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We demonstrate a method for direct numerical simulations (DNS) of incompressible,
flat-plate, zero pressure gradient, turbulent boundary layers, without the use of auxiliary
simulations or fringe regions, in a streamwise periodic domain via the homogenized
Navier-Stokes equations. This approach is inspired by Spalart’s original (1987) method,
but improves upon his drawbacks while simplifying the implementation. Most simulations
of flat-plate boundary layers require long streamwise domains owing to the slow boundary
layer growth and inflow generation techniques. Instead, we use anticipated self-similarity
to solve the equations in a normalized coordinate system to allow for streamwise period-
icity, similar to Spalart’s original method. The resulting integral values, the skin friction
coefficient and shape factor, H12 and Cf , are within ±1% and ±3% of the empirical fits.
The mean profiles show good agreement with spatially developing DNS and experimental
results for a wide range of Reynolds numbers from Reδ∗ = 1460 to 5650. The method
manages to reduce computational costs by an estimated one to two orders of magnitude.

DOI: 10.1103/PhysRevFluids.6.024602

I. INTRODUCTION

Turbulent boundary layers have played a crucial role in numerous engineering applications since
Prandtl introduced the concept of the boundary layer in 1904 [1]. Wall-bounded flows contain a
wealth of open questions from the near-wall generation cycle [2] to the large scale structures [3]
and even the precise nature of the logarithmic layer [4]. All of these phenomena more fully manifest
themselves in higher Reynolds number flows. To thoroughly investigate them from a computational
perspective, there is an ever-present need for simulations to match or exceed experimental Reynolds
numbers.

At the moment, pipe and channel flow direct numerical simulations (DNS) have been able to
do so. Lee and Moser (Ref. [4]) conducted a channel DNS at a friction Reynolds number of 5186,
and, for comparison, experimental channel measurements by Schultz and Flack (Ref. [5]) were
at a friction Reynolds number of 6000. In contrast, boundary layer DNS have only been able to
reach Reynolds numbers of at most Reδ∗ = 13 000 [6], while modern boundary layer experiments
regularly achieve far higher Reynolds numbers, up to Reδ∗ ≈ 120 000 [7]. We define the Reynolds
number for boundary layers by Reδ∗ = u∞δ∗/ν, with the displacement thickness δ∗, the free-stream
streamwise velocity u∞, and the kinematic viscosity ν. As an example, to verify numerically the
Kármán constant of the logarithmic region, one would need a boundary layer DNS with a Reynolds
number at least one order of magnitude larger than the current state-of-the-art [8]. This status quo
has two origins: the need for inflow boundary conditions and the growing nature of the boundary
layer. Previous computational solutions can be classified into two main categories based on their
treatments of both issues.

Method No. 1: Inflow generation. Recognizing that simulation of transition is computationally
expensive and complex [9], and long streamwise domains are required to reach high Reynolds
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TABLE I. Summary of computational characteristics of previously published numerical approaches.

Statistically Statistically Closed
Method homogeneous (in x) stationary form

Inflow generation – x –
Temporal DNS x – x
Spalart (1988) x x –
Proposed method x x x

numbers, multiple studies have used inflow generation techniques to bypass transition and initialize
their simulations with much higher Reynolds number inflows. There have been several popular
methods such as synthetic generation methods [10], strong recycling methods [11], and weak
recycling methods [12–16]. While these methods have been used to great effect, they still suffer
from multiple computational challenges.

First, current state-of-the-art methods still waste large portions of the computational domain as
a result of inflow generation techniques. The recycling domain alone can take up to 25% of the
domain [12]. Synthetic methods can overcome these recycling costs, but Sillero et al. [16] showed
that all inflow generation methods have an additional “eddy-turnover recovery length” over which
the simulation is heavily influenced by the inflow generation method. The authors found that for
over 25% of their so-called “production” domain, none of the simulation statistics match empirical
results. Overall, these inflow-generation methods underexploit available computational resources.

Second, as the boundary layer grows in space (dδ∗/dx > 0), momentum is displaced away from
the wall, and mass leaves through the top surface of the computational domain (V∞ > 0). To enforce
global mass conservation in incompressible DNS, an a priori streamwise dependence of V∞ must be
imposed over the entire domain [12,15,16]. Unfortunately, the imposition of V∞ enforces a particular
boundary layer growth rate. This is easily seen by integrating continuity (V∞ = U∞ dδ∗

dx ). Under these
conditions, one might ask if boundary layer simulations with fixed growth rates are true DNS.

Method No. 2: Streamwise periodicity. One of the crucial differences between channel and
boundary layer flows from a numerical point of view is the streamwise growth of the boundary
layer. A statistically stationary, periodic method for boundary layer simulations would be ideal
since it would bypass the use of an inflow generation technique. This was proposed by Spalart
[17] who used a multiscale decomposition of velocity and subsequently scaled the wall-normal
coordinate to take advantage of the flow’s self-similarity. In the new coordinates, the mean quantities
were only functions of the rescaled wall-normal coordinate, and so Spalart obtained a streamwise
periodic and statistically stationary boundary layer. Unfortunately, this transformation generated
several additional terms in the governing equations that could not be closed without performing
auxiliary simulations of boundary layer flow for lower Reynolds numbers.

Eschewing these unclosed source terms, several studies [18–21] have nevertheless sought to
impose streamwise periodic boundary conditions, attempting to leverage the boundary layer’s
“quasiparallel” nature. While the numerical solution is now homogeneous in the streamwise direc-
tion (owing to the periodicity), it can never reach a statistically stationary state. These “temporal”
DNS (as opposed to the previously discussed “spatial” DNS) have a limited sample time (<1δ99/uτ )
before the boundary layer thickness drifts significantly.

In summary, there is currently no immediate computational framework for the simulation of
boundary layers that is (1) statistically homogeneous in the streamwise direction, (2) statistically
stationary, and (3) fully closed (see Table I). The objective of the present work is to propose
a framework to improve on Spalart’s preliminary method such that it does not rely on auxiliary
simulations for closure. The overall concept remains the same: to use periodic boundary conditions
and a scaling enforced by a coordinate transformation to keep the boundary layer statistically
stationary.
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We will detail the principles of the transformation in Sec. II and conduct extended domain simu-
lations in Sec. III to justify streamwise statistical homogeneity. We highlight the numerical methods
in Sec. IV. In Sec. V, we present validation and comparisons to DNS data from Refs. [16,22] and
empirical fits by Refs. [23,24]. Finally, in Sec. VI, we discuss computational savings.

II. ANALYSIS OF STATIONARY BOUNDARY LAYER

The goal of this section is to describe the proposed method of simulating flat-plate turbulent
boundary layers. It begins with a description of the spatial transformation, and a discussion of the
simplifications leading to the final set of equations.

A. Transformation of the Navier-Stokes equations

The flat-plate turbulent boundary layer is analyzed in the Cartesian coordinate system using index
notation such that the velocity components in the Cartesian streamwise (x1), wall-normal (x2), and
spanwise (x3) directions are u1, u2, and u3, respectively. With pressure and density as P and ρ,
respectively, the incompressible Navier-Stokes equations for mass and momentum conservation are

∂u j

∂x j
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂P

∂xi
+ ν

∂2ui

∂x2
j

. (2)

We now apply a coordinate transformation from xi to ξi which rescales the wall-normal coordinate
by a streamwise varying C2 function q = q(x1).

ξ1 = x1, ξ2 = q0

q
x2, ξ3 = x3, (3)

where q0 = q(x0) is a normalization constant that is yet to be determined. Applying this coordinate
transformation directly to the Navier-Stokes equations yields the following set of equations for mass
and momentum conservation.

∂u j

∂ξ j
= ξ2

q′

q

∂u1

∂ξ2
+ Hc, (4)

∂ui

∂t
= −u j

∂ui

∂ξ j
− 1

ρ

∂P

∂ξi
+ ν

∂2ui

∂ξ 2
j

+ ξ2
q′

q
u1

∂ui

∂ξ2
+ Hp(ui ) + Hν (ui ), (5)

where

Hc =
(

1 − q0

q

)
∂u2

∂ξ2
, (6)
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1
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q′

q
ξ2

∂P

∂ξ2
+
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q

)(
δ2i

1

ρ

∂P

∂ξ2
+ u2

∂ui

∂ξ2

)
, (7)

Hν (ui ) = ν

[
1 −

(
q0

q

)2

+
(

ξ2
q′

q

)2]
∂2ui

∂ξ 2
2

+ ν

[
2

(
q′

q

)2

− q′′

q

]
ξ2

∂ui

∂ξ2
− 2νξ2

q′

q

∂2ui

∂ξ1∂ξ2
, (8)

where δi j is the delta-Dirac function, Hc is an additional continuity term, Hp contains convective and
pressure additional metric terms, and Hν contains the viscous metric terms. The equations as shown
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FIG. 1. Budgets of (a) streamwise momentum and (b) wall-normal momentum equations from DNS data
(Ref. [16]). Lines: (solid blue) |〈CNS〉ξ3,t |; (solid magenta) |〈VNS〉ξ3,t |; (solid green) 〈PNS〉ξ3,t ; (dashed black)
|〈Src〉ξ3,t |; (dashed green) |〈Hp〉ξ3,t |; (dashed magenta) |〈Hν〉ξ3,t |.

are exact and equivalent to the original Navier-Stokes equations. At the moment, q(x1) still requires
a closure equation for the transformed Navier-Stokes equations to be complete. There are several
possible choices to choose from such as the 99% boundary layer thickness δ99, the displacement
thickness δ∗, and the momentum thickness θ . Each choice yields a unique and mathematically valid
coordinate transformation.

B. a priori analysis

We perform a budget analysis of the streamwise and wall-normal momentum equations (4)–(7)
and the turbulent kinetic energy equations (C1)–(C4). This a priori analysis is performed using the
DNS data from Ref. [16] near Reθ0 = 4000.

Any a priori analysis of Eqs. (4)–(7) requires estimates for the function q(x1). This function is
here approximated by θ (x1), and justification for the estimate will be given in Sec. II C. Empirical
fits from [23] provide value for θ ′

θ
θ0 at Reθ0 = 4000.

We start with the streamwise momentum equation. First, we evaluate all terms at q = q0. This
reduces Hp to a single term, removes a term from Hν , and completely eliminates Hc. We also
group the main convective terms, CNS = u1∂u1/∂ξ1 + u2∂u1/∂ξ2 + u3∂u1/∂ξ3, and the main vis-
cous terms, VNS = ν(∂2u1/∂ξ 2

1 + ∂2u1/∂ξ 2
2 + ∂2u1/∂ξ 2

3 ). The source term for this equation is given
by Src = q′/qξ2u1∂u1/∂ξ2. Figure 1(a) shows the budget analysis of the streamwise momentum
equation. All terms have been first averaged over time and spanwise coordinate, represented by
〈·〉ξ3,t , and then the inner-scaled absolute values of these averages are plotted. Notably, the main
convective terms change sign near the wall to balance the main viscous terms.

As expected, the most dominant terms are the convective and viscous terms, CNS and VNS.
Furthermore, Fig. 1(a) clearly shows that the convective metric term ξ2u1(q′/q)∂u1/∂ξ2 is the
most dominant of the additional metric terms. It balances the main convective terms near the
end of the logarithmic region and throughout the wake region (80 < ξ+

2 < 2000). In contrast,
the viscous metric term Hν is over six orders of magnitude smaller than the streamwise convective
term throughout the entire boundary layer. Similarly, the Hp term is at least three orders of
magnitude smaller than the streamwise convective metric term until the very end of the wake region
near the free stream. From an a priori perspective, the neglecting of Hν and Hp is justified.

One can also apply a similar analysis to the wall-normal momentum equation. In this case,
the convective terms are bundled as CNS = u1∂u2/∂ξ1 + u2∂u2/∂ξ2 + u3∂u2/∂ξ3, and the main
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FIG. 2. Mean turbulent kinetic energy budget from DNS data (Ref. [16]). Lines: (solid blue) turbulent pro-
duction; (red) dissipation; (green) pressure diffusion; (black) turbulent diffusion; (cyan) advection; (magenta)
viscous diffusion; (dashed green) Hp contribution; (dashed magenta) Hν contribution; (dashed blue) metric
source term contribution.

viscous terms are collected in VNS = ν(∂2u2/∂ξ 2
1 + ∂2u2/∂ξ 2

2 + ∂2u2/∂ξ 2
3 ). The remaining terms

are the mean pressure gradient term PNS = 1/ρ∂P/∂ξ2 and the source term Src = q′/qξ2u1∂u2/∂ξ2.
Figure 1(b) shows the budget analysis of the wall-normal momentum equation. Again, all terms have
been first averaged over time and spanwise coordinate, and then the inner-scaled absolute values of
these averages are plotted.

In this case, the balance between the pressure and the convective terms dominates the entire
budget. The magnitude of the source term is between that of the convective and viscous terms. The
viscous metric term remains seven orders of magnitude smaller than the pressure and convective
terms throughout the boundary layer and thus can justifiably be neglected in the wall-normal
momentum equation. Near the free stream (ξ+

2 > 2000), the source term and the convective term
balance the pressure gradient term.

Finally, one can apply a similar analysis to the turbulent kinetic energy equation and track relative
contributions of the Hp, Hν , and the source term. The results are shown in Fig. 2. The metric source
term contribution balances the turbulent advection term which is at least three orders of magnitude
below the dominant budget terms. Throughout the boundary layer, the contributions of both Hν and
Hp to the kinetic energy budget remain several orders of magnitude lower than the dominant budget
terms. From an a priori perspective, their impact on turbulent intensities is negligible.

C. Simplified equations and closure

We can now make the following two critical assumptions:
(1) The governing equations evaluated at q(x1) = q0 are valid for a narrow streamwise domain

centered at x1 = x0.
(2) There exists a function q(x1) such that ensemble-averaged quantities are both statistically

stationary and statistically homogeneous in the ξ1, ξ3 directions.
Given both assumptions and with the neglecting of Hν and Hp, the governing equations simplify

to

∂u j

∂ξ j
= ξ2

q′
0

q0

∂u1

∂ξ2
, (9)

∂ui

∂t
= −u j

∂ui

∂ξ j
− 1

ρ

∂P

∂ξi
+ ν

∂2ui

∂ξ 2
j

+ ξ2
q′

0

q0
u1

∂ui

∂ξ2
. (10)
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These are the final governing equations to be solved via streamwise periodic simulation. Section III
presents an a posteriori analysis justifying both the neglecting of Hν and Hp and the streamwise
statistical homogeneity of Eqs. (9) and (10).

The use of both assumptions and the neglecting of Hν and Hp mean that the governing equations
can be more accurately described as homogenized Navier-Stokes equations (HNSE). Consequently,
simulations utilizing this set of equations are still DNS but do not directly solve the NSE. The rest of
the document seeks to compare the solutions of the HNSE to experimental and numerical solutions
to the NSE.

We now seek to generate a closure equation for q′
0/q0 by considering the ξ2 integrated continuity

and streamwise momentum equations in conservative form.∫ ∞

0

(
∂u1

∂ξ1
+ ∂u3

∂ξ3

)
dξ2 + u2,∞ = q′

0

q0

∫ ∞

0

(
ξ2

∂u1

∂ξ1

)
dξ2, (11)

∫ ∞

0

(
∂ρu1

∂t
+ ∂ρu1u j

∂ξ j
+ ∂P

∂ξ1

)
dξ2

= q′
0

q0

∫ ∞

0

(
ξ2

∂ρu1u1

∂ξ1

)
dξ2 +

∫ ∞

0
μ

∂2u1

∂ξ 2
k

dξ2. (12)

We now ensemble average Eqs. (11) and (12) and denote ensemble-averaged quantities by 〈·〉.
Applying assumption 2 yields the following equations.

u2,∞ = q′
0

q0

∫ ∞

0
(u1,∞ − 〈u1〉)dξ2 = q′

0

q0
u1,∞δ∗, (13)

u1,∞u2,∞ + τw

ρ
= q′

0

q0

∫ ∞

0
(u1,∞2 − 〈u1u1〉)dξ2, (14)

where τw = μ〈∂u1/∂ξ2〉|ξ2=0 is the wall shear stress. Some further manipulation gives our final
closure equation.

q′
0

q0
= τw/ρ∫ ∞

0 (u1,∞〈u1〉 − 〈u1u1〉)dξ2
. (15)

This expression fully closes the simplified governing equations [Eqs. (9) and (10)] and is used in
the streamwise periodic numerical simulations of Sec. IV.

Before discussing the results, it is interesting to estimate a priori the right-hand side of the above
equation. The von Kármán momentum integral equation for a flat-plate boundary layer estimates
the growth rate of the momentum thickness by

θ ′ = τw

ρu2
1,∞

. (16)

By definition,

u2
1,∞θ =

∫ ∞

0
(u1,∞〈u1〉 − 〈u1〉〈u1〉)dξ2. (17)

Assuming that 〈u1〉2 ≈ 〈u2
1〉, the von Kármán momentum integral equation becomes

θ ′

θ
≈ τw/ρ∫ ∞

0 (u1,∞〈u1〉 − 〈u1u1〉)dξ2
= q′

0

q0
. (18)
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TABLE II. DNS parameters for the streamwise nonperiodic turbulent boundary layer simulation cases.

Dataset Lx Governing equations Closure equation Sample time δ99/uτ

BL_Cart 15δ99 Eqs. (1) and (2) None 15
BL_Full 15δ99 Eqs. (4)–(8) Empirical value 30
BL_Simp 15δ99 Eqs. (9) and (10) Empirical value 30
BL_Plus 15δ99 Eqs. (4)–(8) 1.1 × empirical value 15
BL_Minus 15δ99 Eqs. (9) and (10) 0.9 × empirical value 15
BL_Per 7.5δ99 Eqs. (9) and (10) Eq. (15) 30

This completes the intuition that q(x) scales like θ (x) and furthermore provides an estimate for
q′

0/q0.

q′
0

q0
≈ θ ′

θ
= 1

2δ∗Cf H12, (19)

where Cf = τw/( 1
2ρu2

1,∞) is the skin-friction coefficient and H12 = δ∗/θ is the shape factor.
Note that the closure equation ensures a statistically stationary flow and consequently the solution

will be specific to a single Reynolds number. This is in direct contrast with recycling and rescaling
methods which solve for a range of Reynolds numbers but also use flow at high Reynolds number
stations as a substitute for a low Reynolds number inflow. The net effect of the closure equation
[Eq. (15)] is to allow the current method to avoid unphysical inflows by focusing on a single
Reynolds number.

III. SPATIALLY DEVELOPING SIMULATIONS

We conduct six sets of boundary layer simulations, each solving a different set of governing equa-
tions and boundary conditions, summarized in Table II. The results are used to justify assumptions
(1) and (2), and the simplifications made to the governing equations in Sec. II B.

A. Simulations and numerical methods

With the exception of BL_Per, all of the cases have streamwise nonperiodic boundaries in an
inflow/outflow setup. Case BL_Per corresponds to the most “modified” case: it solves Eqs. (9) and
(10) with Eq. (15) and implements streamwise periodic boundary conditions. Case BL_Simp also
solves Eqs. (9) and (10) but does not use streamwise periodic boundary conditions. Case BL_Full
solves Eqs. (4)–(8) and contains all of the previously neglected terms. Cases BL_Full and BL_Simp
use empirical relations for low Reynolds number [24] for the closure of q′

0/q0 by approximating
q ≈ θ . Cases BL_Plus and BL_Minus differ from BL_Simp by using a closure for q0 artificially
increased and decreased by 10%, respectively. Finally, case BL_Cart solves the regular Cartesian
Navier-Stokes equations [Eqs. (1) and (2)].

All of the cases have periodic spanwise directions and nonperiodic wall-normal directions. The
bottom of the domain is treated with a no-slip boundary condition, and the top of the computational
domain is treated with a Neumann boundary condition. Each of the five inflow/outflow cases use
planes from case BL_Per as an inflow (at ξ1 = 0). All of the streamwise nonperiodic cases use
convective outflow conditions at the streamwise outlet and have mass conservation conducted at
the streamwise outlet. In contrast, case BL_Per has mass conservation conducted at the wall-normal
outlet. The top of the computational domain requires vertical transpiration for all six cases. BL_Cart
imposes a transpiration velocity given by Ref. [23], similar to Ref. [16]. For the remaining cases,
Eq. (11) shows that any closure for q′

0/q0 directly provides a value for u2,∞.
All of the cases have the same spanwise length of Lz = 2.6δ99 and wall-normal height of

Ly = 3.4δ99. They all have the same spatial resolution: 	x+ = 9, 	y+
min = 0.3, 	z+ = 6. The key
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FIG. 3. Streamwise variation of (a) displacement thickness (δ∗), (b) momentum thickness (θ ), (c) shape
factor (H12), and (d) skin friction coefficient (Cf ). Lines: (solid black) BL_Full; (solid green) BL_Simp; (solid
cyan) BL_Minus; (solid magenta) BL_Plus; (solid red) BL_Cart; (dashed black) BL_Per; (dashed blue) scaled
empirical fit [24] to match inlet skin friction coefficient.

difference between the streamwise periodic and streamwise nonperiodic cases is the streamwise
domain length. BL_Per has a domain length of Lx = 7.5δ99, whereas the rest of the cases have
a domain length of Lx = 15δ99. It is known from [25] that the flow recovers from this particular
inflow technique after ∼4–5δ99. Accounting for potential outflow effects of at most ∼2δ99, this
leaves about 8δ99 of uncontaminated statistics.

Each set of governing equations is solved using the computational solver NGA [26]. The numer-
ical code solves the conservative-variable formulation of the low-Mach Navier-Stokes equations
with staggered finite difference operators and uses a fractional step method to enforce continuity.
The code is run fully second order in space and time.

B. Results

Figures 3(a) and 3(b) present the normalized displacement thickness and momentum thickness
averaged in ξ3 and in time for the streamwise nonperiodic cases. Naturally, each of the streamwise
nonperiodic simulation cases is affected by the convective outflow condition, most clearly seen in
case BL_Cart. Each of the displacement thickness and momentum thickness plots deviate in slope at
about 1δ99 from the streamwise outlet. Because BL_Cart represents a spatially developing boundary
layer, the displacement thickness increases from its original inflow value. The present increase by
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about 20% is expected given that dδ∗/dx = u2,∞/u1,∞ and the imposed value of u2,∞/u1,∞ ≈ 3 ×
10−3. Cases BL_Full and BL_Simp are indistinguishable and show relatively constant values of
δ∗ and θ with fluctuation magnitudes of ±0.3% of the inflow nominal value. The thicknesses of
BL_Plus and BL_Minus show immediate departures from the nominal value, by approximately 2%
of the original inflow value.

References [9,27] underscore the need for consistency when comparing DNS profiles of bound-
ary layers. For the sake of comparison, integral and global quantities are computed as described by
Ref. [9]. Specifically, the shape factor, H12, is evaluated as

H12 =
∫ δ99

0 (1 − u1/u1,∞)dξ2∫ δ99

0 (u1/u1,∞)(1 − u1/u1,∞)dξ2

, (20)

where, for the remainder of this section, the overbar represents temporal and spanwise averaging.
Similarly, the wall shear stress is evaluated by τw = μ∂u1/∂ξ2|ξ2=0. Figure 3(c) presents the shape
factor for the nonstreamwise periodic cases. BL_Cart has a shape factor that monotonically drops by
2% from its inflow value, as expected from empirical fits by [23] with respect to Reynolds number.
BL_Plus and BL_Minus also exhibit a slowly varying shape factor, changing by approximately
±0.3% from the inflow value. This is in contrast with BL_Full and BL_Simp, whose shape factors
are virtually identical and do not exhibit major mean variations.

Figure 3(d) presents the skin friction coefficient, averaged in ξ3 and in time for the nonstreamwise
periodic cases. Case BL_Cart features a decreasing skin friction coefficient over the domain,
consistent with increasing Reynolds number. The skin friction coefficients of BL_Plus, BL_Minus,
BL_Full, and BL_Simp have fluctuations of about 1% of their expected mean value. Any variations
of the value with streamwise distance are masked by these fluctuations. Again, BL_Simp and
BL_Full are virtually indistinguishable.

Figure 4 shows temporal and spanwise-averaged profiles of u1, u1,rms, u2,rms, and −u′
1u′

2 from case
BL_Simp and BL_Full. These profiles are extracted from three streamwise locations: near the inlet
(ξ1 = 0) and outlet (ξ1 = 13δ99) for case BL_Simp, and in the middle of the domain (ξ1 = 7.5δ99)
for both cases BL_Simp and BL_Full. The mean streamwise velocity profiles are within ±0.5% of
each other. The streamwise and wall-normal rms collapse within ±1% of each other. The Reynolds
stress profiles show a strong collapse in both the inner and outer regions.

Overall, these streamwise nonperiodic simulations show that under a rescaling by q(x), the
resulting flow does not feature immediately observable streamwise inhomogeneities over a sizable
streamwise domain. The neglecting of Hν and Hp terms and the use of streamwise periodic
conditions under Eqs. (9) and (10) are consequently well justified.

IV. NUMERICAL SETUP OF STREAMWISE PERIODIC SIMULATIONS

The present section outlines the simulations conducted in streamwise periodic domains. It
clarifies domain constraints and initial conditions, and describes additional numerical techniques
used during simulation.

A. Simulation cases

We now solve Eqs. (9) and (10) with streamwise periodic boundary conditions for four different
Reynolds numbers, summarized in Table III. Case BL1460 is equivalent to BL_Per. Cases BL2830,
BL3550, and BL5650 were chosen for direct comparison against the DNS and experiments of [22].

The domain size, (Lx, Ly, Lz), is determined primarily by the sizes of the largest turbulent struc-
tures. The pressure fluctuations are known to reach the furthest out of the boundary layer to about
2.4δ99 [28], setting the minimum requirement for wall-normal height. We set our domain height
to 18δ∗ ∼ 3δ99 to fully capture these fluctuations. Since low-momentum streaks are approximately
0.5δ99 in width [15,29], we opt for a spanwise width of 14δ∗ ∼ 2.5δ99, which is comparable to the
domain size of Ref. [22]. The large-scale motions corresponding to bulges or hairpin packets have a
maximum streamwise length of 3δ99 [30–34]. In contrast, the very large-scale motions have lengths
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FIG. 4. Inner scaled (a) mean streamwise velocity u+
1 , (b) streamwise rms (u+

1,rms), (c) wall-normal rms

(u+
2,rms), and (d) Reynolds shear stress −u′+

1 u′+
2 , averaged over time and spanwise direction (ξ3) for case

BL_Simp at different streamwise locations and BL_Full at the middle of the domain. Symbols: (green)
BL_Simp at ξ1 = 0 (inlet); (blue) BL_Simp at ξ1 = 7.5δ99; (red) BL_Simp at ξ1 = 13δ99; (◦) BL_Full at
ξ1 = 7.5δ99.

of up to 10δ99 in the streamwise direction [32–34]. Lee and Sung (Ref. [15]) have found that these
structures have a mean streamwise length of less than 6δ99 and that statistically, over 95% of the
turbulent structures in their DNS had streamwise lengths of <6δ99. And so, we opt for a domain of
40δ∗ ∼ 7δ99 in streamwise length.

The resolution is chosen so that the smallest turbulent structures can be adequately resolved.
The streamwise and spanwise grids are uniform with 	x+ = 9, 	z+ = 6, which is comparable to
the resolution parameters of Sillero et al. [16] (	x+ ≈ 7, 	z+ ≈ 4.7) and Orlu and Schlatter [22]
(	x+ ≈ 8.5, 	z+ ≈ 4). The wall-normal domain uses a hyperbolic stretching with eight points in
the viscous sublayer, (ξ2 < 5δν ), with 	y+

min ≈ 0.3. This is comparable to the wall-normal resolu-
tion of Sillero et al. [16] who also had eight points in the viscous sublayer at the inlet and that of
Orlu and Schlatter [22] who had ten points in the viscous sublayer at their lowest Reynolds number.
To improve accuracy, we opt to use fourth-order finite difference spatial operators. Appendix A
compares the effect of both higher and lower finite difference spatial operators on case BL1460.

Cases BL2830, BL3550, and BL5650 are sampled over a period of 15δ99/uτ , whereas case
BL1460 is sampled over a period of 30δ99/uτ . BL1460 was run for longer specifically to gather
temporal statistics of the global quantities, e.g., skin friction coefficient and shape factor.
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TABLE III. DNS parameters for the turbulent boundary layer simulation cases.

Dataset Reδ∗ Initial condition Nx × Ny × Nz Sample time δ99/uτ

BL1460 1460 Blasius + white noise 300 × 120 × 160 30
BL2830 2830 Fully turbulent field from BL1460 530 × 160 × 280 15
BL2830Wn 2830 Blasius + white noise 530 × 160 × 280 15
BL2830Eig 2830 Blasius + white noise and streamwise mode 530 × 160 × 280 15
BL2830H 2830 Fully turbulent field from BL5650 530 × 160 × 280 15
BL2830Sill 2830 Fully turbulent field from [16] 530 × 160 × 280 15
BL3550 3550 Fully turbulent field from BL2830 648 × 230 × 338 15
BL5650 5650 Fully turbulent field from BL2830 968 × 326 × 512 15

BL1460 uses a laminar boundary layer superimposed with white noise of fixed amplitude 0.1u1,∞
as an initial condition. Cases BL2830, BL3550, and BL5650 use fully turbulent fields from lower
Reynolds number simulations as initial conditions. For example, BL5650 uses fields from BL2830,
and BL2830 uses fields from BL1460. It will be shown in Sec. IV A that the statistically stationary
solution is independent of the initial conditions used. The use of already turbulent fields as an initial
condition greatly reduces the duration of the numerical transient when compared to using a laminar
boundary layer as an initial condition.

To investigate the transient period, a set of turbulent cases is run at Reδ∗ = 2830 with varying
initial conditions. This specific Reynolds number was chosen to investigate the impact of using
both higher and lower Reynolds number fields as initial conditions. The complete list of different
cases is also shown in Table III. Each case has the same domain size and resolution as BL2830.
BL2830Wn utilizes only white noise with an amplitude of 0.1u1,∞. Lower amplitudes of white noise
are found to be insufficient to directly trigger turbulence and cause the flow to relaminarize, similar
to what can occur in Lund-Wu-Squires (LWS) recycling [35,36]. BL2830Eig uses the same initial
field as BL2830Wn but with a single superimposed streamwise mode as well as its corresponding
wall-normal eigenfunction which are both based on stability analysis from Ref. [37]. Taking further
inspiration from Ref. [17], cases BL2830 and BL2830H use fully turbulent fields from cases
BL1460 and BL5650, respectively, after interpolating them to the appropriate resolution. Finally,
case BL2830Sill uses an instantaneous data file from Ref. [16] at Reδ∗ = 5650. A streamwise section
of ∼7δ99 is taken and then interpolated to match the appropriate resolution.

B. Implementation of q′
0/q0

In practice, the ensemble averages used in Eq. (15) to calculate q′
0/q0 are approximated by

spanwise and streamwise averages. From this value, the given metric terms are calculated, and
the continuity and momentum equations [Eqs. (9) and (10)] are further solved at each time step. In
this way, the simulation is fully independent of any a priori information and undercuts Ref. [17]’s
original need for upstream stations. However, over the course of a simulation, computational errors
may accumulate and cause δ∗ to eventually drift. This could ultimately result in a substantial
temporal drift in all integrated quantities and profiles. To prevent this, we implement a single
relaxation term in the streamwise momentum equation to relax δ∗ to a targeted value δ∗

d .

∂u1

∂t
= −u j

∂u1

∂ξ j
− 1

ρ

∂P

∂ξ1
+ ν

∂2u1

∂ξ 2
j

+ ξ2
q′

0

q0
u1

∂u1

∂ξ2
+ α

u1,∞

(δ∗ − δ∗
d )

δ∗ ξ2u1
∂u1

∂ξ2
, (21)

where the timescale α = uτ /δ99 is chosen so as to not introduce an additional timescale in the flow.
It should be noted that this relaxation term is the only method of prescribing a specific δ∗ to the
simulation. Volumetric integration of Eq. (21) directly shows that the relaxation term describes to
first order an exponential decay of the instantaneous δ∗ towards the desired value.
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FIG. 5. Temporal evolution of (a) skin friction coefficient Cf , (b) shape factor H12, and (c) normalized

closure term δ∗ q′
0

q0
, for the turbulent cases shown in Table III. Lines: (blue) BL2830 in the statistical steady

state; (gold) BL2830Wn; (green) BL2830Eig; (red) BL2830; — (orange) BL2830H; (purple) BL2830Sill;
(solid black) empirical values; (dashed black) ±10% of empirical values for Cf and H12.

V. RESULTS AND VERIFICATIONS

Results from the simulation cases described in Table III are given in this section. In particular,
integrated quantities such as shape factor H12, skin friction coefficient Cf , and the various moments
of u1 are presented in comparison to values found in the literature.

A. Transient behavior

A major benefit of periodic boundary conditions is the independence of the statistical steady-state
solution from the initial conditions. Here, we present transient behavior for turbulent boundary
layers from a variety of initial conditions.

The shape factor is still calculated by Eq. (20) and the wall shear stress is still calculated by τw =
μ∂u1/∂ξ2|ξ2=0. However, for the current and following sections, the overbar will denote averaging
in time and in both spanwise and streamwise directions. Figure 5 shows the transient behavior
of each turbulent case listed in Table III. After a “wash-out” time, the flow reaches a statistical
stationary state. It is clear that regardless of the initial condition, the integral quantities converge
to the same statistical steady-state values. Moreover, cases BL2830Wn and BL2830Eig show a
much slower convergence than the other cases by at least a factor of 4. This provides justification
for using lower Reynolds number turbulent fields as initial conditions for higher Reynolds number
simulations, similar to extended Temporal DNS methods [38]. Case BL2830Sill demonstrates that
even streamwise nonperiodic initial data can still be used as an initial condition to achieve the same
results.

The transient period appears to last at most 2δ99/uτ and can be as short as 0.5δ99/uτ . As expected,
these transient periods are far shorter than with laminar initial fields. It has been argued by Nagib
et al. [39] that the appropriate turbulent boundary layer timescale is δ99/uτ . Transient periods on the
same order of magnitude are to be expected. To further quantify the temporal evolution, Figure 5(c)
shows δ∗q′

0/q0 over time for the cases presented in Table III. During the transient period, δ∗q′
0/q0

appears to grow from its initial value to the nominal turbulent value.
Under statistically stationary conditions, the Cf has an rms of 2.2% of its mean value and its

fluctuations have an integral timescale of ∼0.3δ99/uτ as shown in Fig. 6(a). In contrast, H12 has

024602-12



DIRECT NUMERICAL SIMULATIONS OF A …

FIG. 6. Temporal evolution of (a) Cf and (b) H12 for case BL1460. Colors: (red) instantaneous values,
(blue) mean value, (black) empirical value.

an rms of 0.8% of its mean value with a much larger integral timescale of ∼1.9δ99/uτ , as shown
in Fig. 6(b). Both of the integral timescales for skin friction and shape factor were calculated by
first computing the two-time autocorrelation function during the statistically steady regime and
then integrating the function only up to the autocorrelation function’s first zero crossing. Naturally,
δ∗q′

0/q0 has fluctuations similar to Cf rather than H12 and these can already be seen in Fig. 5(c).
These temporal oscillations are due to the approximation of ensemble averages by planar averages
in the evaluation of Eq. (15).

B. Integral and global quantities

Monkewitz et al. [23] generated empirical fits of experiments for H12 against Reynolds number
and these will be used as a guide for appropriate values. Similarly, we use Chauhan’s extended
Coles-Fernholz skin friction relation√

2

Cf
= 1

κ
ln(Reδ∗ ) + C + D0

ln Reδ∗

Reδ∗
+ D1

Reδ∗
(22)

with κ = 0.384, C = 3.3, D0 = 182, and D1 = −2466 [24]. While there is a broad variety of
composite profiles, the previous empirical profiles use up-to-date experimental data and account
for low Re effects.

The final values of H12 obtained for the simulation cases are shown in Fig. 7(a) alongside the
empirical fit in the numerical results with 1% error margins. Error bars were evaluated consistent
with the method used in Ref. [40]. The agreement is very good and quite remarkable given the
general scatter of experimental results [24]. Noticeably the calculated values are within ±1% of the
empirical values. Following suit, the skin friction coefficient, Cf , is compared against the extended
Coles-Fernholz skin friction relation [24]. The results are shown in Fig. 7(b) with corresponding
error bars, and the given simulations are within at most ±3% of the empirical values. It is interesting
to note that the present results are closer to the composite fit of the experimental data than the DNS
results of Ref. [22].

C. Mean velocity profiles

Figure 8 displays the inner-scaled mean streamwise velocity profiles of the different Reynolds
number simulation results plotted against those of [22]. Since the shape factors are in good
agreement with empirical values, it is no surprise that the streamwise mean velocity profiles show
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FIG. 7. (a) Shape factor H12 as a function of Reynolds number Reδ∗ . Solid line represents empirical fit by
[23], and dashed lines indicate ±1%. (b) Skin friction as a function of Reδ∗ . Solid line represents the extended
Coles-Fernholz relation with κ = 0.384, C = 3.3, D0 = 182, and D1 = −2466 [24]. Dashed lines indicate
±3%. Symbols: 
 (red) DNS [22]; � (green) DNS [16]; ◦ (blue) current study.

FIG. 8. Mean inner scaled (a) streamwise velocity (u+
1 ), (b) log-intercept function �+ ≡ u+

1 − κ−1 ln(ξ+
2 )

with κ = 0.384, and (c) log-indicator function 
 ≡ ξ+
2

∂u+
1

∂ξ+
2

vs ξ+
2 for different Reynolds numbers. From bottom

to top: shifted by 5u+
1 : Re∗

δ = 1460, 2830, 3550, 5650. Legend: (red) [22] DNS data; (black) present work;
(green) [16]; � (black) [22] experimental data.
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FIG. 9. (a) u+
1,rms, (b) u+

2,rms, (c) u+
3,rms, and (d) −u′+

1 u′+
2 vs ξ+

2 for different Reynolds numbers. From bottom
to top: Re∗

δ = 1460, 2830, 3550, 5650. Legend: (red) [22] DNS data; (blue) current study; (green) [16]; �
(black) [22] experimental data.

similar agreement. The agreement of u+
1,∞ = ( 1

2Cf )−1/2 in the mean profiles makes it especially
clear that the skin friction coefficients match.

Estimating the uncertainty for the mean profiles is more challenging than estimating the uncer-
tainties for the skin friction coefficient Cf and shape factor H12. To reduce disk storage, we estimate
the sampling error using the method provided by [41]. The maximum sampling error observed in
u+

1 and u+
1,rms for all cases was 0.003 and 0.01, respectively.

We also compute the log-intercept function �+ ≡ u+
1 − κ−1 ln(ξ+

2 ) and the log-indicator func-
tion 
 ≡ ξ+

2 du+
1 /dξ+

2 . These two functions are often used to calculate the two constants required
by the log law. A nominal value of κ = 0.384 was used. Figure 8(c) shows that at lower Reynolds
numbers, the log layer is not quite yet formed. This is indicative of inadequate scale separation.
As the Reynolds number increases, however, a log layer appears to form around ξ+

2 = 40–100
for Reδ∗ = 5650. The log-intercept function is similarly constant in the log layer and also appears
to plateau for ξ+

2 = 40–100. Experimental data [22] are also plotted for both the log-intercept and
log-indicator functions and show good agreement with the current simulations. In particular, near the
wake region (ξ+

2 � 800), the profiles given for Reδ∗ = 3550 agree better with experimental results
than the corresponding profiles from the DNS of Ref. [22]. Reference [22] noted that due to low
resolution near the wall, the velocity profile of the experimental data for ξ+

2 < 15 is under-resolved.
This is represented by a large scatter in experimental data for the log-indicator function.

The Reynolds stress and rms velocity profiles are shown with inner scaling in Figs. 9(a)–9(d). All
of the profiles exhibit a near-wall peak, and the peak locations coincide with those of the profiles
from Ref. [22]. There is a minor deviation in u+

1,rms in the log layer and wake region at around
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ξ+
2 ≈ 100–200 of at most 5%. The experimental results for Reδ∗ = 3550 and 5650 [22] are also

plotted and show good agreement with the current study in the region of deviation. Interestingly, in
the region ξ+

2 = 100–200, the experimental data for Reδ∗ = 3550 stand at equal distance between
our DNS results and the previous DNS results of Ref. [22]. The u+

2,rms profile features slightly higher
values near the free stream. These fluctuations can be somewhat reduced by extending the domain
in the wall-normal direction. However, in the present formulation, the u2,rms will never reach zero.
Indeed, from integration of continuity [Eq. (9)], u2,∞ = (q′

0/q0)u1,∞δ∗. Since the closure for q′
0/q0

is not an a priori fixed quantity, q′
0/q0 varies in time, and hence the transpiration velocity also

fluctuates in time. As mentioned previously, due to the low near-wall resolution of Ref. [22], the
inner layer peak for experimental data at ξ+

2 ∼ 15 is not fully captured. Finally, a small deviation
may be observed in the spanwise and wall-normal rms velocity profiles in the near-wall region.

VI. COMPUTATIONAL COST

The most popular method of boundary layer simulation remains the spatially growing boundary
layer. However, this computational method is more computationally expensive than the current
framework for three main reasons: an overall longer streamwise domain, slower statistical con-
vergence, and smaller time step.

Spatially developing boundary layer simulations require large streamwise domains to reach the
largest Reynolds numbers. Inflow generation methods, such as recycling and rescaling, heavily
reduce the overall simulation cost by bypassing transition and increasing the initial Reynolds
number. The recycling domain covers a large portion of the streamwise domain and for Ref. [16],
the recycling domain was 115δ99,recy. inlet ≈ 44δ99,prod. inlet. Moreover, all simulations that use inflow
generation techniques must also undergo an “eddy-turnover recovery length” that increases with
inlet Reynolds number [16]. Over this distance, none of the calculated statistics match empirical
values within appropriate tolerance. For Ref. [16], this length scale encompassed over a quarter of
their production domain (27δ99,prod. inlet out of a domain of 110δ99,prod. inlet). In summary, a recycling
and rescaling setup like that of Ref. [6] would therefore require an upstream domain length of at
least 71δ99,prod.inlet or 48 δ99,0, where δ99,0 is the boundary layer thickness at the location where
statistics are extracted. Reference [22] required 56δ99,0 to reach the given Reynolds number as well.
In contrast, our simulation at a Reynolds number of 5650 (BL5650) only required a streamwise
domain of 7δ99,0. Therefore, the proposed method reduces the streamwise domain by about an order
of magnitude.

Statistical convergence is another limiting factor of boundary layer simulation. Due to the growth
of the boundary layer, the streamwise distance for which the boundary layer thickness remains
within ±0.5% of a specific value is approximately 1δ99. Thus streamwise developing boundary layer
simulations are only able to average over streamwise slabs of approximately 1δ99 in streamwise
length. In contrast, the current method uses a streamwise domain of 7δ99 in length and due to
statistical homogeneity in the streamwise direction, the current method can average over a larger
sample. In other words, the current method is expected to be seven times faster at converging
statistics.

Finally, for a streamwise developing boundary layer DNS, the wall-normal resolution is deter-
mined by the inner layer thickness at the inlet (i.e., the lowest turbulent Reynolds number in the flow)
so that all inner layer dynamics are fully resolved. Unfortunately, since the inner layer grows with
streamwise distance, by the end of the production domain, the flow is unnecessarily over-resolved
in the viscous sublayer. For example, the inner layer grew by 12% and by 20% for Refs. [16] and
[22], respectively. In addition, the convective Courant-Friedrichs-Lewy number in the wall-normal
direction is usually the leading constraint on the time-step size for flat-plate boundary layer DNS
owing in large part to the wall-normal stretching of the mesh. Thus, Refs. [16,22] have time steps
that could potentially be 20% and 12% larger, respectively, if the high fidelity simulations could
be run on grids with the ideal resolution. Because the proposed method uses a q′/q calculated
specifically to keep δ∗ constant, it will maintain the initial boundary layer thickness. Since viscosity
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is prescribed and the free stream is far from the boundary layer, the method effectively specifies
a single Reynolds number for the simulation. Therefore, an ideal resolution can be used and,
consequently, a larger time step can be applied. Overall, the expected savings from a more ideal
wall-normal resolution and larger time steps is at least 25%.

The net cost reduction from the proposed method is about two orders of magnitude and is
theoretically independent of the streamwise domain length of the proposed method. For example,
although a domain 14δ99 in length would use twice the number of streamwise grid points, it would
also have twice the sample range.

VII. CONCLUSION

A method for simulating flat-plate turbulent boundary layers has been presented. The proposed
method solves the Navier-Stokes equations in rescaled coordinates and was derived based on the
assumption that self-similarity holds locally for a turbulent boundary layer. The method improves
upon Spalart’s original work by removing the dependence on lower Reynolds number simulations.

To derive the method, we rescaled the wall-normal coordinate by a single length scale, q(x1),
and found by an a priori analysis that the additional terms resulting from rescaling counterbalances
the Reynolds stresses in the wake region, thus keeping the boundary layer statistically stationary.
To complete the derivation, we made two critical assumptions: (1) the modified Navier-Stokes
equations hold over a narrow streamwise domain and (2) after rescaling, the flow is statistically
stationary and statistically homogeneous in streamwise and spanwise directions. The method was
then applied to a variety of Reynolds number cases, and the integral quantities and profiles were
presented. The shape factor and skin friction coefficients were within ±1% and ±3% of aggregated
experimental fits, respectively. Both the streamwise mean and rms velocity profiles showed good
agreement with prior DNS and experimental values. Near ξ+

2 = 100, the u+
1,rms compares favorably

with the experimental values and deviates with respect to the DNS of [16] and [22] by about 5%. The
mean wall-normal velocity profile was also compared to that of Refs. [16,22]. Overall, the method
was computationally less expensive than competing simulations by one to two orders of magnitude.
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APPENDIX A: ORDER OF ACCURACY

Periodic flows are typically computed using spectral codes. The main results of this article use
fourth-order finite difference operators. To verify that these spatial operators are adequate, case
BL1460 was rerun with second- and sixth-order finite difference operators. The results are shown
in Fig. 10.

The skin friction coefficients vary by less than 0.2%. In terms of mean profiles, the deviation
between all three methods was less than 1%. This good agreement in mean profile carries over to
the shape factors, which are within 0.5% of each other. The results with fourth- and sixth-order
operators agree very well. There is a slight discrepancy in the mean profile at the overlap region
ξ+

2 ≈ 500 between the second-order and higher-order profiles.

APPENDIX B: RELAMINARIZATION

The current method can obtain a statistically stationary turbulent field from an initially laminar
boundary layer superimposed with white noise. The converse is also possible: a laminar profile can
be reobtained from a fully turbulent profile. A simulation was initialized with a turbulent field at
Reδ∗ = 1460 and then run with a high viscosity (corresponding to Reδ∗ = 100). Instantaneous mean
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FIG. 10. Streamwise mean (a) velocity and (b) rms profiles for Reδ∗ = 1460 for different order spatial
operators. Colors: (red) second order; (blue) fourth order; (green) sixth order.

velocity and rms profiles are computed through averaging in the streamwise and spanwise directions
and are shown in Fig. 11.

The turbulent fluctuations quickly decay near the wall and more slowly far from the wall. The
mean profile initially reduces its gradient near the wall and later steepens in the wake region.
Eventually, the Blasius solution is obtained with zero residual turbulent fluctuations.

APPENDIX C: TURBULENT KINETIC ENERGY

The turbulent kinetic energy equation post evaluation at x = x0 is given by

∂k

∂t
+ u2

∂k

∂ξ2︸ ︷︷ ︸
Turb. Advec.

= − 1

ρ

∂u′
2 p′

∂ξ2︸ ︷︷ ︸
Pres. Diff.

− 1

2

∂u′
ju

′
ju

′
2

∂ξ2︸ ︷︷ ︸
Turb. Diff.

+ ν
∂2k

∂ξ 2
2︸ ︷︷ ︸

Visc. Diff.

− u′
iu

′
2

∂ui

∂ξ2︸ ︷︷ ︸
Production

− ν
∂u′

i

∂ξ j

∂u′
i

∂ξ j︸ ︷︷ ︸
Dissipation

+ Src Cont. + Hν Cont. + Hp Cont., (C1)

FIG. 11. Instantaneous (a) mean and (b) rms profiles for a laminarization of an initially turbulent boundary
layer. Colors: ◦ (blue) Blasius solution; (black) instantaneous profiles.
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where k = 1/2u′
iu

′
i and the Src, Hp and Hν contributions are given by

Src Cont. = q′

q
ξ2

(
u1

∂k

∂ξ2
+ 1

2

∂u′
ju

′
ju

′
1

∂ξ2
+ u′

iu
′
1

∂ui

∂ξ2

)
, (C2)

Hp Cont. = q′

q
ξ2

∂u′
1 p′

∂ξ2
, (C3)

Hν Cont. = ν
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2
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