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Control of viscous fingering: From the perspective of energy evolution
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Improving the ability to control viscous fingering instabilities plays an essential role in
a wide variety of scientific and engineering fields. Based on linear stability analysis, we
present an energy model characterized by the viscous dissipation rate, which can reflect
the evolution process of the fluid-fluid interface, and predictions of control schemes are
obtained from the model. One type of scheme is to control the morphological patterns of
instability through initial disturbances. Another series of schemes is to control whether the
viscous fingering instability is suppressed or continues to develop by different scaling laws
of injection rate versus time based on the variational method. Furthermore, a stable and
continual forward movement of the interface is achieved by a periodic suppression scheme,
which is significant in practical applications. The effectiveness of the energy model and all
control schemes are well verified by experiments.
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I. INTRODUCTION

As a typical type of fingering instabilities, viscous fingering (VF) is a phenomenon of fluid-fluid
interface instability due to large viscosity ratio. Hele-Shaw cells are the general physical model
for studying VF, which can be divided into linear and radial according to different geometry.
The instabilities corresponding to these two geometries are called linear VF with an initial planar
interface [1–4] and radial VF with an initial circular interface [5–7] respectively. In the fields of
energy industry [8,9], microfluidics [10,11], life science, etc., VF plays an important role. For
instance, there is VF when HCI passes through gastric mucin [12] as well as VF-like instabilities
such as growth of bacterial colonies [13] and spreading of epithelial monolayer tissues [14] in the
life science. In turn, because complex behaviors of living systems and fluid instabilities of nonliving
systems have similar geometrical morphologies, multiscale fractal-like structures [15] produced by
VF can be used to mimic life structures such as lungs, leaf veins, and blood vessels.

Research on the VF instability can be traced back to the 1950s [16,17]. After 70 years, the driving
modes of this instability have developed into electric field drive [18], electric field and pressure
gradient codrive [19], and so on. However, there is still something unclear about the traditional
pressure gradient driving mode. The main theory describing the VF phenomenon is the linear
stability analysis first established by Saffman and Taylor. From the perspective of force analysis,
linear stability analysis gives a certain amount of state information such as the wave number with
the fastest growth rate, but it cannot give more information reflecting the time course of VF. For
instance, how will the fluid-fluid interface develop when it is disturbed by an arbitrary single sine
wave and what is the specific process of the interface transition between stable and unstable states
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over time? Moreover, VF has evolved into many variants including suspensions of particles [20],
non-Newtonian fluids [21,22], nonflat Hele-Shaw cells [23], debonding [24,25] in lifted Hele-Shaw
cells, etc. These variants are already new phenomena in which VF instabilities still occur. Needs and
challenges raised by the new phenomena require further development of current theories. Hence, we
attempt to establish a theoretical model from the perspective of energy evolution, so as to reflect the
process of VF more deeply and clearly, and further to explore control schemes of VF instabilities.

Among a mass of practical applications, it is necessary to suppress VF instabilities in some
places. During enhanced oil recovery [8,26,27], the finger-shaped interface formed when injected
water or supercritical CO2 displaces oil preferentially reaches production wells, which reduces
recovery efficiency greatly. In addition, with the exploitation of nuclear energy and renewable
energy such as solar, wind, and geothermal energy, people are faced with the problem of how to
store a large amount of energy. One effective solution is to convert the energy into hydrogen, which
is then stored underground and retrieved for use when needed. Nevertheless, during displacement
of groundwater by hydrogen [9,28,29], VF will result in gas leakage from anticlinal traps, and
accelerate gas dissolution owing to increased interface area.

On the other hand, it is required to intensify VF instabilities in some other places. In chemical
synthesis in microfluidic devices and miscibility of fluids at low Reynolds numbers, the process of
VF is itself a mixing process, so the more severe the instability, the higher the mixing efficiency
[10,11]. Besides, one may take advantage of VF to generate dense branched morphologies with
fractal dimensions [30–32], which is beneficial to pattern formation [33–35]. Consequently,
whether suppression or intensification, control of interfacial instabilities is essential in engineering
and design.

There are two main research routes for controlling VF instabilities. One route is to vary flow
geometry including replacing rigid walls of Hele-Shaw cells with elastic membranes [36–38],
increasing gap thickness with time following t1/7 [39], and changing gap depth linearly along the
flow direction [40]. Another route is altering injection rates, which is more convenient to implement
in practice than the route mentioned above, including three cases: (1) the rate decreases obeying
t−1/3 [41], (2) the rate increases with time in a piecewise-constant manner [42], (3) the rate increases
with time in a linear manner [43]. These rate-altering schemes are all aimed at radial VF while there
is nearly none for linear VF as far as we are concerned.

This paper considers VF in a linear Hele-Shaw cell. Based on linear stability analysis, an energy
model characterized by the viscous dissipation rate is derived and intuitively reflects the time course
of instabilities relying on a three-dimensional surface of energy rate. Subsequently, experiments of
single sine-wave disturbances are carried out to verify the validity of the energy model. Finally, rate-
altering control schemes, of which the critical scaling exponent is αc = −2/3, are constructed in
the energy model by means of variational method. Comparison with experiments shows that scaling
exponents larger than −2/3 leads to unstable fingering growth, while scaling exponents smaller than
this critical value result in stable growth. And, it is found that a periodic scheme can achieve a stable
and continual forward movement of the fluid-fluid interface. It is hoped that our work could help to
understand the physical mechanism behind VF and improve the ability to control VF.

II. THEORETICAL MODEL

In order to explain the derivations of our energy model in Sec. II B, we first briefly revisit
important results of the linear stability analysis of VF in linear Hele-Shaw cell in Sec. II A.

A. Linear stability analysis

As shown in Fig. 1 the system studied in this paper is a linear Hele-Shaw cell, in which the width
direction y is infinite and the part between y = 0 and y = h is selected as the object of interest. b
is the gap thickness between two parallel plates. The Hele-Shaw cell is prefilled with fluid 2; then,
fluid 1 is injected from the left at a volume flow rate as Qbh. The average position of the interface
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FIG. 1. (a) Side view and (b) top view of the schematic of viscous fingering when one fluid displaces
another fluid in a Hele-Shaw cell. The arrow in (a) represents the injection direction of fluid 1.

between two fluids is X as there is no disturbance. VF instabilities occur at the interface when the
dynamic viscosity of fluid 1 is less than that of fluid 2. The velocities of two fluids are controlled by
Darcy’s law and the continuity equation

〈v j〉 = −Mj∇p j

∇v j = 0, (1)

where Mj = b2/12μ j , 〈v j〉, p j , μ j are the fluid mobility, z-direction depth-averaged velocity,
pressure, and dynamic viscosity, respectively; j = 1, 2 represent the displacing and displaced fluids,
respectively.

Let the velocity potential be

φ j = Mj pj . (2)

As shown in Fig. 1(b), a single-wave-number sine perturbation a = A f cos(2πny/h) is imposed at
the interface, where A, f, n are the amplitude at the initial moment, a variation factor of amplitude
over time, and the wave number, respectively. Considering the continuity condition of normal
velocity at the interface, the perturbation solution of Eq. (1) is expressed as

φ j = −Q

[
x +

(
−1 + Mj

M2

)
X

]
+ (−1) j Ah ḟ

2πn

[
exp

(
2πn

x − X

h

)](−1) j−1

cos

(
2πn

y

h

)
, (3)

where the overdot represents the derivative with respect to time.
Consequently, the growth rate of amplitude as

λ = ḟ

f
= 2πn

h(μ1 + μ2)

[
Q(μ2 − μ1) − γ

3

(
πn

b

h

)2]
(4)

is obtained from the Young-Laplace equation and the fastest-growing wave number as

nm =
√

(μ2 − μ1)Q

γ

h

πb
(5)

is gotten from ∂λ/∂n = 0, where γ is the interfacial tension.
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B. Energy model

From Eqs. (1)–(3), the depth-averaged velocity field of this system is

〈v1〉=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈v1x〉 = Q + 2πn

h
β exp

(
2πn

x − X

h

)
cos

(
2πn

y

h

)

〈v1y〉 = −2πn

h
β exp

(
2πn

x−X

h

)
sin

(
2πn

y

h

) , (6)

〈v2〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈v2x〉 = Q + 2πn

h
β exp

(
−2πn

x−X

h

)
cos

(
2πn

y

h

)

〈v2y〉 = 2πn

h
β exp

(
−2πn

x−X

h

)
sin

(
2πn

y

h

) , (7)

where the parameter β = Ah ḟ /2πn. Considering the Poiseuille flow with z-direction distribution,
the velocity field becomes

v j = 3

2

[
1 −

(
2z

b

)2]
〈v j〉. (8)

Viscous dissipation rate refers to the reduction of mechanical energy caused by dissipation per
unit time [44]. For incompressible fluid, the viscous dissipation per unit volume and unit time is
in the form of 	 j = μ j (∂vi/∂xk + ∂vk/∂xi )2/2. Substituting Eq. (8) into it, the viscous dissipation
rates of the two fluid elements 1 and 2 are, respectively,

	1 = 144μ1

b4h4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h4z2Q2 + 4πnβQh3z2 exp

(
2πn

x − X

h

)
cos

(
2πn

y

h

)

+π4n4(b2 − 4z2)2
β2 exp

(
4πn

x − X

h

)
+ 4π2n2h2z2β2 exp

(
4πn

x − X

h

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9)

	2 = 144μ2

b4h4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h4z2Q2 + 4πnβQh3z2 exp

(
−2πn

x − X

h

)
cos

(
2πn

y

h

)

+π4n4(b2 − 4z2)2
β2 exp

(
−4πn

x − X

h

)
+ 4π2n2h2z2β2 exp

(
−4πn

x − X

h

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(10)

Integrating the above two expressions under the condition that the perturbation is considered to be
a microperturbation, the viscous dissipation rate of the fluid in the range of h lengths on both sides
of the interface is obtained as

	in =
∫∫∫


1

	1dxdydz +
∫∫∫


2

	2dxdydz

= (μ1 + μ2)

[
12h2Q2

b
+ 3A2 ḟ 2(5h5 + 8π2n2b2)

5πnb
+ 6A ḟ Qh2 sin (2πn)

bπ2n2

]
. (11)

The unknown quantity, i.e., the variation factor f of the disturbance amplitude, can be obtained by
integrating the growth rate in Eq. (4):

f = exp (I )

I =
∫ t

0
λdt . (12)

The forces both at the interface and inside the two-phase fluid are balanced. Consequently, the
positive work done by an “injection system” to the fluid through pressure gradient is completely
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consumed by the viscous dissipation inside the fluid. Considering the two-phase fluid and the
injection system as a whole, the entire system is continuously dissipating energy and the total energy
dissipation rate (EDR) is

E = −	in. (13)

Let the EDR of the undisturbed term be Eup = −12(μ1 + μ2)h2Q2/b; then, the EDR of the
disturbed term is Ep = E − Eup. Extracting the characteristic EDR of perturbation in the form of
12πγ 2A2/b(μ1 + μ2) when γ , b, and μ j are constant, then the dimensionless EDR of the disturbed
term is

E∗
p = E∗

pt + E∗
pn, (14)

where

E∗
pt = −n

[
1 + 8

5

(
πnb

h

)2][
(μ2 − μ1)Q

γ
− 1

3

(
πnb

h

)2]2

exp (2I ), (15)

E∗
pn = −Qh(μ1 + μ2)

π2nAγ

[
(μ2 − μ1)Q

γ
− 1

3

(
πnb

h

)2]
exp (I ) sin (2πn), (16)

are the developmental and the fluctuation terms of dimensionless EDR, respectively.
When the injection rate Q is constant, the values of parameters used in general experiments are

b = 1 mm, h = 10 cm, Q = 1.86 mm/s, μ1 = 1.19 mPa s, μ2 = 500 mPa s, and γ = 37.65 mN/m,
which are consistent with the values we used in Sec. III A for the sake of comparison with our
experiments later. In the linear stage of instability, the initial amplitude of disturbance (0.72 mm
used in simulations in Ref. [43]) only changes the fluctuation intensity of EDR, and does not have
an essential influence on the paths of interface evolution. However, the initial amplitude cannot
be too large, otherwise it does not meet the linear condition. So, after selecting among different
values, a moderate-sized initial amplitude of A = 0.1 b is used. Substitute these values above into
Eqs. (14)–(16) to draw three-dimensional surfaces of the EDR as shown in Figs. 2(a)–2(c).

The system state (the interfacial wave number and EDR) at any time corresponds to a point on
three-dimensional surfaces of EDR, and thus the evolution of system states over a period of time
corresponds to a path on three-dimensional surfaces. Time compels the system state to move in the
positive direction of the t axis. At the same time, the EDR is always minimized, which makes the
system state tend to stay in the lowest position on three-dimensional surfaces.

Figure 2(b) visualizes a three-dimensional surface of the developmental term, on which, at the
zero moment, starting from any point corresponding to a perturbation wave number, EDR will spon-
taneously decrease with time, and will change in the direction of nm = 5. Another three-dimensional
surface of the fluctuation term in Fig. 2(c) fluctuates periodically with the wave number, forming
multiple potential barriers. The developmental and the fluctuation terms are superimposed to obtain
a three-dimensional surface of the total disturbed term as plotted in Fig. 2(a), which both decays in
the direction of time and fluctuates in the direction of wave number. This constrains the path starting
from any initial moment not to develop in the direction of nm = 5 with the lowest EDR globally, but
to move forward along the potential well with the lowest EDR locally. Thus, with the help of three-
dimensional surfaces, the energy model successfully illustrates the evolution of instability over time.

III. EXPERIMENTS

A. Experimental setup

We have improved the existing experimental setup, which is schematically shown in Fig. 3.
The low-viscosity fluid (a glycerol aqueous solution, mass fraction: 5.9%, μ1 = 1.19 mPa s) and
the high-viscosity fluid (silicone oil, μ2 = 500 mPa s, γ = 37.65 mN/m) are stored in the liquid
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FIG. 2. The theoretically derived three-dimensional surface (a) of the total disturbed term of EDR E∗
p is the

superposition of (b) the developmental term and (c) the fluctuation term. n and t represent wave number and
time, respectively.

pool and the waste pool, respectively. Through a syringe pump, the low-viscosity fluid is injected
(Q = 1.86 mm/s), then the two-phase fluid is driven to move in a two-dimensional flow channel
(b = 1 mm, 2h = 20 cm, closed at y = −0.5h and y = 1.5h; the material of the upper and lower
plates is polymethyl methacrylate (PMMA), and the plates’ thickness of 2 cm can effectively prevent

FIG. 3. A schematic of the experimental setup.
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FIG. 4. Snapshots of the evolution of the interface and gradual instability in experiments. The perturbations
at the initial moment are in the form of a single sine wave with wave numbers (a) n = 3, (b) n = 5, and
(c) n = 7, respectively. �t = 2 s, and the arrow represents the direction of interface movement.

any bending). The movement of the interface between two fluids in the middle area of width h is
recorded with a digital camera (EOS 80D, Canon). In addition, we have developed a set of MATLAB

scripts that can communicate with the syringe pump through a computer to achieve variable injection
rates of arbitrary functions.

On the right-hand side in Fig. 3, the shape of the interface perturbed (A = 0.3b) at the initial
moment is illustrated by an enlarged view of the observation area, in which, surface modified by the
acrylic UV resin coating, the black region is hydrophilic in the silicone oil environment, while the
gray region is hydrophobic without surface modification. A chemical field formed by this difference
in properties can exert a predesigned initial perturbation to the interface when the interface is gently
adjusted to the position of the coating.

The acrylic UV resin coating used here is a film with a thickness of 90 μm. The film is cut into
a rectangle with dimensions of 20 cm × 1 cm through an ultraviolet picosecond laser processing
system (DL566PU), and the shape of an initial perturbation is cut on one long side of the rectangle
according to the function a = A cos(2πny/h). Then the film is closely attached to the lower plate
in the flow channel according to the position shown in Fig. 3. In addition, it is worth mentioning
that Ref. [45] achieved the control of initial shapes of the air-oil interface in linear Hele-Shaw cells
through the gap step.

Among all the values of liquid properties and geometric parameters mentioned above in this
section, only the initial disturbance amplitude A is slightly different from that in theoretical Sec. II B,
which will not bring a qualitative difference to the experimental verification. And, unless otherwise
specified, these parameter values are still used in subsequent experiments.

B. Initial disturbances of a single sine wave

Using the above experimental setup, we carry out experiments to verify the energy model. In
the experimental results as shown in Fig. 4, the wave numbers of single sine-wave disturbances
at the initial moment are designed to be (a) n = 3, (b) n = 5, and (c) n = 7, respectively. From
the interface evolution over time, we can find that when the injection rate is constant, the wave
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numbers of the interfaces keep their initial values after the initial perturbations become unstable.
Wave numbers of 3 and 7 have not evolved towards nm = 5, which has the largest growth rate. This
is consistent with theoretical descriptions that the interface keeps its own wave number unchanged
as it moves forward, and verifies the energy model in Sec. II B. Moreover, the results also indicate
that the wave numbers of initial disturbances determine the wave numbers of instability patterns,
which provides a method for controlling the instability morphologies.

Another thing worth mentioning is that when Q is constant, the relationship between EDR and
the variation factor of amplitude is E∗

p ∼ −( f 2 + f ), which means that the theoretical response to
the amplitude development in experiments is the decrease of EDR.

IV. SCHEMES TO CONTROL INSTABILITIES

Control of interfacial instabilities plays a significant role in many practical applications. In some
places, it is hoped that either the occurrence of instability can be suppressed, or the interface that has
become unstable can be suppressed back to a stable state, while enhanced or sustained instabilities
are desired in some other places. Using our energy model, it is possible to construct schemes to
control instabilities through variational method.

A. Theoretical predictions

Taking changing injection rates as an example, Ẋ = Q is the velocity of the unperturbed interface,
I = [(X − X0)(μ2 − μ1) − γ (πnb/h)2t/3]2πn/h(μ1 + μ2), and E∗

pt = E∗
pt (t, X, Ẋ ) are obtained

from Eqs. (4), (12), and (15), where X0 = X (t = 0). A variational approach is employed and the
development term E∗

pt is substituted into the Euler-Lagrange equation:

d

dt

(
∂E∗

pt

∂Ẋ

)
= ∂E∗

pt

∂X
. (17)

In consideration of the fastest growing wave number nm and μ1 � μ2, Eq. (17) results in an
ordinary differential equation Ẍ = −c1Ẋ 2.5, namely Q̇ = −c1Q2.5 for Q, where c1 = 8/9b

√
μ2/γ .

Substituting the initial condition Q(t0) = Q0, the critical injection rate is solved to be Qc =
Q0[1 + (t − t0)/tc]−2/3, where tc = (3b/4Q0)

√
γ /Q0μ2 is the characteristic time which represents

both the timescale of inhibiting instability and the timescale of the linear stage of instability
development. Let α be the scaling exponent; then the form of scaling law of the injection rate is

Q ∼ (t/tc)α. (18)

The critical scaling exponent is αc = −2/3, and the values on both sides of −2/3 correspond to
different rate curves as shown in Fig. 7(d).

The developmental term E∗
pt is used here without considering the fluctuation term E∗

pn, because
E∗

pt controls characteristics of the EDR variation in the t direction while E∗
pn controls that in the n

direction. The determinant of instability is the developmental term. Taking the fluctuation term into
account has little effect on stability; instead, it will increase the difficulty of mathematics.

According to different scaling laws, three-dimensional surfaces of E∗
pt are drawn to get Figs. 5(a)–

5(c), where the arrows represent lower envelope curves of the curved surfaces, which reflect the
lowest trend of EDRs and are also evolution paths of EDRs corresponding to an initial perturbation
of wave number n = 5. After a constant injection time of t0, while the scaling exponent goes from
small to large, the behaviors of evolution paths in turn are as follows: (c) direct climbing, (b)
climbing slowly after lowering briefly, and (a) continuing to lower. The path trend corresponding
to the critical scaling exponent of αc = −2/3 in Fig. 5(b) is reflected in more detail in the contour
map of Fig. 5(d), in which the red curves are three contours with the lowest EDR, indicating that
the lowest EDR point is after the time t0.

023901-8



CONTROL OF VISCOUS FINGERING: FROM …

FIG. 5. Evolution paths of EDRs. (a)–(c) Three-dimensional curved surfaces of EDRs, where injection
rates are all constant before t0 moment followed by a decrease. The corresponding scaling exponents α of
injection rates with respect to time are −1/3, −2/3, and −1, respectively. Arrows represent lower envelope
curves of the curved surfaces, among which red arrows indicate a decrease in EDR, and conversely black
arrows indicate an increase in EDR. (d) A contour map obtained by projecting the curved surface in (b) onto
the n−t plane, where the color legend on the right-hand side stands for the magnitude of EDR. (e) is gained
through projecting the evolution paths in (a)–(c) onto the E∗

pt − t plane.

By means of projecting the evolution paths in Figs. 5(a)–5(c) on the E∗
pt − t plane, the paths

corresponding to different scaling laws can be gathered together and are easy to compare with each
other as plotted in Fig. 5(e), from which the following points of view can be drawn: (1) when the
scaling exponent is less than −2/3, the EDR is forced to rise, indicating that instability is suppressed;
thus, green stands for the stable region; (2) when the scaling exponent is greater than −2/3, the EDR
continues to decrease spontaneously, indicating that the instability continues to develop, so orange
represents the unstable region; (3) the scaling exponent αc = −2/3 is a threshold that divides the
development and suppression of instability.

B. Experimental verifications

Experiments are carried out according to injection rates designed in the theoretical predictions,
in which t0 = 3 s and Q0 = 1.86 mm/s are parameters for the phase of constant injection. The
experimental results are shown in Fig. 6, where injection rates are constant on the left-hand side of
the black dashed lines, and decrease according to different scaling laws on the right-hand side.
In Figs. 6(a)–6(c), the scaling exponent is less than or equal to −2/3, and the interfaces that
fluctuate due to instability at the constant rate stage gradually become flat with time during the
deceleration stage, signifying that interface instabilities have been suppressed. On the other hand,
in Figs. 6(d) and 6(e) with scaling exponent greater than −2/3, the already fluctuating interfaces
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FIG. 6. Experiment. (a)–(e) Five sequences of snapshots of interface movements, in which the scaling
exponent α ranges from −2 to −1/5, and the arrows represent the direction of interface movements.

will further develop towards instability over time and gradually form “long fingers” during the
deceleration stage, meaning that interface instabilities cannot be suppressed. Our purpose here is to
study whether fingering continues to develop or is suppressed when it just starts happening. And,
these experimental results of controlling instabilities are consistent with theoretical predictions in
Sec. IV A.

To further quantify the processes of interface evolution, we identify and extract amplitudes of
the intermediate wave in experiments (Fig. 6) as Af according to the schematic shown in Fig. 7(a),
resulting in Fig. 7(b). Then, a smoothing spline fitting is performed on the amplitude data, and fitting
curves are differentiated with respect to time to obtain the growth rate ḟ of the variation factor of
amplitude [Fig. 7(c)]. It can be seen that when α � −2/3, after the injection slows down, the growth
rates ḟ gradually decrease to negative values, so that amplitudes begin to decay. The amplitudes are
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FIG. 7. (a) A schematic of the amplitude Af of the middle wave in the experiment. (b) Changes in amplitude
over time corresponding to Fig. 6. The dashed-dotted lines are the smoothing spline fitting of experimental data,
and only the fitting curve of α = −1 is presented when t < t0 for the sake of clarity. The horizontal and vertical
axes are logarithmic. (c) The growth rate ḟ of the variation factor of amplitude. (d) Curves of injection rate
vs time for different scaling laws. Orange represents the unstable region where instabilities develop, green
represents the stable region where instabilities are suppressed, and the red curve of injection rate represents
the boundary between the stable and unstable regions. The red and black dots reflect the last moments of the
interface movements in Figs. 6(a)–6(c) and Figs. 6(d) and 6(e), respectively.

all eventually reduced below the thickness b of the Hele-Shaw cell. At this time, the amplitudes are
already small enough, and it can be considered that interfaces become “flat.” As for the interfaces
as a whole [Figs. 6(a)–6(c)], there is still a slight bending, which is due to the effect of interfacial
tension over a long period of time. When α>−2/3, the growth rates ḟ increase all the way, and then
maintain at high levels, so that amplitudes exceed 20 b in a relatively short time. Moreover, from
the trend of growth rates, amplitudes will not decay for a considerable time to come. The evolutions
of growth rates, interfaces, and amplitudes prove the effectiveness of control schemes with different
scaling exponents.

Here, the control of instabilities is considered from the aspect of controlling amplitudes, so
changes in wave numbers are not quantitatively analyzed. Intuitively, in experiments (Fig. 6) the
wave numbers remained almost unchanged, similar to the cases of constant injection rate (Fig. 4).
In EDR [Figs. 5(a)–5(c)], wave numbers decrease with time, which is because the fluctuation term
of EDR, which can constrain wave numbers to be nearly constant, is not added for the sake of
concision.

Another thing worth noting is that the minimum values of growth rates ḟ for α � −2/3 seems
to have a limit whose value is about −0.2 s−1. In theory, combine Eqs. (12) and (18) to get

ḟ = λ exp

(∫ t

0
λdt

)
, (19)

λ = 2πn

h(μ1 + μ2)

[
Q0

(
1 + t − t0

tc

)α

(μ2 − μ1) − γ

3

(
πn

b

h

)2]
. (20)
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FIG. 8. A periodic suppression scheme (a) and the corresponding EDR surface (b). 1 P, 2 P, and 3 P stand
for the first, second, and third periods, respectively. The arrows (the lower envelope curve of the curved surface;
red ones decrease, black ones increase) reflect the EDR evolution path starting from wave number n = 5.

Safely considering n to be constant of 5 and take the limit α→− �, we get

ḟl = lim
α→−∞ ḟ = −s exp (−st ), t � t0, (21)

s = 2π3n3b2γ

3h3(μ1 + μ2)
. (22)

At t0, there is a minimum value as ḟl min = −0.108 s−1, which is close to the experimental limit of
−0.2 s−1. According to Eq. (21), the later the injection rate begins to decrease, the greater the ḟl min

and the slower the instabilities are suppressed.
Time information of the experimental results in Fig. 6 is gathered on the curves of injection rate

as illustrated in Fig. 7(d), where red dots reflect the moments at which instabilities are suppressed
corresponding to Figs. 6(a)–6(c), while black dots reflect the final moments of interface movements
in Figs. 6(d) and 6(e). It can be seen that taking αc = −2/3 as a boundary: (1) the smaller the scaling
exponent is, the shorter the time required to achieve the stable state as indicated by the red arrow,
thus the faster the suppression; (2) the larger the scaling exponent is, the shorter the time required
to arrive at the same degree of instability as implied by the black arrow, thus the more severe the
instability.

C. A periodic control scheme

The rate-varying schemes of suppressing instabilities require that the scaling exponent is not
greater than −2/3, which means that at the same time the interface is suppressed to reach a stable
state, the injection rate of the system will tend to zero, making the interface unable to move forward
continuously. This limits applications of the suppression schemes in practice. It can be found from
red dots in Fig. 7(d) and the final positions of interfaces in Figs. 6(a)–6(c) that among all possible
suppression schemes, the scheme of critical scaling exponent −2/3 has the highest injection rate
and the largest displacement of interface movement when inhibiting instability, hence to be the best
suppression scheme while there is still the problem of limiting interface movement.

Lins and Azaiez [46,47] explored periodic injection rate protocols of sinusoidal functions in
radial Hele-Shaw cells, and revealed a resonance effect. To overcome the limitation, we designed a
scheme where the injection rate changes periodically over time. Taking three periods as an example,
each period starts with a constant rate of 3 s followed by a 20-s deceleration with a scaling exponent
of −2, as shown in Fig. 8(a). After three cycles, enough time continuing to slow down is taken to
stabilize the interface. Observing the corresponding evolution path in Fig. 8(b), it is found that due
to the existence of the time-integral term I in EDR [Eq. (15)], the potential wells in three periods

023901-12
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FIG. 9. (a) A continual and stable movement of the fluid-fluid interface realized in the experiment. (b),
(c) Changes of the amplitude Af of the middle wave and the growth rate ḟ with time, respectively. The
dashed-dotted line is the smoothing spline fitting of experimental data. Red arrows mark the moments when
the injection rate begins to decrease. The areas of regions surrounded by the curve ḟ and the horizontal line
ḟ = 0 represent the amplitude. The areas of orange (green) regions are positive (negative), representing the
amplitude development (decay). In each cycle, the areas of orange and green regions are roughly of equal size,
which means that the amplitude after development can be suppressed.

1 P, 2 P, and 3 P deepen in sequence, while the periodic suppression scheme can force the evolution
path to climb out of each potential well successfully.

An experiment is performed at the injection rate designed in Fig. 8(a), and the resulting interface
evolution process is illustrated in Fig. 9(a). Comparing with Fig. 6(a), it is obvious that the
periodic suppression scheme could break the previous restrictions on interface movement, and
realize controlling the fluid-fluid interface to move forward stably and continuously, which has
important practical significance. Quantitatively, behaviors of the amplitude Af and the growth rate
ḟ are discussed as follows.

The amplitude Af in Fig. 9(b) increases and decreases periodically with time, and is lower than
the thickness b of flow channel after each decrease. It is worth noting that the value of Af at the
end of each cycle gradually increases, which is due to the existence of the time-integral term I in f
[Eq. (12)]. Therefore, some additional time is required to stabilize the interface after the 3 P ends.

In Fig. 9(c), the amount of time of constant injection stage is the same for three cycles, but the
peak of ḟ increases sequentially owing to the time-integral term I contained in ḟ . What is more, as
can be seen from the red arrows in Figs. 9(b) and 9(c), when the injection rate begins to decrease,
the growth rate immediately responds in a decreasing manner while the amplitude does not decay
until the growth rate drops to zero. Combined with Fig. 5(c), it is found that EDR also responds
immediately to the decrease of injection rate in a manner of climbing, which is because EDR and
the growth rate have the following relationship: E∗

pt ∼ − ḟ 2.
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V. CONCLUSION

In summary, we have explored how to improve the control capability of VF instabilities from two
aspects. One aspect is to control patterns of fingering by artificially imposing initial perturbations of
the preset wave number. On the other aspect, using rate-altering schemes with different scaling laws,
whether the fingering behaviors are suppressed or continue to develop is controlled, and a stable and
continual movement of the interface can be achieved through a periodic suppression scheme.

The main innovation of the present work is that an energy model describing the linear VF
phenomenon has been developed theoretically based on linear stability analysis. The energy model
provides information on the time course of instability, the relationship between initial perturbations
and wave numbers of fingering, and so on, which cannot be predicted by linear stability analysis.
Therefore, the model gives a train of thought to study VF instabilities from the energy perspective.
Here, the theoretical model and rate-altering control schemes based on it have both been verified by
experiments.

Our results may be helpful to understand the physical mechanism behind VF in more depth
and instruct the prediction, design, and manipulation of stability behaviors of fluid-fluid interface
in practical applications. Regarding the possibility of future research, the energy model could be
applied to describe a series of variants of the Hele-Shaw cell [20,21,23,24], as well as to seek all
kinds of schemes of stability control other than rate-altering ones, such as altering thickness b,
viscosity μ j [48], interfacial tension γ , etc. In addition, the capillary number Ca dependence [4]
can be considered in Eqs. (15) and (16) when μ1 � μ2 and Q is constant. And, influences of Ca
on the growth rate and EDR are matched, in the sense that Ca determines the nm with the largest
growth rate, and EDR also decreases the fastest at nm.
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