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Nanoflows induced by MEMS and NEMS: Limits of two-dimensional models
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Here we study viscous oscillatory nanoflows generated in a fluid by mechanical oscilla-
tions of miniaturized resonators. In particular, we focus on the limits of two-dimensional
cylinder theory, which approximates a slender nanoresonator, such as an atomic force
microscopy microcantilever or a nanobeam resonator, as a cylinder oscillating in a fluid.
The cylinder theory is the mainstay in the micro- and nanoelectromechanical systems
literature, but is only accurate in certain regimes. We observe and explain two distinct
routes to the breakdown of the cylinder theory. First, when a substrate is present, squeeze
film effects become significant and the cylinder theory underpredicts the fluid force applied
to the resonator. Second, the cylinder theory overpredicts the fluid force when axial flow
becomes relatively large. This occurs at higher bending modes where the spatial gradients
along the beam are larger. A dimensionless squeeze number and axial flow number are
introduced to facilitate in-depth investigations into the limitations of the two-dimensional
cylinder theory. Results from experiments and three-dimensional finite-element models are
presented in order to illustrate where two-dimensional flow models break down.

DOI: 10.1103/PhysRevFluids.6.024201

I. INTRODUCTION

Over the past few decades, silicon-based miniaturized devices have been developed for a number
of applications and fundamental studies. The microcantilever, first envisioned for sensing surface
forces in atomic force microscopy (AFM), has quickly gone beyond AFM and found numerous
applications in sensing other physical and biological quantities. More recently, even smaller me-
chanical devices with submicron linear dimensions, called nanoelectromechanical systems (NEMS)
[1], have moved to the focus of emerging technologies and fundamental experiments. One typically
uses these miniaturized mechanical devices as resonators, actuating the nanomechanical oscillations
of a normal mode and tracking the changes in the phase and amplitude of the oscillations due to
external perturbations.

Because most applications require operation in viscous fluids [2,3], with air and water being the
two most common, fluid dynamics has been a pillar of microelectromechanical systems (MEMS)
and NEMS research. Fluidic coupling results in energy dissipation and mass loading. In device
terms, these represent reductions in the quality factor (Q factor or Q) and the resonance frequency,
which are central to determining the operational limits of a resonator. In setting up the fluid
dynamics problem, one typically treats the solid resonator as an oscillating boundary with no-slip
conditions, which generates an oscillating flow. The flow, in turn, exerts forces on the resonator and
results in dissipation and mass loading. The amplitude of the oscillations typically do not exceed a
few nanometers—hence, prompting terms such as nanoflows [4] and nanofluidics [5]. Even though
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FIG. 1. (a) Scanning electron microscope image of a nanomechanical beam. Schematic of (b) a general
fluid-structure interaction problem and (c) a beam immersed in a fluid.

the general problem of a solid body oscillating in a viscous fluid was treated by G. G. Stokes in
1851 and others subsequently, it is still relevant in the context of MEMS and NEMS research, with
many subtle details requiring further attention.

In this manuscript, our focus is on the fluid dynamics of simple but ubiquitous structures in the
MEMS or NEMS domain. Figure 1(a) shows such a structure, namely a nanomechanical doubly
clamped beam with linear dimensions of L × b × h ≈ 40 μm × 950 nm × 93 nm, and a substrate-
to-beam gap distance of g ≈ 2 μm. A second common geometry is the cantilever beam, which
provides a lower spring constant compared to a doubly clamped beam and is the preferred geometry
of scanning probe microscopy (SPM) sensors. In the viscous limit [6], the nanoflows induced by
the oscillations of both a doubly clamped beam and a cantilever are often predicted from a two-
dimensional (2D) oscillating cylinder model [7,8]. With the 2D model, the force applied by the
fluid to the resonator is computed from a hydrodynamic function, and on further analysis the total
dissipation and quality factor of the fluid-loaded resonator may be predicted. Due to its simplicity
and accuracy in certain regimes, the 2D cylinder approximation has been the mainstay in predicting
the response and flows around slender structures, such as a MEMS or NEMS resonator. However,
use of the 2D cylinder model requires significant approximations to be made in order to simplify
the physical problem, which is in nature 3D.

In this manuscript, we present a comprehensive and quantitative assessment of the accuracy of
the 2D cylinder approximation in predicting the response of a MEMS or NEMS resonator immersed
in a viscous fluid. Two dimensionless parameters that characterize the resonator and fluid field
are introduced to facilitate the assessment and predict regimes in which the 2D approximation is
accurate. In particular, the accuracy of the approximation will be examined for two cases. The first
case examines a resonator vibrating near a substrate [9–12]. For this case, the presence of a substrate
gives rise to squeeze film effects which are not accounted for in the 2D cylinder approximation, as
an infinite fluid medium is assumed. The second case examines the effect of axial flow, namely flow
along the length of the beam, on the mechanical response of the fluid-loaded resonator. For this
case, it is clear that the 2D approximation presents a major limitation, as it only considers the fluid
field in the 2D plane that the cylinder oscillates in. Although the presence of axial flow results in
additional velocity gradients, and therefore viscous stresses, it is found that axial flow reduces the
total dissipation, and consequently increases the quality factor of the resonator.

In the present work, a dimensionless squeeze number and axial flow number are introduced
to examine the limitations of the 2D cylinder approximation with respect to the two cases under
examination. The dimensionless squeeze number quantifies the extent to which the substrate affects
the fluid field, and thus the fluid loading of the resonator. Previously, Bao et al. [10] introduced a
dimensionless number that quantified the degree of gas compression. The dimensionless number
introduced by Bao et al. determined when elastic forces presented by the gas would dominate
over damping forces. In contrast, the dimensionless squeeze number introduced in the present work
quantifies the total effect of the squeeze film, which includes stiffness, damping and inertial forces.
In the present work the dimensionless axial flow number predicts when flow along the length of
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the beam will be significant. The dimensionless axial flow number is similar to the normalized
wave number presented by Van Eysden et al. [13]. In the present work, the dimensionless axial
flow number is computed from the flexural wave number for a finite beam with discrete natural
frequencies. In contrast, the normalized wave number presented by Van Eysden et al. was computed
from an arbitrary wave number of an infinite beam. The analysis presented by Van Eysden et al.
was limited to infinite beams with zero thickness and only considered a single wave traveling along
the length of the beam, thus resulting in a significant simplification of a finite 3D beam that has
reflected and near-field waves [14]. The two dimensionless parameters formulated and analyzed in
the present work differ from previously formulated parameters discussed above, and will be essential
when analyzing physical MEMS and NEMS devices and the effects of 3D flow.

In this manuscript, measurements from two NEMS beams, with lengths of 50 μm and 60 μm,
vibrating near a substrate in viscous fluids are presented to illustrate the effect of squeeze film
damping. The accuracy of the 2D approximation is examined by comparison to measurements,
and further quantified with use of numerical 3D finite element models (FEMs). To facilitate the
comparison between experimental measurements, numerical simulation results, and analytical pre-
dictions from 2D approximations, a succinct modal analysis of a fluid-loaded beam is presented. The
analysis is a significant contribution of the present work, as it provides a new means for analyzing
the effect of fluid loading via the dynamic stiffness, and the modal stiffness, mass and damping
parameters. Additionally, numerical parametric studies are performed with the FEMs to investigate
the dependence on the dimensionless squeeze and axial flow numbers. These studies scan relatively
large ranges of the dimensionless parameters which have not yet been analyzed in previous works,
and provide new findings on how 3D flows induced by the vibration of miniaturized resonators
affect the beam’s response. Specifically, it is found that the axial flow, and therefore fluid loading,
depend on both the dimensionless axial flow number and bending mode number. Furthermore, it
is found that the 2D cylinder model breaks down for large dimensionless squeeze and axial flow
numbers. In these regimes, a full 3D FEM must be employed to accurately predict the fluid field
and response of the fluid-loaded resonator. Physical conditions necessary for neglecting the 3D fluid
field are discussed, and approximate ranges on the dimensionless numbers for the aforementioned
conditions are presented.

The remainder of this paper is organized as follows. In the following section, a general fluid-
structure-interaction (FSI) problem is introduced in preparation for the analysis of a resonator
immersed in a viscous fluid. An expression for the fluid loading is found and subsequently used
when formulating the equation of motion of a fluid-loaded beam in Sec. III. In Sec. III, analysis
that derives the modal equation of motion and modal properties of a fluid-loaded beam is presented.
These derived modal expressions are essential and will be used to quantify the accuracy of the
2D cylinder approximation. In Sec. IV, the 2D cylinder approximation is presented, and the
hydrodynamic function is introduced. The modal properties predicted by the cylinder approximation
and hydrodynamic function are also presented in Sec. IV. In Sec. V, the experimental and numerical
methods employed in the paper are presented. Results examining the validity of the 2D cylinder
approximation are presented in Sec. VI. The effect of a substrate and axial flow are presented, and
the accuracy of the 2D cylinder approximation is inspected by comparing the approximation to
experimental and numerical results. In Sec. VI, the dimensionless squeeze number and axial flow
number are introduced. Measurements from a NEMS beam vibrating in air and water show that
the 2D cylinder model breaks down for large values of the dimensionless squeeze number. These
results are supported by results from the 3D numerical models and parametric studies. Additional
parametric studies illustrate the dependence of axial flow on beam dimensions and mode number. It
is found that an increase in axial flow number, and consequently axial flow, results in the breakdown
of the 2D cylinder approximation.

II. FLUID-STRUCTURE INTERACTION

In this section, the formulation of an FSI problem is discussed, and the problem of a solid MEMS
or NEMS resonator immersed in a viscous fluid is introduced. To begin, consider the FSI problem
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depicted in Fig. 1(b). The subscripts f and s denote the fluid and structural quantities. The fluid’s
domain and boundary are indicated by � f and � f , respectively, and the structure’s domain and
boundary are indicated by �s and �s, respectively. The fluid-structure interface, �I , is the common
boundary of the domains. At the fluid-structure interface �I , the kinematic boundary condition is
[15]

u̇s = v f , (1)

where us is the displacement field of the solid, and u̇s and v f are the velocity fields of the structure
and fluid, respectively. Additionally, at the interface �I , the dynamic boundary condition is

−σs · n̂s = σ f · n̂ f , (2)

where σs and σ f are the total stress tensors of the solid and fluid, respectively, and n̂s and n̂ f are the
normal vectors pointing outwards of �s and � f , respectively.

The vectors in Eq. (2) are traction vectors representing the force per unit area acting in the x, y,
and z directions at a given location. Considering the right-hand side of Eq. (2), the traction vector is

T =
⎧⎨⎩Tx

Ty

Tz

⎫⎬⎭ = σ f · n̂ f . (3)

A 3D resonator immersed in a viscous fluid, as depicted in Fig. 1(c), is now considered. For the
present work, the resonator is a beam with either doubly clamped or fixed-free boundary conditions.
The beam’s length is along the x axis and the beam vibrates in the z direction. When the beam
vibrates, the stresses in the fluid give rise to forces applied to the beam [16,17]. Considering a cross
section of the beam in the y-z plane, as depicted in Fig. 1(c), the force per unit length applied by the
beam to the fluid is found from the boundary integrals taken over the boundary �I . For example,
the force per unit length applied along the beam in the z direction is

f s| f ,z(x) =
∫

�I

Tz(x, y, z)d�I (y, z). (4)

Similar expressions may be found for f s| f ,x (x) and f s| f ,y(y) by integrating Tx and Ty respectively.
Here the bar, (·), indicates the quantity is per unit length.

For a beam whose cross section is symmetric about the z axis, the force per unit length applied
in the y direction is equal to zero. Furthermore, it is often the case that the applied force in the z
direction is much greater than that applied in the x direction. As a result, when reviewing the beam
theory in the following section, the applied force in the x direction is momentarily neglected.

III. BEAM THEORY AND MODAL ANALYSIS

A. Equation of motion for an axially loaded beam in vacuum

In this section, the equation of motion and modal properties for an axially loaded beam in vacuum
is reviewed. Although the following derivation is for beams with axial loading, it is also valid for
beams with no axial loading, and may be simplified by taking the axial force to be zero. In the
remainder of the paper, a beam in vacuum without any fluid loading will be referred to as a bare
beam. To begin, the equation of motion for a bare beam whose length is along the x axis and
direction of vibration is in the z direction is [18]

EI
∂4w

∂x4
(x, t ) − P

∂2w

∂x2
(x, t ) + ρsA

∂2w

∂t2
(x, t ) = f z(x, t ), (5)

where x is the location on the beam, t is time, and w is the lateral displacement of the beam’s
neutral axis in the z direction, E is the elastic modulus, I is the moment of inertia of the beam’s
cross section, ρs is the mass density, A is the cross-sectional area, P is the axial force, and f z(x, t )
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is the external force per unit length in the z direction. The axial force is tensile when P is positive
and compressive when P is negative. As the equation of motion in Eq. (5) is for motion in the z
direction, only forces in the z direction are included. In Eq. (5), any intrinsic or material damping of
the bare beam is ignored. This will be discussed in more detail in Sec. III C.

The lateral displacement of the beam may be expressed as a sum of the normal modes, such that

w(x, t ) =
∞∑

n=1

qn(t )φn(x), (6)

where φn(x) is the nth normal mode, and qn(t ) is the mode’s corresponding time dependent modal
coordinate. Each normal mode satisfies the differential equation

EI
d4φn(x)

dx4
− P

d2φn(x)

dx2
− ω2

nρsAφn(x) = 0 for n = 1, 2, . . . , (7)

where ωn is the undamped natural frequency for the nth mode. The natural frequencies are related
to the wave numbers of the axially loaded beam by [19]

β2
ax,n = − P

2EI
±

√( P

2EI

)2

+ ρAω2
n

EI
, (8)

where βax,n are the roots to the frequency equation that satisfy the boundary conditions of the beam.
For a beam with no axial load, such that P = 0, Eqs. (5) and (6) simplify to governing equations for
a beam with no axial load. Likewise, the wave numbers in Eq. (8) simplify to

β4
n = ρAω2

n

EI
, (9)

where βn are the wave numbers for a beam with no axial loading.
For the present work, the mode shapes in Eq. (6) are normalized such that the mode shape is

equal to unity at a reference position on the beam. For a reference position, x̂n, it follows that

φn(x̂n) = 1. (10)

Furthermore, the undamped mode shapes follow the orthogonality condition [20]∫ L

0
φm(x)φn(x)dx =

{
0 m �= n
αn m = n

, (11)

where αn is a modal constant of dimension length. It should be noted that the normalization
convention in Eq. (10) is important for the present work, as it will allow for a convenient coordinate
transformation to be made from physical to generalized coordinates. Such transformation will be
essential when comparing the dynamic response of a resonator found from experimental measure-
ments to that found from a 3D numerical model. For the present work, the reference position, x̂n, is
the position at which the displacement response will be experimentally measured.

B. Equation of motion for an axially loaded beam immersed in fluid

For a beam immersed in a viscous fluid, a fluid force enters the equation of motion such that

EI
∂4w

∂x4
(x, t ) − P

∂2w

∂x2
(x, t ) + ρsA

∂2w

∂t2
(x, t ) = f z(x, t ) + f f |s,z(x, t ), (12)

where f f |s,z(x, t ) is the force per unit length applied by the fluid to the beam in the z direction. Due
to equal and opposite forces at the interface, the force per unit length applied by the beam to the
fluid is

f f |s(x, t ) = − f s| f (x, t ). (13)
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Substituting Eq. (13) into Eq. (12), the equation of motion for a fluid-loaded beam for motion in the
z direction is

EI
∂4w

∂x4
(x, t ) − P

∂2w

∂x2
(x, t ) + ρsA

∂2w

∂t2
(x, t ) + f s| f ,z(x, t ) = f z(x, t ). (14)

Here, we adopt the assumption that the fluid force may be expressed in terms of a damping force
and inertial force. This formulation has been presented by Bao [21] and employed in previous
works that analyzed miniaturized resonators vibrating in fluids [7,8]. In the present work, we
increase the accuracy of the fluid force expression by including a stiffness term that can model
any compressibility of the fluid, such that

f s| f ,z(x, t ) = k f w(x, t ) + c f
∂w

∂t
(x, t ) + m f

∂2w

∂t2
(x, t ), (15)

where k f , c f , and m f are the effective stiffness, damping, and mass per unit length, respectively, of
the fluid. Substituting Eq. (15) into Eq. (14), the equation of motion for the fluid-loaded beam is

EI
∂4w

∂x4
(x, t ) − P

∂2w

∂x2
(x, t ) + ρsA

∂2w

∂t2
(x, t ) + k f w(x, t ) + c f

∂w

∂t
(x, t ) + m f

∂2w

∂t2
(x, t ) = f z(x, t ).

(16)
It should be noted that the expression for the fluid force in Eq. (15) is an approximation.

The expression assumes that the fluid force at location x along the beam is proportional to the
displacement and its time derivatives at the same x location. Furthermore, the expression assumes
that the effective fluid stiffness, damping, and mass are independent of position and displacement
amplitude. These assumptions result in a simplified expression for the fluid force which is amenable
to modal analysis. Namely, as it will be shown in the following section, the fluid force in Eq. (15)
gives rise to convenient expressions for effective modal fluid parameters.

C. Equation of motion for a bending mode

The equation of motion for a bending mode of vibration is derived with use of the expansion
theorem [22]. Here the displacement response is expressed in terms of the modal sum in Eq. (6),
which when substituted into Eq. (16) gives rise to

EI
∞∑

n=1

d4φn(x)

dx4
qn(t ) − P

∞∑
n=1

d2φn(x)

dx2
qn(t ) + ρsA

∞∑
n=1

φn(x)q̈n(t )

+ · · · k f

∞∑
n=1

φn(x)qn(t ) + c f

∞∑
n=1

φn(x)q̇n(t ) + m f

∞∑
n=1

φn(x)q̈n(t ) = f z(x, t ).

(17)

Equation (17) is simplified by applying the relationship in Eq. (7) which replaces the sum over the
fourth- and second-order spatial derivative of φn(x), with a sum over φn(x). Further simplification is
made by applying the orthogonality condition in Eq. (11) after multiplying the equation of motion
throughout by an arbitrary mode, φm(x), and integrating from 0 to L. The resulting modal equation
of motion of the fluid-loaded beam is

(Ks,n + Kf ,n)qn(t ) + Cf ,nq̇n(t ) + (Ms,n + M f ,n)q̈n(t ) =
∫ L

0
φn(x) f z(x, t )dx. (18)

Capital variables indicate modal quantities, where Ks,n and Ms,n are the effective modal stiffness and
mass of the solid bare beam given by

Ks,n = αnω
2
nρsA, (19a)

Ms,n = αnρsA, (19b)
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and Kf ,n, Cf ,n, and M f ,n are the effective modal stiffness, damping, and mass due to fluid loading
given by

Kf ,n = αnk f , (20a)

Cf ,n = αnc f , (20b)

M f ,n = αnm f . (20c)

Here it should be noted that the equation of motion in Eq. (18) was derived for a bare beam with
no material or intrinsic damping. For a bare beam with significant material damping, an effective
modal damping parameter for the solid beam, Cs,n, may be added to Eq. (18). However, it is often the
case that the modal damping of a bare beam, which is measured in vacuum, is of little consequence
for the fluid dynamics problem: In dense liquids such as water, Cs,n is orders of magnitude smaller
than the fluidic dissipation. In gases, Cs,n can be subtracted or is negligible compared to the fluid
damping, especially for NEMS [5,6,23]. As a result, in the present work only the modal damping
due to fluid loading, Cf ,n, is considered in Eq. (18).

D. Forced response

Finally, an expression for the forced response of a fluid-loaded beam may be derived by
considering the frequency-dependent forcing function,

f z(x, t ) = f0δ(x − x̂n) exp(iωt ), (21)

where f0 is the force amplitude with dimension force, δ(x − x̂n) is the Dirac delta function with
dimension reciprocal length, and x̂n is the reference position previously introduced in Eq. (10).
Substituting Eq. (21) into Eq. (18) and evaluating the right-hand-side of the equation results in[

(Ks,n + Kf ,n) + iωCf ,n − ω2(Ms,n + M f ,n)
]
q̃n(ω) = F̃n, (22)

where q̃n(ω) is the frequency dependent complex-valued modal coordinate, and F̃n is the modal
force given by

F̃n = f0φn(x̂n). (23)

The tilde, ˜(·), indicates quantities in the frequency domain. Note that the normalization condition
in Eq. (10) relates the modal force directly to the force amplitude by F̃n = f0. We now consider
the transfer function between modal displacement and modal force, referred to as receptance [24],
which is found to be

χ̃n(ω) ≡ q̃n(ω)

F̃n
≡ 1

(Ks,n + Kf ,n) + iωCf ,n − ω2(Ms,n + M f ,n)
. (24)

The imaginary part of the receptance in Eq. (24) is found to be

Im{χ̃n(ω)} = −ωCf ,n

[(Ks,n + Kf ,n) − ω2(Ms,n + M f ,n)]2 + ω2C2
f ,n

. (25)

From Eq. (25), the imaginary part of receptance is inversely proportional to Cf ,n near resonance. For
this reason Im{χ̃n(ω)} will be later used to assess the damping due to fluid loading. With Eq. (25),
Im{χ̃n(ω)} will be computed using modal properties of the bare beam and modal properties from the
fluid loading predicted by the cylinder approximation. The validity of the cylinder approximation
may then be examined by comparing Im{χ̃n(ω)} found from the cylinder approximation to that
found experimentally and from numerical simulations.
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IV. THE CYLINDER APPROXIMATION FOR HYDRODYNAMIC LOADING
OF MECHANICAL RESONATORS

In this section, the 2D cylinder model for miniaturized resonators, such as microcantilevers
and nanomechanical beams is reviewed. For slender bodies (L � b, h), such as microcantilevers
and NEMS beams and strings, the structure is approximated as a long cylinder with diameter b
oscillating perpendicular to its axis (in the z direction) but in the mode shape of the structure. To
derive the fluid force acting on the cylinder, a no-slip boundary condition at the surface of the
cylinder is applied, and the following assumptions are made:

(i) The cylinder is assumed to be of infinite extent perpendicular to its cross section, i.e. in the x
direction and immersed in an infinite fluid medium;

(ii) the cross section of the cylinder is uniform along its length;
(iii) the amplitude of oscillation is small, so that the Navier-Stokes equations can be linearized;
(iv) the fluid is assumed to be incompressible and a Newtonian fluid.
With the aforementioned assumptions, the complex-valued force per unit length applied by the

fluid to a cylinder oscillating at frequency ω is [7]

f̃ f |s,z(x, ω) = π

4
ρ f ω

2b2circ(ω)w̃(x, ω), (26)

where ρ f is the fluid density, w̃(x, ω) is the frequency dependent displacement amplitude of the
cylinder in the z direction and circ(ω) is the complex-valued dimensionless hydrodynamic function.
The analytical expression for the hydrodynamic function is [25]

circ(Re) = 1 + 4iK1
(−i

√
iRe

)
√

iReK0
(−i

√
iRe

) , (27)

where K0 and K1 are zeroth- and first-order modified Bessel functions of the second kind. The
argument of circ is in terms of the frequency-dependent Reynolds number for the cylinder (and the
beam) and is expressed as

Re(ω, b) = ρ f ωb2

4μ
. (28)

where μ is the dynamic viscosity of the fluid. To account for the rectangular cross section of a
beam, one can apply a small Reynolds-number-dependent correction factor, �(Re), of order one to
circ(Re) and find the hydrodynamic function of a so-called oscillating blade [26],

rect(Re) = �(Re)circ(Re). (29)

The blade approximation assumes the cylinder has vanishingly thickness. Consequently, in their
current state, both the cylinder and blade approximation do not take into account the aspect ratio of
the beam’s rectangular cross section [27].

From Eq. (26), the fluid force predicted from the cylinder approximation gives rise to an added
effective mass and damping of the fluid, such that [28]

m f , = π

4
ρ f b2′(ω), (30a)

c f , = π

4
ρ f ωb2′′(ω), (30b)

where ′ and ′′ are the real and imaginary part, respectively, of the hydrodynamic function. Here
the subscript on  is omitted to indicate that the hydrodynamic function may be computed from
either the cylinder approximation in Eq. (27), or blade approximation in Eq. (29). Substituting
Eq. (30) into Eq. (20), the effective modal mass and damping due to fluid loading predicted by
the 2D cylinder approximation is

(M f ,n)


= αn
π

4
ρ f b2′(ω), (31a)
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(Cf ,n)


= αn
π

4
ρ f ωb2′′(ω). (31b)

With the effective modal properties in Eq. (31) and the modal equation of motion in Eq. (18), an
expression for the undamped natural frequencies of a fluid-loaded beam is found to be

(ω̂n)2
 = ω2

n

1

1 + T0′(ωn)
, (32)

where (ω̂n) and ωn are the undamped natural frequencies of the fluid-loaded and bare beam,
respectively, and T0 is a mass loading parameter equal to the ratio of the mass of cylinder of fluid to
the mass of the beam [8], such that

T0 = π

4

ρ f b

ρsh
. (33)

An expression for the modal damping ratio is also found to be

2(ζn) = ωn

(ω̂n)

′′(ωn)

1/T0 + ′(ωn)
. (34)

For gas experiments T0 is very small [6] such that 1/T0 � 1000 � ′ and the mass loading can be
neglected. Thus the undamped natural frequency of the fluid-loaded beam may be approximated as
(ω̂n) ≈ ωn, and the modal damping ratio may be approximated as 2(ζn) ≈ T0

′′(ω). As a result,
the imaginary component of the hydrodynamic function is found directly from the modal damping
ratio or quality factor which is related by Qn = 1/(2ζn), such that

1

(Qn)
≈ T0

′′(ω). (35)

V. METHODS

A. Experimental methods

Our experiments are performed on nanomechanical silicon nitride doubly clamped beam res-
onators under tension. Figure 1(a) shows a scanning electron microscope image of a typical beam
that has linear dimensions of L × b × h ≈ 40 μm × 950 nm × 93 nm. There is a g ≈ 2 μm gap
between the beam and the substrate. There are two metal (gold) U-shaped electrodes on each end of
the beam, through which ac electric current can be passed. This causes ohmic heating cycles, which
in turn generate thermal bending moments due to the mismatch in the thermal expansion coefficients
of the structural layers. The result is efficient actuation of nanomechanical oscillations at exactly
twice the frequency of the applied ac current [29,30]. Both the driven and random motions of the
beams are measured using a path-stabilized Michelson interferometer [31]. For the fundamental
mode, transverse displacement in the z direction, w(x, t ), is measured at the center of the beam
where x = L/2; for higher modes, w(x, t ) is measured at antinode positions.

In Sec. VI A, measurements on two silicon nitride doubly clamped beams are presented. The
beams are under tension with identical cross-sectional dimensions of b × h ≈ 950 nm × 93 nm; the
lengths are L ≈ 60 and 50 μm; the gap distance is the same in both g ≈ 2 μm. The experiments were
performed in air at atmospheric pressure and in water, both at room temperature T = 293 K. For the
experiments in water, the fluid dynamics is in the continuum viscous limit and the Navier-Stokes
equations are solved for the analysis with a no-slip boundary condition on the beam and substrate.
The experimental conditions in air correspond to a Knudsen number of Knl ≈ 0.06 and generalized
Knudsen number of Knl + Wi ≈ 0.07 [6], suggesting that the rarefaction effects may be at play
[32,33]. From our previous work [5,6,23,34], however, we estimate that the rarefaction (and slip)
is not so significant and continuum theory approximates the fluid dynamics of these devices quite
well. Consequently, the NEMS data in air here are also fit and analyzed by continuum theory. The
density of air is taken to be ρ f = 1.2042 kg/m3 for the following analyses and numerical models.
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FIG. 2. (a) Three-dimensional FEM of a beam immersed in an infinite fluid medium. (b) Two-dimensional
drawing with dimensions for model of a beam in an infinite fluid medium. (c) Two-dimensional drawing with
dimensions for model of a beam in fluid with a substrate.

It must be emphasized that there is some uncertainty in the material properties of our silicon
nitride beams [35]. The density ρs and Young’s modulus E of silicon nitride depend on deposition
conditions and vary from sample to sample. Since we did not have direct measurements, the
material properties and axial tension used in the following analyses and numerical models were
found by minimizing the error between predicted and measured natural frequencies of the beam
in air [36]. The search algorithm found the optimal value of elastic modulus, E , and axial load,
P, for a fixed value of beam density, ρs. For the present work, the density was taken to be
ρs = 3,350 kg/m3, which falls within the range, 2,600 kg/m3 � ρs � 3,400 kg/m3, of reported
values for silicon nitride [37–39]. Our E , P and ρs values depend on the optimization process, the
linear dimensions and the various assumptions made, and small but inconsequential discrepancies
[35] are unavoidable.

B. Numerical methods

1. Construction and evaluation of 3D finite-element model

In this section, the 3D FEM used to analyze MEMS or NEMS resonators immersed in a viscous
fluid is discussed. For the present work, all FEMs were constructed and analyzed using commercial
software COMSOL Multiphysics [40]. The model consists of a beam surrounded by a sphere of
fluid. The 3D model is depicted in Fig. 2(a), where only half of the beam and spherical fluid domain
are shown and analyzed due to the symmetry about the x-z plane. A corresponding 2D drawing with
dimensions used in the model is depicted in Fig. 2(b). The fluid is modeled with two concentric
spheres surrounding the 3D solid beam. The fluid domain within the sphere of radius R1 is modeled
with a Thermoviscous Acoustics solver to capture all the thermal and viscous losses that occur in
the boundary layers. In this domain, the fluid is modeled as a viscous compressible Newtonian fluid
with the following frequency domain equations: momentum equation, continuity equation, energy
conservation equation, and linearized equation of state. By modeling the fluid near the beam as
a viscous compressible Newtonian fluid, the total effect of the fluid-structure interaction may be
observed. Namely, the fluid is capable of applying a stiffness, damping, and inertial force to the
beam. Analysis of the fluid force will be pertinent when analyzing the vibration of NEMS beams
near a substrate and the effects of squeeze film damping. Specifically, the real part of the fluid force,
which is dependent on the compressibility and added mass of fluid, will be analyzed to observe
changes in the hydrodynamic function. In the outer spherical layer between R1 and R2, the fluid is
modeled as a compressible lossless fluid and is governed by the Helmholtz equation. More details
on the governing equations may be found in Appendix A.

The radius R1 is chosen such that the fluid is approximately quiescent at R1, allowing for all
viscous and thermal losses to be captured within the inner spherical layer. In this domain, a fine mesh
is needed near the beam to accurately capture all the losses in the boundary layer. A convergence
study on the mesh size is presented in Appendix B. In the outer spherical layer between R1 and
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R2, the fluid is modeled to be lossless, such that the power radiated through a spherical surface is
constant for any radial distance between R1 and R2. This allows a spherical wave radiation boundary
condition to be applied at the outer spherical surface. It is important to note that for all measured
and simulated devices, the effect of acoustic radiation is minimal. Specifically, the parameters of the
devices have been chosen such that the energy loss due to acoustic radiation is negligible due to the
small amount of acoustic waves generated in the fluid. Since the fluid is approximately quiescent
at R1, the lossless outer spherical layer mainly serves the purpose of creating a domain that is
amenable to the spherical wave boundary condition. Boundary conditions will be further discussed
in the following paragraph. Convergence studies that analyze how the FEM results depend on radii
R1 and R2 are presented in Appendix B.

For cases where there is no substrate, the fluid is modeled as an infinite medium by imposing
a spherical wave radiation boundary condition at the outer spherical boundary. This boundary
condition allows an outgoing spherical wave to leave the domain with minimal reflection. When
a substrate is present, a wall is modeled at a gap distance, g, below the beam as depicted in Fig. 2(c).
At the wall, boundary conditions are imposed such that the normal component of fluid acceleration
and velocity are zero. At the fluid-structure interface, the fluid is coupled to the solid beam such that
the boundary conditions in Eqs. (1) and (2) are satisfied.

With the constructed FEM, the response of a resonator immersed in fluid may be analyzed
with either a forced response simulation or an eigenfrequency simulation. In the forced response
simulation, the beam is excited with a distributed load that has the spatial form of Eq. (21), and a
force amplitude, f0, that remains constant across frequency. The frequencies of excitation are chosen
close to the resonance frequency of interest such that the response of the beam is dominated by the
excited mode. At each excitation frequency, the forced response of the beam, as well as the fluid
field, is found. In contrast, when an eigenfrequency simulation is performed, the complex-valued
mode shape of the beam and fluid are found for the corresponding complex-valued eigenfrequency.
This predicts the shape of the deformed beam and fluid field that oscillate at the corresponding
complex-valued natural frequency. Evaluation of the complex eigenvalue problem allows for the
undamped natural frequency and quality factor of the fluid-loaded beam to be predicted exactly,
while avoiding approximations made in Sec. III. Such simulation will be important when predicting
the quality factor of higher modes, where loading may also occur in the x direction, resulting in
additional energy dissipation.

2. Postprocessing of 3D finite-element model

In this section, methods for evaluating quantities that will be discussed in Sec. VI are presented.
(a) Receptance. With the solution to the forced response simulation, the receptance in Eq. (24)

is evaluated by solving for the frequency dependent modal amplitude, q̃n(ω). The modal amplitude
is found by approximating light modal coupling near resonance, such that the modal amplitude is
related to the beam displacement and mode shape by

w̃(x, ω) ≈ q̃n(ω)φn(x). (36)

With the solution to the 3D FEM and beam displacement w̃(x, ω), the modal amplitude may be
found from a simple change of coordinate by evaluating the displacement at the reference position,
x̂n, such that

q̃n(ω) ≈ w̃(x = x̂n, ω)

φn(x̂n)
. (37)

The receptance may then be evaluated with use of Eq. (24). To enable the comparison between
numerical results and experimental measurements, the reference position for the fundamental mode
in Eqs. (10) and (37) is taken to be x̂1 = L/2, which is the same location at which the displacement
is experimentally measured.
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(b) Hydrodynamic function. The hydrodynamic function introduced in Sec. IV may be found
from the solution to either a forced response simulation or eigenfrequency simulation. For ease of
discussion, the expression for the force per unit length applied by the beam to the fluid in Eq. (26)
is repeated here [

−π

4
ρ f ω

2b2(ω)
]
w̃(x, ω) = f̃ s| f ,z(x, ω). (38)

Equation (38) can be simplified to

κ̃ (ω)w̃(x, ω) = f̃ s| f ,z(x, ω), (39)

where κ̃ is the dynamic stiffness per unit length, which was set equal to the the quantity in
parentheses in Eq. (38). Rearranging Eq. (39), the dynamic stiffness is expressed as

κ̃ (ω) = f̃ s| f ,z(x, ω)

w̃(x, ω)
. (40)

The right-hand side of Eq. (40) is dependent on position, as it is the ratio of force to displacement
along the length of the beam. However, based on the formulation of the approximation presented
in Sec. IV, the hydrodynamic function, and therefore κ̃ , is assumed to be constant and independent
of position. Therefore, for the present work the dynamic stiffness is found by taking an effective
spatial average, such that

κ̃ (ω) =
∫ L

0 w̃∗(x, ω )̃ f s| f ,z(x, ω)dx∫ L
0 w̃∗(x, ω)w̃(x, ω)dx

, (41)

where w̃∗(x, ω) is the complex conjugate of the beam displacement. Substituting the expression for
force applied by the beam to the fluid in Eq. (4), into Eq. (41), and simplifying the denominator, the
dynamic stiffness is found to be

κ̃ (ω) =
∫ L

0

∫
�I

w̃∗(x, ω)T̃z(x, y, z, ω)d�I dx∫ L
0 ||w̃(x, ω)||2dx

. (42)

As a result, with the solution to the 3D FEM, the computed displacement response of the beam and
the traction at the fluid structure interface may be used to compute the dynamic stiffness in Eq. (42).
With the computed dynamic stiffness, κ̃ , the hydrodynamic function may then be computed with

sim(ω) = κ̃

−(π/4)ρ f ω2b2
. (43)

(c) Quality factor. As mentioned in the prevision section, Sec. V B 1, an eigenfrequency
simulation may be performed to find the exact modal properties of the fluid-loaded beam. The
eigenfrequency simulation solves the complex eigenvalue problem for the complex eigenvalue, �n,
which is related to the undamped natural frequency and modal damping ratio by

�n = ωn

(
iζn ±

√
1 − ζ 2

n

)
. (44)

With the computed complex eigenvalue, the undamped natural frequency may then be computed by
taking the absolute value of Eq. (44), and the quality factor may be computed from

Qn = 1

2

(
abs{�n}
Im{�n}

)
. (45)
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FIG. 3. Color plots of normalized fluid velocity,
√

�3
i=1||v f ,i||2/||ẇ||, with velocity arrow field in the y-z

plane for a doubly clamped beam vibrating in its fundamental mode in air. (a) Resonator is near a substrate
with a g = 2 μm gap distance and dimensionless squeeze number �sq = 0.816. (b) Resonator is in an infinite
fluid.

VI. RESULTS

A. Effect of a substrate: Squeeze damping

When a wall is placed in proximity to a vibrating resonator, the entire velocity field (not just the
field in the gap) is modified. This is observed in Fig. 3, which plots the local fluid velocity field,√

�3
i=1||v f ,i||2, normalized to the magnitude of the beam velocity for a resonator vibrating near a

substrate and in an infinite medium. The 2D fluid field (y-z plane) shown in Fig. 3 is in the middle
(x = L/2) of a doubly clamped beam vibrating in its fundamental mode. The velocity of the beam’s
cross section is depicted with the yellow velocity arrow, and the fluid velocity field is depicted
with black velocity arrows, whose direction is proportional to the velocity in the y and z directions.
Figure 3(a) shows that as the beam moves toward the substrate, the fluid is squeezed, with some
fluid flowing out of the gap. The presence of a substrate thus results in a change in the fluid pressure
and stress field, which consequently modifies the fluid loading of the beam [10].

The effect of a substrate is illustrated in Fig. 4 which plots the magnitude of the imaginary part of
receptance, ||Im{χ̃1(ω)}||, for the 50-μm doubly clamped NEMS beam discussed in Sec. V A. Here,
the NEMS beam is vibrating in its fundamental mode in air. The figure compares the experimentally
measured receptance to the receptance evaluated with the blade approximation and numerical
simulation. Here, the blade approximation is used in place of the cylinder approximation due to
the relatively small thickness to width aspect ratio of the beam. Experimentally, the receptance was
found from the measured power spectral density, which is related to receptance by [8]

G f (ω) = −4kBT

ω
Im{χ̃ (ω)}, (46)

where kB is the Boltzmann constant, and T is temperature. In Fig. 4(a), a base-10 logarithmic scale
and linear scale are used to plot receptance in the main part and inset of the figure.

In Fig. 4(a), the solid blue line is the magnitude of the imaginary part of receptance evaluated
with Eq. (25) using modal fluid properties predicted with the blade approximation in Eq. (31), and
modal properties of the bare beam evaluated with Eq. (19) using the optimized material properties.
From Fig. 4(a), the blade approximation underpredicts the damping due to fluid loading when a
substrate is present. This is observed by comparing the amplitude of ||Im{χ̃1(ω)}|| near resonance.
From Eq. (25), a decrease in ||Im{χ̃1(ω)}|| near resonance corresponds to an increase in damping.
This increase in damping is due to the increase in fluid stress, and thus fluid loading applied to
the beam. From Fig. 4(a), the numerical simulation better captures the increase in damping due
to the presence of a substrate. This is depicted by the decrease in amplitude of ||Im{χ̃1(ω)}|| near
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FIG. 4. Results for 50-μm NEMS beam in air. (a) Magnitude of the imaginary part of receptance
||Im{χ (ω)}||, versus frequency for data, blade approximation, and simulation. ||Im{χ (ω)}|| plotted with
base-10 logarithmic scale (main) and linear scale (inset). The shading indicates the uncertainty cloud of the
cylinder model which was obtained by evaluating the receptance for the beam density range 2600 kg/m3 �
ρs � 3400 kg/m3. (b) Real, ′(ω), and imaginary, ′′(ω), part of hydrodynamic function versus frequency
(lower axis) and dimensionless squeeze number (upper axis), �sq, for blade approximation and simulation.

resonance, resulting in better agreement with the experimentally obtained receptance. Addition-
ally, the receptance found with the blade approximation is evaluated for the beam density range
2600 kg/m3 � ρs � 3400 kg/m3, and is plotted with the shaded blue region in Fig. 4(a). For a given
density value, ρs, the modal stiffness and mass of the bare beam are computed with Eq. (19). Note
that from Eq. (19) and the analysis presented in Sec. III, the modal parameters of the bare beam only
depend on the solid density and natural frequency. Also note that the modal mass and damping due to
fluid loading predicted by the blade approximation in Eq. (31) are independent of the beam density.
As a result, by evaluating the receptance with Eq. (25) from modal properties computed for a range
of reported silicon nitride density values, the range in receptance represents all possible responses
of the silicon nitride resonator predicted with the blade approximation. The results indicate that the
observed trends in damping predicted by the blade approximation is independent of the material
properties used to model the bare beam. Specifically, it is observed that the blade approximation
underpredicts the damping due to fluid loading for all practical values of beam material properties
when a substrate is present.

Figure 4(b) plots the hydrodynamic function, , found from the blade approximation and
numerical simulation. Both the real, ′, and imaginary, ′′, part of the hydrodynamic function
are plotted. First considering the imaginary part of the hydrodynamic function, it is shown that
the blade approximation, ′′

rect, is less than the numerical simulation, ′′
sim, and thus underpredicts

the damping. This is to be expected from the results observed in Fig. 4(a). In contrast, the real
part of the hydrodynamic function found from the blade approximation, ′

rect, is greater than
that found from the numerical simulation, ′

sim. This does not necessarily imply that the blade
approximation overpredicts the added mass of the fluid. Instead, one can only conclude that the
blade approximation overpredicts the real part of the fluid force applied to the beam. Recalling
Sec. V B 2, the hydrodynamic function found from the numerical simulation is proportional to
the dynamic stiffness, κ̃ , by virtue of Eq. (43). The dynamic stiffness found from the numerical
simulation and Eq. (42) is complex valued, and may be interpreted with use of Eqs. (15) and (40).
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FIG. 5. Results for 50-μm NEMS beam in water. (a) Magnitude of the imaginary part of receptance
||Im{χ (ω)}||, versus frequency for data, blade approximation, and simulation. The shading indicates the
uncertainty cloud of the cylinder model which was obtained by evaluating the receptance for the beam density
range 2600 kg/m3 � ρs � 3400 kg/m3. (b) Real, ′(ω), and imaginary, ′′(ω), part of hydrodynamic function
versus frequency (lower axis) and dimensionless squeeze number (upper axis), �sq, for blade approximation
and simulation.

It follows that the real part of the dynamic stiffness, κ̃
′
, can be interpreted as

κ̃
′
(ω) = k f − ω2m f , (47)

where k f and m f are the effective stiffness and mass of the fluid, respectively. In the numerical
simulation, the fluid is modeled as compressible, and the compressibility could in principle result in
added stiffness. This type of added stiffness has been discussed in the MEMS literature [10]. From
Eq. (47), however, the total contribution of any stiffness increase or mass loading presented by the
fluid are entangled. Consequently, the exact contribution of the stiffness change or mass loading
cannot be readily determined, as the numerical simulation only finds the real part of the dynamic
stiffness. From Fig. 4(b), the blade approximation’s inaccuracy in predicting the real part of the
hydrodynamic function is attributed to its inaccuracy in predicting any stiffness or mass loading
when a substrate is present. It should be noted that the Mach number, the ratio of velocity amplitude
to sound speed in air, is Ma ≈ 0. This is due to the NEMS beam’s very small amplitude of vibration
of O(1) nm. While this simple assessment suggests that the fluid is practically incompressible, past
work have discussed stiffness changes in MEMS due to fluid compression [10], suggesting that
more involved analyses may be needed. Such detailed analysis of frequency trends, which is out of
the scope of this current paper.

Additional results depicting the effect of a substrate are presented in Fig. 5, which plots results
for the 50-μm doubly clamped NEMS beam vibrating in its first mode in water [35]. From Fig. 5(a),
disagreement between the blade approximation and data are observed below and near resonance, as
the approximation is unable to capture the effect of the substrate. In contrast, better agreement
is obtained with the numerical simulation, which better predicts the fluid force applied to the
beam. Interestingly, the blade approximation begins to match the numerical simulation at higher
frequencies above resonance, as depicted in both Figs. 5(a) and 5(b). At higher frequency ranges, it
is observed that the hydrodynamic function found from the blade approximation begins to approach
that found from the numerical simulation. This implies that at such frequencies, the presence of a
substrate does not effect the fluid field and the force applied to the beam by the fluid. Similar trends
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FIG. 6. Results for 60-μm NEMS beam in water. (a) Magnitude of the imaginary part of receptance
||Im{χ (ω)}||, versus frequency for data, blade approximation, and simulation. The shading indicates the
uncertainty cloud of the cylinder model which was obtained by evaluating the receptance for the beam density
range 2600 kg/m3 � ρs � 3400 kg/m3. (b) Real, ′(ω), and imaginary, ′′(ω), part of hydrodynamic function
versus frequency (lower axis) and dimensionless squeeze number (upper axis), �sq, for blade approximation
and simulation.

are observed in Fig. 6, which plots results for the 60-μm doubly clamped NEMS beam vibrating in
its first mode in water [35]. The longer length results in a lower resonance frequency and therefore
a larger viscous boundary layer and dimensionless squeeze number. Below and near resonance
the simulation agrees well with data, whereas the blade approximation inaccurately predicts the
beam’s response. The larger dimensionless squeeze number results in larger disagreement between
the hydrodynamic function predicted with the blade approximation and simulation, as depicted in
Fig. 6(b). At higher frequencies above resonance, the effect of the substrate becomes less prominent.
However, both the simulation and blade approximation show disagreement with data due to strong
modal coupling and the consequent break down of the single degree-of-freedom modal analysis
formulation.

To quantify the effect of a substrate, the following dimensionless squeeze number is introduced

�sq = δvisc

g
, (48)

where g is the gap distance between the resonator and substrate and δvisc is the viscous boundary
layer thickness,

δvisc(ω) =
√

2μ

ρ f ω
. (49)

When �sq is near unity, such that δsq ≈ g, the presence of the substrate will greatly effect the fluid
field and force applied to the beam. This was previously observed in Fig. 3(a), which plotted the
velocity field for a resonator near a substrate with a gap distance of g = 2 μm and dimensionless
squeeze number �sq = 0.816. The effect of a substrate may also be observed by considering the
viscous dissipation function, defined as the power dissipated per unit volume due to viscous losses,
and expressed as the following double dot product [41],

�visc = τ f : ∇v f , (50)
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FIG. 7. Logarithm of normalized viscous dissipation function, log10(�visc/max{�visc}), in the y-z plane
for a doubly clamped beam vibrating in its fundamental mode in air. (a) Resonator is near a substrate with a
g = 2 μm gap distance and dimensionless squeeze number �sq = 0.816. (b) Resonator in an infinite fluid.

where τ f is the viscous fluid stress tensor and ∇v f is the fluid velocity gradient tensor.
Figure 7 plots the logarithm of the viscous dissipation function normalized to the maximum

viscous dissipation function in the fluid field for the same resonators analyzed in Fig. 3. In both
Figs. 7(a) and 7(b), relatively large dissipation occurs near the resonator due to the viscous boundary
layer that forms at the oscillating solid interface. Furthermore, from Fig. 7(a), an additional bound-
ary layer forms at the substrate due to the fluid flowing out of the gap and the no-slip boundary
condtion at the wall, resulting in viscous stresses that dissipate energy. To observe the dependence
on gap distance and �sq, the logarithm of the normalized viscous dissipation function is plotted
in Fig. 8(a), for a resonator near a substrate with a gap distance of g = 10 μm and dimensionless
squeeze number �sq = 0.163. The fluid field may be compared to Fig. 8(b), which plots the fluid
field for a resonator vibrating in an infinite fluid medium. Comparing Figs. 8(a) and 8(b), it is
observed that the presence of the substrate has no visible effect on the fluid field and the viscous
losses. This is because the gap distance, g, is much greater than the viscous boundary layer thickness,
δvisc, and the substrate is in a region of the fluid which is seemingly quiescent. As a result, the effect
of the substrate tends to decrease with the decrease in dimensionless squeeze number.

To better illustrate the dependence on the dimensionless squeeze number, �sq, a numerical para-
metric study was performed. In the parametric study, the gap distance, g, between the resonator and
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FIG. 8. Logarithm of normalized viscous dissipation function, log10(�visc/max{�visc}), in the y-z plane
for a doubly clamped beam vibrating in its fundamental mode in air. (a) Resonator is near a substrate with a
g = 10 μm gap distance and dimensionless squeeze number �sq = 0.163. (b) Resonator is in an infinite fluid.
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FIG. 9. Hydrodynamic function for a resonator near a substrate, sub, normalized to hydrodynamic function
for resonator in an infinite medium, inf, versus gap distance (lower axis), g, and dimensionless squeeze number
(upper axis), �sq. Gap distance and dimensionless squeeze number plotted with linear scale (main) and base-10
logarithmic scale (inset).

substrate was increased from g = 1 μm to g = 10 μm. At each gap distance, the fluid force applied
to the beam was evaluated, and the corresponding real and imaginary part of the hydrodynamic
function, ′

sub and ′′
sub, respectively, were computed. An identical resonator vibrating in an infinite

fluid was then simulated, and the real and imaginary part of the hydrodynamic function, ′
inf and

′′
inf, were evaluated. The results to the parametric study are shown in Fig. 9, which plots the real

and imaginary components of the hydrodynamic function found for the resonator near a substrate,
normalized to that found for the resonator in an infinite fluid. The results are plotted versus gap
distance, g, and dimensionless squeeze number, �sq. Here, it is shown that for small g and large
�sq, the presence of the substrate greatly effects the fluid load and the resulting hydrodynamic
function. In agreement with previous results, the imaginary part of the hydrodynamic function,
which quantifies the fluidic dissipation and effective damping applied to the beam, increases when
a substrate is present, indicative of ′′

sub/
′′
inf > 1. However, as the gap distance increases and

the dimensionless squeeze number, �sq, decreases, the effect of the substrate decreases and ′′
sub

approaches ′′
inf. A similar trend is observed for the real part of the hydrodynamic load. However,

for this case, when the gap distance is small, the presence of a substrate modifies the effective
modal stiffness and mass of the fluid, resulting in ′

sub < ′
inf. The trends observed in Fig. 9 are

reflected in previous results. Recalling Fig. 5(b), with increasing frequency, the viscous boundary
layer in Eq. (49) decreases, and thus the dimensionless squeeze number in Eq. (48) also decreases.
As a result, the presence of the substrate is seen to have less effect on the fluid field and resulting
hydrodynamic function at higher frequencies, where sim begins to approach rect.

To conclude this section, the range on �sq for which the substrate may be approximately
neglected is discussed. As observed in Fig. 9, the effect of the substrate becomes negligible for very
small values of the dimensionless squeeze number, �sq � 1. This limit occurs when the substrate
is far from the beam, or the frequency of oscillation is relatively large such that the boundary layer
thickness is relatively small. Considering the imaginary part of the hydrodynamic function which
predicts dissipation, results from the parametric study found that ′′

sub/
′′
inf ≈ 1.05 at �sq = 0.4307.
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Hence, the error due to neglecting the substrate was limited to 5% when �sq < 0.4307. As these
computed errors are specific to the numerical study, additional detailed sensitivity studies must be
conducted to determine accurate bounds on �sq. However, all results in the present work support
the conclusion that the substrate can not be neglected when �sq ≈ 1.

B. Axial flow

In this section, the effect of flow along the axis of a beam (x direction) is examined. As discussed
in Sec. IV, the cylinder and blade approximation are derived from a 2D analysis that only considers
fluid flow in the 2D plane of the beam cross section. To examine the effect of axial flow, the
dimensionless axial flow number, �ax, is introduced as

�ax = βnb, (51)

where b is the beam width, and βn is the flexural wave number. The flexural wave number is related
to frequency with the expression in Eq. (8), and is also related to the flexural wavelength, λn, by

βn = 2π

λn
. (52)

Substituting Eq. (52) into Eq. (51), the dimensionless axial flow number may also be expressed as

�ax = 2π
b

λn
. (53)

From Eq. (53), �ax will generally increase with the increase in bending mode number due to the
decrease in corresponding wavelength.

To analyze the effect of axial flow, a numerical parametric study was performed. In the parametric
study, beams with doubly clamped boundary conditions, listed in Table I, were analyzed. In the
parametric study, the beams were modeled with no axial load, P = 0, resulting in the simplified
wave number expressed in Eq. (9). An eigenfrequency analysis was then performed to numerically
predict the quality factor for the bending mode of interest. The quality factor was also predicted
with the blade approximation and Eq. (35). Additionally, with the numerically computed fluid field,
the rms fluid velocity in the x, y, and z directions was computed. The rms was taken over the fluid
volume in the model such that

rms{vi} =
√

1

V

∫
||vi||2dV , (54)

where V is the volume of the fluid field in the FEM. The dimensions of the beam were chosen
to give a desired dimensionless axial flow number, as shown in Table I. In the parametric study,
the beams were modeled to be in air at atmospheric pressure and temperature T = 293 K. The
generalized Knudsen number for each beam is listed in Table I. From the reported Knl + Wi, most
of the simulations are in the continuum regime with a few remaining in the transition regime.
Regardless, for the present parametric study, a no-slip boundary condition is applied and all the
systems are approximated to be in the viscous limit. To more accurately asses axial flow results in
the continuum regime, numerical results for a simulation in water are presented later in this section.

Results from the parametric study in Fig. 10 depict the fluid field’s dependence on the dimension-
less axial flow number, �ax. Figure 10(a) plots the fluid field in the x-z plane, where color is the real
part of the fluid velocity in the x direction, Re{vx, f }, normalized to the real part of the beam velocity
in the z direction at the reference position, x̂n. Here the reference positions for the first three modes
are taken to be x̂1 = 0.50L, x̂2 = 0.29L, and x̂3 = 0.21L. The results in Fig. 10(a) depict an increase
in axial flow along the beam with increase in �ax, evident by the increase in the normalized x fluid
velocity. This is also illustrated in Fig. 10(b), which plots the normalized rms fluid velocity in the
x, y, and z directions, computed from Eq. (54). Here the rms velocity components are normalized
to the sum of the rms components, rms{vx, f } + rms{vy, f } + rms{vz, f }. The results are plotted for all
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TABLE I. Dimensions and properties of numerically simulated doubly clamped beams analyzed in para-
metric study.

Mode 1
b × h × l β1 ω1/2π

�ax = βb (μm3) (μm−1) (kHz) Knl + Wi Re(ω1, b) Re(ω1, λ)

0.1 2.11 × 0.5 × 100 0.0473 433.4016 0.0293 0.2020 797.53
0.2 4.26 × 0.5 × 100 0.0473 433.4016 0.0160 0.8081 797.53
0.3 6.34 × 0.5 × 100 0.0473 433.4016 0.0116 1.8181 797.53
0.4 8.46 × 0.5 × 100 0.0473 433.4016 0.0094 3.2323 797.53
0.5 10.57 × 0.5 × 100 0.0473 433.4016 0.0080 5.0504 797.53

Mode 2
b × h × l β2 ω2/2π

�ax = βb (μm3) (μm−1) (kHz) Knl + Wi Re(ω2, b) Re(ω2, λ)

0.1 2.55 × 0.5 × 200 0.0393 298.6769 0.0239 0.2020 797.53
0.2 5.09 × 0.5 × 200 0.0393 298.6769 0.0129 0.8081 797.53
0.3 7.64 × 0.5 × 200 0.0393 298.6769 0.0092 1.8181 797.53
0.4 10.19 × 0.5 × 200 0.0393 298.6769 0.0074 3.2323 797.53
0.5 12.73 × 0.5 × 200 0.0393 298.6769 0.0063 5.0504 797.53

Mode 3
b × h × l β3 ω3/2π

�ax = βb (μm3) (μm−1) (kHz) Knl + Wi Re(ω3, b) Re(ω3, λ)

0.1 4.55 × 0.5 × 500 0.0220 93.6841 0.0129 0.2020 797.53
0.2 9.09 × 0.5 × 500 0.0220 93.6841 0.0068 0.8081 797.53
0.3 13.64 × 0.5 × 500 0.0220 93.6841 0.0047 1.8181 797.53
0.4 18.19 × 0.5 × 500 0.0220 93.6841 0.0037 3.2323 797.53
0.5 22.74 × 0.5 × 500 0.0220 93.6841 0.0031 5.0504 797.53
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FIG. 10. Results from numerical parametric study for doubly clamped beams listed in Table I. (a) Fluid
field in the x-z plane for various beams. Color represents the real part of the fluid velocity in the x direction
normalized to the real part of the beam velocity in the z direction at the reference position, Re{vx, f }/Re{ẇ(x̂n)}.
(b) rms fluid velocity normalized to the sum of rms velocity components, rms{vi, f }/(�3

j=1rms{v j, f }),versus
dimensionless axial flow number, �ax, for all beams in Table I.
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FIG. 11. Results from numerical parametric study for doubly clamped beams listed in Table I. Inverse of
quality factor found from the numerical simulation, Q−1

sim, normalized to the inverse of quality factor predicted
from the blade approximation, Q−1

rect versus dimensionless axial flow number, �ax.

beams listed in Table I. From Fig. 10(b), it is observed that an increase in �ax gives rise to a relative
increase in rms{vx, f }. Additionally, it is observed that for a fixed �ax, the normalized rms velocity
components vary with mode number. This is because the 3D fluid field is largely dependent on the
shape and response of the beam, as depicted by Fig. 10(a).

With an increase in axial flow, the 2D blade approximation overpredicts the dissipative force
applied to the beam by the fluid. This is observed in Fig. 11, which plots the inverse of quality factor
found from the numerical simulation, Q−1

sim, normalized to the inverse of quality factor predicted from
the blade approximation, Q−1

rect. From Fig. 11, the blade approximation overpredicts the dissipation
at larger �ax, evident by the decrease in Q−1

sim/Q−1
rect with increase in �ax. This is due to the increase

in axial flow at larger �ax, which is not accounted for in the 2D blade approximation. When the fluid
is allowed to flow in all three directions, such that it is not constrained to the 2D y-z plane, the stress
acting on the beam decreases. As a result the fluid load applied to the beam, and the corresponding
dissipative force, decreases.

It is important to note that the quality factor predicted from the numerical simulation is found
without any approximation, as the simulation solved the complex eigenvalue problem. Namely, the
3D FEM accounts for fluid loading in all three directions, as expressed in Eq. (4), and the resulting
energy dissipated due to such loading. This is in stark contrast to the 2D blade approximation, which
only considers fluid loading in the z direction. The results in Fig. 11 imply that an increase in axial
flow results in a decrease in total dissipated energy. In specific, the sum of the energy loss due
to loading in the x, y, and z direction decreases with increasing dimensionless axial flow number,
�ax. Consequently, although the increase in axial flow results in larger velocity gradients in the x
direction, and therefore increased loading in the x direction, by virtue of Eqs. (3) and (4), the results
tend to be dominated by the decrease in loading in the z direction.

Effects of axial flow were also observed with a simulation of a micro-cantilever vibrating in wa-
ter. The microcantilever had dimensions L × b × h ≈ 200 μm × 10 μm × 1 μm. In the simulation,
the microcantilever was excited with a sinusoidal force applied at the tip of the cantilever. Frequency
was then swept to excite the first five bending modes. The receptance, absolute value of displacement
normalized to the applied force at the tip of the cantilever, was computed and is plotted in Fig. 12(a).
The vertical lines indicate the approximate resonance frequencies where receptance is at a local
maximum. The hydrodynamic function was also computed from the simulation with Eq. (43) and is
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FIG. 12. Results from simulation of micro-cantilever vibrating in water. (a) Receptance, absolute value of
displacement normalized to the applied force at the tip of the cantilever, versus frequency. (b) Real, ′(ω), and
imaginary, ′′(ω), part of hydrodynamic function versus frequency for blade approximation and simulation.
Inset plots rms fluid velocity normalized to the sum of rms velocity components, rms{vi, f }/(�3

j=1rms{v j, f }).

plotted in Fig. 12(b). Here, the hydrodynamic function computed from the simulation is compared to
that predicted with the blade approximation. In contrast to the blade approximation, which predicts
a monotonic decrease in  with frequency, the simulation illustrates the hydrodynamic function’s
dependence on the cantilever’s mode shape. Specifically, local minima in ′

sim and ′′
sim are observed

near the resonance of higher modes. The decrease in  near resonance is due to the corresponding
increase in axial flow near resonance. These trends may be better interpretted by observing the
normalized rms fluid velocity components plotted in the inset of Fig. 6(b). Here, two trends may
be observed. First, the rms fluid velocity in the x direction tends to increase with frequency after
the first mode. This is due to the decrease in flexural wavelength and corresponding increase in
dimensionless squeeze number, which, as shown previously in Fig. 10(b), results in an increase
in axial flow. Note that the axial flow number increases from �ax = 0.0937 at the first mode, to
�ax = 0.7069 at the fifth mode. The second trend is the local increase in axial flow near resonance.
These results suggest that the fluid field, and consequently the hydrodynamic function, is largely
dependent on the mode shape and displacement profile of the cantilever. Curvature in the beam gives
rise to increase fluid flow in the x direction and the decrease in fluid loading the the z direction.

From the results of the two numerical studies, the cylinder and blade approximation become
inaccurate and must be modified in the presence of axial flow. Axial flow tends to increase with
an increase in dimensionless axial flow number, which is dependent on both the geometry of the
beam and flexural wavelength. Furthermore, local increases in axial flow occur near resonance
due to the fluid fields strong coupling to the beam’s displacement profile. Increase in axial flow
results in the corresponding decrease in loading in the z direction and thus a decrease in the
hydrodynamic function. Such trends are not captured in the cylinder or blade approximation which
is formulated from a 2D model that only considers planar oscillation of a solid cross section. Results
from Fig. 11 show that errors less than 10% are obtained when �ax < 0.5. However, additional
detailed parametric studies are needed to determine exact ranges on �ax where 3D fluid flow may
be neglected. In general, axial flow becomes more prominent at higher bending modes, where the
increased curvature of the beam increases the flow in the x direction. Consequently, neglecting axial
flow will produce smaller errors at lower bending modes and smaller values of �ax.
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VII. CONCLUSION

Analyses of 3D nanoflows induced by the vibration of NEMS beams is conducted, and the valid-
ity of the 2D cylinder approximation is examined. A dimensionless squeeze number is introduced
to characterize the effect of squeeze film damping when a substrate is present. The fluid force
applied to a resonator increases with an increase in dimensionless squeeze number, and the 2D
cylinder approximation underpredicts the total dissipation due to fluid loading. The effect of the
substrate and squeeze film damping is prominent at lower frequencies, where the viscous boundary
layer thickness is comparable to the gap distance. In contrast, when the viscous boundary layer
thickness is small compared to the gap distance, the substrate does not effect the fluid field and
the 2D cylinder approximation is valid. In the present work, evaluation of a 3D FEM coupled with
modal analysis allowed for the fluid loading to be analyzed in detail. As previous works have mostly
been limited to analyzing the change in quality factor and subsequent change in the imaginary part
of the hydrodynamic function, the present work offers new insight into the real part of the fluid
loading and hydrodynamic function. Results showed a decrease in the real part of the hydrodynamic
function when a substrate was present. From the derived expression of the dynamic stiffness, this
decrease is attributed to a decrease in a combined stiffness and mass term. Additional studies may
be performed in the future to determine the exact contribution of the individual terms.

A dimensionless axial flow number is also introduced to characterize the resonator and fluid
velocity field. The dimensionless squeeze number increases with mode number, as the flexural wave
length decreases. When the dimensionless axial flow number increases, the velocity along the axis
of the beam increases. Although this gives rise to an increase in fluid loading in the x direction, the
dominant effect is the decrease in loading in the z direction, resulting in a decrease in total dissipated
energy and consequent increase in quality factor. The numerical parametric study analyzed a variety
of beams with the dimensionless axial flow number ranging from �ax = 0.1 to �ax = 0.5. This
study provided new insight into the effect of axial flow as it isolated the effect of the dimensionless
axial flow number and bending mode number. Results show that at a fixed mode number, an increase
in dimensionless axial flow number increases the fluid velocity in the x direction and decreases
the quality factor. Additionally, for a fixed dimensionless axial flow number, increasing the mode
number will have the identical effect, as the spatial response of the beam is found to effect the flow
field.
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APPENDIX A: GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Here the governing equations solved in the FEM are presented. Recalling the FEM depicted in
Fig. 2(a), the fluid in the the sphere of radius R1 is modeled as a viscous compressible Newtonian
fluid. The fluid is modeled with the following governing equations in the frequency domain: the
momentum equation

iωρ0v = ∇ ·
{
−pI + μ

[∇v + (∇v)T
] +

(
μB − 2

3
μ

)
(∇ · v)I

}
, (A1)

where p is pressure in the fluid, v is the fluid velocity field, μ is the dynamic viscosity, μB is the
bulk viscosity, and ρ0 is the mean background fluid density; the continuity equation

iωρ = −ρ0(∇ · v), (A2)
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where ρ is the fluid density; the energy conservation equation

iω(ρ0CpT − T0α0 p) = −∇ · (−k∇T ) + Q, (A3)

where T is temperature in the fluid, T0 is the mean background temperature in the fluid, Cp is the
heat capacity at constant pressure, k is the thermal conductivity, α0 is the coefficient of thermal
expansion, and Q is the heat source; and the linearized equation of state

ρ = ρ0(βT p − α0T ), (A4)

where βT is the isothermal compressibility. The fluid in the outer spherical layer between R1 and R2

is modeled as a compressible lossless fluid and is governed by the Helmholtz equation

∇2 p − ω2

c2
p = 0, (A5)

where c is the speed of sound in the fluid. Here, the subscript f , used to denote fluid quantities in
the main text, has been left off to improve readability.

In the FEM, the fluid is coupled to the vibrating beam with kinematic and dynamic boundary
conditions discussed in Sec. II, Eqs. (1) and (2), respectively. At the substrate, a wall is modeled
such that the normal component of the fluid acceleration and velocity are zero, such that

n ·
(

1

ρ
∇p

)
= 0. (A6)

At the outer spherical surface of radius R2, a spherical wave radiation boundary condition is imposed
to model the fluid as an infinite medium. Here, the boundary condition allows an outgoing wave
to leave the modeling domain with minimal reflections. For this boundary condition, COMSOL
Multiphysics implements second-order expressions developed by Bayliss et al. [42].

APPENDIX B: CONVERGENCE STUDIES

Here, convergence studies performed on the FEM are presented. First, a mesh refinement study
was performed to determine the maximum element size. This maximum element size is prescribed
to the boundaries at which the fluid and structure are coupled together. Decreasing the element size
at this boundary decreases the element size in the fluid domain near the beam. In this region, a fine
mesh is needed to capture the losses in the boundary layer. In the mesh refinement study, a mesh
factor is set. The mesh factor is related to the maximum element size and viscous boundary layer
thickness by

maximum element size = δvisc/(mesh factor). (B1)

With the mesh factor and maximum element size, the mesh is generated and the FEM is evaluated
to compute the quality factor, Q. The refinement study increases the mesh factor, resulting in finer
meshes. For each mesh refinement, a normalized change in quality factor is computed with

normalized change in quality factor = Qj − Qj−1

Qj−1
, (B2)

where Qj is the quality factor computed from the jth iteration. The results from a mesh refinement
study performed on a doubly clamped beam vibrating in its first mode in air is presented in
Fig. 13(a). The results show a decrease in the change in quality factor with increase in mesh factor.
For the present work, a normalized change in quality of less than 1% was desired, and therefore a
mesh factor of 3 or greater was used for all FEM.

Additional convergence studies were performed to determine the FEM’s sensitivity to the fluid
domain size. Specifically, the quality factor’s dependence on the spherical radii R1 and R2, depicted
in Fig. 2, were analyzed in three studies. For the three studies, a doubly clamped beam vibrating in
its first mode in air was studied. The studies performed the following analyses:

024201-24



NANOFLOWS INDUCED BY MEMS AND NEMS: LIMITS OF …

1 2 3 4 5
Mesh Factor

0

0.005

0.01

0.015

N
or

m
al

iz
ed

 C
ha

ng
e 

in
 Q

ua
lit

y 
Fa

ct
or

)b()a(

25 30 35 40 45 5078.31

78.32

78.33

78.34

Q
ua

lit
y 

Fa
ct

or

Study 1

25 30 35 40 45 5077.96
77.97
77.98
77.99

78
78.01

Q
ua

lit
y 

Fa
ct

or

Study 2

30 35 40 45 5078.316
78.318
78.32

78.322
78.324
78.326

Q
ua

lit
y 

Fa
ct

or

Study 3

FIG. 13. (a) Normalized change in quality factor, (Qj − Qj−1)/Qj−1, versus mesh factor found from mesh
refinement study. (b) Results from Studies 1–3 of convergence study that analyzed FEM’s dependence on fluid
domain size. Results plot computed quality factor, Q, versus normalized radius length.

(i) Study 1: Computed quality factor for varying R1 while keeping �R = R2 − R1 constant.
(ii) Study 2: Computed quality factor for varying R1 while keeping R2 constant.
(iii) Study 3: Computed quality factor for varying R2 while keeping R1 constant.
The results from the three studies are presented in Fig. 13(b). Here, it is found that changes in the

fluid domain size result in relatively small changes in the quality factor. For studies 1, 2, and 3, the
difference between the maximum and minimum computed quality factor, normalized to the average
compute quality factor is 2.6551 × 10−4, 5.3914 × 10−4, and 1.0214 × 10−4, respectively. These
results suggest that the computed quality factor is independent of radii R1 and R2. The observed
insensitivity to domain size is largely due to the fact that the analyzed fluid domain is large compared
to the viscous boundary layer thickness, and the fluid is approximately quiescent at R1.
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