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In the present work, we theoretically analyze the influence of the slippage phenomenon
on the atomization via surface acoustic waves of a millimeter-order water drop deposited
over a hydrophilic substrate. The analysis is conducted by considering, in the first place, a
standing surface acoustic wave acting at the free surface of the parent drop. Subsequently,
the lubrication theory is applied to the flow field governing equations to derive an evolution
equation of the air-liquid interface in terms of the acoustic capillary number and the
Navier-slip coefficient. Such an equation’s numerical solution leads to a simplified drop
model, depicting the spatiotemporal deformation of the free surface under the influence of
slippage phenomenon and predicts the atomization threshold once the instability length at
the induced capillary waves is achieved. Our numerical simulations show that the high-
frequency acoustic excitation under consideration leads to the development of a standing
wave at the free surface, which oscillates at a viscous-capillary resonance frequency on
order 104 Hz. Moreover, a spreading phenomenon on the fluid drop is induced, strongly
linked to the magnitude of the acoustic capillary number. In this scenario, the slippage
under hydrophilic conditions has a noticeable impact on the free surface dynamics, causing
smaller aerosol characteristic diameters in comparison with the no-slip case. In this context,
the present study provides an analytical expression that calculates the droplet diameter in
terms of the slip coefficient. In the process, we postulate the slippage phenomenon as a
valuable means to control the parent drop’s deformation mechanism and, therefore, the
aerosol characteristic diameter.

DOI: 10.1103/PhysRevFluids.6.024002

I. INTRODUCTION

In recent decades, there has been significant progress in the development of microfluidics due to
the possibility of integrating several tasks related to mixing, separation, or trapping of microparticle
suspensions in only one small-scale device, known as Lab-on-a-Chip (LOC) [1,2]. Microfluidics
involves the study and development of many microparticle handling techniques [2–6], which assures
fluid movement and particle transport, essential aspects for enhancing the reliability and efficiency
of the LOC’s. Among these techniques, we can find the acoustofluidics, which is defined as the
ultrasound-based external forcing of microparticles in microfluidics. It has traditionally been rele-
vant due to the exploitation of two physical phenomena: acoustic streaming [7] and acoustophoresis,
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both of them allowing label-free particle manipulation based only on its mechanical properties,
e.g., size, density, or compressibility, which is desirable for mixing, or separation of immersed
particulate matter. Typically, the external acoustic forcing in microfluidic systems derives from
ultrasonic mechanical vibrations [8,9], generating Reynolds stresses in the fluid and the acoustic
radiation force [10], both are fundamental mechanisms in acoustic streaming and acoustophoresis.
However, the influence of ultrasonic acoustic waves on a fluid can derive in another mechanism of
particular interest for our study, for particle manipulation in microfluidics systems, called ultrasonic
atomization.

Ultrasound-based atomization technique [10–12] generates micron- and submicron-sized aerosol
droplets by applying an ultrasonic acoustic field (up to 3 MHz) over the free surface of liquid
solutions. Specifically, the mechanical energy applied from a piezoelectric device agitates the
air-liquid interface of the solution, promoting the formation and subsequent breakup of cavita-
tion bubbles, which is the main mechanism behind the formation and ejection of monodispersed
droplets at the free surface. Such aerosol generation process provide small droplets with potential
applications in analytical chemistry or medicine [13,14]. Over the years, ultrasonic atomization
technique increased its popularity in microfluidics, although crucial features, like miniaturization
and portability, constituted serious obstacles that hindered its full implementation at small-scale
systems. In the 1990s, these disadvantages were attended with the development of a particular type
of ultrasonic atomization technique, called SAW atomization [15–22]. This technique consists of
using a nanometer-order mechanical disturbance termed surface acoustic waves (SAW) [23,24],
which operates at frequencies from 10 to 500 MHz, several orders of magnitude above conventional
ultrasonic atomization. SAW atomization process relies on the formation, and subsequent breakup
of capillary waves via capillary instability [25] at the air-liquid interface of small-scale fluid drops
placed over piezoelectric substrates, therefore, micron- and submicron-sized aerosol droplets are
generated from the parent drop. SAW atomization is an excellent medium for mass and heat transfer
in LOC’s, therefore is commonly implemented in microfluidic systems destined for pulmonary drug
delivery [15,19,21,22], mass spectrometry [26], cooling [16] or even as a promising technology for
paper-based microfluidics [27], by allowing, for example, to successfully extract protein molecules
from hydrophilic cellulose papers [20].

A clear and deep understanding of the physics behind the formation and evolution of capillary
waves at the air-liquid interface of a drop exposed to acoustic forcing is necessary to provide a
reliable and efficient usage of SAW atomization. In this context, the deformation mechanisms
occurring at the free surface of a drop are directly related to the atomization rate and the char-
acteristic diameter of aerosol. However, the presence of multiple lengths and time scales in the
phenomenon, high droplet ejection velocities or even capillary wave turbulence [28], represent
formidable challenges that prevent experimental studies from properly portray the dynamics of
the air-liquid interface under SAW excitation and its dependence of fluid properties. Nevertheless,
numerical simulations have proven to give a valuable insight regarding the formation of capillary
waves and their destabilization mechanism before atomization process [18,29–31]. For example,
Qi et al. [18] studied the destabilization phenomenon in terms of the acoustic capillary number.
In this context, by developing a numerical model based on the lubrication theory, their study
managed to capture the resulting deformations at the drop’s free surface. When the curvature
gradients portrayed by the model were sufficiently strong, a reasonable prediction of the instability
threshold—indicating imminent drop atomization—was given. Moreover, endorsed by experimental
evidence, Qi’s study predicted the characteristic diameter of the ejected droplets, d ∼ λinst, where
λinst is the instability wavelength. The subsequent study developed by Tan et al. [31] illustrated
how computational analysis could be applied to incorporate the coupling between the piezoelectric
substrate and the liquid drop into the interfacial deformation analysis. Their research effort delivered
useful and reliable data regarding capillary wave motion and even predict the development of
interesting phenomena not yet experimentally reported, like the superharmonic frequencies, which
appear at the drop’s free surface under low-amplitude regimes of SAW excitation.
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Considering the literature cited above, the deformation mechanism at the air-liquid interface
induced by SAWs constitutes a complex mechanism. Capillary and viscous stresses at the drop’s
interface determine the formation of liquid threads its subsequent breakup into aerosol droplets. In
this context, our study constitutes a computational effort developed to broaden the comprehension
of the destabilization process leading SAW atomization by considering a topic that has proven to be
of fundamental physical interest. It can exert significant repercussions in many areas of engineering
and applied sciences where liquids interact with microfluidic devices: the slippage phenomenon
at a solid boundary [32]. The presence of slippage in any phenomenon is portrayed by imposing
a boundary condition on the solid-fluid interface known as the Navier slip condition, which for a
Newtonian fluid is given by

u − (u · n)n − β{E · n − [(E · n) · n]n} = 0. (1)

Here, n is the unit vector normal to the surface directed into the fluid, u is the velocity of the fluid, E
is the rate-of-strain tensor, and β is an empirical parameter known as the slip length, which possesses
units of length and is expected to be of molecular dimensions. Slippage studies like the one provided
by Watanabe et al. [33] illustrates how the concept of contact angle can be used for predicting the
presence of slippage phenomenon on solid surfaces. Moreover, a considerable amount of subsequent
experimental evidence [34] has shown the slip coefficient (β) has a more relative significance at
micron- and submicron scales. In this context we note that the slip coefficient has been quantified
as 10−9 � β(m) � 10−6 for systems with complete [35–38] and partial [39–46] wetting (i.e., θc <

90◦). Such systems consisted of fluids like water, sucrose, or hexadecane in contact with surfaces
based on silicon, glass, mica, and silica; i.e., a set of fluid and solid materials which are not beyond
the scope of microfluidic devices and drop handling techniques.

The present study aims to theoretically evaluate the influence of the Navier slip condition on
the interfacial destabilization mechanism of a liquid drop subjected to SAW atomization. In this
context, let us note that the usage of slippage phenomenon under hydrophobic conditions (i.e.,
with θc > 90◦) for drop handling techniques via SAWs is not an unknown topic. For example,
by applying a Teflon-based layer on the piezoelectric substrate, spreading the drop under acoustic
excitation is prevented, which constitutes a useful mean for keeping the drop fixed in a particular
area and promote the development of phenomena like interfacial jetting [47,48]. However, until our
knowledge, the direct relationship of the Navier slip coefficient with the deformation mechanism
leading toward destabilization and the interfacial breakup of a drop subject to SAW atomization
has not yet explored under hydrophilic conditions (i.e., θc < 90◦). Moreover, being aware of the
important role that the geometric aspect ratio of the drop plays on the aerosol generation process,
as a key parameter which influences the capillary-acoustic stress balance at the air-liquid interface
[18], and therefore the diameter of the ejected droplets [49], we explore the influence of slippage
under hydrophilic conditions to modify and control the aspect ratio and therefore SAW atomization.
Our study implements the lubrication theory to derive an evolution equation governing the drop’s
free surface response to SAW excitation. By solving such an equation, we analyze the capillary
deformations leading toward interfacial breakup and atomization. In this sense, our approach is
similar to the numerical work developed by Qi et al. [18]; however, our study evaluates the
fundamentals of SAW atomization in a completely different scenario, one which assumes slippage in
systems with partial and complete wetting (i.e., θc < 90◦). Although experimentally confirmed and
reported, little effort has been dedicated to proving its impact at small-scale phenomena like SAW
atomization, a technique where the proper understanding of capillary instability and its connection
with fluid properties, like the wettability, is of fundamental importance.

II. PROBLEM FORMULATION

A Newtonian slender drop modeled as a thin liquid film on a two-dimensional framework is
deposited over a hydrophilic substrate and exposed to the influence of a high-frequency acoustic
field, as depicted in Fig. 1. We assume, based on specialized literature regarding SAW atomization
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FIG. 1. Evolution of the free surface h(x, t ), of a slender drop (with H � L) due to the excitation forcing
�ac(x, t ) by a standing SAW that propagates from the substrate to the interface, acting in the direction of the
unit normal vector (n). An initial drop profile, h(x, 0) = H exp[−20(x/L)2] [18], with a contact angle θc below
90◦ is considered. The slender drop is subject to the Navier slip condition at the solid-liquid boundary once
acoustic excitation begins (See inset A). This scenario traduces in implementing a hydrophilic material, placed
between the substrate and the drop, which allows a nonzero tangential fluid velocity u at the wall.

[18,49], that the thin film has a length L(m) ∼ 10−3 − 10−4 and a thickness H (m) ∼ 10−4 − 10−5,
thus, an aspect ratio H/L � 1 is feasible. Besides, the effect of a certain degree of slip at the solid-
liquid interface, quantified by the slip length β, is also considered. Under these circumstances, our
study aims to use the lubrication theory to determine the spatiotemporal evolution of the drop’s free
surface denoted by h(x, t ) under SAW excitation. Cartesian coordinates are chosen, such that the x
axis is directed along the solid surface, and the z axis is normal to it. When a thin film is exposed to
the influence of acoustic stress, velocity and pressure distributions are developed inside the liquid,
in concordance with our simplified approach, and we assume such distributions do not change in
the direction of y (normal to the plane of the sketch).

To determine the resulting film thickness h(x, t ), we consider the influence of an acoustic stress,
denoted by �ac. Such stress, also called acoustic pressure, acts in a direction normal to our
small-scale drop model’s free surface and is responsible for its deformation. We neglect the influence
of tangential stresses induced by air and any effect induced by surface tension gradients (like
thermocapillary flow); in this sense, we assume constant properties at the liquid film. Worth noting
at this point is the absence of any disjoining pressure effect at our lubrication-type drop model. The
above is because we do not implement a precursor film model to portray the three-phase contact
line; instead, we use an equivalent model, i.e., the Navier-slip boundary condition. Kalliadasis have
discussed the equivalence between such models and Chang [50] and Yeo and Chang [51]. Thus,
because of the considerations just referred to, the Navier-Stokes and continuity equations for the
two-dimensional flow in the liquid film of density ρ and viscosity μ are:

∂xu + ∂zw = 0, (2a)

ρ(∂t u + u∂xu + w∂zu) = −∂x p + μ∇2u, (2b)

ρ(∂tw + u∂xw + w∂zw) = −∂z p + μ∇2w. (2c)
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Here, u and w are the velocity components in x and z directions, respectively. ∇2 stands for the
Laplacian operator defined by ∇ = (∂2/∂x2, ∂2/∂z2). The boundary conditions between the liquid
and the solid substrate are those of impermeability, given by

w = 0 at z = 0, (3)

and the Navier slip condition, which allows tangential relative motion at z = 0:

u − β∂zu = 0 at z = 0, (4)

where β is the slip coefficient. At the interface, i.e., at z = h(x, t ), two main boundary conditions
are established; the first one is the so-called kinematic boundary condition, which is given by

w = ∂t h + u ∂xh at z = h(x, t ). (5)

Equation (5) represents the balance between the normal component of the liquid velocity at the
interface and the speed of the interface. The second boundary condition is obtained by considering
a force balance at the air-liquid interface, i.e.,

(T − T̂) · n − σn(∇ · n) = f at z = h(x, t ), (6)

where the total stress tensor exerted above the interface by the air and the stress applied by the liquid
from beneath the interface is (T, T̂), respectively. The normal and tangential (unit) vectors are n and
t (see Fig. 1), and σ is the surface tension. The vector quantity f represents any prescribed force at
the drop’s interface, and for our analysis, it contains only one component normal to the interface,
the acoustic force, denoted by �ac.

The stresses balance given in Eq. (6) is defined as T = −patmI + τ and T̂ = −p̂I + τ̂, where
patm and p̂ represent the total pressure on the two sides of the interface (air-liquid), including both
dynamic and hydrostatic contributions. Moreover, I is the identity matrix, with τ and τ̂ denoting
the viscous stress tensors, respectively. As the viscosity of air is smaller than the liquid one, τ = 0.
Taking the inner product of Eq. (6) with the unit vector n, the normal-stress balance at the interface
can be rewritten as

p̂ − patm − (τ̂ · n) · n + �ac = σ (∇ · n) at z = h(x, t ). (7)

Note that �ac = f · n represents the acoustic pressure. Equation (7) establishes that the normal
component of the total stress on the interface undergoes a jump, which is quantified the surface
tension times the curvature ∇ · n.

Next, we proceed to detail the features behind the acoustic pressure forcing, �ac, employed
during our study. Let us note in the first place that SAW atomization makes use of Rayleigh waves
which possess a retrograde motion. The above means that for an acoustic wave traveling from left
to right, any particle on the solid surface of the substrate (plane xy in Fig. 1) describes an ellipsoidal
trajectory in a counterclockwise fashion, on a plane normal to the surface and parallel to the direction
of wave propagation (x axis). Under these circumstances, we model the vibration velocity U, at the
solid surface, by the following expression [52]:

U = A 	 cos θR eiκxei	t , (8)

Equation (8) indicates that the surface of the piezoelectric substrate is forced to oscillate as a
traveling wave with an amplitude A(m) ∼ 10−9, an angular frequency 	(rad/s) ∼ 108, and with a
wave number κ (m−1) ∼ 104. The quantity cos θR takes into account the diffraction phenomenon of
the SAW into the water drop. Such phenomenon, quantified by the Rayleigh angle θR [24], occurs
due to the difference at the sound wave propagation speed between the two media, i.e., the substrate
material (commonly a piezoelectric material such as lithium niobate) and the water drop placed over
it. The vibration velocity allows estimating the acoustic pressure in the following form [53]:

�̃ac = ρ U2 = ρA2	2 cos2 θR e2iκxe2i	t . (9)
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Equation (9) represents an acoustic traveling wave [52], which in conjunction with acoustic
standing waves [54], constitutes typical excitation forcing, implemented on SAW atomization.
These waves propagate along the substrate and cause interfacial destabilization at the time they
diffract into the drop. We note that the sound wave propagation across the substrate beneath the
drop depends on the boundary conditions imposed along the wave propagation path. In this context,
a standing wave is generated by allowing the acoustic excitation Eq. (9) to reflect off the free edge
of the substrate and interfere with itself (see Fig. 1). If the acoustic excitation Eq. (9) is absorbed by
utilizing gel-based substances (e.g., polydimethylsiloxane or α-gel) on the surface of the substrate,
then an acoustic excitation via a traveling wave will arise. Specifically, our study considers the
influence of a standing wave on a drop placed above a substrate with slippage at the wall. Thus,
it is necessary to consider the reflection and subsequent superposition of Eq. (9). Specifically, the
acoustic pressure, �ac used on our study is the sum of a harmonic wave traveling to the right along
the x axis, and an identical harmonic wave that is traveling to the left. Because of the above, the
acoustic forcing implemented during the present study to calculate the thickness, h(x, t ), of our
slender drop model is

�ac = 2ρA2	2 cos2 θR sin (2κx) cos (2	t ). (10)

Now we proceed to derive the tangential component of the stress balance at the air-liquid interface.
To do that, we take the inner product of Eq. (6) with the tangential (unit) vector to the interface t
(see also Fig. 1), yielding

(τ̂ · n) · t = 0 at z = h(x, t ). (11)

The vectorial quantities n and t are defined in terms of the interface shape, h(x, t ), as follows:

n = (−∂xh, 1)

[1 + (∂xh)2]1/2 and t = (1, ∂xh)

[1 + (∂xh)2]1/2 . (12)

The problem to be solved is formulated in terms of the dimensionless variables defined as

x̄ ≡ x

L
, (z̄, h̄) ≡ z, h

H
, ū ≡ u

U
, w̄ ≡ w

ε U
, t̄ ≡ t

L/U
, p̄ ≡ p̂ − patm

εσ/L
. (13)

Here, the characteristic pressure εσ/L in Eqs. (13) was determined by balancing the pressure differ-
ence at the interface, p̂–patm with the capillary pressure, σ (∇ · n), from the normal stress balance
condition given by Eq. (7). Furthermore, the dimensionless parameter ε ≡ H/L and it is assumed
very small compared with unity. The characteristic velocity U is obtained from a viscous-capillary
force balance at the interface σH/L2 ∼ μU/H , then, solving for U yields U ∼ σε2/μ. Using the
dimensionless variables defined in Eqs. (13) into the set of Eqs. (2a)–(2c) yields the following
dimensionless governing equations:

∂x̄ ū + ∂z̄w̄ = 0, (14)

Re ε[∂t̄ ū + ū∂x̄ ū + w̄∂z̄ ū] = −Ca−1ε3 ∂x̄ p̄ + ε2∂2
x̄ u + ∂2

z̄ u, (15a)

Re ε3[∂t̄ w̄ + ū∂x̄w̄ + w̄∂z̄w̄] = −∂z̄ p̄ + ε2(ε2∂2
x̄ w + ∂2

z̄ w
)
, (15b)

where Re = UH/ν is the Reynolds number, and Ca = μU/σ is the capillary number, which
measures the importance of viscous effects relative to surface tension. Moreover, the boundary
conditions between the liquid and the solid substrate (at z̄ = 0) in the dimensionless form are

w̄ = 0 and ū − β0∂z̄ ū = 0. (16)

Here, β0 = β/H is the dimensionless slip coefficient. Considering the unit vectors n and t in
Eq. (12) for the stress balance components, the boundary conditions in Eqs. (5), (7), and (11) at
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z̄ = h̄(x̄, t̄ ) are expressed as

∂t̄ h̄ + ū ∂x̄ h̄ = w̄, (17)

p̄ + �̄ac + 2ε2{∂x̄ ū[1 − ε2(∂x̄ h̄)2] + ∂x̄ h̄[ε2∂x̄w̄ + ∂z̄ ū]}
1 + ε2(∂x̄ h̄)2

= −∂2
x̄ h̄

[1 + ε2(∂xh̄)2]3/2
, (18)

and

[1 − ε2(∂x̄ h̄)2][ε2∂x̄w̄ + ∂z̄ ū] − 4ε2(∂x̄ h̄)(∂x̄ ū) = 0. (19)

Next, we seek the solution of the governing Eqs. (14)–(19) as a perturbation series in powers of the
small parameter ε, as follows:

ū = ū0 + εū1 + ε2ū2 + · · ·, (20)

w̄ = w̄0 + εw̄1 + ε2w̄2 + · · ·, (21)

p̄ = p̄0 + ε p̄1 + ε2 p̄2 + · · ·. (22)

The lubrication approximation of the dimensionless governing equations is obtained by letting
Re ∼ O(1) and ε → 0. In this context, an important consideration is made in Eq. (15a). We assume
Ca ∼ O(ε3) to retain the pressure term at the resulting leading order; thus, the capillary and viscous
effects in our thin-film approach possess the same importance. Because of these assumptions, at the
leading order in ε, the governing system adopts the following form (note that, for simplicity, we
have omitted the subscript 0 in ū0, w̄0, and p̄0),

∂x̄ ū + ∂z̄w̄ = 0, (23)

∂x̄ p̄ = ∂2
z̄ u (24a)

∂z̄ p̄ = 0. (24b)

The following boundary conditions at z̄ = 0 are

w̄ = 0 and ū − β0∂z̄ ū = 0. (25)

The boundary conditions at the interface Eqs. (17)–(19), at z̄ = h̄(x̄, t̄ ), are

∂t̄ h̄ + ū ∂x̄ h̄ = w̄, (26)

p̄ + �̄ac = −∂2
x̄ h̄, (27)

∂z̄ ū = 0. (28)

Let us note that the spatiotemporal function, �̄ac = �̄ac(x̄, t̄ ) introduced on Eqs. (18) and (27)
constitutes a dimensionless acoustic pressure, defined by

�̄ac = 2 C sin (2κ̄ x̄) cos (2	̄t̄ ), (29)

which has been obtained by substituting a dimensionless pressure �̄ac = �acL/εσ , a dimensionless
frequency 	̄ = 	L/U and a dimensionless wave number κ̄ = κL = 2πL/λ into Eq. (10). In this
context, we note that the quantity L/U is the viscous-capillary time scale [18] and λ is the SAW
wavelength. Thus, Eq. (29) depicts a standing wave in terms of a dimensionless wave number, k̄, a
dimensionless frequency, 	̄, and an acoustic capillary number, C. The latter is defined by

C ≡ ρ	2A2H cos2 θR

ε2σ
. (30)
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Inversely proportional to the square of the aspect ratio ε, this dimensionless quantity measures the
importance of the acoustic stress relative to the drop’s resistance to be deformed, i.e., the capillary
stress. We note that θR is the Rayleigh angle, a quantity which considers the acoustic propagation
properties of the drop-substrate system, as referred to before.

Let us now focus our attention on Eq. (24b), such expression indicates that the pressure is not a
function of z̄; therefore, Eq. (24a) is integrated twice, yielding the velocity profile in the form

ū = ∂x̄ p̄
(

1
2 z̄2 − h̄z̄ − β0h̄

)
. (31)

Here, the constants of integration were determined by considering the Navier slip model at z̄ = 0 and
the tangential stress condition at z̄ = h̄(x̄, t̄ ), given by Eqs. (25) and (28), respectively. Integration
of Eq. (23) in z̄ results in the following equation:∫ h̄

0
∂x̄ ū d z̄ + w̄|h̄0 = 0. (32)

Applying the Leibnitz rule to Eq. (32) and combining with the boundary condition Eq. (26) and
w̄ = 0 at z̄ = 0, then, Eq. (32) is rewritten as follows:

∂t̄ h̄ + ∂x̄

(∫ h̄

0
ū dz̄

)
= 0. (33)

Substituting the velocity profile Eq. (31) into Eq. (33), we obtain the partial differential equation
that allows determining the film thickness h̄,

∂t̄ h̄ − ∂x̄
[
∂x̄ p̄

(
1
3 h̄3 + β0h̄2

)] = 0. (34)

Combining Eqs. (27) and (29), we can express the hydrodynamic pressure p̄ in terms of the acoustic
capillary number, in the form

p̄ = −∂2
x̄ h̄ − 2 C sin (2κ̄ x̄) cos (2	̄t̄ ). (35)

Equation (34) constitutes an evolution equation in time and space for the destabilization mechanism
at the drop’s air-liquid interface under the influence of the Navier slip condition and acoustic
excitation via SAWs. When the slip coefficient is zero, we recover the evolution equation derived
by Qi et al. [18] under the classical no-slip condition at the solid wall. The solution of Eq. (34)
will allow to obtain fundamental information about the formation of capillary waves at the drop’s
free surface. Specifically, by analyzing such deformations, important parameters regarding SAW
atomization, like the instability threshold and viscous-capillary resonant frequency [18], will be
determined and evaluated in the context of slippage phenomenon at the solid wall.

Equation (34) requires one initial condition and four boundary conditions. We can appreciate the
above if we replace Eq. (35) into Eq. (34). In this manner, we obtain a four-order partial differential
equation for the thickness h. An important aspect worthy of consideration during the choice of the
initial condition for Eq. (34) consists in the definition of the proper geometry which approximates
the drop in an undeformed state, without the influence of any acoustic stress and with a contact angle
beneath 90◦. Thus, the air-liquid interface at t̄ = 0 is conveniently approximated by a Gaussian
profile in the form

h̄(x̄, t̄ = 0) = exp

(
− x̄2

0.05

)
. (36)

The following symmetry conditions are subsequently imposed at the left and right boundaries of the
spatial domain:

∂x̄ h̄(x̄, t̄ )|x̄→±∞ = 0, (37)
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and

∂3
x̄ h̄(x̄, t̄ )|x̄→±∞ = 0. (38)

Although Eq. (34) refers to the leading order of the lubrication theory of Eqs. (17) and (18), it does
not admit an analytical solution due to the presence of strong nonlinearities and higher-order spatial
derivatives. Therefore, Eq. (34), subject to the acoustic forcing Eq. (35) and auxiliary condition
Eqs. (36)–(38), is solved numerically by the method of lines (MOL) [55,56]; a deep insight regarding
the implementation of such a method is shown in the Appendix.

The implementation of MOL demands a series of parameters—regarding the drop physical and
geometrical properties—to be precisely defined. In this context, a clear knowledge of the typical
values associated with acoustic excitation via SAWs (operational frequencies and wavelengths
besides wave amplitudes) is needed to build a well-grounded estimation of the acoustic capillary
number. Of course, a proper estimation of the characteristic velocity of the flow field, besides the
dimensionless frequency and wave number, is essential to provide a feasible representation of the
effects caused by the acoustic stress at the free surface of our numerical drop model. Thus, we
proceed to show the values and orders of magnitude of those parameters of fundamental relevance
for the numerical solution of Eq. (34).

We consider water properties at standard room temperature with ρ = 1000 kg/m3, μ = 1.0 ×
10−3 kg/m s, and σ = 72.8 mN/m. The speed of sound in water v f ≈ 1482.5 m/s is used to
estimate the acoustic radiation leakage effect, as explained below. Because of the lubrication-
type approach, a slender drop with length L(m) ∼ 10−4–10−3 and height H (m) ∼ 10−5–10−4 has
been considered, such that ε � 1. The characteristic velocity of the fluid is U (m/s) ∼ σε2/μ ∼
10−2 − 1. Such velocity, in conjunction with our estimation for L, yields a characteristic time
tc(s) ∼ L/U ∼ 10−4 − 10−3, which agrees with the previously reported temporal scale governing
the deformation of the air-liquid interface [18]. Next, we address the parameters associated with
the acoustic pressure �ac, defined at Eq. (10). We consider a linear excitation frequency fe on the
order ∼107 Hz [15,16,20–22,31,57], then, the angular excitation frequency (given by 	 = 2π fe)
is on the order 108 rad/s. Moreover, we consider typical SAW wavelengths and amplitudes
with λ(m) ∼ 10−4 and A(m) ∼ 10−9, respectively. Addressing now the parameters belonging the
dimensionless acoustic pressure at Eq. (29), it results that the considerations given above yield
	̄ ∼ O(104) and κ̄ ∼ O(10).

The estimation of the acoustic capillary number requires to take into account the diffraction
phenomenon of the SAW traveling across the substrate into the water drop. Such phenomenon is
quantified by the Rayleigh angle, θR, defined by θR = arcsin(v f /vs), where v f and vs represent
the wave propagation speed across the water drop and the substrate, respectively. Specifically, our
study considers θR ≈ 22◦, with v f ≈ 1482.5 m/s and vs ≈ 3965.0 m/s; the latter being the SAW
propagation speed across lithium niobate, broadly employed on the fabrication of piezoelectric
substrates. In view of the above, we consider cos2 θR ∼ O(1).

Finally, we address the dimensionless slip coefficient, β0, employed during our numerical
simulations, which is given by β0 = β/H and relates the Navier slip-length and the characteristic
height of the drop. As our numerical model portrays a drop-substrate system with a contact angle
below θc < 90◦, we have taken into account empirical slip lengths measurements in systems with
complete [35–38] and partial [39–46] wetting which report 10−9 � β(m) � 10−6; thus, in view
of the scale length for H provided above, we have β0 ∼ O(10−2–10−1). Once all the essential
parameters for our numerical study have been defined, we proceed to analyze the output obtained
by the implementation of MOL (see the Appendix) in the results and discussion in Sec. III.

III. RESULTS AND DISCUSSION

The numerical output obtained from MOL consists in the film thickness h̄(x̄, t̄ ) and can be
visualized either as a surface defined on the coordinate space (x̄, z̄, t̄) by the function z̄ ≡ h̄(x̄, t̄ )
or as a component of a scalar function F (x̄, t̄ ), which describes the interface shape in the sense
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(a)

(b)

FIG. 2. Spatiotemporal evolution surface F that depicts the deformation process of a single drop profile
along the dimensionless time t̄ . Case (a) shows a stress ratio quantified at C = 10.0 and results in a quasistable
deformation process that keeps away the drop of being atomized, i.e., acoustic forcing is nearly balanced
respect capillary forces at the interface. However, case (b) with C = 50.0, suggests a strong dominance of the
acoustic stress over the surface tension stabilizing effect that results in a drop profile susceptible to be atomized.

that the interface is the set of points x̄ = (x̄, z̄), such that F (x̄, t̄ ) ≡ 0. Then, by combining both
definitions, the following equation of a surface is obtained:

F (x̄, t̄ ) ≡ h̄(x̄, t̄ ) − z̄ ≡ 0. (39)

We begin our discussion by presenting the MOL output as a scalar function F subject to Eq. (39), as
can be observed in Fig. 2. In this context, let us note that we focus our attention on illustrating in first
place the key role acoustic capillary number plays on the the formation of capillary waves via SAWs;
after that, we analyze the influence of slippage phenomenon on SAW atomization. Accordingly,
Fig. 2 portrays the response of an air-liquid interface toward an acoustic stress in the absence of
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slippage at the wall, under the influence of C = 10 [Fig. 2(a)] and C = 50 [Fig. 2(b)]. The acoustic
forcing exerted on the free surface was defined at Eq. (29) and depends on the dimensionless
frequency (	̄) and wave number (κ̄) besides the acoustic capillary number. The surface F has been
plotted in a time interval 0 � t̄ � 1.5 and over a spatial domain −1.5 � x̄ � 1.5 with 	̄ = 104

and κ̄ ∼ O(10). The cross-sections obtained when F intersects a temporal plane (parallel to the x̄z̄
plane), constitutes the drop profiles at a particular time, t̄ .

As can be observed in Figs. 2(a) and 2(b) the simulation starts with the Gaussian profile defined
by Eq. (36); this profile approximates the drop’s interface in an undeformed state, as a continuous
liquid film with a contact angle below 90◦. We note that the interface of the liquid film experiences
an initial “transient,” within t̄ < 0.18, characterized by a sudden reduction in the aspect ratio, ε,
with strongly marked curvature gradients at the drop’s interface, as shown in Fig. 2. However, a
feasible representation of the free surface physical response only begins once the interface finds
its equilibrium position at t̄ ≈ 0.18. Specifically, during such equilibrium configuration, the drop
profile adopts a configuration which resembles a dome, i.e., a concave shape with subtle defor-
mations along the free surface [e.g., see Figs. 3(a-i), 3(b-i), and 3(c-i) portrays three equilibrium
configurations under three values for C]. Once the initial transient has died out and the equilibrium
position of the free surface has been reached, a series of ripples are developed on the drop’s interface
for t̄ > 0.18. Such structures, also called capillary waves, harmonically oscillate on the free surface
as an interfacial standing wave with a frequency that is know as the capillary resonance frequency
and possess also an amplitude which depends on the acoustic capillary number, as explained below.

The amplitude of the capillary waves developed at the interface can be interpreted as an indicative
of the drop’s resistance to being deformed by the acoustic stress. In this context, Fig. 2(a) shows that
a water drop under the influence of a stress ratio quantified by C = 10 develops a series of subtle
capillary waves along the free surface and adopts a concave shape that practically remains unaltered
along time. Such geometry indicates the drop is very close to an equilibrium configuration, thus,
the capillary stresses acting over the free surface are sufficiently strong to prevent the development
of the excessively elongated capillary waves needed for interfacial breakup and drop’s atomization.
However, Fig. 2(b), with C = 50, shows a case at which the acoustic pressure gains more relevance
than the capillary forces at the interface, deriving in the formation of excessively elongated capillary
waves with abrupt curvature gradients. As discussed in detail later, the amplitude of some of the
induced capillary waves in Fig. 2(b) has achieved a critical value called instability length; thus,
atomization induced via SAWs is feasible.

Let us note that the numerical simulations depicted in Figs. 2(a) and 2(b) indicate that to
promote a significant deformation of the air-liquid interface, an stress ratio with C ∼ O(10) is
required. The feasibility of such order of magnitude can be demonstrated by substituting the drop’s
parameters listed at Sec. II into Eq. (30). In this context, we also note that the magnitude of C
differs considerably from its viscous counterpart, i.e., the capillary number Ca (usually, Ca � 1).
The aspect ratio considered during our lubrication-type approach, ε � 1, plays a key role at such
magnitude difference. While the capillary number has been scaled as Ca ∼ ε3, the acoustic capillary
number, in contrast, is in inverse proportion respect ε [see Eq. (30)]. Such aspect ratio dependence
contributes also to explain the magnitude of C shown at our numerical results.

Continuing with the analysis of Fig. 2, a spreading effect can be observed on the free surface,
which is deeply associated with the acoustic forcing irradiation on the air-liquid interface. The
spreading phenomenon implies a reduction in the drop’s aspect ratio, ε, as time progresses, i.e.,
a gradual decrease in the film height (H) in conjunction with an increment at the film length (L).
We note the drop spreading is stronger as the acoustic capillary number varies from 50.0 to 10.0.
Thus, Fig. 2(a) shows an air-liquid interface with a greater resistance against spreading than the free
surface depicted in Fig. 2(b), as a consequence, the drop thickness is expected to decay at a faster
rate as C → 50.0. The decrease of the aspect ratio for a drop exposed to SAW excitation has already
been experimentally documented [18], in this context, the numerical output presented in Fig. 2
confirms such phenomenon and illustrates that the aspect ratio drop depends on the competence
between acoustic and capillary stresses quantified by C.
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(c-i)(b-i)(a-i)

(c-ii)(b-ii)(a-ii)

(c-iii)(b-iii)(a-iii)

(c-iv)(b-iv)(a-iv)

FIG. 3. Spatiotemporal evolution of an air-liquid interface subjected to SAW excitation, in terms of h̄ =
h(x̄, t̄ ). Three values of C are considered (10.0, 30.0, 50.0), distributed in three columns (a)–(c). Each column
contains a sequence of four subfigures (i)–(iv), portraying the first cycle of the induced standing wave at the free
surface. In this context, each subfigure shows three drop profiles developed under a particular slip coefficient:
—–β0 = 0.0, β0 = 0.05, and β0 = 0.1. All of the profiles have been obtained under an acoustic
excitation with 	̄ = 104 and κ̄ ∼ O(10) (see Sec. II).

Slippage at the solid-liquid interface is closely related to the interfacial spreading phenomenon
described above. To deliver a comprehensive analysis of such relationship, we make use of a
two-dimensional representation of the surface F by plotting its intersection with different temporal
planes worth of interest, considering in the process both, the absence and presence of slippage at
the wall besides several values of the acoustic capillary number. Accordingly, various drop profiles
are shown on Fig. 3, distributed in an “array” consisting of three columns and four rows. Each
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column corresponds to a specific value of C (10, 30, and 50) and is composed of four cases
[(i)–(iv)], which portray the film evolution at different times t̄ . In this context, we note that each
element or “panel” in Fig. 3 depicts three drop profiles developed under the influence of an acoustic
forcing with a dimensionless frequency 	̄ = 104 and a wave number κ̄ ∼ O(10). Moreover, each
drop profile has been developed under the influence of a particular value of the slip coefficient,
i.e., β0 = 0.0, 0.05, and 0.1. Cases (i)–(iv) in each column shown in Fig. 3 portray the first
cycle of the standing wave developed at the air-liquid interface, consisting in the film evolution
from an equilibrium shape toward a state of maximum deformation to return, shortly after, to the
equilibrium configuration. Such fundamental behavior tends to be repeated during subsequent cycles
as the drop experiments the spreading effect referred to before at its base, near the reference level
z = 0. Before proceeding to analyze the influence of slippage on SAW atomization, let us note
the dimensionless slip coefficients employed at our numerical simulations (e.g., β0 = 0.05, 0.1) are
on the order 10−2–10−1 such range is equivalent—in physical units—to a slip length (β) varying
between O(10−7) and O(10−6) m, which is consistent with experimental measurements regarding
the slip length developed under hydrophilic conditions (see Sec. II).

To illustrate the slippage influence on SAW atomization, three drop profiles are presented at each
individual panel appearing on Fig. 3. The dotted blue line corresponds to β0 = 0.05 and the solid red
line to β0 = 0.1. The solid black line represents the case with the no-slip condition, β0 = 0. Let us
start by analyzing the plots depicted in Fig. 3(a), which corresponds to the case C = 10. Figure 3(a-i)
shows three drop profiles at an equilibrium configuration, which is achieved immediately after the
initial transient of our numerical simulation has passed away. Figure 3(a-ii) shows that, after a short
time interval, a series of small-amplitude capillary waves are developed at the upper part of the free
surface as a result of the exerted acoustic stress. The maximum amplitude achieved by the capillary
waves is shown in Fig. 3(a-iii), nevertheless, we note that those structures are very similar to the
case in Fig. 3(a-ii). Finally, at the end of the cycle, the drop profiles return to their equilibrium
configuration [Fig. 3(a-iv)]. From the above sequence of events, we note that as β0 → 0.1, the drop
height is reduced; in this context, the mass conservation principle governing the drop evolution
compensates such reduction at the film thickness, h̄, with a spreading of the drop profile along the
reference level z̄ = 0. From the sequence of events depicted at column a), we note that imposing the
Navier slip condition at our lubrication model causes the drop’s aspect ratio (ε) to become smaller
as β → 0.1. Worth noting is the fact that the slippage influence under an acoustic capillary number
C = 10 is constrained only to modify the drop’s aspect ratio without exert any direct or noticeable
repercussion on the amplitude of the capillary waves generated at the top of the drop profiles. In the
proximities of C = 10, the amplitude of those capillary waves is not sufficiently large to promote
drop’s atomization.

Next, we address the plots shown in column (b) of Fig. 3, which evaluates the influence of a
higher capillary acoustic number (C = 30) on the free surface evolution. We note that a constant
surface tension value has been assumed during our numerical simulations, thus, increasing C
traduces in applying a higher mechanical power on the free surface. In this context, the sequence
of panels from Fig. 3(b-i)–3(b-iv) shows that an increment of the acoustic stress exerted on the
drop derives in the development of a series of drop profiles with a smaller thickness, h̄—and a
smaller aspect ratio (ε)—than those shown in column (a), in the same manner as discussed on our
Fig. 2 analysis. Figure 3(b-i) shows a series of drop profiles under an equilibrium configuration,
i.e., domelike shapes with small-amplitude capillary waves. Figure 3(b-ii) shows that, after a time
interval, �t̄ ≈ 0.02, the exerted acoustic stress on the free surface has the strength necessary to
induce considerably elongated capillary waves along the upper region of the drop profile. By
comparing the drop profiles developed under the no-slip condition, β0 = 0 (black line), with those
cases developed under β0 = 0.05 (blue dotted line) and β0 = 0.1 (red line) at Fig. 3(b-ii), we
observe that by increasing the slip coefficient, the drop spreading becomes accentuated in the same
manner as explained above [case C = 10]. Because of the considerable elongation of some of the
capillary waves shown in Fig. 3(b-ii), it is more appropriated to refer them as liquid threads. Those
structures are commonly characterized by the parameter known as the capillary height l , i.e., the
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amplitude of the capillary structures developed on the surface of a liquid drop exposed to SAW
atomization. During our study we denote the dimensionless capillary length as l̄ .

The dimensionless maximum amplitude, l̄max, achieved by the liquid threads under C = 30 is
depicted in Fig. 3(b-iii), which suggest that l̄max ∼ O(10−1). Moreover, taking into account the
drop dimensions previously defined on Sec. II, we note the maximum amplitude corresponds to
lmax(m) ∼ 10−5, in physical units. Figure 3(b-iii) also shows that—under the same acoustic capillary
number— slippage (red lines) favors the formation of additional liquid threads at the drop’s free
surface respect the classical no-slip condition (black lines). Finally, Fig. 3(b-iv) shows a series drop
profiles under the equilibrium configuration once the excessive elongations have taken place. Let us
recall that the thickness, h̄, exhibited by the drop profiles at the end of the cycle is not the same as
the beginning, there is a continuous decay at ε as the temporal scale, t̄ , progresses.

Next, a few considerations are made to determine if the liquid threads shown in Fig. 3(b-iii)
indicate an imminent interfacial destabilization and therefore the atomization of the air-liquid
interface. We note that our lubrication-type approach has resulted in the development of a drop
model unable to portray the rupture mechanism of the liquid threads which precedes the generation
of aerosol droplets, thus, to predict the rupture of the liquid threads we make use of a parameter
which magnitude can be used as an indicative of the imminent drop’s atomization: the instability
length, denoted at our study as linst. The importance of such parameter for our study can be explained
by bringing into consideration the physical background behind the drainage and rupture of the liquid
threads leading toward SAW atomization. In this context, let us consider an imaginary air-liquid
interface under SAW excitation and let us proceed to divide it into a series of very small segments,
each one of them governed by the normal stress balance (p + �ac) − patm = −σ∂2

x h. This balance
indicates that, for a given surface tension value, the curvature of each segment depends on the
pressure jump across the interface. As the exerted acoustic stress, �ac, varies across time and space,
it is expected the curvature of our interfacial segments not to remain constant along the free surface;
in this case, it is said there are curvature gradients developed along the free surface which are
manifested in the form of capillary waves. In view of the above, the formation of capillary waves
can be associated with the presence of pressure imbalances along the free surface, specifically, their
“throughs” are regions of maximum pressure on the interface while their “crests” constitutes regions
where the pressure is minimum. Moreover, the pressure imbalances on the free surface induces a
fluid motion along each one of the capillary waves. Such localized fluid motion is responsible of the
gradual elongation in the capillary waves, as shown in Figs. 3(b-i) and 3(b-ii), and it derives in the
formation of liquid threads, plotted in Fig. 3(b-iii).

As said before, the capillary length (l) measures the elongation of the liquid threads. In this
context, it has been demonstrated experimentally [18] that, when the capillary length achieves a
critical value—known as the instability length—the localized fluid motion at the capillary waves
is so strong that leads to the destabilization of the interface, i.e., the imminent pinch-off of the
liquid threads at their base which derives in the generation of multiple small droplets being ejected
from the parent drop. Thus, to predict the presence of the destabilization phenomenon at our
simplified model, we must turn our attention to the elongations developed at the capillary waves
and determine if these deformations are comparable respect a given prediction of the instability
length. An estimation of such critical parameter can be obtained by executing a balance between
the capillary and inertial stresses acting at the air-liquid interface, however, such balance cannot
be obtained from our lubrication-type approach as the inertial terms have been discarded at our
asymptotic approximation of the drop’s governing equations. Thus, we consider the scaling theory
developed by Qi et al. [18], which have delivered an estimation of the critical capillary height
at which the pinch-off process of the liquid threads occurs. In this context, Qi et al. establishes:
linst(m) ∼ (ρU 2L3/σ )1/2 ∼ O(10−5). Now, let us nondimensionalize the quantity linst by employing
the characteristic height of our drop model [H (m) ∼ 10−5 − 10−4], yielding, l̄inst ∼ O(10−1 − 1).
By comparing this order of magnitude with the liquid threads shown in Fig. 3(b-iii), is not
unreasonable to assume such panel depict a series of drops at the onset of atomization, in view
that the maximum capillary length exhibited by the liquid threads in all cases is on the order 10−1.

024002-14



SLIPPAGE EFFECT ON INTERFACIAL …

At this point, we note that during our numerical simulations at least an acoustic capillary number
around 30 was needed to overcome the restoring effect produced by the capillary stresses acting
at the free surface of our drop model; an effect which tend to keep the drop near its equilibrium
configuration at all times, as shown in column (a) of Fig. 3. In this sense, we say that C ≈ 30
determines quantitatively the existence of a critical point, known as the instability threshold, which
indicates the minimal acoustic stress, given a fixed surface tension value, required for an air-liquid
interface to achieve atomization under the influence of the standing SAW given by Eq. (29). From
the results depicted in column (b), we note that the capillary length does not seem to be dependent
of the slip coefficient β0, then, slippage at the wall is not connected with the instability threshold,
in other words, a drop deposited over a substrate with slippage at the wall achieves the instability
threshold at the same critical stress ratio as a drop under the no-slip condition.

Increasing the stress ratio beyond the instability threshold can positively influence the aerosol
generation process described before. To demonstrate this assertion, let us analyze the drop profiles
depicted in column (c) of Fig. 3. Figures 3(c-i)–3(c-iv) portray the first cycle of the standing wave
generated at the free surface under C = 50. Starting from an equilibrium configuration depicted in
Fig. 3(c-i), three drop profiles, developed under different sip coefficients, rapidly develop several
capillary waves at their crest, as shown in Fig. 3(c-ii). Moreover, such induced capillary waves
achieve a maximum elongation in Fig. 3(c-iii) with l̄max ∼ O(10−1). Such elongation fits into the
range estimated previously for l̄inst. Thus, Fig. 3(c-iii) depicts three drop profiles at which interfacial
breakup and atomization is feasible. Finally, the series of drop profiles return to the equilibrium
configuration, as shown on Fig. 3(c-iv). Now, let us compare the state of maximum elongation
depicted in Fig. 3(c-iii) with its counterpart in Fig. 3(b), i.e., Fig. 3(b-iii). In this context, it is possible
to observe that varying C from 30 to 50 increases the number of capillary threads developed at the
free surface, this situation traduces in a major number of aerosol droplets being ejected from the
destabilized surface under C = 50. As noted before, slippage phenomenon does not influence the
capillary length of the liquid threads, nevertheless, Figs. 3(b-iii) and 3(c-iii) suggest that a slip length
quantified by β0 = 0.05 and β0 = 0.1 has the capability to modify considerably the drop’s aspect
ratio (ε). In this context, those drop profiles developed under β0 = 0.1 are of particular relevance
in view that illustrate the development of additional capillary structures in comparison the no-slip
case.

The drop profiles depicted in Fig. 3 has allowed us to obtain additional valuable parameters
intervening at the deformation process of a drop exposed toward SAW atomization like the capillary
resonance frequency and the instability wavelength. The first one can be defined as the frequency
of the capillary waves developed at the interface due to SAW excitation, while the latter can be
interpreted as the distance between crests or troughs of two successive liquid threads that have
achieved the instability length. Such parameters are denoted in our study as fc and λinst, respectively.

To estimate the capillary resonance frequency of our drop profiles, we note that the dimensionless
period of our numerical simulations remains constant regardless the value of C and the presence or
not of slippage at the wall. We note the period of the capillary waves at our numerical model is
approximately 0.08, as can be verified on Fig. 3. Thus, taking into account the physical time scale
employed at our numerical model (defined at Sec. II), we have that a capillary resonance frequency
around 12.5 kHz is feasible. As the excitation frequency for SAW atomization is on the order 107 Hz,
then, fc � fe. In this context the experimental evidence provided by Qi et al. [18] has demonstrated
that the presence of a capillary frequency on the order 103-104 Hz constitutes an indicative of the
dominance of viscous-capillary effects at the air-liquid interface over the inertial stresses.

The estimation of the instability wavelength is of sum importance in view that Qi et al. have
demonstrated λinst ∼ d , where d is the characteristic aerosol diameter. Moreover, since the exper-
imental study developed by Li et al. [58], it has been demonstrated the instability wavelength is
strongly linked with the SAW frequency fe. In this context, endorsed with scaling theory, the work
developed by Collins et al. [49] has delivered an accurate description of the relationship between
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λinst, d, and fe, given by

λinst ∼ d ∼ σH2We2/3

μL2 fe
, (40)

where We is the acoustic Weber number, defined by We ≡ ρ(A	)2L/εσ . At this point, let us note
the dimensionless quantity We is analogous to the acoustic capillary number, C, which was defined
by Eq. (30). The only difference between both quantities lies in the presence of the SAW diffraction
term, cos2 θR. Nevertheless, we note that cos2 θR ∼ O(1), then, we can assert that C ∼ We. Thus,
by substituting at Eq. (40) the orders of magnitude regarding the geometrical and physical drop
properties—all of them previously defined on Sec. II— and taking into account that fe(Hz) ∼ 107

and C2/3 ∼ O(10), we have λinst(m) ∼ 10−6. Now, let us turn our attention into Fig. 3, specifically
Figs. 3(b-iii) and 3(c-iii), to graphically estimate the instability wavelength of our drop profiles.
In this context, the dimensionless instability wavelength is estimated as λ̄inst ∼ O(10−1) with and
without the presence of slippage. In physical units, such value corresponds to λinst(m) ∼ 10−6–10−5,
which agrees with the theoretical prediction provided by Eq. (40). As d ∼ λinst, it is possible to assert
that the breakup of the liquid threads exhibited in Fig. 3 derives in the generation of aerosol with a
characteristic diameter d (m) ∼ 10−6–10−5.

A. Slippage influence on the aspect ratio of a drop exposed to SAW atomization

As mentioned before, the imposed standing acoustic pressure (�̄ac) on our drop model promotes
the development of a corresponding standing wave on the free surface. The first cycle of such
wave was discussed on our Fig. 3 analysis. Once the first cycle finishes, a similar sequence of
deformation events follows on, i.e., drop profiles oscillating between configurations of maximum
and minimum elongation. Nevertheless, the aspect ratio of the drop decreases as time progresses
and context, slippage at the wall enhances the drop spreading and Fig. 4 confirms such assertion.
Specifically, Fig. 4 show nine panels distributed throughout three columns under different values
of C (10,30, and 50). Each panel portrays drop profiles developed under different slip coefficients
(β0 = 0.0, 0.05, 0.1). The sequence of events (i–iii) portrays now the drop response at different
times (t̄), in this context, the influence of slippage is evident at the drop spreading, specially beyond
the critical acoustic capillary number C = 30. Moreover, the results depicted in columns (b) and (c)
allows us to assert that the presence of slippage at the wall accentuates the effect the variation of the
acoustic capillary number has on the drop’s aspect ratio during SAW atomization process. In this
sense, slippage at the wall under hydrophilic conditions exerts a direct repercussion on fundamental
aspects usually affected by the mechanical power exerted on the fluid drop, i.e., the aspect ratio
and the formation of liquid threads. According to the numerical output presented on Figs. 3 and
4, the thickness and length of the parent drop is affected by the presence of slippage phenomenon,
thus, ε = ε(β0). However, the estimation provided by Collins et al. [see Eq.(40)] shows the droplet
diameter, d , depends on the quantity ε2 ≡ H2/L2. Thus, our study focuses next in developing an
analytical relationship between ε and β0 to provide an estimation of the droplet diameter in terms of
the slip coefficient. Such estimation will allow us to evaluate the influence of slippage phenomenon
over a parameter of sum importance at SAW atomization: the aerosol characteristic diameter d .

To determine the relationship between ε and β0, we have made use of the numerical drop
model described throughout Figs. 2, 3, and 4 and estimated the aspect ratio temporal evolution
under different slip coefficients and acoustic capillary numbers. The results are shown in Fig. 5,
which depict two cases: C = 10.0 [Fig. 5(a)] and C = 50.0 [Fig. 5(b)]. In both cases, the numerical
estimation of ε(t̄ ) under different slip coefficients (β0 = 0.0, 0.05, 0.1, and 0.2) has been plotted
using square symbols whereas continuous lines of different colors are used to describe the regression
fit of our numerical estimations. Such regression fit has been implemented to obtain an analytical
description of the dependence between ε and t̄ . In this context, we note that the temporal evolution
of the aspect ratio can be approximated as ε = Bt̄ n, i.e., a power-law relationship, where B and n
are constants which depend on the slip coefficient β0.
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(c-i)(b-i)(a-i)

(c-ii)(b-ii)(a-ii)

(c-iii)(b-iii)(a-iii)

FIG. 4. Spatiotemporal evolution of an air-liquid interface subjected to SAW excitation, in terms of h̄ =
h(x, t̄ ). Three values of C are considered (10.0, 30.0, 50.0), distributed in three columns (a), (b), (c). Each
column contains a sequence of three subfigures (i)–(iii), portraying the influence of slippage phenomenon at
the drop’s aspect ratio, ε. In this context, each subfigure shows three drop profiles developed under a particular
slip coefficient: —–β0 = 0.0, β0 = 0.05 and β0 = 0.1. All the drop shapes have been obtained under
an acoustic excitation with 	̄ = 104 and κ̄ ∼ O(10).

Let us note that the curve ε(t̄ ) developed under C = 10 with β0 = 0.0 in Fig. 5(a) exhibits the
formation a small plateau for 0 � t̄ � 2 [see also inset A in Fig. 5(a)]. Such flat region precedes the
nonlinear decay of the aspect ratio under the no-slip condition in the form ε = 0.2t̄−0.3. Moreover,
Fig. 5(a) shows that keeping C fixed at 10.0 and varying the slip length from 0 to 0.05 causes the
evolution of the aspect ratio to be significantly affected. In this context, the plateau formed during
the no-slip condition vanishes, and the regression coefficients B and n of the power-law relationship
between ε and t̄ decreases in magnitude, which traduces in smaller values of the aspect ratio being
achieved under a slip coefficient quantified by 0.05 in comparison the no-slip case. As β0 continues
increasing beyond 0.05, we note the coefficient B remains constant, however, n keeps decreasing,
thus, smaller valuer of the aspect ratio are expected to be obtained as β0 → 0.2.

The fundamental behavior of ε(t̄ ) depicted in Fig. 5(a) is repeated in Fig. 5(b); nevertheless, we
note several important differences. First, the plateau which was referred to above to be developed
for the no-slip condition has disappeared by varying C from 10 to 50. The power-law relationship
governing the decrease of the aspect ratio under the presence of slippage and C = 50 is characterized
by a reduction of both coefficients, B and n. In this context, we note the rate of decay of ε at the four
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FIG. 5. Temporal evolution of the aspect ratio ε under the influence of four different slip coefficients—
β0 = 0.0, 0.05, 0.1, and 0.2—and two particular acoustic capillary numbers: C = 10 and C = 50. We note
panel (a) illustrates the temporal evolution of the aspect ratio obtained by keeping fixed C at 10 and varying
the slip coefficient in the range referred to above. Moreover, panel (b) has been developed in a similar manner,
however, the acoustic capillary number is now fixed at 50. On both cases, our numerical estimations have been
plotted using square symbols of different colors—each color is associated with a particular slip coefficient
value—whereas the continuous lines depict a regression fit of our numerical data, based on the least-squares
method. In this context, a power-law relationship, in the form ε = Bt̄ n, can be used to analytically describe the
dependence between ε and t̄ , except for the time interval 0 � t̄ � 2 at the no-slip case depicted in panel (a).
During such time interval the drop’s aspect ratio results to be constant, as can be appreciated in more detail at
the inset A. Finally, let us note that panels (a) and (b) have been developed under a dimensionless excitation
frequency 	̄ ∼ O(104) and a wave number κ̄ ∼ O(10).

cases depicted in Fig. 5(b) differs substantially from their counterparts in Fig. 5(a). For example,
the numerical data corresponding to the cases β0 = 0.05, 0.1, and 0.02 in Fig. 5(a) show an abrupt
decay of the aspect ratio for 0 < t̄ � 6, nevertheless, the rate of decay of ε(t̄ ) varies slowly for t̄ > 6
and becomes almost zero as time progresses. However, Fig. 5(b) shows that the transition from an
abrupt toward a quasisteady aspect ratio decay can occur earlier if the acoustic capillary number is
increased. Accordingly, we note that, for t̄ � 4, exists a constant rate of decay at ε(t̄ ) in all the cases
depicted in Fig. 5(b); such rate of decay is almost zero for the cases β0 = 0.1 and 0.2 around t̄ = 4.

Figure 5 analysis suggests the aspect ratio of a drop exposed to SAW excitation becomes
practically constant after a given time. Moreover, Fig. 5 shows that the time required for the
transitory and abrupt decay of the aspect ratio to pass away depends on the acoustic capillary
number. Such behavior has resulted fundamental to estimate the dependence between ε and β0

during our study. Specifically, we have determined a function ε = ε(β0) by considering several
evolution curves—like those depicted in Fig. 5—and choosing a sufficiently large time that assures
the quasisteady evolution of ε. Subsequently, the aspect ratio values at such reference time have
been plotted against the slip coefficient. In this context, let us note we have estimated ε(β0) at a
reference time around t̄ = 10; such value constitutes a sufficiently large time beyond which is not
unreasonable to assume the drop’s aspect ratio remains constant, regardless the value of the acoustic
capillary number. The results are depicted in Fig. 6(a), which illustrates the drop’s aspect ratio as a
function of the slip coefficient.
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FIG. 6. The aspect ratio (ε) evolution of a drop exposed to SAW atomization against the slip coefficient
(β0) is shown in panel (a) under different acoustic capillary numbers. The numerical estimations, obtained for
our drop model are represented by geometric shapes whereas the dashed lines represent a regression fit of
our data. In this context we have found the relationship ε = Kβ−b

0 for β0 � 0.01 (let us note the regression
coefficients K and b—obtained under several acoustic capillary numbers— are specified on Table 1). Panel
(b) shows several droplet diameter (d) estimations, with and without the presence of slippage, for the SAW
atomization of a parent drop. Specifically, our numerical estimations for d—developed under different values
for C—are plotted as geometric shapes whereas the regression fit of our numerical data is plotted through a
blue dashed line. The regression fit suggest d scales linearly respect the quantity (εC)2/3 f −1. Let us note the
inset A offers a major resolution of our numerical data which have been plotted using different colors—each
one of them associated to a specific value of C— and various shapes which are related to a particular value of
the slip coefficient.

Figure 6(a) shows the influence of the acoustic capillary number on the relationship ε − β0

once the drop has achieved a quasisteady state at its geometry evolution (t̄ ≈ 10). Specifically,
our numerical estimation for ε(β0) has been plotted using different geometric shapes for five cases:
C = 10, 30, 50, 70, and 90. However, we have used a series of dashed lines of different colors to
represent the regression fit of our numerical results under different acoustic capillary numbers. At
this point, let us recall that the acoustic excitation implemented at our numerical simulations consists
in a standing SAW with a dimensionless frequency 	̄ ∼ O(104) and a dimensionless wave number
κ̄ ∼ O(10), such values, in physical units correspond to an linear excitation frequency on the order
107 Hz and a wavelength λ(m) ∼ 10−4 (see Sec. II). Under such acoustic forcing our numerical
study have found the onset of atomization is localized around C = 30. In this context, Fig. 6(a)
suggest that—for a fixed slip coefficient—varying C from 10 to 30 traduces in a substantial reduction
at ε, nevertheless, we note that varying C at “high” values, beyond the onset of atomization, does not
traduces in a significant change at ε. For example, an aspect ratio value obtained under a fixed slip
coefficient and C = 70 does not differ significantly respect its counterpart obtained under C = 90.
Moreover, the regression fit implemented under our numerical data suggest a power-law relationship
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TABLE I. Least-squares approximation for numerical
data depicted in Fig. 6(a).

Acoustic capillary number (C) ε = Kβ−b
0

10 ε = 0.025β−0.29
0

30 ε = 0.012β−0.38
0

40 ε = 0.01β−0.40
0

50 ε = 0.009β−0.41
0

60 ε = 0.008β−0.43
0

70 ε = 0.007β−0.44
0

80 ε = 0.006β−0.45
0

90 ε = 0.006β−0.46
0

exists between ε and β0 in the form ε = Kβ−b
0 , where K and b are constants which depend on the

acoustic capillary number. Such regression coefficients are shown in Table I, which shows eight
power-law expressions obtained as we varied C from 10 to 90 on our numerical model. Worth
to be mentioned is the fact that the relationship ε = Kβ−b

0 is applicable only for β0 � 0.01. In
this sense, we note that Fig. 6(a) shows the aspect ratio evolution under slip coefficients below
0.01 differs considerably from the regression curve. Nevertheless, the least-squares fitting we have
implemented allow us to deliver important considerations for the aspect ratio behavior under slip
coefficients beyond 0.01. In this sense, let us now fix the acoustic capillary number and consider β0

variable; the results can be visualized again in Fig. 6(a), which suggest that—given a value of C—the
range 0.1 < β0 � 0.2 does not traduces in a significant change in the drop’s aspect ratio. However,
the slip range 0.0 < β0 � 0.1 considerably influences the aspect ratio of a drop exposed to SAW
excitation, regardless of the acoustic capillary number under consideration. Thus, we can assert
a slip coefficient with O(10−2) � β0 � O(10−1) has the potential to significantly affect the drop
spreading at SAW atomization. If we consider physical units, then the above interval corresponds to
slip lengths (β) on the order of 10−7–10−6 m. Such range fits into the experimental lengths reported
on specialized literature regarding slippage phenomenon [34].

As referred to before, the characteristic diameter of the droplets being ejected from the parent
drop during SAW atomization (d) is predicted through Eq. (40). Let us note such expression
has been developed, under the classical no-slip condition by Collins et al. [49] and expresses d
is dependent on the aspect ratio of the parent drop (ε) and scales linearly respect the quantity
We2/3 f −1

e . Moreover, the results presented throughout Figs. 5 and 6(a) suggest the aspect ratio
of a drop under SAW atomization is influenced by slippage at the wall, then, is expected the aerosol
characteristic diameter to be also influenced by the slip coefficient. In this context, we proceed to
employ the power-law relationship discussed above—i.e., ε = Kβ−b

0 —to propose an estimation of
the aerosol characteristic diameter in terms of the dimensionless slip coefficient, given by

d ∼ σ
(
Kβ−b

0

)2C2/3

μ fe
for β0 � 0.01. (41)

Several important considerations are made at this point regarding Eq. (41). In first place let us
note that the acoustic Weber number, appearing originally at Eq. (40) has been replaced by the
acoustic capillary number, in view that we consider We ∼ C, as explained before. Second, we note
our proposed estimation for d applies for β0 � 0.01 in view that the curves ε − β0 do not depict a
power-law behavior for β0 � 0.01, as explained during our analysis regarding Fig. 6(a). Finally, we
note that Eq. (41) establishes d scales linearly respect C2/3 f −1

e .
Next, we proceed to make use our aspect ratio estimations and calculate the aerosol charac-

teristic diameter, d , with and without the influence of slippage. In the process, the validation of
our numerical model is attended by comparing the quantity d respect droplet diameters already
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reported on specialized literature regarding SAW atomization. Specifically, we consider of particular
relevance the diameter measurements provided by the experimental/numerical work developed by
Collins et al. [49]. By analyzing the destabilization via SAWs of a small-scale water meniscus
formed between the edge o a wetted paper wick and an rigid substrate, Collins et al. showed that
a significant region of the meniscus evolved into a thin film during the atomization process. Such
thin film region exhibited a geometrical disparity (i.e., H � L), similar to that assumed to exist at
the parent drop during our lubrication type approach implemented on Sec. II. Although the work
developed by Collins et al. did not take into account the influence of slippage phenomenon at the
wall, it reports valuable data for our study. In this context, several experimental measurements were
made at such study, regarding the characteristic diameter of the aerosol ejected from the thin film
region under excitation via SAWs. Those measurements allowed Collins et al. to demonstrate that
d scales linearly respect the quantity We2/3 f −1

e , as Eq. (40) suggests. Thus, being aware about the
presence of an important similarity between our study and the work provided by Collins et al.—i.e.,
the analysis of the destabilization mechanism at a water thin film with a geometrical disparity,
exposed to a high-frequency acoustic excitation with fe(Hz) ∼ 107—we proceed to validate our
drop model by considering the experimental data provided by their work.

We begin by considering the four slip cases we have used during our discussion regarding Figs. 5
and 6(a), i.e., β0 = 0.0, 0.05, 0.1, and 0.2. For each slip case we use the data provided in Fig. 6(a)
and Table I to estimate ε under seven different values of the acoustic capillary number above the
onset of atomization, i.e., C = 30, 40, 50, 60, 70, 80, and 90. Immediately after we make use of
Eq. (40) or Eq. (41) to calculate d , considering, in the process, an excitation frequency fe ∼ 107 Hz.
In this context, let us recall that Eq. (41) is limited for slip coefficients beyond 0.01, thus, for the
case β0 = 0.0, we apply Eq. (40) whereas for the slip cases (β0 = 0.05, 0.1, 0.2) we use Eq. (41).
Moreover, let us note that for the no-slip case we have implemented Eq. (40) in the form d =
σH2C2/3/μL2 fe as we have considered We ∼ C. The results of such estimation are graphically
depicted in Fig. 6(b), which show the aerosol characteristic diameter for a drop exposed to excitation
via SAWs, under different slip coefficients at the solid wall and under various acoustic capillary
numbers. We note our diameter estimations are portrayed in a similar framework to that used by
Collins et al. [49] to depict their results [see Fig. 5(b) at such study]. Thus, we have plotted d
against the quantity (εC)2/3 fe for comparison purposes.

In Fig. 6(b), our estimation of d appears represented by various geometric shapes whereas the
blue dashed lines describe a regression fit of our diameter predictions. In this context, let us note that
we make use of four different geometric shapes (a rectangle, circle, triangle, and a star symbol) to
denote our estimation of the droplet diameter under a specific value of the slip coefficient, however,
as we are also evaluating the influence of the acoustic capillary number on d , we make use of seven
different colors to denote a particular value of the quantity C. For example, a yellow circle refers to
a droplet diameter calculated under a slip coefficient quantified by 0.05 with an acoustic capillary
number given by C = 60, whereas a purple square means a droplet diameter estimated under the
no-slip condition with C = 40. Worth to be mention is the presence of inset A in Fig. 6(b), which
magnifies the region containing our numerical diameter estimations to provide a clearer depiction
of our results.

Important considerations can be made from Fig. 6(b), in first place we note d scales linearly
respect (εC)2/3 fe. Such behavior has been reported by Collins et al. in the absence of the slippage
phenomenon at the wall, then, in view of the results portrayed by Fig. 6(b), we can add that the
presence of slippage at the wall does not affect the linear relationship between d and (εC)2/3 fe. Con-
tinuing analyzing Fig. 6(b), we note that—regardless the value of the acoustic capillary number—the
diameters developed under the no-slip condition are always bigger than those achieved under the
influence of slippage. To validate this assertion, let us situate ourselves at the rightmost side of
the regression curve of our numerical data. Then, let us move along such curve from right to left;
by doing this, we find in first place a “no-slip region,” i.e., a series of square symbols scattered
through the interval 1.7 × 10−7 � (εC)2/3 fe � 2.4 × 10−7 s. Such symbols indicate that. Varying
C from 30 to 90 under the no-slip condition. causes the development of droplet diameters in the

024002-21



J. MUÑOZ et al.

proximities of d = 20 μm. Continuing moving ourselves to the left, along the regression curve, we
find the “slip region.” Such a region comprehends the geometric shapes we have designated for the
cases β0 = 0.05, 0.1, 0.2 and is developed on the interval 0.6 × 10−7 � (εC)2/3 fe � 1.7 × 10−7,
exhibiting smaller droplet diameters than the no-slip cases. In this context, let us note that the cases
associated to β0 = 0.2 (star symbols) develop the smallest droplet diameters, with d being situated
below 10 μm, and therefore are suitable for pulmonary drug delivery applications [22].

At this point let us recall—from our discussion regarding Fig. 3—that increasing the acoustic
capillary number beyond the onset of atomization traduces in a major number of liquid threads
being formed at the air-liquid interface. Thus, if a major number of aerosol droplets is desired to
be ejected from the parent drop, then an increment at C is desirable. However, the no-slip region
depicted in Fig. 6(b) shows that if a reduction of the droplet diameter is required, the quantity
C must be reduced. This situation suggest a conflict between modifying the aerosol characteristic
diameter and keeping the rate of atomization of the parent drop above certain limit. In this context,
the results provided in Fig. 6(b) shows a valuable application of the slippage phenomenon. To
explain such application, let us consider a fixed acoustic capillary number, for example C = 50
[depicted with cyan color in Fig. 6(b)] and vary the slip coefficient. In this sense, we note that a
parent drop under C = 50 and β = 0.2 develops a smaller diameter than a drop with C = 50 and
β = 0.0. As also referred to before, the acoustic capillary number portrays the ratio between the
mechanical power (acoustic forcing) exerted on the drop’s free surface and the capillary stress.
Thus, for a fixed surface tension value, the presence of slippage at the wall allows to reduce the
aerosol characteristic diameter without varying C and therefore the mechanical power exerted at
the interface. This behavior can be desirable to control the droplet diameter without affecting the
quantity of droplets being ejected from the parent drop.

Next, we address the validation of the numerical model presented on this study. In this context, let
us note that, by comparing our numerical estimations for d with the data provided by Collins et al.
we have found a good correlation between our calculations and the experimental measurements
provided at their study. Specifically, the concordance we are referring to lies in the data points
plotted in “Fig. 5(b)” in Collins’ study. Such points, labeled as “peak 1 data,” consist in several
measurements regarding the characteristic diameter of the aerosol being ejected from a water thin
film under variable SAW frequencies with fe(Hz) ∼ 107–108 Hz. In this context, the diameter
values we show in Fig. 6(b), although developed by considering a fixed SAW frequency on the
order 107 Hz and the presence of the slippage at the wall, closely follows—qualitatively and
quantitatively—the experimental data reported by Collins study. Worth to be mentioned again is that
the presence of slippage at the wall does not affect the linear dependence of the droplet diameter
against the quantity (εC)2/3 fe. According to the results plotted in Fig. 6(b), the presence of slip in
the formation of aerosol via SAWs simply “translates” the resulting diameter to the left at the curve
d − (εC)2/3 fe. This means that, given a specific value of the acoustic capillary number and a specific
excitation frequency, the diameter of the aerosol emerging from the parent drop is smaller than its
counterpart developed under the no-slip condition and the magnitude of the slip-coefficient results
to be determinant to predict how important is such diameter reduction. Let us note the inclusion
of Table II, which explicitly shows the values of our diameter estimations plotted in Fig. 6(b)
[Table II(A)] besides the temporal variable, (εC)2/3 f −1 [Table II(B)], at which each diameter
estimation was obtained. Such inclusion has been done to facilitate data comparison with respect to
Collins et al.’s study.

A series of final considerations are made regarding the influence of slippage at the spreading
mechanism of the parent drop due to SAW excitation. Specifically, we focus our attention now in
measuring the speed of the advancing contact line of our drop model under different values of both,
the slip coefficient and the acoustic capillary number. Before discussing our measurements, let us
note that the spreading phenomenon exhibited by our drop shapes is caused by the influence of the
acoustic radiation, such effect has been modeled during our lubrication-type approach through the
term �ac, i.e., the acoustic pressure. Nevertheless, additional boundary phenomena also take part
at the dynamics of the contact line of thin films exposed to SAW excitation, such as Schlichting

024002-22



SLIPPAGE EFFECT ON INTERFACIAL …

TABLE II. (A) Droplet diameter (d) estimations corresponding the data symbols depicted in Fig. 6(b). (B)
Temporal variable, (εC)2/3 f −1, at which each droplet diameter has been obtained. Let us note C is the acoustic
capillary number and β0 is the dimensionless slip coefficient.

(A)
d [μm]

���������C
β0

0.0 0.05 0.1 0.2

30 17.17 11.29 9.32 7.11
40 17.92 12.06 9.81 7.30
50 20.33 13.10 10.53 7.88
60 20.80 14.03 11.29 8.17
70 23.05 14.52 11.71 8.45
80 23.48 15.44 12.27 8.79
90 24.65 16.24 12.75 9.32

(B)
(εC)2/3 f −1 [s]

���������C
β0

0.0 0.05 0.1 0.2

30 1.717 1.129 0.932 0.711
40 1.792 1.206 0.981 0.730
50 2.033 1.310 1.053 0.788
60 2.080 1.403 1.129 0.817
70 2.305 1.452 1.171 0.845
80 2.348 1.544 1.227 0.879
90 2.465 1.624 1.275 0.932

streaming, acoustic attenuation, and even the influence of intermolecular forces. All of these phe-
nomena are beyond the scope of the lubrication-type approach implemented during our study. Thus,
our measurements of the contact line speed should be interpreted as an approximation, developed to
qualitatively discuss interesting aspects regarding the influence of slippage at the drop’s spreading.
In this context, we have developed Fig. 7, which plots the quantity V̄ against the dimensionless
slip coefficient. Let us recall that our two-dimensional framework places the drop centered at x̄ = 0
and the contact lines on our numerical simulations spreads symmetrically along both, x̄ and −x̄
directions (see Figs. 3 and 4), thus, the quantity V̄ describes the overall speed at which the contact
lines are drawn apart from the z̄ axis. Worth to be noted is the fact we have measured the quantity
V̄ at four dimensionless slip coefficients, β0 = 0.0, 0.05, 0.1, and 0.2. As referred to before, such
values correspond, in physical units, to a slip length varying between O(10−7) and O(10−6) m,
which is consistent with experimental measurements of the slip length at small-scale systems under
hydrophilic conditions [34]. Moreover, the speed of the contact line has been measured under four
different values of the acoustic capillary number, i.e., C = 10, 40, 60, and 90, each one of them is
associated with a particular geometric shape, as can been seen in Fig. 7.

Let us, in first instance, analyze the speed values obtained under the case β0 = 0. In this context,
Fig. 7 shows that varying the acoustic capillary number from 10 toward 90 under the no-slip
condition does not traduces in a significant increment of the contact line speed. However, if we
fix the slip coefficient at β0 = 0.2, then the variation of the acoustic capillary number causes a more
significant increase at the speed V̄ . Thus, as the slip coefficient increases, the advancing contact
line speed becomes more dependent respect the variations at the quantity C. Next, let us fix the
acoustic capillary number and vary the slip coefficient, in this context, we recall that C is the ratio
between the mechanical stress exerted on the air-liquid interface and the capillary stress. Thus,
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FIG. 7. Numerical measurement of the dimensionless contact line speed, V̄ , of our drop model under
different values of the slip coefficient and the acoustic capillary number. Specifically, V̄ is the absolute value
of the speed at which the two contact lines of our two-dimensional model symmetrically draw apart from the z̄
axis as time progresses. In this context, let us recall we are considering a dimensionless frequency 	̄ ∼ O(104)
and a wave number κ̄ ∼ O(10). Such values, in physical units, correspond to typical excitation parameters with
fe(Hz) ∼ 107 and λ(m) ∼ 10−4. Specifically, the contact line speed has been obtained under four different slip
coefficients: β0 = 0.0, 0.05, 0.1, and 0.2 and under four acoustic capillary numbers.

Fig. 7 also suggests that the presence of slippage phenomenon allows to increase the advancing
contact line speed under a constant mechanical power. If we take into account that the characteristic
velocity implemented during our lubrication-type approach can be on the order of 10−2–10−1 m/s,
then the speed values depicted on Fig. 7 correspond to physical values on the order 10−1–1 mm/s.
Moreover, we have approximated the parent drop as a thin film with a thickness H (m) ∼ 10−4–10−5.
Such ranges agree with experimental data reported on specialized literature, which suggest the
advancing contact line of thin films under SAW excitation, with thicknesses H (m) ∼ 10−5, exhibits
a speed on the order 10−1 mm/s [59]. In this context, the feasibility of the data depicted in Fig. 7 is
demonstrated.

IV. CONCLUSIONS

The present work provides insight about the influence of the Navier slip condition over the
interfacial destabilization mechanism preceding the atomization of an air-liquid interface exposed to
SAW excitation. In this context, a simplified drop model—based on a lubrication type approach—
was developed to depict the spatiotemporal evolution of the free surface of a fluid drop exposed
to a high-frequency acoustic standing wave. Such approach allowed us to evaluate, qualitative and
quantitatively, the impact of the slip coefficient at the dynamics of the air-liquid interface. The
implementation of the Navier slip condition on our drop model was made assuming a scenario at
which the substrate placed below the drop has an affinity for water, i.e., hydrophilic conditions have
been assumed. Accordingly, during our study we have considered slip coefficients which agree with
experimental measurements of slippage under hydrophilic conditions.

Implementation of the Navier slip condition at small-scale systems supposes significant hydro-
dynamic differences in comparison the classical no-slip condition [32], by considering the results
presented on this study, numerical simulation suggests this assertion can also be applied to SAW
atomization. Our results show that the presence of slippage phenomenon at the substrate below a
drop exposed to excitation via SAWs acts oppositely respect a hydrophobic system, that is character-
ized for its susceptibility to avoid drop spreading. Moreover, slippage under hydrophilic conditions
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affects notoriously the free surface dynamics. In this context, our study suggests that dimensionless
slip coefficients with O(10−2) � β0 � O(10−1) considerably enhances the formation of liquid
threads at the air-liquid interface, besides drop spreading and the speed of the contact line. We
note the dimensionless coefficients used on our numerical simulations can be associated with a slip
length in the range β(m) ∼ 10−7–10−6.

The influence of slippage at the free surface dynamics referred to above becomes notorious
when evaluating the drop’s aspect ratio evolution against time. In this context, our numerical
estimation of the function ε(t̄ ) has delivered important considerations. One of them is the fact
slippage allows the development of smaller aspect ratios in comparison the no-slip case. Another
important aspect is the development of a quasisteady behavior at the aspect ratio evolution which
is strongly linked with the magnitude of the acoustic capillary number. Such behavior has resulted
fundamental for the present study at the moment of proposing a power-law relationship between
the slip coefficient and the drop’s aspect ratio. Such relationship, graphically depicted in Fig. 6(a),
has allowed us to be aware that varying the slip coefficient in the range 0.0 < β0 � 0.1 causes
important variations on the aspect ratio during the quasisteady state. However, varying β0 beyond 0.1
traduces in slighter variations at ε. If we take into account that previous studies have established that
d = d (ε) [18,49]—where d is the aerosol characteristic diameter—then the interval 0.0 < β0 � 0.1
contributes to generate abrupt changes at the droplet diameter whereas varying β0 beyond 0.1
contribute to a more accurate control of the droplet diameter.

The observations referred to above had led us to estimate the droplet diameter under different
slip coefficients and evaluate the utility of slippage phenomenon as a mean to control the aerosol
generation during SAW atomization. In the process, the present study have proposed Eq. (41) to
predict those droplet diameters developed under slip coefficients above β0 = 0.01. The estimations
of the droplet diameter obtained through the use of Eq. (41) allow us to assert the slippage allows
the development of smaller diameters respect the no-slip case. Perhaps the most relevant behavior
encountered during our numerical prediction of the quantity d is the fact the same acoustic capillary
number yields, under various slip coefficients, different droplet diameters. This behavior suggest
the mechanical power exerted on the parent drop can remain constant at the moment of reducing
the droplet diameter below certain limit, through the implementation of a substrate with a certain
amount of slippage at its surface.

In the continuous quest for improving the efficiency and design cost of microfluidic devices,
proper knowledge of the fundamental mechanism behind their operation is desirable and of sum
importance. In the context of SAW atomization, such assertion can be traduced in finding new and
efficient means with the capability to modify the drop’s resistance toward acoustic deformation and
the aerosol properties. In this context, the numerical analysis presented in this study, allow us to
postulate slippage as a valuable phenomenon which can influence the free surface dynamics besides
the aerosol generation with a direct repercussion on the operation of small-scale atomizers.
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APPENDIX: THE SOLUTION METHODOLOGY

The MOL replaces the spatial derivatives with algebraic approximations in the evolution equation
to get a system of ordinary differential equations, based on time-dependent values of the film
thickness at a discrete set of values of the spatial coordinate x̄. After that, an integration algorithm
for initial-value ODEs is applied to compute a numerical solution for the evolution equation.
The computational domain for Eq. (34) subjected to the boundary condition Eqs. (37) and (38)
was (−L < x̄ < L), with L → ∞. The value in L was sufficiently large to assure a negligible
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deformation at the ends of the drop. In this context, we used L = 1.5, so the film is flat near x̄ = ±L.
At this point, we conveniently rewrite Eq. (34) as

∂t̄ h̄ = −∂x̄Q̄, where Q̄ = (
1
3 h̄3 + β0h̄2

)[
∂3

x̄ h̄ + 4κ̄ C cos(2κ̄ x̄) cos(2	̄t̄ )
]
, (A1)

where Q is the volumetric flux. To discretize the computational domain, we establish a finite-
difference grid with N points, divided itself into N − 1 equal subintervals, each of length �x̄ =
2L/(N − 1), so that the coordinates of the grid points are x̄i = −L + (i − 1)�x̄ with i = 1, 2, ..., N .
The film thickness at the grid points, denoted by h̄i, is a function of time only and satisfies a system
of N first-order ordinary differential equations, defined by

dh̄i

dt̄
= − Q̄i+1/2 − Q̄i−1/2

�x̄
, (A2)

where Q̄i±1/2 are the approximate values of Q̄ at the points half-way between grid points x̄i±1/2 =
x̄i ± �x̄/2. In this context, two finite difference approximations for the evolution equation at each
side of the gridpoint xi are defined:

Q̄i+1/2 = 1

6(�x̄)3

[(
h̄3

i + h̄3
i+1

) + 3β0
(
h̄2

i + h̄2
i+1

)]
× [(h̄i+2 − 3h̄i+1 + 3h̄i − h̄i−1) + 4κ̄ (�x̄)3 C cos(2κ̄ x̄i+ 1

2
) cos(2	̄t̄ )] (A3)

and

Q̄i−1/2 = 1

6(�x̄)3

[(
h̄3

i + h̄3
i−1

) + 3β0
(
h̄2

i + h̄2
i−1

)]
× [(h̄i+1 − 3h̄i + 3h̄i−1 − h̄i−2) + 4κ̄ (�x̄)3 C cos(2κ̄ x̄i− 1

2
) cos (2	̄t̄ )]. (A4)

In Eqs. (A3) and (A4), a standard second-order centered finite difference approximation of the
third derivative at the point x̄i±1/2 has been used. Note that, for the inner values of i (i.e., for
i varying from 3 to N − 2), Eqs. (A3) and (A4) can be directly implemented, however, at the
endpoints of the computational domain (i = 1, 2, N − 1, and N), one needs points that are located
outside the domain (the so-called fictitious or ghost points) to evaluate the spatial derivatives when
using centered finite difference approximations. The system of Eqs. (A2) with the initial condition
Eq. (36) is solved using a standard differential equation solver. It is worth to reconsider the initial
condition Eq. (36) and address its suitability to depict a drop in an undeformed state. In this sense,
our numerical simulation based on this initial profile will “adjust” the initial geometry regarding the
drop’s interface, before proceeding with the actual simulation of the capillary waves formed during
SAW excitation.

A key aspect to take into account during the numerical solution of Eq. (A2) is the presence of
different time scales embedded in this equation system. There exists a time scale for the acoustic
stress exerted on the air-liquid interface, associated with the inverse of the harmonic excitation
frequency, 	. However, the viscous-capillary response of the fluid possesses a different time scale,
defined by L/U ∼ μL/ε2σ , that has been considered in the definition of the dimensionless time, t̄ .
Considering the above, Eq. (A2) constitutes a system of equations that is said to be stiff [55,60]. In
this context, we use the standard MATLAB solver ode15s for stiff systems of ordinary differential
equations to obtain the Spatiotemporal liquid-air interface evolution of a drop under SAW excitation
with slippage at the solid wall.

Note that the evolution Eq. (34) and its approximation Eq. (A2) derive from the principle of
conservation of mass of the liquid, thus, in our two-dimensional framework, the numerical solution
for h̄(x̄, t̄ ) must attend this principle through the conservation of the area under the curve, defined
by ∫ L

−L
h̄ dx̄. (A5)
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To demonstrate that the area under the curve of h̄ is preserved by our numerical method, let us
approximate the integral Eq. (A5) by using the trapezoid rule

I =
N−1∑
i=1

1

2
�x̄(h̄i + h̄i+1), (A6)

where the quantity I was introduced to denote the numerical approximation of the area under the
curve. We differentiate I respect to t̄ , and combining with Eq. (A2), it yields

dI

dt̄
= 1

2
(Q̄1/2 + Q̄3/2 − Q̄N−1/2 − Q̄N+1/2). (A7)

The four terms at the right-hand side of Eq. (A7) are equal to zero since i = 1/2, 3/2, N − 1/2, N +
1/2 correspond to a region (x̄ ≈ ±L), where the film is flat and the symmetry condition Eqs. (37)
and (38) have been imposed. Thus, the value of I is expected to be conserved during our numerical
simulations.

Through a consistency analysis [60], implemented in Eqs. (A3) and (A4), it is possible to
approximate ∂Q̄/∂ x̄ as a second-order accurate in space. The grid size used for the numerical
solutions was defined by running the code for several different values of N using a subsequent
evaluation of the norm of the error for the numerical solution of the discretized system at a fixed
time, given by the following expression:

E =
[
�x̄

N∑
i=1

(
h̄N

i − h̄ f
i

)2

]1/2

. (A8)

The fixed time was considered at t̄ = 0.5, a sufficiently large time for the interfacial vibration
mechanism to be fully developed, in view that there exists an initial transient during the numerical
solution startup (developed at 0 < t̄ < 0.18) before the simulation of the acoustic interfacial defor-
mations truly commences (see Sec. III for more details). In Eq. (A8), h̄N

i and h̄ f
i are the numerical

solutions obtained on a grid of N points and the finest grid used in our simulations, respectively.
The difference between h̄ f

i and the (unknown) exact solution is assumed to be negligible when
estimating the error norm. Thus, by implementing Eq. (A8), a desirable spatial error norm of the
order E ∼ O(10−6) has been found to correspond a finite-difference grid of N = 300 points, laid
in the previously closed domain −1.5 � x̄ � 1.5, yielding a right balance between computational
effort and precision. The tolerances for the time-stepping routine implemented in the solver ode15s
from MATLAB are chosen small enough, so that the error associated with the time-discretization
process is negligible in comparison with the contribution to the error because of the approximation
of spatial derivatives; in this context, a relative tolerance and an absolute tolerance of O(10−4) and
O(10−20) were chosen, respectively.
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