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The Orr mechanism is revisited to understand its precise role in the transition of plane
Couette flow. By considering homogeneous shear flow and plane Couette flow, it is identi-
fied that the Orr mechanism induces a lift-up effect which significantly amplifies spanwise
velocity. An optimal perturbation analysis for an individual velocity component reveals that
the amplification of spanwise velocity is most active at the streamwise length comparable
to the given spanwise length of the perturbation. The relevance of this mechanism to
transition is subsequently examined in plane Couette flow. To this end, a set of initial
conditions, which combines the optimal perturbation for spanwise velocity with the one for
all the velocity components, is considered by varying their amplitudes. Two representative
transition scenarios are found: oblique and streak transitions. In the former, the spanwise
velocity perturbation amplified with the Orr mechanism initiates both streak amplification
and breakdown, whereas in the latter, its role is limited only to the streak breakdown at
the late stage of transition. As such, the oblique transition offers a route to turbulence
energetically more efficient than the streak transition, at least for the cases examined in the
present paper. Finally, the oblique transition is found to share many physical similarities
with the transition by the minimal seed.

DOI: 10.1103/PhysRevFluids.6.023902

I. INTRODUCTION

It has been well understood that a small-amplitude perturbation to a linearly stable laminar base
flow can experience a transient growth as a result of the non-normality of the linearized Navier-
Stokes operator [1-3]. One of the well-known physical mechanisms for the transient growth is the
“lift-up” effect, by which streamwise vortices are converted into streaks with a large amplification of
energy from base/mean flow [4-6]. The initial condition, which leads to the largest transient energy
growth, has often been referred to as “optimal perturbation,” and it has extensively been computed
in most of the canonical laminar shear flows [2,3,7,8]. The emergence of streaks has been observed
as a robust feature in transitions taking place in the absence of Tollmien-Schilichting waves [9-16].
Furthermore, the lift-up effect has also been understood as the key mechanism of the generation of
streaks in turbulent flows [17-24].

Another well-known mechanism of transient energy growth is the Orr mechanism. It was
originally proposed by Orr [25], who demonstrated that the perturbation energy of a given velocity
field can grow transiently in time, as the perturbation field, initially inclined towards the upstream, is
gradually tilted downstream by base/mean shear. The Orr mechanism was also observed in the early
transient-growth studies of two-dimensional perturbation in shear flow [26,27]. However, despite
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the well-established mathematical description of the Orr mechanism, its precise physical role in the
transition to turbulence remains unclear. A well-studied scenario of the bypass transition, which we
shall refer to as a “streak transition,” is typically described as (e.g., Ref. [27]) (1) the linear growth
of streaks from a streamwise vortical perturbation via lift-up effect [2,3,7,8], or (2) a secondary
instability or transient growth of amplified streaks and a subsequent nonlinear breakdown leading
to turbulence [28-33]. In this scenario, a possible role played by the Orr mechanism may lie in the
evolution of the perturbation for secondary transient growth [30], as this would be a mechanism
for the generation of a spanwise velocity perturbation leading to a strong interaction with the least
stable streak instability modes (sinuous modes, in particular) [31,33].

Recently, an optimal initial condition, which takes the nonlinearity of the Navier-Stokes
equations fully into account, has been computed for the transition to turbulence in canonical wall-
bounded shear flows [34-38] (see Ref. [39] for a review on this issue). The initial condition, often
referred to as the “minimal seed” for the transition to turbulence, is designed to trigger turbulence by
reaching the laminar-turbulence separatrix (i.e., the “edge” of turbulence [40,41]) with the lowest
perturbation energy. The minimal seed typically emerges as a highly localized three-dimensional
structure in space. In the earliest stage of its evolution, the localized initial perturbation is amplified
via the Orr mechanism, and is subsequently converted into a streamwise elongated streak via
the lift-up effect. The streamwise meandering motion of the streak, which highly resembles the
sinuous mode of streak instability, ensues rapidly, resulting in a nonlinear breakdown to form a
localized turbulence (or turbulence spot). Finally, the turbulence spot gradually spreads over the
space, eventually evolving into fully developed turbulence.

In the two transition scenarios described above, there is an important difference in the roles
played by the Orr mechanism. In the former case, the Orr mechanism may primarily be active in
the secondary instability and/or transient growth process to facilitate the generation of spanwise
velocity perturbation. On the contrary, in the latter case, the Orr mechanism emerges at the earliest
stage of transition where a streak is not even developed in the flow. Given that the latter transition
scenario is the most energetically efficient route to turbulence, this suggests that the activation of
the Orr mechanism at an appropriate stage of transition may be the key physical element to trigger
turbulence with a small amount of initial perturbation energy.

The purpose of this paper is to explore the possible roles played by the Orr mechanism in
the transition of parallel shear flows. We first revisit the linear amplification process in homo-
geneous shear flow. Particular attention of the analysis will be paid to the precise understanding
of the Orr mechanism and the resulting growth mechanism. Indeed, we shall see that the Orr
mechanism induces a lift-up effect, which subsequently amplifies both streamwise and spanwise
velocities. Computation of optimal perturbation for an individual velocity component reveals that
this mechanism leads to the largest amplification of spanwise velocity at a streamwise wavelength
comparable to the given spanwise wavelength. The optimal perturbation for the spanwise velocity
is then utilized to examine the transition scenarios mediated by the Orr mechanism in plane Couette
flow. In particular, by introducing a set of initial conditions suitably combining the linear optimal
perturbation for spanwise velocity with the one for all the velocity components, two energetically
efficient routes of transition have been identified, consistent with previous studies: (1) an oblique
transition [42,43], and (2) a streak transition [33]. It is found that the oblique transition [42,43]
is initiated by the Orr mechanism and that the resulting spanwise velocity perturbation promotes
the early-stage streak development as well as its breakdown at the late stage of transition. On
the contrary, in the streak transition, the role of the Orr mechanism is limited to the generation
of a spanwise velocity perturbation to promote streak breakdown at the late stage. As such, the
oblique transition is found to offer a more energetically efficient route to turbulence than the
streak transition, while sharing many physical similarities with the transition by the minimal
seed.
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II. THE ORR MECHANISM REVISITED

A. Homogeneous shear flow

For the purpose of revisiting the role of the Orr mechanism in the context of linear stability,
we first consider a unbounded homogeneous shear flow of incompressible fluid with density p and
kinematic viscosity v. The linearized equations of motion in this flow admit the unique analytical
solution, allowing for an in-depth discussion on the Orr mechanism and the resulting physical
processes. The flow variables are made dimensionless with a characteristic velocity &/ and length £,
which will be defined later. We denote by x1, x,, and x3 the dimensionless streamwise (x), vertical
(), and spanwise (z) coordinates, respectively. The dimensionless momentum equations of motion
in the perturbation forming about the base flow U [=(y, 0, 0)] are given by

0 1
ML (U-Vu4@-V)U=—-Vp+ —Vu+Nau), )
Jat Re
where ¢ is the dimensionless time, u = (u, v, w) the perturbation velocity, which will be inter-
changeably used with w = (u;, up, u3), p the perturbation pressure, N(u) = —(u - V)u, and Re

(= UL/v) the Reynolds number.
The linearized version of Eq. (1) [i.e., N(u) = 0] admits the following Kelvin-mode solution
[44-46],

u = a()e*™, (2a)

where x = (x, y, z) and k = (k, k2, k3) is the wave vector with «, k;, and k3 being the dimen-
sionless streamwise, cross-stream, and spanwise wave numbers, respectively. Here, «; and k3 are
constants to be prescribed, whereas «,(¢) = k2,0 — kit is a linear function in time where «; ¢ is a
constant to be given. We note that Eq. (2) can be rearranged as

u=a( )ei[Kl @=Un)+ka,0y+k32] (2b)

with U (=y) being the streamwise base-flow velocity. This form of the solution suggests that @(z)
is merely a Fourier mode of u in the comoving frame with the local base flow, and the linear time
dependence in k() originates from the downstream advection of the perturbation velocity due to
the base flow with shear.

The length and velocity scales of the flow can now be defined such that £ = 1/«5, and U =
S*/k5 o, where k5 o (>0) is the dimensional form of k3 o and S* is the shear rate of the base flow.

This yields k>(¢) = 1 — k1t and Re = S*/[v(/cg‘,o)z]. Also, i(¢) in Eq. (2) is obtained as [47]

St 22[6() — 6(0
at) = ﬁoed)(z) — Dok (K(;Ki( )>e¢(;) . ﬁO(KOKS[ ( )3 ( )])qu(t), (3a)
KhK (t) KlKh
)
o) — 20K0 e
) = —— , 3b
00 = 3 e (3b)
gt 2ic3[0(1) — (0
ﬁ)(t) = l’l\)oe(P(t) —_ @0/{3 (KgK—i()>e¢(t) + 1’)0<M>e¢(1)’ (30)
Kjk=(t) K;

where Gy = (flg, Do, Wy) is the initial condition, «(t) = [/cl2 + Kzz(l‘) + K32]1/2, ko = k(0), and
n = (ki + k3)'/2. Also,
K

_ _fh __L "
6(t) = arctan <K2(l‘)>’ o) = Re,/o k“(t)dr, (3d)

where 6(¢) € [0, m) is the angle between the horizontal («;) and vertical (x,) wave-vector compo-
nents, equivalent to the clockwise inclination angle of the wave from the horizontal plane, and ¢ ()
incorporates the effect of viscosity into the time evolution of the solution.
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Now, we briefly summarize the physical implications of Eq. (3) (see also Ref. [47]). For
simplicity, we shall also assume iy = 0 and Wy = 0 because they do not contribute to any growth
of the perturbation kinetic energy. Depending on k| and «3, the dominant physical mechanisms at
play can be classified into the following three categories:

(1) Lift-up effect (x; — 0). In the limit of xk; — 0, the term which primarily contributes to the
perturbation kinetic energy is the last term on the right-hand side of Eq. (3a). This term is also the
particular solution of i to the Squire’s equation obtained from the homogeneous solution to the
Orr-Sommerfeld equation, describing the lift-up effect of streamwise velocity [47]. In the inviscid
limit (Re — 00), it also yields i(z) ~ ¢ for t < Re, retrieving the algebraic instability in Ref. [4].

(2) Orr mechannism (k3 = 0). In this case, Eq. (3) is simplified into

2 K1k (1) @)
022 ®
h

’

A2
VoK,
01 = 5=, )

() = —dok 0

which stems from the homogeneous solution to the Orr-Sommerfeld equation [47]. Since ¢(¢) < 0
for t > 0, Eq. (4) implies that having a decreasing «>(¢) in time is an important way to achieve
an energy growth, and, in particular, this is the only way for d(¢) to do so. Given the form of
ko(t)(= 1 — Kk1t), k2(t) decreases for t < 1/k; and reaches its minimum at ¢t = 1/k;. «2(t) then
increases in time fort > 1/k;. We note that 8y < 6(¢) < 7 /2 (upstream inclined wave) forr < 1/x,
whereas /2 < 6(t) < m (downstream inclined wave) for ¢ > 1/k;. This implies that x~2(¢) in
Eq. (4) describes the Orr mechanism, by which the maximum perturbation energy would be achieved
around ¢ = 1/k,. Finally, it is worth mentioning that the (linear) time dependence of k() originates
from the presence of the shear in base flow, as is indicated by Eq. (2b). This confirms that the Orr
mechanism is indeed a process driven by the shear in base flow.

(3) Lift-up effect induced by the Orr mechanism (k; # 0 and k3 # 0). Given the discussion
above for the two limiting cases (i.e., k; — 0 and «3 = 0), the lift-up effect is described by the
last terms with 6(¢) in Egs. (3a) and (3c), while the Orr mechanism would be described by those
with k~2(t) in Eq. (3). For «; # 0 and k3 # 0, the two mechanisms coexist, as none of the related
terms vanish. Given the form of Eq. (3), the Orr mechanism would operate as described above,
and it extends to @ in the same manner. However, in this case, some care needs to be taken for the
interpretation of the lift-up effect because the time dependence of 6(¢) now contributes to the related
terms. For «1 #£ 0, [0(¢) — 0(0)] in Eq. (3) now increases monotonically from zero and approaches
asymptotically its upper bound [7 — 6(0)] as t — oo. The gradually increasing 6(¢) activates the
last terms in Eqs. (3a) and (3¢c), implying that the lift-up effect in this case is induced by the Orr
mechanism—otherwise, those terms in Eqs. (3a) and (3¢) would remain zero, since 6(¢) = 6(0) for
all # > 0 in the absence of the Orr mechanism. It is also important to mention that this effect is
particularly well described by @, because, for a given «; and k3, the energy growth in time by the
lift-up term in Eq. (3¢) is only affected by 6 (¢ )—in the case of #, the aspect ratio of the perturbation
(i.e., k3/k1) is another factor affecting the extent of amplification. This indicates that the spanwise
velocity would be the best observable to measure this effect.

To more quantitatively capture the physical mechanisms discussed above, the linear optimal
energy growth is formulated for given x| and «3,

_ ()]
G(t; k1, k3) = max R
w0 |[up|

(5a)

where ||u|]?> = (1/Vq) fQ u’udV (the superscript H indicates complex conjugate transpose) with
uy =u(0), 2 =10, 27 /k1)x[0, 27)x[0, 27 /k3), and Vg being the volume of Q2. Given the dis-
cussion above, it would also be useful to introduce the following componentwise optimal transient
growth, which shares a similar idea with Refs. [18,48] where the observable of interest is considered
for the objective functional of the optimization, i.e.,

u; ()] |?
G, (t;k1,k3) = maxM

: 5b
w0 ||uo| | oo
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FIG. 1. Contours of (a) Gmax, (b) Gy max,> (€) Gy max»> and (d) Gy max in the k-3 plane for Re = 100.

where ||u;]|> = (l/ng)fQ |u;|>dV . By doing so, G,, (or G,) would well characterize the energy
amplification mostly by the lift-up effect, especially for x; — 0. Similarly, G,, (or G,) would do
the same for the Orr mechanism predominant at «3 = 0. Finally, G,, (or G,,) would well identify
the energy amplification via the lift-up effect induced by the Orr mechanism.

The optimization problem Eq. (5) is easily solved using the analytical solution Eq. (3). Once
the solution to Eq. (5) is obtained, the maximum energy growth is further sought over the time,
i.e., Gmax(k1, k3) = max, G(t; k1, k3) and Gy, max (K1, k3) = max, G, (t; k1, k3). Figure 1 shows the
contours of Gmax and Gy, max On the ki-k3 plane, where Gpax and Gy, max are quite similar to each
other. This suggests the importance of the lift-up effect in the amplification of the streamwise
velocity. However, Gy and G, max do show some difference for some «; and k3, and it is
pronounced especially for small «3 (i.e., k3 >~ 1073). In fact, G.max exhibits its peak at k3 =~ 1073,
This indicates that the difference is caused by the contribution of the Orr mechanism to G, i« being
smaller than the contribution to Gy, for small «3. Finally, Gy, max shows its peak between the peak
locations of G, max and Gy max, consistent with the expected nature of G, max, Which would well
characterize the lift-up effect induced by the Orr mechanism.

The typical features of the optimal transient growth observed in wall-bounded shear flows [27,47]
are also well observed, if a sufficiently large k3 is considered. Figure 2 shows the variations of Gyax
and G, max With «; for a given k3 = 102 at Re = 100. The results show that the behaviors of Gpax
and G, max With x are very similar. Furthermore, the peaks of Gpax and Gy, max are obtained with «
much smaller than those at which the peaks of G, max and G, max are achieved. This indicates that
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FIG. 2. Variation of (a) Guax> (b) Gu.maxs (€) Gymax> @nd (d) Gy max With & for k3 = 1072 and Re = 100.

the lift-up effect for the streamwise velocity is predominant for streamwise elongated perturbations,
consistent with many previous studies [2,3,7,8].

Finally, given the scope of the present study, the optimal initial condition maximizing the
energy of spanwise velocity and the corresponding time traces of |[u||?, ||u||?, [|v||%, and ||w]|?
are visualized in Figs. 3 and 4. As expected, the optimal initial condition is tilted upstream and has a
nonzero cross-stream velocity component forming rolls to trigger the lift-up effect (Fig. 3). The time
evolution of |[ul|?, ||«||?, ||v]|?, and ||w]||?> shows that the growth of the total perturbation energy is
dominated by the streamwise and spanwise components almost equally, i.e |[u||> == ||u||*> + ||w]|?
[Figs. 4(a), 4(c), and 4(d)]. However, it is the vertical component of the energy which achieves its
maximum fastest [t >~ 300 (=1/«1)], while the streamwise and spanwise ones reach their maximum
later. We note that the short transient growth of |v|?> should be the direct consequence of the Orr
mechanism, because the form of ¥ in Eq. (3b) admits only the Orr mechanism to play a role in the
growth of |v|>. Once the activation of the Orr mechanism is completed, the lift-up effect ensues
with the nonzero cross-stream velocity component. Consequently, a significant transient energy
growth of the streamwise and spanwise velocity perturbations arises for a long period, confirming
the aforementioned discussion.

B. Plane Couette flow

Here, we briefly confirm the findings in Sec. II A in plane Couette flow. We note that the
homogeneous shear flow and plane Couette flow share the same laminar base flow, which linearly
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FIG. 3. The optimal initial condition maximizing the energy of spanwise velocity perturbation in the (a) x-y
plane and (b) the y-z plane (x; = k3 = 0.0033, Re = 100). In (a), the contours denote w, and the vectors
represent # and v. In (b), the contours denote u, and the vectors represent v and w. Here, the energy of the
initial condition is normalized to unity.

depends on y. The only difference between the two is the boundary condition. Therefore, the two
flows would share many similarities in the characteristics of their transient energy growth, as it
essentially originates from the non-normality of the linearized Navier-Stokes equations. The dimen-
sionless locations of two infinitely parallel plates are set to be at y = &1, where y now becomes the
wall-normal direction. The two walls move in opposite directions with the dimensionless velocity of
U = (%1, 0, 0). This implies that the flow variables are nondimensionalized by choosing the length
scale L to be the half height of the channel and the velocity scale U to be the sliding speed of each
plate. In the present study, Re = 400 is considered.

A small-amplitude perturbation u = (u, v, w) is considered for the laminar Couette flow U =
(3, 0, 0). Similarly to the uniform shear flow case, the Navier-Stokes equations linearized about U =
(3, 0, 0) admit the plane Fourier-mode solution, u = i(z, y)e“”‘”“”, where ~ denotes the Fourier
transform in the x and z directions. For each Fourier mode, the optimal perturbations for total energy
and for each velocity component are computed by considering the optimization problems defined
in Eqgs. (5a) and (5b). The solutions to the optimization problems are obtained using the standard
method [27]. The Orr-Sommerfeld and Squire system is discretized using a Chebyshev collocation
method [49] with 120 collocation points in the wall-normal direction. The maximum energy growth
and the corresponding optimal perturbation are computed by formulating a variational problem, the
solution to which is obtained by singular value decomposition.

Given the expected similarity to the homogeneous shear flow discussed in Sec. IT A, only G max
and Gy, max as a function of streamwise and spanwise wave numbers at Re = 400 are shown in Fig. 5.
We note that the optimal perturbations for G, max and G, max Will be utilized in Sec. III to study the
transition in plane Couette flow. As expected, the optimal perturbation for streamwise velocity is
almost uniform in the streamwise direction [Fig. 5(a)]. On the contrary, the optimal perturbation for
spanwise velocity appears as an oblique structure, the streamwise wave number of which is close
to the spanwise one [Fig. 5(b)]. The time traces of [lu(®)]|? and ||w(?)||?, obtained from optimal
perturbations for G, max and Gy, max, are also shown in Fig. 6. Here, k; = 0 and k3 = 1.26 are chosen
for G, max and «; = 0.63 and «3 = 1.26 are for G, max. These wave-number pairs are not very far
from those retaining the maxima of G, max and Gy, max in the xj-k3 plane (Fig. 5). In particular,
k1 = 0.63 and k3 = 1.26 correspond to the fundamental wave numbers forming the spatial domain
size of the direct numerical simulation (DNS) in Sec. III. For the optimal perturbation with G, max
for k1 =0 and k3 = 1.26, ||u(t)||> shows a large amplification over a relatively long timescale
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FIG. 6. Temporal evolution of (a) ||u(t)||> from the optimal initial condition for G, ma (k1 = 0, k3 = 1.26),
and (b) ||w(z)||? from the one for G, max (k] = 0.63, k3 = 1.26) at Re = 400.

of the evolution [Fig. 6(a)]. The amplification is mediated by the lift-up effect and involves the
generation of the streaks (not shown). For the optimal perturbation with Gy, max for k1 = 0.63 and
k3 = 1.26, ||w(t)||? also exhibits a similar transient amplification [Fig. 6(b)]. However, in this case,
the related maximum amplification of ||w(¢)||? is much smaller than that of ||u(¢)||* for G, max, and
the related timescale of the evolution is much shorter than that of ||u(¢)||? from G, max. The time
evolution from this initial condition is visualized in Fig. 7. The initial condition is inclined upstream
[Fig. 7(a)]. The spanwise velocity evolved from this initial condition is tilted in the direction of

1 : 1 S 5
= & — ioz = 0 io
1 ) -1 - — -2

o 2 4 6 8 10 o 2 4 6 10

8
x T
(a) (b)
1 5 1 10
0 0 0 0
> : 5 = i -10
0 ) 4 6 8 10 0 9 4 6 8 10
X X

(c) (d)

1 20 1 10
5 0 0 = 0 E)IO
-1 -20
6 8 10

0 2 4

x x
(e) (f)
FIG. 7. Contours of spanwise velocity at (a) r =0, (b)t =4, (c)r =8, (d)t =12, (e) t = 16, (f) t = 20,

and at z = 0 plane of the small-amplitude optimal spanwise velocity perturbation with x; = 0.63, k3 = 1.26,
Re = 400. Here, the energy of initial condition is normalized to unity.
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the mean shear progressively, which gives an initial spurt to its transient amplification. The tilting
angle becomes approximately orthogonal to the x axis around ¢ >~ 6 [Figs. 7(b) and 7(c)], at which
the amplification solely by the Orr mechanism is expected to be most active from the homogeneous
shear flow analysis [see Eq. (4)]. However, we note that ||w(%)| |2 is still growing even at this instance
and achieves it maximum around ¢ ~ 20 [Fig. 6(b)]. This is consistent with the behavior observed in
the homogeneous shear flow (Fig. 4), indicating that the lift-up effect induced by the Orr mechanism
is presumably responsible for the energy growth of the spanwise velocity for ¢ = 6.

III. THE ORR MECHANISM IN TRANSITION OF PLANE COUETTE FLOW

Now, the role of the Orr mechanism and the resulting lift-up effect in transition is studied in plane
Couette flow with direct numerical simulation (DNS). In the present study, the DNS is performed
using DIABLO [50], which has extensively been verified in previous studies [51]. In this numerical
solver, the streamwise and spanwise directions are discretized by the Fourier-Galerkin method with
the 2/3 rule for dealiasing, whereas the wall-normal direction is discretized by the second-order
central finite-difference method. The fractional-step method is used for the time integration. More
specifically, all the viscous terms are advanced in time with the Crank-Nicolson method, while the
rest terms are integrated via a low-storage third-order Runge-Kutta method. The computational
domain is chosen to be L, =10, L, =2, and L, =5 with the number of grid points N, = 32,
N, = 65, and N, = 32 in the streamwise, wall-normal, and spanwise directions, respectively. As
a result, the fundamental wave numbers are given by «; o = 0.63 and k3 o = 1.26, identical to those
examined in Fig. 6(b). This then enables us to use the optimal perturbations given for G, and G,,
in Fig. 6 to build initial conditions for the DNS. As discussed in Sec. Il A, the wave numbers for
G, and G, in Fig. 6 are not very far from those resulting in the maxima of G, max and Gy max
in the «;-x3 plane. We note that the computational domain size is close to the one in which the
Nagata’s invariant solution emerges at the smallest Reynolds number (Re, >~ 127) [52]. Also, in
this domain, the developed turbulence typically exhibits a self-sustaining process involving a single
low-speed (or high-speed) streak and the related quasistreamwise vortices [53], as the horizontal
size of the domain in viscous inner units is not far from the minimal flow unit [54], i.e., Lj ~ 360
and L} ~ 180, where the superscript + indicates normalization by the viscous inner length scale.
Lastly, it should be mentioned that the small computational domain is also deliberately considered to
restrict us to study only the temporal evolution of the Orr-mechanism-induced transition dynamics.
If a large computational domain was considered, transition experiences spatiotemporal complexities
(e.g., the formation of turbulence spots and bands; see also the review by Ref. [55]) and this issue is
beyond the scope of the present study.

A. Two transition scenarios with the Orr mechanism

In Sec. II, the optimal perturbation for spanwise velocity has been shown to exhibit a large
amplification via the lift-up effect induced by the initial Orr mechanism. The large amplification
of spanwise velocity implies that this type of initial condition may be utilized to efficiently trigger
a secondary transient growth around the developed streaks [33], facilitating the streak transition
scenario mentioned in Sec. I. However, it should also be pointed out that the optimal perturbation
for the spanwise velocity exhibits a large amplification typically at the streamwise and spanwise
wavelengths with O(1) [Figs. 1(d) and 5(b)]. Therefore, the possibility of relating the oblique
transition [42,43] to the Orr mechanism discussed above should also be considered. For this purpose,
in the present study, we consider the following form of initial condition for the perturbation velocity,

u= )"luopl + )‘2uopt,w7 (63)

where
Uppt = Re[ﬁopt(y; Oa K3,())eiK3'OZ]7 (6b)
Uop,w = Re[liop,w(V: 1,0, €3,0)€™ 050D iy 4 (v3 61,0, —K3,0)e 10509, (6¢)
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FIG. 8. Contours of lifetime 7' as a function of X; and A, at Re = 400 in the log-log coordinates. Here,
)1 and A, are varied from 3x107° to 107!, The red dashed lines represent the initial disturbance energy,
Eo(=22+23)=1078,107%,107*, 1072

Here, Re[-] denotes the real part, Gy and i,y are the optimal perturbations for Gax and G,
respectively, and they are obtained with k1 o = 0.63 and k3 o = 1.26. Also, ||u(,pt||2 = ||u(,pt,w||2 =1
is set, such that A; and A, indicate the energies of the two optimal perturbations. This also leads the
energy of the initial condition Eq. (6a) to be Eg[= |lu(t = 0)||’] = A7 + A3. In the present study,
X1 and A, are varied from 3x 107> to 10~! to study the transition from the initial condition given
in Eq. (6). We note that turbulence (chaotic state) with a small computational domain in plane
Couette flow at Re = 400 has a “finite lifetime” [56-58], as it is known as a “chaotic saddle” with
the fractal boundary in the state space (i.e., the edge of turbulence). Due to this nature, here we
characterize whether the flow reaches turbulence by defining the lifetime of each simulation. In the
present study, the lifetime 7T is defined to be the duration from t = 0 to t = T, at which the total
perturbation energy E (= ||u||?) becomes less than 107> for the first time. With this definition, the
lifetimes for various combinations of A; and A, are computed and the corresponding results with
256 test cases are reported in Fig. 8.

Figure 8 shows that the lifetime distribution in the X -1, plane is indeed very irregular. This is due
to the fractal nature of the boundary between the laminar and turbulent states. However, in general,
if A; and A, are sufficiently large (say, A; > 1072 and A, > 1072), the lifetime can significantly
increase (T > 1000). Further to this, Fig. 8 suggests that there are two ways to increase the lifetime.
First, the lifetime can be quickly increased only with a relatively large value of A, (7 x10~3). For
diminishing small values of A; (<1x1073), this would correspond to the oblique transition scenario,
since the pair of optimal oblique waves is much stronger than the optimal streamwise vortices at the
initial time instant. Second, a transition can be triggered with a large A; (>1072) and a relatively
smaller A, (<5x1073) as well. This would be the streak transition case. Here, we can conclude that
the initial disturbance energy Ey required for the oblique transition is less than that for the streak
transition. This issue will be addressed in Sec. III D.

B. Energy transfer in transition dynamics

To understand the time evolution of the dynamics of the two transition scenarios, we first
introduce the time-dependent streamwise, wall-normal, and spanwise kinetic energies integrated
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over the entire computational domain €2,

1
E, = — [ u*av. 7
T ™

The streamwise, wall-normal, and spanwise kinetic energies of each plane Fourier mode are also
considered,

E" = %f " ay, (8a)

where Q, € [—1, 1] and

u = Z Z al(m,n)(t’ y)eilmk]’oerm(}‘nZ] . (8b)
m n

Given the streamwise domain size in the present study, the streaks are expected to be elongated
over the entire streamwise domain. Therefore, further to Egs. (7) and (8), the early-stage evolution
of the streaks from the initial condition Eq. (6) is studied by considering the following perturba-
tion energy equations for the streamwise-averaged variables integrated over the cross-streamwise
domain ,; = [—1, 1]x[0, 27 /k3 ),

d (u)?
- 55 dS ) =L+Dy+Nuy + Nz, (9a)
Q.
d (v)?2
= S5 dS ) = Pyt Dyt Noy + Ny, (9b)
Qy.z
d (w)?
E TdS =Pw +Dw +Nw,v +Nw,zv (9C)
Q.

where the lift-up (or production) term is
du
L= —/ (u) {v),—dS, (9d)
Q

the pressure transport/strain terms are

0 d
P, = —/ w0, WPy p, = —/ (w), WP g, (%)
Q. dy Q. 0z
the nonlinear transport terms for the streamwise component
0 ol
Nuy=— f w0, X% s, N, = - / 0, 2 s, o)
Q. dy Q. 0z
for the wall-normal component
a(vv), a{vw),
Nyy=— (== dS, Nog=— [ (v),———d5, %2
Q, y Q. 0z
for the spanwise component
a(vw), d{ww),
Nw,y = - <w>x dSa Nw,z = - <w>x dS, (9h)
o8 dy Q 3z
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and the viscous dissipation/transport terms are given by

1

1 2 2
D, = = /Q ),V (u),dS, D, = Re o (V) Vy (v), dS,
1

D, (), V}_(w), dS. (%1)

Re Q..

Here, (-), indicates an average in the streamwise direction and Vi .= 32/3y* + 9%/07%.

Once the streaks are sufficiently amplified, they break down through a streak instability and/or
the related transient growth [28—31]. We note that the physical forms of the streak instability and the
transient growth are very similar, since the transient growth is a consequence of the interaction with
the least stable streak instability mode. In practice, their precise classification in a direct numerical
simulation has been found to be very difficult [30]. As such, in the present study, the emergence of
the streak instability and/or the transient growth is studied by computing the productions from the
streaky flow [59],

aU; aU;

T, = —/ w—dv, T,= —/ uw—dv, (10)
o 0y o Oz

where d[= (it, ¥, w)] = u — (u); and U;(y, z) = U(y) + (u)x. Here, T, is the production by wall-

normal mean shear representing the activation of the varicose mode of the streak instability and/or

transient growth, and 7, is the production by spanwise mean shear, indicating the sinuous mode

[59].

C. Oblique transition

We first explore the roles of the Orr mechanism in the oblique transition by considering
A1 = 0.001 and A, = 0.007. The evolution of E,, and EL(,I’_”’”), the instantaneous fields of streamwise
velocity fluctuation for ¢ € [0, 100], and the related energy transfer terms given in Eq. (9) are shown
in Figs. 9-11, respectively. Given the form of the initial condition with A, > A;, the (1,1) plane
Fourier mode, which corresponds to W, first exhibits a notable energy growth for ¢ € [0, 20]
[blue dashed lines in Figs. 8(b)-8(d)]. In particular, E{""" grows for # < 10, and the growth of E{!-"
and E|!V subsequently appears for 10 < < 20 (see also Ref. [60]). The timescales here compare
well with those in Fig. 6(b), indicating that the energy growth of the (1,1) mode is due to the Orr
mechanism and the subsequent lift-up effect.

After the initial transient energy growth of the (1,1) mode, a large energy amplification of the
(0,2) mode ensues through its streamwise component for ¢ € [20, 30] [ELE?*Z); red dashed line in
Fig. 9(b)]. This leads to the development of streamwise elongated streaks from the oblique-mode
initial condition, as shown in Figs. 10(a)-10(c). We note that the large amplification of E{*? is
primarily due to the linear amplification [L in Eq. (9d); black line in Fig. 11(a)], which can only be
activated by the presence of nonzero 12;0’2). Given the oblique-mode dominant nature of the initial
condition, this implies that there must be a nonlinear mechanism for the generation of the (0,2)
mode. Indeed, E{*? [red dashed line in Fig. 9(d)] is found to grow for # 2 10 due to the nonlinear
transport N,, . [blue line in Fig. 11(c)] in this time interval [see also Eq. (9h)]. The amplification of
the streamwise uniform spanwise velocity perturbation simultaneously activates the related pressure
to enforce the continuity through the following Poisson equation:

3% (vv) 3% (ww), 3% (vw)
2 _ X X X
Vi lPle = _|: 9y? + 072 2 dydz :|

The pressure elevates the wall-normal pressure transport P, [black line in Fig. 11(b) at ¢ =~ 20],
which subsequently gives rise to the streamwise uniform wall-normal velocity fluctuation repre-
sented by E*? [red dashed line in Fig. 9(c) at 7 > 20 in relation to Eq. (9g)]. This ultimately
leads to the emergence of streaks, and this process starting from the oblique-mode initial condition

(1)
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FIG. 9. The time evolution of (a) E,, (red), E,, (blue), E,, (black), (b) E™™, (c) E*", and (d) Ei"
for the initial condition given by Eq. (6) for A; = 0.001 and A, = 0.007 (Re = 400). In (b)-(d), red solid,
(m, n) = (0, 1); red dashed, (0,2); blue solid, (1,0); blue dashed, (1,1); green solid, (1,2); green dashed, (2,0);
black solid, (2,1); black dashed, (2,2).

is a combined consequence of two linear mechanisms (i.e., Orr mechanism and lift-up effect), a
nonlinear interaction of the spanwise velocity perturbation, and the continuity.

In the oblique transition, the influence of the Orr mechanism and the resulting lift-up effect is
found not to be limited only at the early-stage transition (say, ¢ < 20). At the late stage (+ = 30), the
production terms 7y, and T; by the streaky flow in Eq. (10) gradually increase [Fig. 11(d)], resulting in
the breakdown of the amplified streaks (see also Fig. 10). In particular, here, T; is found to be greater
than T, implying that the streak breakdown takes place through a sinuous mode. This is also seen
very well in Figs. 10(c) and 10(d), where the emergence of a subharmonic sinuous-mode instability
(or transient growth) is evident [29,31]. We note that the sinuous-mode breakdown of streaks has
been understood to be highly receptive to the presence of the spanwise velocity perturbation [31,33],
consistent with the form of 7, in Eq. (10). Indeed, a substantial amount of the energy of spanwise
velocity perturbation is present even at # =~ 30 [E{!""; blue dashed line in Fig. 9(d)], although it has
decayed due to the almost completed Orr mechanism for 20 < ¢ < 30. Once the streak instability
(or transient growth) starts to develop, the spanwise velocity perturbation grows again, consistent
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FIG. 10. Contours of streamwise velocity fluctuation on the plane of y ~ 0.3 at (a) t =0, (b) t = 20,
(c)t =40, (d)tr =60, (e) t = 80, and (f) r = 100. Here, A; = 0.001, A, = 0.007, and Re = 400.

with the growth of 7. in Eq. (10) [E{-"; blue dashed line for # > 30 in Fig. 9(d)]. The observation
here suggests that the spanwise velocity perturbation, generated by the Orr mechanism at the early
stage, plays the role of triggering the streak breakdown at the late stage—otherwise, it would also
be difficult to explain the breakdown of the streaks especially through a “sinuous” mode, which is
typically triggered by a spanwise velocity perturbation.

The DNS result suggests that the route to turbulence in the oblique transition is summarized as
follows: (1) The Orr mechanism gives an initial spurt for the amplification of spanwise velocity
perturbation by inducing the lift-up effect; (2) the amplified oblique spanwise velocity perturbation
nonlinearly generates an elongated streamwise vortical motion together with continuity; (3) the
streamwise vortical motion leads to streamwise elongated streaks with another lift-up effect; (4) the
amplified streaks interact with the oblique spanwise velocity perturbation generated with the initial
Orr mechanism; and (5) the streaks subsequently break down into turbulence. From this, it is evident
that the spanwise velocity perturbation, generated by the Orr mechanism and the following lift-up
effect at the early stage of transition, plays the key roles in initiating both streak amplification and
breakdown, the two key processes in transition to turbulence.
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FIG. 11. Time traces of the energetics terms for the streak development and breakdown (A; = 0.001 and
A2 =0.007): (a) N, (red), N, (blue), L (black); (b) N, (red), N, . (blue), P, (black); (c) N, (red), N, .
(blue), P, (black); and (d) T; (red), T (blue).

D. Streak transition

‘We now consider the other route of transition shown in Fig. 8 (i.e., streak transition for A; > X,).
The initial condition to be studied here is A; = 0.07 and A, = 0.005, implying that the initial
condition is dominated by the optimal perturbation for the total velocity. The time traces of E,, and
E;imm, the instantaneous fields of streamwise velocity fluctuation for ¢ € [0, 150], and the related
energy transfer terms in Eq. (9) are presented in Figs. 12—14, respectively. As expected, there is a
strong amplification of E,, and E,ﬁ?’l) for ¢ < 20 [red solid lines in Figs. 12(a) and 12(b)]. Indeed,
the instantaneous flow fields show that streamwise-dependent structures at ¢ = 0 due to small A,
are converted into the streamwise elongated streaks [Figs. 13(a) and 13(b)]. It is evident that the
development of the streaks is due to the lift-up effect, as also confirmed by L > 0 during this time
interval [black line in Fig. 14(a)]. When ¢ >~ 20, the stabilizing nonlinear terms N, , and N, ; act
strongly against the lift-up term L [Fig. 14(a)]. As a consequence, both E,, and E(* begin to decay
[red solid lines in Figs. 12(a) and 12(b)].

At the late stage (¢ = 30), the wall-normal and spanwise velocity perturbations, which were
decaying for ¢ < 30, grow again [E,; and E,3; blue and black lines in Fig. 12(a)]. This is a
consequence of the streak instability or transient growth. Indeed, as shown in Fig. 13(c), the
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FIG. 12. Time traces of (a) E,, (red), E,, (blue), E,; (black), (b) E{™", (c) E™, and (d) E\" for the
initial condition given by Eq. (6) for A; = 0.07 and X, = 0.005 (Re = 400). In (b)—(d): red solid, (m, n) =
(0, 1); red dashed, (0,2); blue solid, (1,0); blue dashed, (1,1); green solid, (1,2); green dashed, (2,0); black
solid, (2,1); and black dashed, (2,2).

fundamental secondary instability starts to emerge with the streaks oscillating in a sinuous manner.
The emergence of the fundamental sinuous mode is caused by the production by the spanwise shear
of the streaky flow [59], and this is consistent with 7 being much greater than 7, [Fig. 14(b)]. Here,
it is important to note that the fundamental sinuous mode responsible for the streak breakdown must
be initiated by the spanwise velocity perturbation via the lift-up effect induced by the Orr mechanism
at the early stage of transition: Indeed, the energy of spanwise velocity [E,3; black line in Fig. 12(a)]
and the related Fourier modes [Fig. 12(d)] are non-negligible at r >~ 30, and, more importantly, a
transition cannot take place if the amplitude of the oblique mode is too small (Fig. 8). The streaks
eventually break down at ¢ ~ 150, and the flow subsequently becomes turbulent [Fig. 13(d)]. At this
stage, the streamwise kinetic energy of the (0,1) mode reduces largely [red line in Fig. 12(b)], while
the spanwise kinetic energy of the (1,0) mode is amplified significantly during the process [blue line
in Fig. 12(d)].

The streak transition here is summarized to take the following route to turbulence: (1) The Orr
mechanism initiates the growth of the spanwise velocity perturbation in the form of an oblique
mode, but its effect is limited at the early stage; (2) instead, the optimal perturbation for all
the velocity components, given in the form of elongated streamwise vortices, generates highly
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FIG. 13. Contours of streamwise velocity fluctuation on the plane of y ~ 0.3 at (a) t =0, (b) t = 20,
(c)t =120, and (d) t = 150. Here, A; = 0.07, A, = 0.005, and Re = 400.

amplified streamwise elongated streaks via the lift-up effect; (3) the streaks subsequently interact
with the spanwise velocity structure given by the optimal perturbation for spanwise velocity; and
(4) the streaks exhibit an instability and/or a transient growth and break down into turbulence.
This transition scenario is almost identical to the one in Ref. [33]: The only difference is that
the spanwise velocity perturbation in the present study is given by the oblique-mode optimal
perturbation, whereas the one in Ref. [33] is driven externally by stochastic forcing.
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FIG. 14. Time traces of (a) N, (red), N, . (blue), L (black), and (b) T, (red line), T, (blue) with A; = 0.07,
A2 = 0.005 at Re = 400.
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FIG. 15. A schematic diagram of how the Orr mechanism initiates the oblique transition.

Finally, the role of the Orr mechanism in the oblique transition (Sec. III C) is compared with
the one in the streak transition here. In both transition scenarios, the most robust features are the
emergence of streaks and their breakdown via a sinuous-mode instability (or transient growth).
The subtle, but non-negligible, difference between the two transition scenarios essentially stems
from the dynamics of the spanwise velocity perturbation. In the oblique transition, the spanwise
velocity perturbation, generated by the Orr mechanism and the subsequent lift-up effect, not only
nonlinearly interacts to generate streamwise vortical motions, but also initiates the breakdown of the
amplified streaks into turbulence. However, in the streak transition, the role of the spanwise velocity
perturbation is limited to the initiation of the streak breakdown. It is presumable that the multiple
roles played by the spanwise velocity perturbation in both streak amplification and breakdown offer
a more energetically efficient route to turbulence for the oblique transition at least for the initial
conditions considered in the present study (see also Fig. 8). More importantly, the emergence of
the Orr mechanism at the early stage and the following physical processes in the oblique transition
are remarkably similar to those observed in the transition induced by the minimal seed [34-38]. In
this respect, it should finally be mentioned that the nonlinear optimal perturbation calculated in the
subspace spanned by the linear optimal perturbation modes has been shown to emerge in the form
of an oblique mode [43], consistent with the findings in the present study.

IV. CONCLUDING REMARKS

In the present paper, the role of the Orr mechanism in the transition of plane Couette flow has
been explored. We have first revisited the Orr mechanism in homogeneous shear flow and plane Cou-
ette flow and identified that the Orr mechanism induces a lift-up effect which significantly amplifies
spanwise velocity. The optimal perturbation analysis for an individual velocity component reveals
that the amplification of spanwise velocity is most active at the streamwise length comparable to
the given spanwise length of the perturbation. The relevance of this mechanism to transition has
subsequently been examined in plane Couette flow using DNS. In particular, we have considered
a set of initial conditions by combining the optimal perturbation for spanwise velocity with the
one for all the velocity components. The DNS results indicate that there are two representative
transition scenarios: oblique and streak transitions. The schematic diagrams for the oblique and
streak transitions are shown in Figs. 15 and 16. In the former, the spanwise velocity perturbation
amplified by the Orr mechanism plays an initiating role in both streak amplification and breakdown,
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FIG. 16. A schematic diagram of how the Orr mechanism initiates the streak transition.

whereas in the latter, its role is limited only to the streak breakdown at the late stage of transition. As
such, the oblique transition offers a route to turbulence energetically more efficient than the streak
transition at least for the cases examined in the present study. Lastly, the oblique transition has been
found to share many similarities to the one by the minimal seed [34-38].

The roles of the Orr mechanism identified in the present study are evidently for a highly idealized
setting. However, these are also studied using optimal perturbations which lead to large transient
energy growth. In this respect, it would be difficult to ignore their potential role even in realistic
cases where initial condition may be given by a random noise. Indeed, our brief examination
revealed that the role of the Orr mechanism is important in such cases (see Appendix A). Finally, the
observations made for transition in the present study offer some important outlooks for the relevance
of the Orr mechanism to fully developed turbulent flow. The existence of the Orr mechanism has
repeatedly been reported by several previous studies [61-64]. These studies are primarily concerned
with the generation of a wall-normal velocity structure via the Orr mechanism in relation to the
self-sustaining process of the energy-containing eddies (or coherent structures) in wall-bounded
turbulence [53,65-67]. However, the precise role and origin of the Orr mechanism in fully developed
turbulence are still matters of debate: It was initially proposed that the Orr mechanism is a part of
the self-sustaining process at a given length scale for the generation of the wall-normal velocity
structure [61-63], but a recent study showed that the Orr mechanism can well be initiated by the
wall-normal velocity structure originating from the energy cascade of “larger” energy-containing
eddies [64]. In any case, it should be pointed out that all these investigations ignore the amplification
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FIG. 17. Contours of the wall-normal velocity fluctuation at (a)t =0, (b)t =2, (c)t =4, and (d) t = 6,
and at the z = 0 plane of the small-amplitude random initial condition with Re = 400.
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FIG. 18. Contours of the streamwise velocity fluctuation at (a) t =0, (b) r =50, (c) + =90, and
(d) t = 100, and at the y & 0.3 plane of the small-amplitude random initial condition with Re = 400.

of the spanwise velocity structures caused by the lift-up effect following the Orr mechanism. Given
the potential roles in the development and breakdown of streaks demonstrated for a transition in the
present study, the significance of such spanwise velocity structures in fully developed turbulence
should be investigated in the future.

APPENDIX A: TRANSITION FROM RANDOM INITIAL CONDITION

A DNS with a random initial condition is performed. The amplitude of the random initial
condition is increased from a very small value to trigger a transition. The result indicates that the
transition can be only induced with the initial condition energy Ey ~ 10~!. As expected, the initial
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FIG. 19. The time evolution of E,, (red), E,, (blue), and E,, (black) with the random initial condition at
Re = 400.
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FIG. 20. The optimal initial condition maximizing the energy of spanwise velocity perturbation in the
(a) x-y plane and (b) the y-z plane for plane Couette flow. (k; = 0.63, k3 = 1.25, Re = 400). In (a), the contours
denote w, and the vectors represent « and v. In (b), the contours denote u, and the vectors represent v and w.
Here, the energy of the initial condition is normalized to unity.

condition energy required for a transition is much greater than that for the oblique transition as well
as for the streak transition.

The time evolution from the random initial condition is visualized in Figs. 17 and 18. The
random initial condition is isotropic at the initial time instant [Figs. 17(a) and 18(a)]. The wall-
normal velocity evolved from this random initial condition is tilted in the mean-shear direction
progressively, which indicates that the Orr mechanism does exist [Figs. 17(b)—17(d)]. This is also
demonstrated by the time trace of the wall-normal kinetic energy in the early stage of the transition
(blue line in Fig. 19). In particular, there is a slight growth for the wall-normal kinetic energy from
t ~ 2. These imply that the Orr mechanism indeed gives an initial spurt to the transient amplification
at the early stage of the transition with random initial condition.

The streaks are subsequently generated via the lift-up effect at later times [Figs. 18(b)—18(d)], and
eventually break down in a sinuous manner to trigger a transition. However, given the meandering
motion of the streaks in Fig. 18(c), it is difficult to determine whether the sinuous streak instability is
fundamental or subharmonic. It appears that both exist in this case, indicating that both the spanwise
noise in the initial condition and the Orr mechanism would play a role in the streak breakdown.

APPENDIX B: OPTIMAL PERTURBATION FOR SPANWISE VELOCITY IN COUETTE FLOW

The optimal initial condition maximizing the energy of spanwise velocity in plane Couette flow
is shown in Fig. 20. The behavior is similar to that in the homogeneous shear flow, but with a little
difference owing to the boundary condition (Fig. 3)—the optimal perturbation is tilted upstream,
while containing the wall-normal velocity component which can induce the lift-up effect.
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