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One of the most distinctive hallmarks of many-body systems far from equilibrium is
the spontaneous emergence of order under conditions where disorder would be plausibly
expected. Here, we report on the self-transition between ordered and disordered emulsions
in divergent microfluidic channels, i.e., from monodisperse assemblies to heterogeneous
polydisperse foamlike structures, and back again to ordered ones. The transition is driven
by the nonlinear competition between viscous dissipation and surface tension forces as con-
trolled by the device geometry, particularly the aperture angle of the divergent microfluidic
channel. An unexpected route back to order is observed in the regime of large opening
angles, where a trend towards increasing disorder would be intuitively expected.

DOI: 10.1103/PhysRevFluids.6.023606

I. INTRODUCTION

Self-organization can be broadly defined as the complex of processes which drives the emergence
of spontaneous order in a given system, due to the action of local interactions between its elementary
constituents [1]. This concept has provided a major paradigm to gain a deeper insight into a
number of phenomena across a broad variety of complex systems in physics, engineering, biology,
and society [2–6]. Self-organization is usually triggered and sustained by competing processes
far from equilibrium, as they occur in a gamut of different scientific endeavors, from natural
sciences and biology to economics and anthropology [7–12], and often efficiently exploited to find
innovative design solutions in a number of engineering applications [13–15]. From this standpoint,
droplet-based microfluidics, namely, the science of generating and manipulating large quantities
of micron-sized droplets, offers a literal Pandora’s box of possibilities to investigate the physics
of many-body systems out of equilibrium. In particular, the self-assembly between droplets and
bubbles which results from the subtle multiscale competition between different forces and interac-
tions, such as the external drive, interfacial (attractive) forces, near-contact (repulsive) interactions,
viscous dissipation, and inertia [16,17]. Most importantly, in many instances, such competition is
highly sensitive to geometrical factors, primarily the presence of confining boundaries. Among
others, the ability to manipulate and control tiny volumes of droplets allows the generation of
highly ordered porous matrices with finely tunable structural parameters [18]. This opens up the
possibility of designing novel families of materials with potential use in a wide range of advanced
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applications, such as catalyst supports, ion-exchange modules, separation media, and scaffolds in
tissue engineering [19–22].

Recently, Gai et al. [23] reported an unexpected ordering in the flow of a quasi-two-dimensional
(quasi-2D) concentrated emulsion in a convergent microfluidic channel, and showed that confine-
ment of the 2D soft crystal in the extrusion flow causes the reorganization of the crystal internal
structure in a highly ordered pattern [23,24]. The self-reorganization of the crystal is expected
to bear major implications for the realization of confined low-dimensional materials, crucial for
applications ranging from optoelectronics to energy conversion, which might be easier to control
than previously thought, thus leading to flow control and mixing strategies in droplet microfluidics.

In this paper, we report on the self-transition between wet and dry emulsions [25,26], namely,
from ordered monodisperse assemblies to heterogeneous and polydisperse foamlike structures, in
divergent microfluidic channel. Following the common terminology [27,28], foams are wet when
their droplets appear nearly round and the structures they form are organized according to ordered
hexagonal patterns which flow basically deformation free. In the dry regime instead, the droplets
come closer and deform, assuming typical polyhedral shapes and giving rise to typical disordered
foamlike structures. Such transition is driven by the Capillary number, i.e., the competition between
viscous dissipation and surface tension, which is in turn modulated by the device geometry. In
particular, we observe a return to an ordered state in a parameter regime where a transition towards
disorder would be intuitively expected.

II. METHOD

In this section, we briefly describe the numerical model employed, namely, an extended
color-gradient lattice Boltzmann (LB) approach with repulsive near-contact interactions, previously
introduced in [29]. In the multicomponent LB model, two sets of distribution functions evolve,
according to the usual streaming-collision algorithm (see [30,31]), to track the evolution of the two
fluid components:

f k
i (�x + �ci�t, t + �t ) = f k

i (�x, t ) + �k
i

[
f k
i (�x, t )

] + Si(�x, t ), (1)

where f k
i is the discrete distribution function, representing the probability of finding a particle of the

kth component at position �x, time t with discrete velocity �ci, and Si is a source term coding for the
effect of external forces (such as gravity, near-contact interactions, etc.). In Eq. (1) the time step is
taken equal to 1, and the index i spans over the discrete lattice directions i = 1, . . . , b, being b = 9
for a two-dimensional nine-speed lattice (D2Q9). The density ρk of the kth component and the total
linear momentum of the mixture ρ�u = ∑

k ρk �uk are obtained, respectively, via the zeroth- and the
first-order moments of the lattice distributions ρk (�x, t ) = ∑

i f k
i (�x, t ) and ρ�u = ∑

i

∑
k f k

i (�x, t )�ci.
The collision operator splits into three components [32–34]:
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where (�k
i )

(1)
stands for the standard collisional relaxation [31] (�k

i )
(2)

code for the perturbation

step [32], contributing to the buildup of the interfacial tension while (�k
i )

(3)
is the recoloring

step [32,35], which promotes the segregation between the two species, minimizing their
mutual diffusion. A Chapman-Enskog multiscale expansion can be employed to show that the
hydrodynamic limit of Eq. (1) is a set of equations for the conservation of mass and linear
momentum (i.e., the Navier-Stokes equations), with a Capillary stress tensor of the form

� = −τ
∑

i

∑

k

(
�k

i

)(2)�ci �ci = σ

2|∇ρN | (|∇ρN |2I − ∇ρN ⊗ ∇ρN ) (3)

being τ the collision relaxation time, controlling the kinematic viscosity via the relation
ν = c2

s (τ − 1/2) (cs = 1/
√

3 the sound speed of the model), σ is the interfacial tension [30,31],
and ρN = (ρ1 − ρ2)/(ρ1 + ρ2) is the local phase field (ρ i the density of the ith phase). In Eq. (3),
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FIG. 1. Droplet assemblies within a microfluidic channel with a divergent opening angle α = 45◦ for
two different inlet channel Capillary numbers (a) Ca = 0.04, (c) Ca = 0.16. (b) Clearly shows the ordered,
hexagonal packing typical of wet-state emulsions, while (d) the foamlike structure which results in a neat
distortion of the Delauney triangulation (blue solid lines connecting the centers of neighboring droplets) and
the associated Voronoi tesselation (dotted polygons enclosing the droplets) as well. The red lines are isocontour
lines drawn for ρN

min < ρN < ρN
max being ρN the local phase field. The lines are superimposed to a density field.

The thickness of the red isocontour line has been widening in order to better visualize the droplet contours.

the symbol ⊗ denotes a dyadic tensor product. The stress-jump condition across a fluid interface
is then augmented with an intracomponent repulsive term aimed at condensing the effect of all
the repulsive near-contact forces (i.e., van der Waals, electrostatic, steric, and hydration repulsion)
acting on much smaller scales [∼O(1 nm)] than those resolved on the lattice (typically well above
hundreds of nanometers). It takes the following form:

T1 · �n − T2 · �n = −∇[σ I − σ (�n ⊗ �n)] − π �n, (4)

where π [h(�x)] is responsible for the repulsion between neighboring fluid interfaces, h(�x) being
the distance between interacting interfaces along the normal �n = ∇ρN/|∇ρN |. The additional,
repulsive term can be readily included within the LB framework, by adding a forcing term acting
only on the fluid interfaces in near contact, namely,

�Frep = ∇π := −Ah[h(�x)]�nδ�. (5)

In the above, Ah[h(�x)] is the parameter controlling the strength (force per unit volume) of the
near-contact interactions, h(�x) is the distance between the interfaces, �n is a unit vector normal to
the interface, and δ� = 1/2|∇ρN | is a function employed to localize the force at the interface.
The addition of the repulsive force [added to the right-hand side of Eq. (1)] naturally leads to the
following (extended) conservation law for the momentum equation:

∂ρ�u
∂t

+ ∇ · ρ�u�u = −∇p + ∇ · [ρν(∇�u + ∇�uT )] + ∇ · (� + πI), (6)

namely, the Navier-Stokes equation for a multicomponent system, augmented with a
surface-localized repulsive term, expressed through the gradient of the potential function π .

III. RESULTS AND DISCUSSION

The simulation setup (see Fig. 1) consists of a microfluidic device composed by an inlet channel
(hc), a divergent channel with opening angle α, and a main channel connected with the divergent
(h = 10hc). The droplets are continuously generated in a buffer channel, placed upstream the inlet
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channel whose height is hin ∼ 1.7hc, equal to the droplets diameter. This way, the droplets are forced
to deform as they enter the narrower inlet channel, taking a typical oblate shape.

The fluid motion is driven by a body force which mimics the effect of a pressure gradient across
the device, which is set in such a way as to guarantee laminar flow conditions within both inlet
and main channels. The main parameters employed [expressed in simulation (lattice) units] are
the following. The microfluidic device is composed by a thin inlet channel (height hc = 30, length
lc = 220) within which droplets are produced and a main, or self-assembly channel, height h =
10hc, length l = 900, where the droplets are transported downstream by the main flow and self-
assemble in clusters during their motion. The droplet diameter is set to D = 50 lattice units, more
than sufficient to capture the complex interfacial phenomena occurring in droplet microfluidics [50
lattice points per diameter means a Cahn number of the order 0.08, typical in resolved diffuse
interface simulations of complex interfaces (see [36])]. The motion of the droplet is realized by
imposing a constant body force g = 10−5. The viscosity of the two fluids has been set to ν = 0.167
while the near-contact force has been set to Ah = 0.1. The choice of magnitude of the body force,
along with the kinematic viscosity of the fluids, is such to determine a droplet Reynolds number
within the inlet channel Re ∼ 2.5, small enough to guarantee laminar flow conditions. The surface
tension has been varied in the range σ = 0.007–0.02. Finally, the droplet generation is performed
by implementing an internal periodic boundary condition whose short explanation is reported in the
Appendix.

All the simulations were performed in two dimensions, being this a reasonable approximation
for the simulation of droplets’ phenomena in shallow microfluidic channels. We wish to point out
that the only parameter which has been varied throughout the simulation is the surface tension
between the two components which, in turn, allowed us to tune the capillary number. The rate of
injection of both the dispersed and the continuous phases was kept constant in all the simulations.

In Fig. 1, we report two different assemblies of droplets within a microfluidic channel with a
divergent opening angle α = 45◦. This figure shows that the tuning of the inlet Capillary number
(Ca = Udμd/σ , the d subscript standing for droplet, Ud is the average droplet velocity within the
inlet channel, μd the dynamic viscosity, and σ the surface tension of the mixture), allows to switch
between a closely packed, ordered, monodisperse emulsion [Fig. 1(a)] characterized by regular
hexagonal assemblies of droplets, traveling along the microchannel, to foamlike structures, formed
by polyhedral-shaped droplets [see Figs. 1(c) and 1(d)].

The resulting structures appear to be irregular and polydispersed, as indicated by the distortion
of the Delaunay triangulation and its dual Voronoi tessellation [37]. We wish to highlight that both
the dispersed and continuous phases’ discharges are kept constant in all the simulations. Thus, the
observed transition is likely to by due to (i) the breakup processes promoting the formation of
liquid films and (ii) the increased deformability of the droplets interface, due to the lower values of
surface tension employed. Typically, droplet breakups increase the amount of interface, leading to
an augment of the total length of the thin film and to a redistribution of the dispersed phase in the
system. Such dynamics is controlled by the Capillary number whose increase (within a quite wide
range of aperture angles) leads to a spontaneous transition from an ordered state to a disordered
one displaying the typical features of a dense foam, namely, (i) polydispersity, (ii) formation of an
interconnected web of plateaus, (iii) departure of the droplets shapes from the circular or spherical
one, and (iv) formation of droplets assemblies which are not regular as in the wet case.

The transition between different droplets’ structures depends not only on the inlet capillary
number, but also on the geometrical details of the device, the latter being responsible for a
counterintuitive behavior, to be detailed shortly.

We begin with a phenomenological description of the droplets injection within the diverging
channel (for α = 45◦), as influenced by the capillary number. As shown in Figs. 2(a)–2(d), below
a given value of the Capillary number at the inlet Ca � 0.05, every new droplet emerging in the
divergent channel pushes away another immediately downstream, taking its place in the process.
Indeed, as clearly sequenced in the figure, the yellow-triangle droplet comes out of the channel,
pushes the orange-dotted one which, in turn, takes the place of its nearest-neighbor droplet (the
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FIG. 2. (a)–(d) (Ca ∼ 0.04) Push-and-slide mechanism of the outcoming droplet. The yellow-triangle
droplet comes out of the channel, pushes the orange-dotted one which, in turn, takes the place of its nearest-
neighbor droplet (the red-star one). (e)–(h) (Ca ∼ 0.16) Droplet pinch-off process. The dotted-orange droplet
undergoes a transversal stretching due to the squeezing between the outcoming droplet and the red-star drop.
The stretched droplet finally reaches a critical elongation and thinning under the confinement of the neighbor
drops before pinch-off. (i)–(n) Experimental sequence of the breakup mechanism at Ca ∼ 0.08 (see [38]). The
experimental and numerical critical Capillary numbers above which droplets pinch off can be observed are
Ca �∼ 0.04 and Ca �∼ 0.05, respectively.

red-star one). This process is metronomic, i.e., it does not involve any breakup event and this rhyth-
mic push-and-slide mechanism reflects into the regular hexagonal crystal which forms downstream
the main channel.

As stated before, an increase of the Capillary number above a critical value, around Ca ∼ 0.1,
determines the transition to a heterogeneous, foamlike structure, as shown in Fig. 1(b). This latter is
due to the subsequent breakup events taking place immediately downstream the injection channel,
a process highlighted in Figs. 2(e)–2(h).

The dotted-orange droplet undergoes a transversal stretching due to the squeezing between
the outcoming droplet (i.e., the hammer droplet) and the red-star drop (i.e., the wall droplet).
The stretched droplet finally reaches a critical elongation and thinning under the confinement of
the neighbor drops before pinch-off. In the meantime, the yellow-triangle droplet, due to the rapid
slowdown determined by the channel expansion, gradually takes on a crescent shape, fills the area
left free by the splitting of the orange drop, and becomes a wall droplet in turn. The splitting
mechanism just described is responsible for the formation of smaller droplets, which assemble in
such a way as to form a heterogeneous foamlike structure within the main channel [Fig. 1(b)].

Briefly, what we observe from the simulations is that, frequent and precise pinch-off requires
sufficiently high Capillary numbers to occur (Ca > 0.1 for α = 45◦). This suggests that the ratio
between the viscous forces (extensional force) and surface tension (retraction and restoring force),
namely, the Capillary number, is likely to govern the behavior of the droplet-droplet pinch-off
process. Indeed, as the viscous force retards the expansion of the impinging droplet, the central
one stretches and breaks at the midpoint due to the deformation arising from the normal stresses
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FIG. 3. Equivalent droplet diameter distributions for each pair of Capillary number and opening angle of
the divergent channel [Ca = 0.04 (dashed line), Ca = 0.1 (dotted line), and Ca = 0.16 (full line)]. The insets
report snapshots of the droplet fields for different values of the Capillary number (Ca increases from top to
bottom). The equivalent droplet diameter is the diameter of the circular droplet with the same area of the
deformed droplet and can be computed as De = √

4(Ad/π ) being Ad the area of the droplet.

exerted by the impinging and wall droplet. The surface tension then acts so to contrast the effect of
the normal stresses since both the hammer and the wall droplets tend to retract to their undeformed
circular state. It is worth noting that a similar pinching mechanism has been recently observed
experimentally in [38] in the same range of Capillary numbers as in our simulations. Incidentally,
the transitional Capillary number of the experiments (i.e., Ca above which the pinching mechanism
is observed) was found to be in satisfactory agreement with the one predicted by the simulations
(see caption of Fig. 2).

At this stage, a question naturally arises as to the role of geometrical details of the divergent
channel on the wet to dry self-transition. To address this question, we performed a series of
simulations by varying both the Capillary number and the opening angle of the divergent channel,
so to systematically assess their combined effect on the final shape of the assemblies of droplets
within the microfluidic channel.

The results of this investigation are summarized in the histograms reported in Fig. 3. Each
histogram shows the distribution of the equivalent droplet diameters within the microfluidic channel
[i.e., the diameter of the circular droplet with the same area of the deformed droplet, computed as√

4(Ad/π ) being Ad the area of the droplet] for a given pair Ca and α.
A number of comments are in order:
(i) Below Ca ∼ 0.05, no breakup event is observed, regardless of the opening angle: the outcom-

ing soft structures are monodisperse assemblies of droplets, as clearly suggested by the dashed-line
histograms of Fig. 3.

(ii) Upon raising the Capillary number, it is possible to trigger the breakup events which lead to
the transition between ordered and disordered emulsions. By inspecting the histograms [Ca ∼ 0.1
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(dotted line) and Ca ∼ 0.16 (solid line)], it is evident that, for a given α, the number of breakup
events and, in turn, the structure of the resulting emulsion, depend on the inlet Capillary number.
Indeed, by increasing the Capillary number, the droplets structure increasingly takes the hallmarks
of a dense foam or highly packed dense emulsion (HIPE). For α in range 30◦–60◦, Ca ∼ 0.1 can be
regarded as a critical value of the Capillary number, around which the emergent soft structure is a
hybrid between a monodisperse (ordered) and polydisperse (disordered) emulsion, as also evidenced
by the the central droplet fields reported in the insets of the histograms.

(iii) By further increasing the Capillary number, the assemblies of droplets take a typical
foamlike structure, completely losing memory of the structural hexagonal ordering obtained at lower
Ca. A more complex structure is found, due to the (a) higher degree of deformability of the droplets,
an emergent effect due to the higher values of the Capillary numbers and (b) the presence of smaller
droplets which fill the voids between groups of neighbor droplets.

(iv) Focusing on the highest value of the Capillary number Ca = 0.16, we note that the poly-
dispersity, revealed by bimodal histograms, increases as α increases from 22.5◦ to 45◦. By further
increasing the opening angle, the polydispersity starts to recede, nearly vanishing at α = 90◦.

To better highlight the aforementioned return towards monodispersity for increasing values of α,
we directly compare the histograms for six cases, namely, (i) Ca = 0.04 and α = 45◦, (ii) Ca = 0.16
and α = 45◦, (iii) Ca = 0.04 and α = 60◦, (iv) Ca = 0.16 and α = 60◦, (v) Ca = 0.04 and α = 90◦,
and (iv) Ca = 0.16 and α = 90◦ [Fig. 4(a)]. A close inspection of the histograms leaves no doubt
as to the return to monodispersity for the case Ca = 0.16 and α = 90. Indeed, at Ca = 0.16 and
α = 45◦ and α = 60◦ the emulsion is roughly bidisperse as evidenced by the two peaks at De ∼ 50
and De ∼ 36 (dashed circles) displayed in the two histograms, the latter one absent in the case
Ca = 0.16 and α = 90◦. The decreasing trend of the ratio between the peaks in the histograms
at Ca = 0.16 (∼1.2 for α = 45◦ and ∼2.5 for α = 60◦) further points to a gradual return to an
ordered structure as the aperture angle increases. This is also apparent from a visual inspection of
the droplets’ field reported in Fig. 4(b) (Ca = 0.16, α = 90◦) which shows an ensemble of flowing
circular droplets of (approximately) the same size. The rare breakup events occurring at the outlet
of the injection channel produces a limited number of smaller droplets, an effect evidenced by the
small peaks in the upper right histogram. It is worth noting here that, by a plain argument of mass
conservation, polydispersity can arise only as a result of droplet breakup via the droplet hammer
mechanism since coalescence is frustrated due to the effect of the near-contact forces.

The counterintuitive behavior described above can be intuitively explained as follows: At high
opening angles (approaching to 90◦), each droplet exiting from the narrow channel experiences a
sudden expansion, responsible for a fast recovery of their circular shape, just after their emergence
within the main channel. The fast expansion, in turn, determines a strong deceleration (see plot
in Fig. 5), which forces the next outcoming droplet to lose its droplet hammer action, as the
opening angle of the divergent increases above a critical value between α = 45◦–60◦. Further, the
sharp deceleration favors the crossflow, transversal displacement of the outcoming droplets, which
slide preferentially on the downstream neighbor droplets rather than squeezing them. The process
described above is reported in Fig. 5.

It is to note that, by varying the surface tension, and by keeping the other parameters fixed (so
that the Reynolds number can be kept fixed), it is possible to vary viscous dissipation over surface
forces independently of the inertia over viscous dissipation ratio. Indeed, the viscous vs surface
tension forces ratio is responsible for the frequency of breakup events, hence, in turn, for the degree
of order and disorder observed in the system. This competition strictly depends on the geometrical
features of the microfluidic environment. It is to be noted that the importance of Weber and Capillary
number over the droplet breakup frequency in microchannels has been also highlighted in a very
recent experimental work of Salari et al. [39] reporting power-law scaling of the dropplets’ breakup
frequencies as a function of the product WeCa2.

To sum up, the simulations suggest that the dependence of the crystal order on the geometrical
feature of the device is not one way since once the monodispersity and the hexagonal order are lost,
they can be reclaimed back by either decreasing or increasing the opening angle of the divergent
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FIG. 4. (a) Equivalent droplet diameter distributions for two couples of Capillary numbers and opening
angles of the divergent channel, namely, Ca = 0.04, Ca = 0.16 and α = 45◦, α = 60◦, α = 90◦. (b) Droplets’
field within the main channel for the case Ca = 0.16 and α = 90◦.

channel below or above a critical angle. In other words, either way, the system loses memory of the
disordered configuration.

As a note, we wish to stress that the detection of the specific regime of capillarity in which the
transition occurs required an extensive set of simulations on a broad range of Capillary numbers,
as such transition was found to occur indeed in a very narrow window of capillarity space. Thus,
even though many more Ca-α combinations have been explored, it was found that the cases reported
capture the essence of the phenomenon in point.

To gain a quantitative insight into the order to disorder transition, we introduce a dispersity
number δ, defined as the ratio between the number of droplets with a diameter below a critical
value Dcrit and the total number of droplets. This parameter has been evaluated for each pair of
Capillary number Ca and opening angle α. The plot in Fig. 6 reports these data, made nondi-
mensional by the maximum opening angle α̃ = α

π/2 and the maximum value of dispersity δ̃ = δ
δM

,
respectively.
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FIG. 5. (a)–(g) Droplets’ field at the outlet of the injection nozzle for α = 90◦ and Ca = 0.16 with
the normalized vector field superimposed. Even at high Capillary numbers, the sharp deceleration, clearly
evidenced by the velocity profiles reported in (h) taken in two distinct sections, within the nozzle (open
circles) and at a downstream section, favors the transversal displacement of the outcoming droplets, which
preferentially slide on the neighboring droplets rather than squeezing them. The velocity field is scaled with
the maximum flow velocity at the inlet channel. The two sections, at which the velocity profiles are evaluated
are at x = 190lu (inside the injection channel) and x = 340lu (within the main channel). The arrow within the
plot indicates the average velocity drop between the inlet and the main channel. The axis of the plot is u/uM

(normalized magnitude of the velocity) versus y (crossflow coordinate).

A few comments are in order: The first observation is that each dispersity set δ(Ca, α̃) follows a
Gaussian trend, with mean and variance depending on the Capillary number:

δ̃(α̃) = e−{[α̃−αM (Ca)]/(2Ca)}2
. (7)

In other words, the dispersity of the system features a “temperature” which scales linearly with the
inlet Capillary number T = 2Ca, and a mean value of the opening angle, slightly depending on the
Capillary number and ranging between 45◦–60◦.
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FIG. 6. Nondimensional dispersity (δ̃) as a function of the opening angle α̃ for different values of Ca. Each
dispersity set, δ(Ca, α̃), follows a Gaussian trend, with mean and variance depending on the Capillary number.
Fitting function: δ̃(α̃) = e−[(α̃−αM )/(2Ca)]2

.

The analysis carried out in this paper should be of direct use for experimental research. Indeed,
for each inlet Capillary number, which can be readily determined by evaluating the droplet velocity
within the inlet channel, one can single out the channel geometry which allows to obtain the desired
degree of polydispersity of the soft structure, by simply querying the Gaussian curves. Reciprocally,
given the channel geometry, the Capillary number can be tuned in such a way as to modify the
morphology of the droplet assembly, according again to the Gaussian relation provided in this paper.

The present findings are expected to help in defining experimental protocols for the development
of optimized, low-dimensional, soft porous matrices with tunable properties. We refer in particular
to the so-called functionally graded materials [40], namely, composite materials characterized by
a controlled spatial variation of their microstructure, which are capturing mounting interest for a
variety of material science, biology, and medical applications.

IV. CONCLUSIONS

In summary, we reported on order to disorder self-transition in dense emulsions in divergent
microfluidic channels, as originated by a geometry-controlled competition between viscous dissi-
pation and interfacial forces. We unveiled a counterintuitive mechanism, namely, the spontaneous
reordering of the emulsion at high Capillary numbers, obtained by increasing of the opening angle
of the divergent channel. Such comeback of order is interpreted as the result of a subtle balance
between viscous dissipation and interfacial forces, straight downstream the inlet channel. Moreover,
we found that the dispersity of the droplet system follows a simple Gaussian law, whose temperature
is directly proportional to the inlet Capillary number. The present findings are expected to offer
valuable guidance for the future development of optimized functional materials with locally tunable
properties.
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and collision process occurs within the bulk domain.

Grant Agreement No. 739964 (COPMAT). A.M. acknowledges the CINECA Computational grant
ISCRA-C IsC83-“SDROMOL,” Grant No. HP10CZXK6R, under the ISCRA initiative, for the
availability of high-performance computing resources and support.

APPENDIX

Droplets’ generation

The droplet generation is performed by implementing an internal periodic boundary condition
which is sketched in Fig. 7, for simplicity. As shown in the figure, in order to generate a droplets
inflow in the inlet thin channel, the generating region is employed as a source of new droplets. When
a droplet passes through Fig. 7, section (B), it simultaneously (i) enters into the downstream region
and (ii) is copied back to the inlet section by applying periodic boundary conditions from (b) to (a)
(see Fig. 7).
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