test
case with minmod limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the
temporal evolution of the SGS transfer and diffusion obtained from the modified equation for the N = 128 test
case with minmod limiter.

the calculated profile throughout the simulation. This is a further indication that the implicit model
obtained through the modified equation can be used to describe the dissipation of the scheme.

The accuracy of the modified equation SGS dissipation and diffusion at N = 128 is corroborated
in Fig. 22. In this case, the enstrophy amplification by vortex stretching is offset by both the SGS
dissipation and viscous dissipation. At this resolution, there is significantly more resolved viscous
dissipation than the N = 64 case. The calculated SGS dissipation and diffusion is shown to be very
similar to the modified equation SGS dissipation and diffusion throughout the simulation.

Finally, we examine the average energy spectra over the final half of the simulations in Fig. 23.
The energy spectra indicate that there is a well-captured low wave-number regime of all the
simulations regardless of the grid resolution. A zoomed-in plot in the low wave-number region
before the inertial range show that both the N = 256 and 128 spectra are nearly converged together,
while the modes for the N = 64 grid resolution approaches similar energy contents and the lowest
grid resolutions have slightly higher energy contributions to the modes in this region. This suggests
that very low grid resolution causes slightly more energy to be present in low wave-number modes.
The inertial range may not be wide enough to separate the energy-containing scales from the
dissipative scales. However, at the higher resolutions including N = 64, the resolution becomes
asymptotic. These cases exhibit the formation of an inertial range that is consistent with a −5/3

FIG. 23. Energy spectra of forced turbulence simulations. The thin dotted line is at a −5/3 slope. The case
N = 256 with no-limiter is shown as a solid cyan line.

024606-28



SUBGRID-SCALE CHARACTERIZATION AND ASYMPTOTIC …

FIG. 24. Energy spectra of forced turbulence simulations at Re = 6000 and Re = ∞. The solid line is
N = 128 and the dashed line is N = 64. The diamond, square, and triangle markers are forced turbulence cases
1, 2, and 3, respectively, from Ref. [86]. Circle and plus markers denote N = 64 and N = 128, respectively,
and correspond to explicit LES of case 2 from Ref. [93].

slope. The energy content at the highest wave numbers in the N = 256 cases suggest that the grid
resolution is approaching the resolution required for a DNS.

Additional inviscid simulations with the same forcing and initial conditions are performed to
quantify the impact of viscosity and resolution. Figure 24 shows the original forced cases and
Re = ∞ cases at grid resolutions of N = 128 and 64. A forced turbulence DNS cases from Ref. [86]
and explicit LES cases with N = 64 and N = 128 from Ref. [93] with a similar linear forcing
in physical space are included for comparison. Note that the forcing scheme used in the DNS
and explicit SGS cases are performed with the velocity-pressure formulation using the velocity
variable while the forcing in physical space employed in the present study uses the vorticity-
velocity formulation on the vorticity variable. This may cause parameters selected in the forcing
to behave with slight differences between the formulations. However, the spectra reveal that the
low wave numbers are relatively unaffected by the dissipation regardless of the Reynolds number
and resolution. The impact of viscosity is seen in the high wave-number scales. Furthermore, the
forced ILES simulations show similar behaviors and trends to the DNS and explicit SGS in the low
wave-number region. The finite Reynolds number does have a larger impact on the inertial range
compared to the DNS. At high Re, there is evidence of asymptotic convergence of flow statistics.

C. Temporally evolving jet

A temporally evolving jet provides a more rigorous test case where both large-scale features
(Kelvin-Helmholtz instability) and small-scale fully developed turbulence are presence. This is a
flow that more closely resembles the complex flows with dominant coherent structures that the
present scheme is designed to investigate.

The initial velocity flow field from Ref. [74] is given as follows:

u1(x) = 1

2
− 1

2
tanh

[
H

4θ0

(
1 − 2|x2|

H

)]
, (46)

where H is the initial jet thickness and θ0 is the initial momentum thickness. H/θ0 = 35 is selected
with Re = (U1 − U2)H/ν = 3200. The initial U1 = 1 and U2 = 0. Initial velocity fluctuations are
prescribed from the spectrum E (k) ∼ k4 exp [−2(k/k0)2]. However, for the present scheme in the
vorticity-velocity formulation, we impose the initial condition based on the transverse vorticity as
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FIG. 25. Velocity ω3 normalized by the jet half-width δ1/2 and centerline velocity for the temporally
evolving jet contours for the temporally evolving jet at t/Tref = 15. (a) N = 64 (ENO), (b) N = 128 (ENO),
(c) N = 256 (ENO), (d) N = 64 (no-limiter), (e) N = 128 (no-limiter), and (f) N = 256 (no-limiter).

follows:

ω3(x) = 1

4θ0

|x2|
x2

cosh−2

[
H

4θ0

(
1 − 2|x2|

H

)]
. (47)

The initial condition has been shown to be a good estimate of the inlet velocity profile of spatially
evolving jets. However, the temporally evolving jet provides a computationally expedient solution
compared to simulating the spatial jet. The temporally evolving jet employs periodic boundary
conditions on all sides of a cubic domain of (L1 × L2 × L3) = (4H × 4H × 4H ). Several grid
resolutions are used for comparison of the effects of the discretization: N = 64, 128, and 256, where
N is the number of grid cells per dimension. At N = 256, the grid resolution is sufficiently fine to
approach a DNS solution similar to the DNS simulation in Ref. [94]. Both a dissipative ENO slope
limiter and no-limiter are employed. The ENO slope limiter is similar to the minmod slope limiter
but is not total variation diminishing. Contours of the out-of-plane vorticity are shown for each
simulation in Fig. 25 at the time when the flow field starts to become self-similar, t/Tref = 15, where
Tref = H/�U [see Fig. 26(a)]. This time is equivalent to x/H = 7.5 at the same Re for a spatially
evolving jet. The three different grid resolutions demonstrate how different levels of resolution can
affect features in the flow field. Each case using the ENO limiter shows qualitatively the capture of
large-scale coherent vortices, while the large-scale structure is less evident with the no-limiter case
with low grid resolutions (N = 64 and 128).

Figure 26(a) shows profiles of the mean streamwise velocity 〈u1〉 in the x2 direction averaged over
the x1 and x3 directions for each grid resolution and both the ENO limiter and no-limiter. The profiles
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FIG. 26. Profiles of the (a) mean streamwise velocity 〈u1〉 normalized by the centerline velocity Uc

compared with experimental results from Refs. [95] (circles) and [96] (squares) and (b) mean vorticity 〈ω3〉
normalized by the jet half-width δ1/2 and centerline velocity for the temporally evolving jet. Blue—no-limiter,
black—ENO limiter.

are normalized by the centerline velocity Uc = 〈u1〉(x2 = 0), while the jet half-width δ1/2, which is
calculated with the mean streamwise velocity 〈u1〉(x2 = δ1/2) − U∞ = 1

2 (Uc − U∞) and U∞ is the
streamwise velocity far from the jet, is used to normalize the abscissa. The profiles are chosen in
the regime where the jet wake becomes self-similar. The grid resolution has a large effect on the
amount of time the temporally evolving jet requires to become self-similar and will be discussed
below. The streamwise velocity profiles are compared with several experimental measurements of
spatial evolving jet in the self-similar regime. The present simulation results compare well with
experimental measurements and show consistency between the different grid resolutions. Moreover,
the spread in the results are comparable to DNSs of temporal jets performed in Refs. [74,94]. This
suggests that even the low grid resolution of N = 64 with the ENO limiter can capture some of the
large-scale features well. The mean transverse vorticity profiles are shown in Fig. 26(b) for each
simulation in the self-similar regime. The profiles indicate the mean vorticity from each simulation
is captured reasonably well except the N = 64 with the no-limiter case. However, N = 64 with
the dissipative ENO limiter, where the shear layer is only discretized by less than four grid cells,
is captured reasonably. On the other hand, the N = 64 and 128 with no-limiter show slightly
higher mean vorticity in the shear layer suggesting that under-resolved simulations need additional
dissipation.

The second-order velocity statistics are compared with experimental measurements in Fig. 27.
The rms streamwise velocity 〈u2

1〉1/2 profiles, shown in Fig. 27(a), and rms normal velocity 〈u2
2〉1/2

profiles, shown in Fig. 27(b), are compared with experimental measurements in the self-similar
regime. While there are some differences between the different test cases, the overall comparison
is reasonably well, especially for the lowest grid resolution case with the dissipative ENO limiter,
which approximates sufficient dissipation. On the other hand, the lowest resolution with the no-
limiter significantly underpredicts the rms velocities. While scatter in the data can also be attributed
to the relatively low number of samples for the temporally evolving jet, especially at the lowest grid
resolution, the role of numerical dissipation to capture flow statistics is apparent in the jet.

The grid resolution and numerical dissipation affect the temporal evolution of the jet from its
initial condition through the transition to turbulence. Up to this point, the result from the simulations
have focused on the flow field after the jet transitions to turbulence, the transient behavior dimin-
ishes, and a self-similar regime occurs. In temporal jet simulations [94], the self-similar regime
is obtained at times t/Tref > 20 for a similar initialization. This is equivalent to x/H = 10 for a
spatial-evolving jet. Figure 28 shows the evolution of the mean transverse vorticity profiles with
time for each grid resolution case with the dissipative ENO limiter. The initial mean vorticity
profile across the shear layer is relatively high and sharp. At further instances in time, the vorticity
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FIG. 27. Profiles of the (a) rms (root-mean-square) streamwise velocity 〈u2
1〉1/2 and (b) rms normal velocity

〈u2
2〉1/2 normalized by the centerline velocity Uc compared with experimental results from Refs. [95] (circles)

and [96] (squares). Blue—no-limiter, black—ENO limiter.

magnitude diminishes to a self-similar solution. Each grid resolution test case, due to the increase
numerical dissipation and grid cell size, transitions to the self-similar solution at different times.
For the most resolved case, the self-similar solution is obtained at t/Tref > 20, while the lowest
grid resolution transitions quicker, around t/Tref > 10. We are effectively solving the flow field at
different effective Reynolds numbers through the transition to turbulence but are able to obtain a
self-similar solution after the transition. The temporal impact of the numerical scheme on the flow
field and the effective Reynolds number is significant when solving temporally evolving flows.

An estimate of the effective Reynolds number is determined from measurable features of the
flow field. It is important to determine the effective Re to determine what the simulation is solving
and if it has reached a minimum state in the sense of the asymptotic turbulence statistics. Here,
we assume a high Reynolds number is achieved and using the asymptotic relationship for high Re
regime of isotropic turbulence [77] where D = εL/U 3 ≈ 1

2 similar to ILES estimates for complex
Richtmyer-Meshkov instabilities [36]. The velocity scale U = u′ = 〈( 1

3 uiui )1/2〉 and length scale
L is chosen to the jet half-width, which is shown as a function of the time in Fig. 29(a). The
temporal evolution of the half-width shows that the grid resolution affects the jet spreading, which
is expected based Fig. 28. The dissipation is obtained ε = DU 3/δ1/2 and the effective viscosity is
obtained through ν f = ε/ωiωi. Figure 29(b) shows the temporal evolution of the effective viscosity.
For each grid resolution and slope limiter case, the initial effective viscosity behaves slightly

FIG. 28. Temporal evolution of the vorticity profiles 〈ω3〉 for (a) N = 256, (b) N = 128 and (c) N = 64.
Each case employs the ENO limiter.
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FIG. 29. The temporal evolution of the (a) jet half-width, (b) effective viscosity, and (c) effective Re.
Blue—no-limiter, black—ENO limiter.

differently, however, as the jet flow field asymptotically approaches the self-similar solution, the
effective viscosity for each simulation approaches a single viscosity, which is the viscosity of the
simulation. The numerical dissipation in the lowest resolution case is able to reach a state such that
the asymptotic relationships in the jet can be reached. The Re f = u′δ1/2/ν f is shown in Fig. 29(c).
It indicates that the lower grid resolution cases with the increased dissipation are in fact solving a
slightly different temporally evolving jet problem. However, because the flow becomes self-similar
at long times, this is not readily noticeable from profiles. Moreover, experimentation, both numerical
and measurement, have shown that at high-enough Re based on the inlet velocity and slot width
(6000 and Ref. [97] and 1000 in Ref. [98], respectively) the spatially evolving planar jet becomes
independent of Re, which comparable to the same Re for the present simulations (Re ≈ 3200).

FIG. 30. Energy spectra E (k) of simulations temporal simulations: (a) Re = 3200 at several discretizations,
blue—no-limiter, black—ENO limiter, (b) N = 128 case at different Re’s, and (c) N = 64 case at different
Re’s.
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Energy spectra of the jet cases are shown in Fig. 30(a) for N = 256, 128, and 64 for both the lim-
ited and no-limiter cases at t/Tref = 40. The spectra for the nearly resolved N = 256 cases are com-
paratively similar. Furthermore, the N = 128 case with the ENO limiter matches reasonably well
in the large scales but is slightly more dissipative than the N = 256 cases in the high wave-number
range as expected. The lack of a limiter in the N = 128 case shows that a nondissipative scheme
can have a large effect on the low wave numbers. The lowest resolved cases, N = 64, show some
differences in the low wave numbers. Additional Reynolds number cases are performed to assess the
low wave-number behavior and corroborate the results above that indicate the lower grid resolution
are solving a slightly different temporally evolving jet problem. Figure 30(b) shows the N = 128
resolution for Re = 3200, 1 × 104, 2 × 105, and ∞. The higher Re numbers cases have an asymp-
totic behavior in the low wave numbers which converge to the nearly resolved N = 256 resolution.
Additionally, this behavior is also found in the N = 64 cases with high Re shown in Fig. 30(c).
The viscosity Re = 3200 plays a significant role in dissipation but can be mitigated by carefully
selecting the grid resolution. The spectra show that with adequate resolution and a high enough
Re, the solution converges to correct results, especially in the low wave-number range, which is
most important for performing LESs. The estimation of an effective Re becomes especially critical
when attempting ILES of more complex flow fields where the flow characteristics can become
independent of Re such as wind turbine wakes [59]. By selecting the grid resolution for the problem,
an ILES with the present scheme can be employed such that the large-scale structures are captured
and small-scale turbulence are implicitly modeled to obtain physically accurate, expedient results.

VI. CONCLUSIONS

The subgrid scale characteristics and effectiveness of an upwind finite volume scheme for the
VTEs were investigated. The numerical scheme employs a generalized Riemann problem-based
multi-dimensional wave propagation approach. MEA was used to characterize the dissipation and
backscatter. The analysis revealed two limits for including dissipation implicitly through numerics:
(1) a low dissipation limit using a second-order central difference, most appropriate in smooth areas,
i.e., regions dominated by large vortical coherent structures and (2) a high dissipation limit using a
first-order upwind difference, used when the vorticity changes rapidly across grid cells, i.e., regions
of under-resolved turbulence. While the former is ideal in well-resolved areas of the flow field,
the latter is necessary in regions in which dissipation is essential to account for the transfer of
energy from the resolved scales to the SGSs in the absence of an explicit SGS model. The modified
equation at the high dissipation limit contains many terms, some of which can be combined into
forms that are similar to commonly used explicit SGS models, including the tensor-gradient models,
hyperviscosity model, and a simple gradient model. This serves a qualitative tool to understand
the implications of using the present scheme for ILES. We are careful to note that—for ILES in
general—the terms in the modified equation do not have to be similar to explicit SGS terms. Rather,
the similarities to known models provide insight in characterizing the scheme.

To characterize turbulence with the present scheme for the ILES methodology, a series of
turbulence-in-a-box simulations of the Taylor-Green vortex was performed to understand the pro-
cess of energy transfer from energy-containing scales to the SGS. The Taylor-Green vortex cases
revealed that the grid resolution must be carefully taken into account to obtain desired results.
The grid resolution is the largest factor for the magnitude of the effective Re while the choice
of limiter, which subtly controls the numerical dissipation, has an impact on the accuracy. However,
in under-resolved simulations, a dissipative limiter is essential. The dissipation terms obtained from
the MEA are shown to faithfully represent the implicit SGS torque in the Taylor-Green vortex case.
In high Reynolds number flows, where there is a marked separation of scales, the method is able
to represent the high energy modes. Further numerical experiments with forced turbulence revealed
that high-Reynolds number asymptotic turbulence statistics can be reasonably captured with the
ILES methodology for this vorticity-velocity formulation scheme.
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Finally, simulations of a temporally evolving jet, which contains both large-scale vortical
structures and fine-scale turbulence show that under-resolved numerics can capture asymptotic
turbulence statistics and large-scale features. The method is particularly useful when the effective
Reynolds number is past a threshold beyond which the flow is dependent on the Reynolds number.

The simulations studied herein represent canonical flows which allow us to build our understand-
ing of the method to more complex flows. The simulation tests show that coarse grid resolutions
provide a good estimate for large energy-containing modes given a large enough inertial range.
This particular vorticity-velocity scheme was designed to capture and preserve large vorticity
structures in flows in which fully developed small-scale turbulence tends to be localized and large
energy-containing structures dominate the flow. Our previous work [45] showed how the scheme
can be used to capture vortical structures, while this work indicates that the impact of fine-scale
turbulence on the energy-containing scales can also be reasonably represented.
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