
PHYSICAL REVIEW FLUIDS 6, 023903 (2021)
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Hydrodynamic modes in the turbulent mixing layer over a cavity can constructively
interact with the acoustic modes of that cavity and lead to aeroacoustic instabilities. The
resulting limit cycles can cause undesired structural vibrations or noise pollution in many
industrial applications. To further the predictive understanding of this phenomenon, we
propose two physics-based models which describe the nonlinear aeroacoustic response
of a side branch aperture under harmonic forcing with variable acoustic pressure forcing
amplitude pa. One model is based on Howe’s classic formulation that describes the shear
layer as a thin vortex sheet, and the other is based on an assumed vertical velocity profile
in the side branch aperture. These models are validated against experimental data. Particle
image velocimetry (PIV) was performed to quantify the turbulent and coherent fluctuations
of the shear layer under increasing pa. The specific acoustic impedance Z of the aperture
was acquired over a range of frequencies for different bulk flow velocities U and acoustic
pressure forcing amplitudes pa. In this work, we show that once the handful of parameters
in the two models for Z have been calibrated using experimental data at a given condition,
it is possible to make robust analytical predictions of this impedance over a broad range
of the frequency, bulk flow velocity, and forcing amplitude. In particular, the models
allow prediction of a necessary condition for instability, implied by negative values of the
acoustic resistance Re(Z ), which corresponds to a reflection coefficient R of the aperture
with magnitude larger than 1. Furthermore, we demonstrate that the models are able to
describe the nonlinear saturation of the aeroacoustic response caused by alteration of the
mean flow at large forcing amplitudes, which was recently reported in literature. This effect
stabilizes the coupling between the side branch opening and the acoustic field in the cavity,
and its quantitative description may be of value for control of aeroacoustic instabilities.
We visualize and compare the models’ representations of the hydrodynamic response in
the side branch aperture and of the saturation effect under increasing pa.

DOI: 10.1103/PhysRevFluids.6.023903

I. INTRODUCTION

Sound production through aeroacoustic instabilities that arise from the constructive interaction
between acoustic modes of a cavity and the hydrodynamic response of a shear layer over that cavity
is a classic and long-observed phenomenon in physics, which was first described in modern terms by
Sondhauss [1]. Such instabilities occur, for example, when we whistle [2] or play wind instruments,
such as the ocarina or the organ pipe [3]. The same feedback mechanism that is underlying these
artistic applications leads, on a larger scale, to aeroacoustic instabilities in industrial machines which
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can cause noise pollution and fatigue damage of components [4]. Practical aspects of the self-
induced oscillation instability mechanism and possible mitigation strategies are explored in Ref. [5].

In the context of the classification of Rockwell and Naudascher [6], the phenomena described
above belong to the category of fluid-resonant cavity oscillations. This type of instability can be
further subdivided into self-sustained oscillations of shallow cavities [7], which are governed by the
mechanism described by Rossiter [8], and those of deep cavities, which are treated in detail, e.g., in
the exhaustive work of Howe [9]. Regarding the latter group, we mention the pioneering research
of Elder [10], who, for a single deep cavity, analyzed a feedback loop which incorporates the cavity
opening and the aerodynamic forcing as a forward transfer function and the acoustic resonance of
the cavity as a backward transfer function. In Elder’s study, the forward transfer function, defined
as a volume-flux gain, is derived from an estimated expression for the coherent, i.e., in phase
with the harmonic acoustic forcing, velocity fluctuations in the cavity aperture. This qualitative
approach was adopted in Ref. [11] to compute the forward transfer function of a round cavity
opening, which is then used to study the interaction between the shear layer and the acoustic field
in the cavity. The present investigation is similar to those works in that we deduce the aeroacoustic
response of the side branch opening from the coherent velocity fluctuations in the aperture. The
main difference is that we focus only on the acoustic impedance of the side branch opening and
on the prediction of its frequency-domain distribution as a function of the mean flow speed and the
acoustic pressure amplitude. Other notable differences are that, instead of estimating the coherent
velocity fluctuations, we obtain them indirectly from a parameter fit of the acoustic impedance to
experimental data, and that we quantify the effect of large forcing amplitudes on the aeroacoustic
response of the aperture. Our approach bears some similarity to the work of Yang and Morgans [12],
who derive an analytical model of the acoustic impedance of an orifice under bias flow which is then
compared to experiments.

One can model the aeroacoustic response of a side branch aperture using various computational
methods. We mention the work of Martínez-Lera et al. [13], who combine incompressible flow
simulations, vortex sound theory, and system identification techniques to numerically compute
the response at low Mach numbers. Another approach is taken by Gikadi et al. [14], who use
the compressible Navier-Stokes equations, linearized around a mean grazing flow obtained from
large-eddy simulations (LES). They successfully compare the obtained transfer matrices to the
experiments of Karlsson and Åbom [15]. In recently published studies, Fabre et al. [16,17] compute
the acoustic impedance of a cirular aperture using LES simulations. This is achieved for a thin wall
in Ref. [16] and for a thick wall in Ref. [17]. Compressible LES, combined with finite-element
simulations of the linearized incompressible Navier-Stokes equations (LNSE), were also used by
Boujo et al. [18] to analyze the response of an acoustically forced side branch opening subject to
a mean grazing flow with a bulk velocity of 56 m/s. In their setting, the mean flow, obtained from
compressible LES, is forced by a harmonic modulation of the velocity at the inlet of the side branch.
The forcing frequency was set near the eigenfrequency of the main hydrodynamic mode, computed
with LNSE analysis around the unforced LES mean flow. The amplification of the forcing by the
shear layer was studied using different quantitative measures. Numerically, a nonlinear saturation
of this amplification was observed as the forcing velocity amplitude is increased, which is due to
a thickening of the turbulent shear layer in the side branch aperture. This saturation effect leads
to a decrease of the gain from the bulk flow, and its quantitative description remains a significant
challenge for developing accurate predictive models of the aeroacoustic response of a side branch
opening in the high-amplitude regime. We also mention the recent study of Bauerheim et al. [19],
who use LES to investigate the nonlinear (amplitude-dependent) vortex-sound interaction in a deep
cavity and the hydrodynamics of the shear layer under increasing acoustic velocity amplitude. They
find that, at small amplitudes, a flapping of the shear layer is responsible for the vortex sound
generation. At high amplitudes, the acoustic response of the aperture saturates, roll-up of the shear
layer occurs, and shedding of discrete vortices is observed.

The saturation observed in the simulations of Boujo et al. [18] is in agreement with the
experiments of Bourquard et al. [20] that were performed with a square wind tunnel of the same
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height H = 62 mm and with a side branch of the same width W = 30 mm at a mean bulk flow
velocity of 74 m/s, which corresponds to a Reynolds number Re = UH/ν of about 306 000, where
ν = 1.5 × 10−5 m2/s is the kinematic viscosity of air. In Ref. [20], the shear layer was forced
over a broad frequency range in order to explain self-sustained aeroacoustic oscillations occurring
for a closed side-branch and involving the three-quarter wave acoustic mode of the resulting deep
cavity. The turbulent and coherent velocity fluctuations of the shear layer in the center plane of
the channel were extracted using PIV and the acoustic pressure signal. Using the multimicrophone
method [21], the aeroacoustic response of the side branch opening was measured for different bulk
flow velocities U and acoustic pressure forcing amplitudes pa in the form of its specific acoustic
impedance Z , which links acoustic velocity and pressure at the opening. For detailed information
about the experimental setup, the reader is referred to Sec. 2 of Ref. [20]. As in Ref. [18], the
acoustic forcing was imposed from the back of the side branch. They observed that for a certain
values of U , the measured specific acoustic resistance Re(Z ) becomes negative over a portion of the
considered frequency range, which implies amplification of the acoustic forcing by the bulk flow
at the respective frequencies [20]. This occurs when the acoustic energy produced by the forcing
of the convectively unstable shear layer in the side branch aperture exceeds the radiation losses in
the main branch. Similar oscillating behavior of the acoustic impedance of the aperture was also
observed in Ref. [22], where the effect of mean grazing flow on the acoustic response of a single
rectangular slot in a wall to imposed sound was studied experimentally. In Ref. [20], the nonlinear
saturation mechanism reported in Ref. [18] was also observed, manifesting itself in a flattening of
the resistance curve for increasing pa. This leads to a shrinking of the frequency range in which the
resistance is negative until eventually it becomes positive for the entire considered frequency range.
The authors further showed that using a second-order black-box transfer function model, a good fit
over the frequency and forcing amplitude ranges considered could be achieved.

The present work is a continuation of this research, wherein the attempt is made to develop
physics-based models which can predict accurately the specific acoustic impedance Z of the side
branch opening over a given frequency range for different grazing flow speeds U and forcing
amplitudes pa. Here, we do not aim at predicting the aeroacoustics of the cavity opening from
the compressible Navier-Stokes equations directly. This is computationally expensive, even when
LES of the turbulent flow, which constitutes already a significant reduction of the huge amount of
degrees of freedom, is performed [18]. Instead, our contribution falls in the category of simplified
physics-based analytical models, classical examples of which were developed by Howe [9]. To the
knowledge of the authors, no physics-based predictive models for the specific acoustic impedance
of a harmonically forced aperture subject to a turbulent grazing flow of varying speed exist in
literature that have been validated with experimental data, especially ones that include the effect
of large forcing amplitudes. This work therefore complements and is located between Refs. [18]
and [20] in the spectrum of modeling strategies for this cavity flow configuration, the latter attacking
the problem with a black-box modeling of the shear layer response to acoustic perturbations and
the former considering the Navier-Stokes equations to unravel the fundamental hydrodynamic
mechanisms governing this response. Because the aeroacoustic response of the side branch opening
is a key element of models describing the aeroacoustic instability responsible for self-sustained
cavity oscillations, the present work represents a significant contribution to various fields of research
concerned with such instabilities.

The paper is structured as follows: In Sec. II, we introduce the problem of modeling the acoustic
response of the side branch aperture by visualizing the hydrodynamic disturbance in the turbulent
shear layer over the aperture using PIV data for increasing forcing amplitudes pa. Then, we derive
two models for the specific acoustic impedance of the opening. The first model is based on Howe’s
classic formulation that models the shear layer as an infinitely thin vortex sheet that separates two
fluid layers of constant but different mean streamwise velocity, and the other is based on an assumed
vertical velocity profile along the side branch aperture. In Sec. III, we validate these two models by
comparing their predictions of the specific acoustic impedance to the measurements, which were
presented by Bourquard et al. [20]. We then compare the representation of the hydrodynamic
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FIG. 1. PIV data obtained from the center plane of the side branch aperture visualizing the spatiotemporal
evolution of the hydrodynamic disturbance in the shear layer for a mean bulk flow velocity U = 74.1 m/s under
acoustic forcing with frequency f = 1500 Hz and acoustic pressure forcing amplitudes pa of 10 Pa (top row),
50 Pa (middle row), and 300 Pa (bottom row), respectively. Shown is the phase-averaged streamwise velocity
〈vx (x, t )〉 = v̄x (x) + ṽx (x, t ) at four equally spaced time instants over a full acoustic forcing cycle. The phase
ωt of the acoustic forcing is displayed above the frames in the top row.

response and of the saturation effect by the two models under increasing pa. Finally, we discuss
alternative models to the ones presented in this work. In Sec. IV, we summarize our conclusions.

II. MODELING THE ACOUSTIC IMPEDANCE

In this section, we derive two models for the acoustic impedance of the side branch aperture.
These models will from now on be referred to as models 1 and 2. For model 1, we consider a
right-handed coordinate system with origin located in the middle of the aperture, where x is the
streamwise coordinate, y is the vertical coordinate and is positive along the side branch, and z is the
spanwise coordinate. The wind tunnel we consider has a cross-sectional area of 62 × 62 mm2, with
a side branch of width W = 30 mm with the same spanwise extension H = 62 mm as the main chan-
nel. The experimental setup is is presented in Ref. [20], with a sketch of the overall setup in Fig. 5(a)
therein and with a picture of the side branch opening in Fig. 3 therein. We denote the cross-sectional
area of the opening by Ao = HW . Throughout this paper, the ambient air density is ρ0 = 1.10 kg/m3

and the ambient speed of sound c0 = 350 m/s. The total velocity field v(x, t ) is decomposed into
its time-averaged component v̄(x), its coherent fluctuations ṽ(x, t ), and its turbulent fluctuations
v̌(x, t ): v(x, t ) = v̄(x) + ṽ(x, t ) + v̌(x, t ) = 〈v̄(x)〉 + v̌(x, t ) = v̄(x) + v′(x, t ), where 〈·〉 denotes
phase averaging and v′(x, t ) are the zero mean fluctuations. Note that the notations used in this
work differ somewhat from Ref. [18].
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FIG. 2. PIV data obtained from the center plane of the side branch aperture visualizing the spatiotemporal
evolution of the hydrodynamic disturbance in the shear layer for a mean bulk flow velocity U = 74.1 m/s under
acoustic forcing with frequency f = 1500 Hz and acoustic pressure forcing amplitudes pa of 10 Pa (top row),
50 Pa (middle row), and 300 Pa (bottom row), respectively. Shown is the vector field of the coherent velocity
fluctuations ṽ(x, t ), superimposed on the coherent vorticity fluctuations ω̃z(x, t ) at four equally spaced time
instants over a full acoustic forcing cycle. The phase ωt of the acoustic forcing is displayed above the frames
in the top row.

PIV data obtained from the center plane of the side branch aperture is used in Figs. 1 and 2
to visualize the spatiotemporal evolution of the hydrodynamic disturbance in the shear layer for
a mean bulk flow velocity U = 74.1 m/s under acoustic forcing with frequency f = 1500 Hz and
acoustic pressure forcing amplitudes pa of 10, 50, and 300 Pa, respectively. Figure 1 shows the
phase-averaged streamwise velocity 〈vx(x, t )〉 = v̄x(x) + ṽx(x, t ) and Fig. 2 shows the vector field
ṽ(x, t ), superimposed on the coherent vorticity fluctuations ω̃z(x, t ) = ∂ ṽy(x, t )/∂x − ∂ ṽx(x, t )/∂y,
respectively, at four equally spaced time instants over a full acoustic forcing cycle. The phase ωt ,
where ω = 2π f , of the acoustic forcing is displayed above the frames in the top row. In Fig. 1,
a disturbance in the coherent streamwise velocity is visible that grows more pronounced with
increasing forcing amplitude. In Fig. 2, we observe shedding of coherent vorticity fluctuations
that changes from a spurious to a clearly discernible pattern with increasing pa. However, even
at pa = 300 Pa, no rollup of discrete vortices takes place. It is worth mentioning that at this forcing
amplitude, the acoustic velocity is about 0.8 m/s at the aperture, and the associated vertical acoustic
displacement is about 80 μm. These features of the coherent velocity and vorticity fields illustrate
the thickening of the mean shear layer for large forcing amplitudes which reduces the shear-driven
amplification of the disturbances from the upstream edge of the side branch opening.

Model 1 is based on Howe’s vortex sheet theory [23] and model 2 on an assumed coherent
vertical velocity profile ṽy in the side branch aperture. It is not a straightforward task to compute
the acoustic impedance in the presence of a mean flow, because, as Hirschberg [24], p. 20, states,
“When the reference fluid is not uniform or there is a mean flow, there is some arbitrariness in the
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definition of the acoustical field and of the corresponding acoustical energy.” In our approach, we
compute Z from the Rayleigh conductivity KR [23]. When a harmonic pressure load pae−iωt , with
pa a real positive constant, is applied to the side branch opening and causes a coherent volume flux
Q(t ) in positive y direction, KR is defined, see Eq. (5.3.1) in [9], as

KR = − iωρ0Q

pa
, (1)

where i is the imaginary unit, Q is the coherent volume flux through the aperture, and KR is a length.
In Howe’s theory, see Eq. (2.4) in Ref. [23], Q = −iω

∫
Ao

ζdS, where ζ is the (complex) vortex
sheet displacement and the integral is taken over the aperture area Ao. Both Q and the pressure load
vary like e−iωt over time, which makes this factor cancel out in Eq. (1). In contrast, for model 2,
we derive KR from a real pressure load pa cos ωt and a real coherent vertical velocity profile in the
aperture ṽy(x, t ), which we denote by vy,c(x, t ). To make an analogy to Howe’s theory and Eq. (1),
we define, for model 2,

Q = s
∫

Ao

v̂y,c dS, (2)

where f̂ (s) = L[ f (t )](s) denotes the Laplace transform [25] of a function f (t ), s is the Laplace
variable, and we set s ≡ iω to obtain the frequency response. Note that Q defined in Eq. (2) has the
units of a volume flux. From KR, we compute the specific acoustic impedance Z as follows:

Z = − iωAo

c0KR
= Aopa

ρ0c0Q
. (3)

With this formulation, it is clear that for s = iω, ω ∈ R, a positive imaginary part of the Rayleigh
conductivity KR implies a reflection coefficient R = (1 − Z )/(1 + Z ) with magnitude |R| > 1,
which indicates amplification of the sound field by the mean flow [9,23,26]. Note that in the absence
of a mean flow, when Q = Aova, where va is the acoustic velocity amplitude, Eq. (3) coincides with
Hirschberg’s definition of the acoustic impedance, given by Eq. (88) in Ref. [24].

A. Model 1

In this section, we derive model 1, which is based on Howe’s classic formulation that describes
the shear layer as a thin vortex sheet which separates two regions of constant but different mean
streamwise velocity. For more details regarding the theory behind this model, the reader is referred
to Refs. [23,26–28] and chapters 5 and 6 of Ref. [9]. The input parameters of model 1 and the ex-
perimental setting are shown in Fig. 3: the mean bulk flow velocity U , the side branch width W , the
channel height H , and the acoustic pressure load Re(pae−iωt ) = pa cos ωt , which is applied across
the side branch opening. This forcing, as indicated in Fig. 3, causes a time-harmonic displacement
ζR(ξ, t ) = Re(ζ (ξ )e−iωt ) of the vortex sheet, where ξ = 2x/W is the scaled streamwise coordinate.
In the cutout, ζR(ξ, t ), the mean streamwise velocities just above and below the vortex sheet, U+ and
U−, respectively, and ξ are shown. Following Ref. [9], the dependence of the velocity field in the
aperture on the spanwise variable is neglected, which is why it is sufficient to only consider a cross
section as we do in this work. Figure 3 also illustrates the the Kutta condition [28], which states that
the vortex sheet is tangential to the main duct at the upstream edge of the side branch opening. The
derivation of Howe’s model, which is taken here as a basis for model 1, is given in Appendix A.
This derivation, which starts from the linearized unsteady Bernoulli equation, leads to the following
equation: ∫ 1

−1
ζ ′(μ)[ln |ξ − μ| + L−(ξ, μ) + K (ξ, μ)]dμ + λ1eiσ1ξ + λ2eiσ2ξ = 1, (4)

where ζ ′ = ζρ0ω
2W/π pa, μ is an integration variable corresponding to ξ , σ1,2 = σ (1 ± i)/(1 ±

iα), σ = ωW/2U− is the Kelvin-Helmholtz wave number, α = U+/U−, and the functions L− and
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H U W

U+

U−

ζR

ξ

pa cos ωt

FIG. 3. Sketch of the experimental configuration. The input parameters of model 1 are shown: the mean
bulk flow velocity U , the side branch width W , the channel height H , and the acoustic pressure forcing pa cos ωt
that is applied above the side branch opening. In the cutout, the real part of the vortex sheet displacement
ζR(ξ, t ) = Re(ζ (ξ )e−iωt ), the mean streamwise velocities just above and below the vortex sheet, U+ and U−,
respectively, and the scaled streamwise coordinate ξ = 2x/W are shown.

K are defined in Appendix A. Equation (4) is an integral equation which is here solved numerically
for ζ ′(ξ ) and the constants λ1,2 subject to the Kutta condition

ζ ′(−1) = ∂ζ ′

∂ξ
(−1) = 0. (5)

The method used for the solution of Eq. (4) is detailed in Appendix B. From this solution, we
then obtain the Rayleigh conductivity according to the following formula, given by Eq. (6.1.10) in
Ref. [9]:

KR = −πH

2

∫ 1

−1
ζ ′(μ)dμ. (6)

A few more parameters are now added to the model such that, after calibration, prediction of
the specific acoustic impedance of the opening can be made over broad ranges of the frequency,
bulk flow velocity U , and acoustic pressure forcing amplitude pa. First, we adjust U+ and U− by
introducing the following relations:

U+ =
[
α0 + α1

(
1 − pa

pa,0

)]
U−, (7)

U− = βU . (8)

The modification (7) means that there is a small mean streamwise velocity above the shear layer
which is caused by recirculation cells that form in the side branch. For increasing acoustic pressure
forcing amplitude pa, starting from a small amplitude pa,0 in the linear regime, the shear layer
thickens [18] and we expect the mean flow, and especially the ratio U+/U−, to change. This
amplitude-dependent effect is modeled with the parameter α1. Equation (8) implies that the mean
flow velocity just below the vortex sheet U−, which depends on the velocity profile of the boundary
layer in the main duct upstream of the side branch, is set to βU . Additionally, we introduce a
complex offset for the specific acoustic impedance

Z → Z + γ1 + iωδ. (9)

The two constants γ1 and δ account for corrections of radiation losses and inertial effects at the side
branch opening.

We have now derived model 1, which is defined by the solution ζ (ξ ) of (4), where ξ ∈ [−1, 1],
which satisfies the Kutta condition (5). Once we have computed ζ , we use Eq. (6) to obtain KR.
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Q = s A1
v̂y,c dS + A2

v̂y,c dS + A3
v̂y,c dS

vy,c

A1

A2

A3

uc
y

x

FIG. 4. Sketch of model 2. The coordinate system used for model 2 is shown, as well the convective speed
of the perturbations uc and a typical distribution of the coherent vertical velocity field in the aperture vy,c(x, t )
at a given time instant t . The contributions of the different regions in the aperture to the coherent volume flux
Q defined in Eq. (2) are also indicated. Note that the origin is not the same for Figs. 3 and 4.

Substituting this value into (3) and adding the offsets γ1 and iωδ defined in (9) yield for each
forcing frequency f a value of the specific acoustic impedance of the side branch opening Z that
can be compared to data obtained from the measurements:

Z = − iωAo

c0KR
+ γ1 + iωδ. (10)

In total, model 1 contains five empirical parameters: Four of these parameters, α0, β, γ1, and δ are
included to achieve good predictions for different bulk flow velocities U and are determined from
a fit to the measured real and imaginary impedance curves Z (ω) for the grazing flow speed U =
74.1 m/s at a small forcing amplitude pa,0 = 20 Pa. The last parameter α1 represents the alteration
of the mean flow by the acoustic forcing and is determined from a similar fit, for the same U , at a
high forcing pressure amplitude, in our case at pa = 800 Pa. It is worth noting that the actual three-
dimensional (3D) shear layer dynamics are not explicitly described in this model, which considers
an idealized two-dimensional (2D) vortex sheet, but that these 3D effects will affect the value of the
calibrated parameters. This is further discussed in Sec. III C.

B. Model 2

In this section, we derive model 2, an analytical model of the acoustic impedance of the side
branch opening. Our approach is inspired by Takahashi et al. [29], who use an assumed vertical
velocity profile to qualitatively estimate the acoustic energy produced by an oscillating jet. Here, we
assume a coherent vertical velocity profile in the shear layer that develops at the side branch opening
under the turbulent grazing flow. In this model, the origin of the coordinate system is placed at the
upstream corner. A harmonic acoustic forcing pa cos ωt is applied across the side branch opening.
We assume that this acoustic pressure field and the turbulent grazing flow lead to the following
coherent displacement field ỹ(x, t ) in the aperture:

ỹ(x, t ) = va

ω
g(x) sin ω(t − x/uc), (11)

where va = pa/ρ0c0, uc = κU is the grazing flow speed in the aperture, and κ is a parameter that
describes the ratio of uc to U . For the function g(x), we choose a truncated polynomial of order N :

g(x) = H (x)

[
(a0 + a1x)

(
1 − pa

pa,0

)
+

N∑
k=2

ak

k!
xk

]
, (12)

where H (x) is the Heaviside function. We chose N = 5 in this work. This large number of param-
eters in the function g is needed to achieve robust predictions of the specific acoustic impedance
over wide ranges of frequency, bulk velocity and acoustic pressure forcing amplitude. Model 2 is
sketched in Fig. 4. In the figure, the coordinate system used for model 2 is shown, as well as uc
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and a typical distribution of vy,c(x, t ) at a given time instant t . The same figure also indicates the
contributions of the different regions in the aperture to the coherent volume flux Q defined in Eq. (2).

For the streamwise component of the velocity of a fluid particle in the aperture with initial
condition (x0, 0) at time t = 0, we have, approximately, vx(x, y = 0, t ) = uc, which gives, for the
particle motion, xp(t ) = uct + x0. Substituting this result into Eq. (11) with x ≡ xp(t ), and taking its
partial time derivative, we obtain the y component of the coherent fluid particle velocity in the side
branch aperture in Lagrangian coordinates:

vy,c(xp(t ), t ) = ∂

∂t
ỹ(xp(t ), t ) (13)

= va

ω

∂

∂t
[g(xp) sin ω(t − xp/uc)] (14)

= −vauc

ω
g′(xp) sin ωx0/uc. (15)

Taking the Laplace transform of this expression and setting s ≡ iω, where s is the Laplace variable,
yields the vertical velocity in the aperture plane in the frequency domain, v̂y,c(x0, s):

v̂y,c(x0, s) = L[vy,c](x0, s) = −vauc

ω
L[g′(uct + x0)](s) sin ωx0/uc (16)

= −va

ω
L[g′(t + x0)](s/uc) sin ωx0/uc (17)

= −va

ω
L[g′(t )](s/uc)ex0s/uc sin ωx0/uc. (18)

The volume flux Q we defined in Eq. (2) is

Q(s) = s
∫

Ao

v̂y,c(x, s)dS, (19)

where the integral is taken over the aperture area Ao : {0 � x � W ; 0 � z � H}, which is fixed in
space at all times. Since we know the velocity field in the aperture in Lagrangian coordinates, we
write this integral in the initial configuration. Hence, we have

Q(s) = s
∫

Ao

v̂y,c(x0, s)dx0dz0 (20)

= sH
∫ W

0
v̂y,c(x0, s)dx0 (21)

= − sHva

ω
L[g′(t )](s/uc)

∫ W

0
esx0/uc sin ωx0/ucdx0 (22)

= − sHva

2iω
L[g′(t )](s/uc)

∫ W

0
(e

2sx0
uc − 1)dx0 (23)

= − sHva

2iω
L[g′(t )](s/uc)

(uc

2s
[e

2sW
uc − 1] − W

)
. (24)

Substituting this result into the definition of the specific acoustic impedance (3) and adding to the
result a correction term given by the real offset γ2, which accounts for radiation losses and 3D
effects, yields

Z (s) = 4sW

(2sW + uc[1 − e
2sW
uc ])

1

L[g′(t )](s/uc)
+ γ2. (25)
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TABLE I. Nondimensionalized values of the empirical parameters in models 1 and 2. The values were
calibrated to the measured values of the specific acoustic impedance from Ref. [20], as detailed in Sec. II.

Parameter (model 1) Value Parameter (model 2) Value

α0 0.149 a0 −4.24 × 10−2

α1 3.36 × 10−3 a1W −0.226
β 0.504 a2W 2 −205
γ1 0.337 a3W 3 183
δc0/W −0.663 a4W 4 −3.30 × 103

a5W 5 6.28 × 103

κ 0.705
γ2 0.122

Note that for g given by Eq. (12) with N = 5, we get the following expression for L[g′(t )](s/uc):

L[g′(t )](s/uc) =
[
a0 + a1

(uc

s

)](
1 − pa

pa,0

)
+

5∑
k=2

ak

(uc

s

)k
. (26)

In total, model 2 contains eight empirical parameters. The coefficients ak, k � 2, κ and γ2 are
calibrated from a fit to the real and imaginary impedance curves Z (ω) for the mean bulk flow
velocity U = 74.1 m/s at a small acoustic pressure forcing amplitude pa,0 = 20 Pa. The coefficients
a0 and a1, which describe the dependence of the specific impedance Z on the forcing amplitude pa,
are determined from a similar fit, for the same U , at a large forcing amplitude pa = 800 Pa.

III. RESULTS

In this section, we present and discuss the results obtained from the models derived in Sec. II.
Two types of data are analyzed in this section: On one hand, models 1 and 2 predict values of
the specific acoustic impedance Z of the side branch aperture. These values are compared to the
experimentally measured values of Z from Ref. [20]. On the other hand, models 1 and 2 also
describe the hydrodynamic response of the shear layer, represented by the velocity induced by
the vortex sheet displacement, Re(−iωζ (x)e−iωt ) and the velocity field vy,c(x, t ), respectively. We
compare these two velocity fields in the aperture for increasing forcing pressure amplitudes pa to
investigate the models’ predictions from a hydrodynamic perspective. PIV data were not available
in the relevant frequency range for comparison. This is because the experiments were performed at
an earlier time, before the present study was initiated. In Table I, we show the nondimensionalized
values of the empirical parameters in models 1 and 2 so that the reader can reproduce the results
presented in this section. The parameters were calibrated to the measured values of the specific
acoustic impedance from Ref. [20], as detailed in Sec. II.

A. Prediction of the specific acoustic impedance

In Fig. 5, we compare the predictions of Z obtained with models 1 and 2 to the experimentally
measured values for different bulk flow velocities U at pa = 20 Pa. The parameters for models 1 and
2 were calibrated, as described in the previous section, to experimental data of the specific acoustic
impedance Z from Ref. [20] for the grazing flow speed U = 74.1 m/s at low and high acoustic
pressure forcing amplitudes pa,0 = 20 Pa and pa = 800 Pa, respectively. The curves for which the
calibration of the empirical parameters in the models was performed are indicated by an increased
line thickness compared to the other cases. Note that the frequency ranges shown for the two lowest
bulk flow velocities are different than for the other cases. In general, we see that there is good
agreement between models 1 and 2 and the experiments. Both models deviate from the measured
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FIG. 5. Comparison of the specific acoustic impedance Z of the side branch opening, computed from model
1 (solid green line) and model 2 (solid blue line) with the experimentally measured values of the same from
Ref. [20] (black dots). Shown are the real (first and third rows) and imaginary parts (second and fourth rows)
of Z for different bulk flow velocities U for the acoustic pressure forcing amplitude pa = 20 Pa. The model
parameters were calibrated to the data for the case U = 74.1 m/s. Note that the frequency range considered for
the cases U = 56.5 and U = 60.0 m/s is different than for the other cases. The curves for which the calibration
of the empirical parameters in the models was performed are indicated by an increased line thickness compared
to the other cases.

values as we move away from the case U = 74.1, for which the calibration was performed. Model
1 is unable to predict well Im(Z ) at high frequencies. In contrast to this, the necessary condition for
aeroacoustic instability Re(Z ) < 0 is captured well by model 1 even for the smallest U , while model
2 does not describe correctly the shrinking of the domain where Re(Z ) < 0 at lower U , which is
visible at U = 56.5 and U = 60.0 m/s.

In Fig. 6, we compare the values of Z predicted by models 1 and 2 to the measured values of the
same for different acoustic pressure forcing amplitudes pa at the bulk flow velocity U = 74.1 m/s.
The curves for which the calibration of the empirical parameters in the models was performed
are indicated by an increased line thickness compared to the other cases. We note that model 1
outperforms model 2 at the highest value of pa, where the calibration was performed. In general,
however, both models capture well the nonlinear saturation effect, represented by a flattening of
the curves Re(Z )(ω) and Im(Z )(ω) with increasing pa. In particular, both models describe well the
shrinking and eventual disappearance of the frequency range for which the necessary condition for
instability Re(Z ) < 0 is satisfied. Hence models 1 and 2 are able, after calibration, to quantitatively
predict the saturation effect over nearly three orders of magnitude of the forcing amplitude.

B. Representation of the hydrodynamic response and the saturation effect

In this section, we compare the representation of the nonlinear hydrodynamic response in the side
branch opening and of the saturation effect by models 1 and 2. This response is described, for model
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FIG. 6. Comparison of the specific acoustic impedance Z of the side branch opening, computed from model
1 (solid green line) and model 2 (solid blue line) with the experimentally measured values of the same from
Ref. [20] (black dots). Shown are the real (first and third rows) and imaginary parts (second and fourth rows)
of Z for different acoustic pressure forcing amplitudes pa at the bulk flow velocity U = 74.1 m/s. The model
parameters were calibrated to the data for the cases pa = 20 and pa = 800 Pa, as detailed in Sec. II. The curves
for which the calibration of the empirical parameters in the models was performed are indicated by an increased
line thickness compared to the other cases.

1, in terms of the vertical velocity induced by the vortex sheet displacement, Re(−iωζ (x)e−iωt ),
and for model 2 by vy,c(x, t ). In Fig. 7, we compare these two velocity fields over the aperture
at a forcing frequency f = 1050 Hz and grazing flow speed U = 74.1 m/s for increasing forcing
pressure amplitudes pa = 20 Pa (blue curves), pa = 200 Pa (red curves), and pa = 400 Pa (green
curves) to investigate the prediction of the shear layer response by the models from the hydrody-
namic perspective. We have selected this forcing frequency because it is typical of self-sustained
aeroacoustic oscillations reported in Ref. [20] for a closed side branch of length L ranging from
200 to 250 mm. As we can see in Fig. 6, for these values of f and U , the necessary condition for
instability Re(Z ) < 0 is satisfied for small enough pa, until pa exceeds a value of about 100 Pa.
The dashed and continuous curves in Fig. 7 correspond to models 1 and 2, respectively. The phase
ωt of the acoustic forcing is displayed above each frame. In the figure, we see that at pa = 20 Pa,
there is good agreement between models 1 and 2, except for the large singular peak of the velocity
field predicted by model 1 at the downstream corner, which appears at all pa and is characteristic
of Howe’s vortex sheet formulation [9]. At the two larger forcing pressure amplitudes, there is only
qualitative agreement between models 1 and 2: They roughly agree on the position of the peak,
the propagation speed of the disturbance in the velocity field, and the order of magnitude of this
disturbance. We see from the figure that the amplitude of the coherent vertical velocity increases
with the acoustic amplitude. However, as we see in Eq. (7) for model 1 and in Eq. (12) for model
2, this increase is not proportional to the increase of the forcing amplitude, which, although not
self-evident from this plot, leads to a saturation of the specific acoustic impedance.
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FIG. 7. Hydrodynamic response in the side branch opening: Shown are the vertical velocity induced by
the vortex sheet displacement, Re(−iωζ (x, t )) (dashed curves), predicted by model 1, and the velocity field
vy,c(x, t ) (continuous curves), given by model 2, in the aperture at the forcing frequency f = 1050 Hz and bulk
flow velocity U = 74.1 m/s for increasing forcing pressure amplitudes pa = 20 Pa (blue curves), pa = 200 Pa
(red curves), and pa = 400 Pa (green curves). The phase ωt of the acoustic forcing is displayed above each
frame.

To compare the models’ representation of the saturation effect, we show in Fig. 8(a) the mag-
nitude and in Fig. 8(b) the phase of the acoustic reflection coefficient R = (Z − 1)/(Z + 1) of the
side branch aperture at the forcing frequency f = 1050 Hz and grazing flow speed U = 74.1 m/s
for increasing acoustic pressure forcing amplitudes pa = 20 Pa (blue dots), pa = 200 Pa (red dots),
and pa = 400 Pa (green dots). This reflection coefficient relates the complex amplitude of the
reflected wave for an incident wave originating from the side branch. The dashed and continuous

|R| ∠R [rad]
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(a) (b)

FIG. 8. (a) Magnitude and (b) phase of the reflection coefficient R = (Z − 1)/(Z + 1) at the forcing
frequency f = 1050 Hz and grazing flow speed U = 74.1 m/s for increasing forcing pressure amplitudes
pa = 20 Pa (blue dots), pa = 200 Pa (red dots), and pa = 400 Pa (green dots). The dashed and continuous
lines correspond to models 1 and 2, respectively. Also shown are the experimentally measured values of |R|
and ∠(R) at the same conditions, indicated by the black dots and the dash-dotted curves. The conditions for
which the calibration of the empirical parameters in the models was performed are indicated by an increased
marker size compared to the other cases.
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FIG. 9. Visualization of the saturation effect over a range of frequencies and acoustic pressure forcing
amplitudes pa for increasing bulk flow velocities U . Shown are the contour plots of |R| for different values
of U . The black arrow indicates the direction of increasing U . The condition for which the calibration of the
parameters in the models was performed is indicated by a black frame around the respective insets.

lines correspond to models 1 and 2, respectively. Also shown are the experimentally measured
values of Z at the same conditions, indicated by the black dots and the dash-dotted curves. The
condition for which the calibration of the parameters in the models was performed is indicated by
an increased marker size compared to the other cases. In the figure, for both models as well as for
the values from the experiments, we see a decline in the acoustic gain |R| from values above 1 at low
forcing amplitudes pa to values below 1 at high pa and a small increase in the phase ∠(R) as pa is
increased. These analytical predictions of R are in agreement with the results obtained in Ref. [18]
using compressible LES and incompressible LNSE analysis and with the experiments of Ref. [20].
We note that model 2 compares better than model 1 to the experimentally measured values of the
reflection coefficient R. The discrepancies between models 1 and 2 seen in Fig. 8, which may seem
surprising in light of the good overall agreement between the two models shown in Fig. 6, can be
explained by the fact that the empirical parameters were calibrated to data acquired over a large
frequency range, and a good global fit of Z in this domain does not necessarily imply similarly good
agreement of Z or R between the models and the experiments at each frequency.

In Fig. 9, we visualize the saturation effect predicted by the models with contour plots of the
magnitude of the reflection coefficient of the side branch aperture |R| over a range of frequencies
and acoustic pressure forcing amplitudes pa for increasing bulk flow velocities U . The black arrow
indicates the direction of increasing U . The contour for which |R| = 1 is indicated by a red curve
with increased thickness. The condition for which the calibration of the parameters in the models
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was performed is indicated by a black frame around the respective insets. The figure shows that
both models agree qualitatively in their representation of the saturation effect. Model 1 predicts that
the necessary condition for instability Re(Z ) < 0 is satisfied in a smaller region than predicted by
model 2.

C. Discussion

The two models we have derived and analyzed in Secs. II and III, respectively, include empirical
parameters that require calibration to experimental data. The choice of the number of parameters
we introduce is not unique and the models themselves are not the only models that can be used to
achieve similar results in predicting the impedance of the side branch opening. We demonstrate,
however, in Appendix C, that from the parameters in both models 1 and 2, none can be removed
while still achieving a good fit to the impedance curves at grazing flow speed U = 74.1 m/s and
acoustic pressure forcing amplitude pa = 20 Pa.

An alternative model that could be used instead of model 1 is the analytical model of Howe for
the Rayleigh conductivity of a rectangular aperture, with streamwise and spanwise extensions W
and H , respectively. This model is given by Eq. (3.3) in Ref. [23]. By adjusting the velocities above
and below the shear layer and adding two offsets as was done in model 1, similar results for the
prediction of the specific acoustic impedance Z can be achieved. For this model, the vortex sheet
displacement can be computed from Eq. (3.2) in Ref. [23].

Model 2 involves eight empirical parameters, six of which are necessary for calibration to
experimentally measured values of Z at a small acoustic pressure forcing amplitude pa. While it
is possible, by defining the function g in a different way, to derive simpler models which include
fewer empirical parameters, we found no alternative to model 2 that could achieve similarly accurate
and robust predictions of the measured impedance curves. Note that to obtain an explicit analytical
expression for Z with model 2, the choice of g is restricted to standard functions where the Laplace
transform can be explicitly computed. Alternative g functions that were tried include real lower order
polynomials (up to quartic), as well as the exponential function exp with argument κx, where κ ∈ R
is a real constant. With none of these alternatives was a comparably good fit to the experimental
results achieved as with the expression given in Eq. (12). From a practical perspective, this led to our
choice of the function g. The question remains open whether it is possible to make a more systematic
choice of g, possibly reducing the number of parameters, while maintaining the predictive quality
of model 2. This question could be addressed in future research.

The authors acknowledge the following drawback of model 2: Due to the necessity of a multitude
of calibrated terms, no a priori estimates of the reflection coeffient of the aperture are possible. This
is to be expected because model 2 is based on an ad hoc assumed coherent velocity profile and
is neither derived from first principles nor takes into account the problem geometry. On the other
hand, model 1, which is based on the linearized unsteady Bernoulli equation and Green’s functions
for the side-branch geometry, does allow for such an a priori estimate, which can be obtained by
setting U− = U/2, U+ = 0, γ1 = 0, and δ = 0. With this choice, model 1 scales with the Strouhal
number St = ωW/2πU and can be used to easily assess changes in the unstable frequency range
with the mean flow velocity and the aperture width. This approximation is simply Howe’s original
model, which is introduced in Ref. [9], pp. 446–448, example 4. From Fig. 6.1.9. therein, one
sees that the maximum of the reflection coefficient will be around f W/U− ≈ 0.75–0.8, with the
exact value of the right-hand side depending on the ratio of the channel height to the aperture
width. This gives, for the critical frequency of the aperture, f ≈ {0.75–0.8}U/2W . Around this
frequency, the amplification of the acoustic field in the cavity by the shear layer is maximal. If
this critical frequency coincides with a resonance frequency of an acoustic mode of the cavity and
if the cavity damping is small enough, an aeroacoustic instability can occur. The approximation
U− = U/2 is further discussed in the last paragraph of Appendix C. Note that for δ 	= 0, model 1
does not scale with the Strouhal number. Replacing the correction term iωδ with, e.g., iωδ/U or
a constant imaginary term iδ yielded overall worse results over the relevant frequency range than
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the present imaginary correction term, which does not have Strouhal scaling. Note that in contrast,
without any further modification, model 2 does scale with the Strouhal number.

Furthermore, we note that in Fig. 5, the reactance maximum is overpredicted by both models,
with starker contrast at lower grazing flow speeds. For model 1, this could be rectified by replacing
the correction term iωδ with iωδ/U . However, although the peak of the reactance is better predicted
with this term, as stated above, the overall match between model 1 and the experiments becomes
worse. For model 2, it is not clear how this shortcoming could be improved.

By prescribing a different coherent displacement field ỹ(x, t ) altogether (as opposed to simply
replacing the function g), alternative models can be derived along the same lines as model 2.
This includes models that involve the interaction of two separate hydrodynamic modes of the
shear layer. The interested reader can refer to the stability analysis presented in Ref. [18] using
incompressible LNSE, which shows that there are, in the side branch opening geometry, two shear
layer modes around the Strouhal numbers St = ωW/2πU = 0.4 and St = 0.53. Such an interaction
could not be captured with model 2, which is acceptable for the purpose of this work, where we are
concerned with describing the acoustic response of the side branch opening in the vicinity of the
eigenfrequency of one of the hydrodynamic modes in the side branch aperture.

Due the lack of PIV data in the relevant frequency range, comparison between such data and
the predictions of the hydrodynamic response in the side branch aperture by model 1 and 2 was
not possible. However, we note that the limiting assumptions of idealized models such as 3D side
wall effects on the eigenmodes will affect the convective speed of perturbations in the aperture
and therefore the Strouhal number of the maximum of |R|, as well as the decay rate of these
hydrodynamic modes and therefore the value of the maximal |R|. In particular, this is why in
model 2 uc substantially differs from an educated guess of U/2 for an ideal 2D side branch. For
these reasons, even if PIV data had been available in the frequency range of interest, i.e., in the
vicinity of the eigenfrequency of the first hydrodynamic eigenmode of the aperture, a comparison
between these data and the hydrodynamic response predicted by models 1 and 2 still would not be
straightforward and disagreements would be expected due to these 3D effects.

IV. CONCLUSIONS

We have derived two models for the acoustic impedance, which characterizes the aeroacoustic
response of the opening of a side-branch cavity subject to harmonic acoustic pressure forcing under
turbulent grazing flow. We showed that, after calibration to experimental impedance data, these
models robustly predict the measured impedance curves for a broad range of the frequency, bulk
flow velocity, and acoustic pressure forcing amplitude. The aeroacoustic response of the side branch
opening is one element of the classic transfer function formalism that is widely used to describe
and predict self-sustained cavity oscillations, a phenomenon that is relevant in many industrial
applications. Hence, the models developed in this work can serve as parts of predictive network
models that aim to quantitatively describe self-sustained aeroacoustic oscillations in cavities for
different bulk flow speeds. We compared the models’ representations of the hydrodynamic response
in the side branch aperture and of the saturation effect for increasing acoustic pressure forcing
amplitudes pa, showing qualitative agreement between the two models. A comparison of this
hydrodynamic response to PIV data was not possible due to a lack of data in the relevant frequency
range, but is a topic for future research. Alternative models to the ones presented in this work were
also discussed.
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APPENDIX A

In this section, we provide elements of the derivation from Howe [9] for Eq. (4), which constitutes
the basis of model 1. For this derivation, we write the acoustic pressure load as pa = p− − p+,
where p+ and p− are the uniform components of the pressure on both sides of the vortex sheet
in the side branch aperture. This derivation is based on a linear approximation of the vortex sheet,
the linearized unsteady Bernoulli equation, and pressure continuity at the side branch opening. The
latter two ingredients lead to

p+ + iρ0

(
ω + iU+

∂

∂x

)
φ+ = p− + iρ0

(
ω + iU−

∂

∂x

)
φ−, (A1)

where U+ and U− are the streamwise mean velocities just above and below the vortex sheet,
and φ± is the velocity potential that is associated with the vertical velocity component which
satisfies the boundary conditions of the rectangular duct and the side branch. Considering that this
vertical velocity at the side branch opening is linked to the vertical displacement of the vortex
sheet ζ via vy,± = ( ∂

∂t + U± ∂
∂x )ζ = −i(ω + iU± ∂

∂x )ζ , and nondimensionalizing time and spatial
coordinates, Howe obtains the following expression for the left- and right-hand sides (LHS and
RHS, respectively) of Eq. (A1). First, the RHS of this equation becomes

p− − 2ρ0U 2
−

πW

(
σ + i

∂

∂ξ

)2 ∫ 1

−1
ζ (μ)[ln|ξ − μ| + L−(ξ, μ)]dμ, (A2)

where μ is an integration variable corresponding to ξ = 2x/W , σ = ωW/2U− is the Kelvin-
Helmholtz wave number, and

L−(ξ, μ) = ln

(
2sinh[πW (ξ − μ)/4H]

ξ − μ

)
. (A3)

This expression can be found in Ref. [9], p. 447. Second, the LHS of Eq. (A1) is

p+ + 2ρ0U 2
−

πW

(
σ + iα

∂

∂ξ

)2 ∫ 1

−1
ζ (μ)[ln|ξ − μ| + L+(ξ, μ)]dμ, (A4)

where

L+(ξ, μ) = ln

(
4 sin [π (ξ − μ)/4] cos [π (ξ + μ)/4]

ξ − μ

)
(A5)

and α = U+/U−. This expression differs from that given in Ref. [9], pp. 445–446, because we
consider a nonzero streamwise velocity above the vortex sheet. From the above equations, one
obtains [(

σ + iα
∂

∂ξ

)2

+
(

σ + i
∂

∂ξ

)2] ∫ 1

−1
ζ (μ)[ln|ξ − μ| + L−(ξ, μ)]dμ

+
(

σ + iα
∂

∂ξ

)2 ∫ 1

−1
ζ (μ)[L+(ξ, μ) − L−(ξ, μ)]dμ = πW pa

2ρ0U 2−

≈
[(

σ + iα
∂

∂ξ

)2

+
(

σ + i
∂

∂ξ

)2] ∫ 1

−1
ζ (μ)[ln|ξ − μ| + L−(ξ, μ)]dμ

+ σ 2
∫ 1

−1
ζ (μ)[L+(ξ, μ) − L−(ξ, μ)]dμ = πW pa

2ρ0U 2−
, (A6)
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where the term iα ∂
∂ξ

was neglected in the bracket before the second integral. This is justified by the
following considerations. First, we can write the respective term as(

σ + iα
∂

∂ξ

)2 ∫ 1

−1
ζ (μ)[L+(ξ, μ) − L−(ξ, μ)]dμ. (A7)

In Howe’s theory, ζ ≡ 0 outside the aperture. By the symmetry of L+ and L− in their arguments and
partial integration, we can rewrite Eq. (A7) as∫ 1

−1

[(
σ − iα

∂

∂μ

)2

ζ (μ)

]
[L+(ξ, μ) − L−(ξ, μ)]dμ. (A8)

The factor α is assumed to be small and since it multiplies only bounded terms, the error in the
solution ζ we incur from dropping these terms will be of order O(α), i.e., small. This simplification
enables the following analytical manipulations. To integrate Eq. (A6), we note that the Green’s
function for the operator (

σ + iα
∂

∂ξ

)2

+
(

σ + i
∂

∂ξ

)2

(A9)

is given by Eq. (6.1.7) in Ref. [9]:

G(ξ, μ) = 1

2σ (1 − α)
[H (ξ − μ)eiσ1(ξ−μ) + H (μ − ξ )eiσ2(ξ−μ)], (A10)

where H (x) is the Heaviside function and

σ1,2 = σ
1 ± i

1 ± iα
. (A11)

We further note that the kernel of the operator (A9) is given by λ1eiσ1ξ + λ2eiσ2ξ . Hence, we can
rewrite Eq. (A6) as follows:∫ 1

−1
ζ ′(μ)[ln |ξ − μ| + L−(ξ, μ) + K (ξ, μ)]dμ + λ1eiσ1ξ + λ2eiσ2ξ = 1, (A12)

where we have defined ζ ′ = ζρ0ω
2W/π pa and

K (ξ, μ) = σ

2(1 − α)

∫ 1

−1
[L+(λ,μ) − L−(λ,μ)][H (ξ − λ)eiσ1(ξ−λ) + H (λ − ξ )eiσ2(ξ−λ)]dλ.

(A13)

The solution ζ (ξ ) of (A12), which satisfies the Kutta condition

ζ ′(−1) = ∂ζ ′

∂ξ
(−1) = 0, (A14)

constitutes the basis of model 1. The method that was used to solve Eq. (A12) is detailed in
Appendix B.

APPENDIX B

In this section, we describe a solution method for linear integral equations of the form∫ b

a
F (x, y)g(y)dy + h(x) = 0, (B1)

with given complex-valued functions F (x, y) and h(x) for an unknown complex-valued function
g(x) on the domain [a, b]. We achieve this using Gauss-Legendre quadrature of order N [30]. This
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rule transforms an integral ∫ b

a
g(y)dy (B2)

into a sum of weights and function values of g, evaluated at the points yi for i = 1, ..., N :

∫ b

a
g(y)dy =

N∑
i=1

g(yi )w(yi). (B3)

The points yi are defined (see Eq. (25.4.30) in Ref. [30]), as yi = (b − a)xi/2 + (b + a)/2 and the
weights w(yi ) as w(yi ) = (b − a)[P′

N (xi )]2/(1 − x2
i ), where PN is the Legendre polynomial of order

N [30] and xi is the ith zero of PN . Note that Eq. (B1) needs to be satisfied at all points x ∈ [a, b].
Hence, for any point x j in this interval, we can rewrite Eq. (B1) using (B3) as

∫ b

a
F (x j, y)g(y)dy + h(x j ) =

N∑
i=1

F (x j, yi )g(yi )w(yi ) + h(x j ) = 0. (B4)

Doing so for M points x j = a, ..., b gives a linear system of M equations

N∑
i=1

F (x j, yi )g(yi )w(yi ) + h(x j ) = 0, (B5)

which can be written as

Az = c, (B6)

where A ∈ R
M×N

, Ai j = F (x j, yi )w(yi ), z ∈ RM , zi = g(yi ) for i = 1, ..., N and c ∈ RM , c j =
−h(x j ) for j = 1, ..., M. The linear system of Eqs. (B6) is then solved for z by a covariance matrix
adaptation evolution strategy (CMAES) algorithm (Hansen et al. [31]) which minimizes ||Az − c||.
As an initial guess, the least squares solution of (B6) was used. Gauss-Legendre quadrature of
order 10 was used in this paper to solve the linear integral equation (A12) to obtain the acoustic
impedance, and the same method of order 40 was used to obtain the velocity field induced vortex
sheet displacement shown in Fig. 7 in Sec. III. This high order was chosen because a sharp
resolution of ζ was required for visualization and the CMAES algorithm is more efficient if the
matrix A in Eq. (B6) is nearly quadratic. The Kutta condition (A14) can be implemented by setting
ζ (ξ1) = ζ (ξ2) = 0, following the remarks in Ref. [9], p. 436. We note that care must be taken
when numerically evaluating integrals of functions which have a singularity on the interior of the
integration domain as is the case, e.g., with the function K given by Eq. (A13). In this case, the
integral must be decomposed into multiple integrals so that all singularities lie on a boundary.
The computational method used to solve Eq. (A12) was benchmarked using the results shown in
Fig. 6.1.9. in Ref. [9].

APPENDIX C

In this section, we investigate the sensitivity of models 1 and 2 with respect to the empirical
parameters that were included in these models to obtain predictions for different grazing flow speeds
U . To determine the sensitivity of models 1 and 2 with respect to a parameter for given U and pa,
we compute the root-mean-square deviation (DRMS) between the model and the experimental data,
defined as

DRMS =
√√√√ 1

Nf

Nf∑
i=1

∣∣ZModel
i − ZExperiment

i

∣∣2
, (C1)
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FIG. 10. Sensitivity S, defined in Eq. (C2), for models 1 and 2 at U = 74.1 m/s and pa = 20 Pa with
respect to the empirical parameters shown in the x axis. The parameters are ordered by increasing S. The bar
plot shows the relative increase of DRMS between the model and the experimentally acquired values of Z after
calibration when a given empirical parameter is excluded from the respective model.

where Nf is the number of frequency points at which Z was acquired. In the present case, Nf = 51.
We denote the value of DRMS of the full models including all parameters by DRMS,0. To measure a
model’s sensitivity to its parameters, we exclude each parameter, creating a reduced model with one
less parameter and perform a fit of this reduced model to the impedance curves. As starting values
for the fit of the remaining parameters, we used the respective values obtained from calibrating the
full model. We then compute DRMS for each reduced model and compute the relative value compared
to the full model, which we define as the sensitivity S of this parameter:

S = DRMS/DRMS,0. (C2)

The values of S are shown in Figs. 10(c) and 10(f) for models 1 and 2 at U = 74.1 m/s and pa =
20 Pa with respect to the empirical parameters shown on the x axis. As shown by the thick curves
in Fig. 5, for these values of U and pa, a good fit was achieved with both models 1 and 2 over the
considered frequency range. In Fig. 10, the parameters are ordered by increasing S. The bar plots in
Figs. 10(c) and 10(f) show the relative increase of DRMS between the models and the experimentally
acquired values of Z after calibration when a given empirical parameter is excluded, i.e., set equal
to zero in the respective model. An exception is the parameter β, which we removed from model
1 by setting it equal to 1, so that U− = U . We see that for both models, removing any one of
the parameters leads to an increase in DRMS of at least a factor 2. In Figs. 10(a) and 10(b) and in
Figs. 10(d) and 10(e), we show the real and imaginary parts of Z , respectively, over the considered
frequency range after the fit of the reduced models, showing that the achieved fit is visibly bad after
removing any of the parameters in the models. The effect of removing the parameter κ from model
2, i.e., setting it equal to 1, is similar to removing β from model 1: It does not allow the impedance
curves to be squeezed in the frequency domain, so that the undulated portion lies in the range of the
experimental results. The corresponding bar plot and impedance curves are not shown in Fig. 10 for
the sake of a compact presentation.

We want to highlight that the above results show that, in a first approximation, the mean flow
speed just below the vortex sheet U− should not be set equal to the total mean flow speed U but to
U/2. This approximation accounts for the sharp drop-off of the mean flow speed in the presence of
the turbulent boundary layer at the wall. Due to this drop-off, vorticity fluctuations in the aperture
are advected at a significantly lower speed than the mean flow speed U away from the wall. Using
this approximation, without any correction terms and U+ = 0, model 1, in its original form given
by Howe [9], can be used as an a priori tool to estimate the reflection coefficient |R| of the aperture
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at a given condition. Such an a priori estimate is not possible with model 2, which is based on an
ad hoc assumed coherent velocity profile in the aperture that is calibrated to experiments.
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