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Multimodal distributions of agricultural-like sprays: A statistical analysis
of drop population from a pressure-atomized spray
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This paper focuses on the statistical analysis of a droplet population produced by a
pressure-atomized jet spray, laying in the second-wind-induced regime, far behind the
nozzle. The droplet size and axial velocity derived from droplet tracking velocimetry
measurements are shown to follow bimodal distributions and their modeling is tackled
in the framework of turbulence and of combustion applications, respectively. In addition,
the existence of subsets of droplets showing specific behaviors is brought to light from the
analysis of the experimental droplet-size–velocity joint probability distribution function
(PDF). Such subsets can be precisely defined using the properties of the size and axial-
velocity distributions. Finally, the trend of the joint PDF is depicted due to a quadratic
relationship which is derived in the context of combustion and shown to work here as well,
far behind the nozzle.
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I. INTRODUCTION

Liquid jet atomization is at the heart of numerous natural and industrial systems such as ocean
sprays, medication administration, and farming irrigation by aspersion. Widely used across Europe,
the latter application would benefit performance gain by better understanding the atomization
phenomenon. This application relies on the injection in quiescent air of a round water jet at a
velocity uin j through a nozzle of diameter dn and falls in the scope of both multiphase flows and
polydisperse sprays. The phases are denoted by the subscript k, which takes the value l for the liquid
phase and g for the gas phase. Classically, atomization flows are controlled by the Reynolds, Weber,
and Ohnesorge numbers

Rek = ρkuin jdn

μk
, Wek = ρku2

in jdn

σl-g
, Oh = μl√

ρl dnσl-g
, (1)

where ρk and μk represent the density and the dynamic viscosity of the phase k, respectively, while
σl-g is the surface tension between the two phases.

Previous experiments showed the existence of five different regimes for nonassisted cylindrical
liquid jets [1]. Among those, the second-wind-induced regime is not too far from the industrial
application of aspersion irrigation and offers a more controlled environment for laboratory research.
This high gas Weber regime is characterized by a large nozzle diameter dn > 1 mm and sharp
limits on the gas Weber number 13 < Weg < 40.3. Physically, jets belonging to this regime show
a characteristic primary atomization for which small droplets are peeled off the interface near the
nozzle exit. Studies have been carried out to extensively characterize this primary breakup along
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FIG. 1. Schematic of the experimental setup used by Felis et al. [8], with �g the gravity field, d the droplet
diameter, and (u, v) the droplet axial and transversal velocities, respectively, along x and y.

the jets, before the breakup of the liquid core, including work of great importance by Faeth and
co-workers [2–6], who particularly emphasized the role of turbulence by deriving a correlation for
the Sauter mean diameter d3,2 as a function of the distance to the nozzle x, its diameter dn, the liquid
Weber number Wel , and the integral length scale of turbulence L. Several subregimes with different
characteristic behaviors have been precisely depicted using the jet density ratio ρl/ρg, the liquid
Weber number Wel , the ratio between the Rayleigh breakup time and the aerodynamic secondary
breakup time, and the degree of development of turbulence, quantified by the ratio of the nozzle
length Ln and the nozzle diameter dn.

Following along the lines of Faeth and co-workers, later works focused on the region away from
the nozzle, between the breakup of the jet liquid core and the jet dispersion zone, to study the
polydisperse droplet population produced by atomization. A specific droplet tracking velocimetry
(DTV) technique was used by Stevenin et al. [7] to obtain original joint size-velocity measurements
which include at the same time two velocity components and the diameter, covering a large size
range, for each droplet. Insights into the turbulent multiphase flow common in the irrigation problem
were derived that allow a comparison between the Reynolds stresses from the DTV and the turbulent
kinetic energy from a turbulent Reynolds-averaged Navier-Stokes model. Felis et al. [8] further
developed this method by establishing a reproducible study case and by coupling this technique
with laser Doppler velocimetry (LDV) and optical probe (OP) techniques.

The latter experimental setup implements a circular nozzle of diameter dn = 1.2 mm and length
Ln/dn = 50, which ensures a fully developed turbulent pipe flow. The nozzle is made of borosilicate
glass and the interior wall roughness is considered negligible. A vertical liquid water jet is injected
with an average bulk velocity uin j = 35 m/s pointing downward into quiescent air (see Fig. 1).
The campaign was made under normal conditions (297 K and 1 atm); the corresponding physical
properties are given in Table I. The chosen injection velocity ensures that there is no cavitation in the
nozzle. The dimensionless numbers of the case-study conditions are Rel = 41 833, Wel = 20 158,
Weg = 24.3, and Oh = 0.0034, which makes the jet lie in the second-wind-induced regime detailed
above. An estimation of the Taylor-scale Reynolds number at the nozzle exit, based on the results
from Ruffin et al. [9], gives Reλ = 400, typical for fully developed turbulence in monophasic flow.
The OP provides the mean liquid mass fraction and volume fraction. A specific LDV apparatus
allows us to measure separately the liquid and gas velocities. Finally, a custom DTV algorithm
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TABLE I. Physical properties considered by Felis-Carrasco [10], under normal conditions and in SI units.

Property Definition Value

ρl water density 998.3 kg/m3

ρg air density 1.205 kg/m3

νl water kinematic viscosity 1.004 × 10−6 m2/s
νg air kinematic viscosity 15.11 × 10−6 m2/s
σl-g water-air surface tension 0.073 N/m

can capture the liquid velocity in the dispersion area of the spray. The DTV measurements are
carried out to determine the radial profiles for x/dn ∈ [400, 800] while paying special attention to
the depth-of-field estimations to reduce the bias on the droplet-size–velocity correlation. Details are
given in [10].

Among the results from this study, it appears that the droplet-size distribution greatly impacts the
mean velocity and the Reynolds stress field. This opens the way for a possible segregation of the
droplets into several subgroups, as the Reynolds stress tensor shows different behaviors depending
on the droplet size. A size class repartition highlights that small droplets tend to show large velocity
fluctuations and a Stokes number of O(1), like passive tracers in turbulence, while bigger droplets
show a high axial mean velocity with almost zero fluctuations with a Stokes number of O(100), like
ballistic objects. However, the statistical analysis is not fine enough to depict precisely any specific
group in the overall population.

Furthermore, the question of the drop size and velocity joint distribution remains open for this
kind of flow. On the one hand, Villermaux [11] alleged that drop-size distributions are described by
a universal � law, derived from a fine analysis of the ligament dynamics in low-turbulence fragmen-
tation flows. While this law showed good agreement with experiments showing unimodal [12,13]
or bimodal size distributions [14], it is legitimate to question its validity in fragmentation flows
where turbulence plays a major role. On the other hand, Novikov and Dommermuth [15] used a
phenomenological approach based on turbulence to describe the droplet-size distribution. Starting
from the idea of similarity, i.e., the cascade process, they proposed a size distribution for turbulent
flows based on infinitely divisible distributions [16] and turbulence intermittency [17]. Later on,
Rimbert and Sero-Guillaume [18] simplified this approach by considering log-stable distributions,
which are easier to handle than infinitely divisible distributions, and Rimbert and Castanet [19] were
able to describe the multimodal size distribution produced in a bag-breakup regime with a crossover
between Rayleigh-Taylor instability and the turbulent cascading atomization mechanism. Finally, in
the context of combustion, Lee and An [20] derived, from the energy balance of a pressure-atomized
spray, a quadratic formula for the droplet size as a function of the liquid velocity. Given the short
distances over which jets develop in combustion applications, it is natural to wonder about the
performance of this formula for agricultural-like configurations.

The present paper focuses on the DTV measurements by Felis et al. [8] and Felis-Carrasco [10].
It offers an analysis of the multimodal size-velocity joint probability distribution function (PDF) and
a determination of different subgroups among the overall droplet population. Section II presents the
three models cited above. Section III is dedicated to the analysis of the size and velocity distributions
and their modeling. Section IV focuses on the determination of the droplet subgroups based on the
size-velocity joint PDF and on the investigation of the validity of the quadratic formula proposed by
Lee and An [20] for x/dn between 400 and 800.

II. MODELING THE SIZE DISTRIBUTION OF SPRAY-GENERATED DROPLETS

In the context of multiphase flows, the governing equations must be derived using a phase
indicator αk , which indicates the presence of the phase k at any position x and instant t . Assuming
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there is no mass exchange between the phases, the governing equations for a phase k are then [21]

∂ρkαk

∂t
+ ∂ρkαku j,k

∂x j
= 0, (2a)

∂ρkαkui,k

∂t
+ ∂ρkαkui,ku j,k

∂x j
= ∂αkσi j,k

∂x j
+ fs,i,k−k′σ s

k , (2b)

where uj,k stands for the j-velocity component of phase k, fs,i,k−k′ represents the friction force
between the phases k and k′ which applies on the interface s of volumetric density σ s

k , and σi j,k

stands for the Cauchy stress tensor associated with phase k. Deriving the droplet-size distribution
directly from Eqs. (2) is not possible yet and models are needed in order to depict and predict
such a distribution. The following sections introduce the different approaches and corresponding
droplet-size distributions of Villermaux et al. [22], Novikov and Dommermuth [15], and Lee and
An [20].

A. Ligament-mediated spray formation

In contrast to the classical cascade process in which large elements generate smaller ones,
Villermaux et al. [22] proposed an aggregation scenario in which ligaments are the cornerstone.
This processus relies on the aggregation kinematics developed by Smoluchowski [23] for solid
colloidal particles in Brownian motion. Let n(v, t ) be the number of clusters of volume between
v and v + dv at the instant t . In addition, N (t ) is the total number of clusters and K (v, v′) is the
frequency of aggregation between clusters of volumes v and v′. The aggregation kinetics is then
governed by

∂t n(v, t ) = −n(v, t )
∫ ∞

0
K (v, v′)n(v′, t )dv′ + 1

2

∫ v

0
K (v′, v − v′)n(v′, t )n(v − v′, t )dv′. (3)

When talking about droplets, it is common to assume that the elements are spherical. The
element size is then given by the diameter d and one can consider n(d, t ) instead of n(v, t ).
In [12,22] the ligaments were supposed to consist of ν independent sublayers resulting from a
random particulate motion. Each sublayer consisted of subblobs of size d ′ and their size distribution
was denoted by q(d ′, t ). The interaction between the sizes was assumed to be both random and
uncorrelated. According to [24], the evolution of q(d ′, t ) was governed by a convolution process and
the distribution of size d was such that n(d, t ) = N (t )q(d ′, t )⊗ν , where ⊗ denoted the convolution
product. Equation (3) then becomes

∂t n(d, t ) = −n(d, t )N (t )γ−1 + 1

3γ − 2
n(d, t )⊗γ , (4)

where γ = 1 + 1/ν, with ν the number of ligament layers. Knowing that the process is governed
by successive autoconvolutions and that the distribution q(d, t ) in each layer is assumed to be
independent, the droplet-size distribution pB along the ligament after detachment from the bulk
flow is thus described by a ν convolution

pB(d ) = p1(d )⊗ν, (5)

where p1(d ) is an elementary distribution corresponding to the size distribution along a ligament
layer, once the ligament is detached from the bulk flow. It can be chosen as an exponential
distribution characterized by the diameter ξB of the detached ligament before its breakup [22]. The
distribution pB is rewritten as

pB(x = d/〈d〉) = νν

�(ν)
x(ν−1)e−νx, (6)

where 〈d〉 = 1
N (t )

∫
dn(d, t )dd is the instantaneous mean droplet diameter. Finally, the droplet-size

distribution of the spray is given by the composition of the ligament size distribution pL(d0), with
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d0 the size of a ligament, and the droplet-size distribution after the ligament breakup pB(d/d0),

p(d ) =
∫ ∞

0
pL(d0)pB

(
d

d0

)
dd0

d0
. (7)

Furthermore, the distribution pL of the ligament size is also � distributed [25] and Kooij et al. [26]
derived the droplet-size distribution of a spray as

p(x = d/〈d〉) = 2(mn)(m+n)/2x(m+n)/2−1

�(m)�(n)
Km−n(2

√
nmx), (8)

with Km−n the modified Bessel function of the second kind. The parameter m sets the order of the
ligament size distribution and n the ligament corrugation, previously denoted by ν.

B. Small-scale intermittency and droplet size

In his seminal work, Kolmogorov [27,28] stated two main assumptions about isotropic turbu-
lence, which are the scale invariance of eddies and the scale localness of interaction, allowing
quantitative predictions for the energy distribution among the scales of the flow. This led to the
image of the turbulent process as a cascading process where the turbulent energy injected at a rate ε

at larger scales cascades down the smaller scales before being eventually removed due to dissipation,
still at a rate ε. Following the theoretical remark of Landau and Lifshitz [29], a refinement of the
hypothesis on the local structure of turbulence was proposed to take into account the small-scale
intermittency of turbulence [30–32]. More details about intermittency are given in [33] and a review
of intermittency models is available in [34].

Novikov and Dommermuth [15] proposed a statistical description of droplets in turbulent spray
connected with the turbulent dissipation resulting from small-scale intermittency. Similarly to the
context of turbulent energy dissipation, the authors proposed that liquid fragments go through a
sequential cascade mechanism such that

l ≡ lN+1 = l1

N∏
k=1

bk, bk = lk+1

lk
� 1, (9)

where l1 is the initial size of a liquid fragment, N the number of breakups, and l the final size of a
droplet at the end of the process. Equation (9) is rewritten as

y ≡ − ln

(
l

l1

)
= −

N∑
k=1

ln(bk ). (10)

Assuming that the coefficients bk are independent or weakly dependent, if N is large enough,
then it follows from the central limit theorem [35] that the distribution of y is normal. Thus the
moments of the distribution of l/l1 are given by〈(

l

l1

)p〉
= exp(−ap + σ 2 p2). (11)

Note that the right-hand side of Eq. (11) is larger than 1 when p tends towards +∞, which
contradicts Eq. (9). Physically speaking, this implies that Eq. (10) breaks the mass conservation.
Mathematically speaking, in this situation, the properly normalized characteristic function of the
probability function will tend to normal, but not the probability function [15]. Thus, even if the
fragmentation process is supposed to be a sequential breakup cascade, the distribution of l/l1 is not
log-normal.

It follows from the refinement of Kolmogorov hypotheses that the turbulent energy dissipation
is not uniformly distributed among the scales. The dissipation average rate over the distance r is
denoted by εr . Consider the inertial range of scales L � r � l∗, where L is the integral scale and
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l∗ is an inertial scale which can differ from the Kolmogorov internal scale because of intermittency
correction. For three scales r, ρ, and l in this range such that r < ρ < l , we can introduce the
corresponding breakdown coefficients (BDCs)

qr,l = εr

εl
, qr,l �

l

r
, qr,l = qr,ρqρ,l . (12)

The scale similarity in a turbulent flow is determined by the following conditions: (i) The
probability distribution of BDCs depends only on the ratio of the corresponding scales and (ii) qr,ρ

and qρ,l are statistically independent. From those conditions and Eq. (12) we have, for the moments
of the BDCs,

〈qp
r,l〉 =

(
l

r

)μ(p)

, μ(0) = 0, (13)

with the quantity μ(p) respecting additional properties given in [17]. Note that μ(2) = μ, with μ

the classic intermittency coefficient [34]. By definition, the characteristic function for ln(qr,l ) is
ψ (s, l/r) = 〈exp[is ln(qr,l )]〉. By inverting this formula, it could be possible to determine directly
the probability distribution of qr,l , but it requires costly verifications to ensure the non-negativity of
the distribution in order to enforce physical and mathematical meaning [16].

Deriving the distribution of qr,l can be achieved by noting that, for arbitrary ratio l/r and arbitrary
integer n, Eq. (13) can be written in the form

ψ

(
s,

l

r

)
= ψn

(
s,

(
l

r

)1/n)
, (14)

which defines infinitely divisible distribution. The Lévy-Baxter-Shapiro theorem [35] gives the
general form of such distributions concentrated on [0,+∞[. Using this theorem allows us to derive
a general form of μ(p) [16],

μ(p) = κ p −
∫ +∞

0

1 − e−px

x
F (dx), (15)

where F is a measure on the open interval [0,+∞[ such that (1 + x)−1 is integrable with respect to
F . Knowing μ(p), it is thus possible to reconstruct the distribution W of qr,l from

W

(
q,

l

r

)
= 1

2πq

∫ +∞

−∞
exp

[
− is ln(q) + μ(is) ln

(
l

r

)]
ds. (16)

Note that the distribution of ln(qr,l ) is Q[ln(q)] = qW (q). Keeping in mind that rεr/LεL is analogous
to l/l1 in Eq. (9), it is possible to use the distribution of εr/εl to model the distribution of l/l1. Doing
so, Novikov and Dommermuth [15] gave one example of a distribution for y = ln(l/l1) which only
depends on the average a = 〈y〉 and the standard deviation σ 2 = 〈(y − a)2〉 of the population:

p(y) = a3/2

√
2πσy3/2

exp

{
− a

2σ 2
(ay−1/2 − y1/2)2

}
, y � 0. (17)

C. Integral approach from combustion

Lee and An [20] followed an integral approach in order to derive a relationship between the
droplet diameter and velocity. This approach allowed them to relate the physical quantities at the
nozzle exit to the ones downstream, in the jet dispersion zone where atomization is achieved.
Consider a control volume Vs enveloping the overall spray volume. The argumentation relies on two
main assumptions. First, the liquid phase is assumed to achieve the transition from its initial state
to the final state of a fully atomized group of spherical droplets within the specified control volume.
Second, it is assumed that the viscous dissipation can be written in terms of known parameters such
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as the liquid velocity and dissipation length scale. The integral form of the conservation equations
of mass and energy for the liquid phase in the control volume are given by

ρl uin jAin j =
∫∫

ρl
πd3

6
uAnp̄(d, u)dd du ≈ nρl

π

6
ūA

N∑
i

p(di )d
3
i �di, (18a)

ρl

u3
in j

2
Ain j = nρl

π

12
ū3A

N∑
i

p(di )d
3
i �di + nūAπσl-g

N∑
i

p(di )d
2
i �di + K ′μl

〈(
∂u

∂y

)2〉
Vs, (18b)

where Vs is the spray volume. The mass conservation is achieved by equating the injected mass
flow rate with the mass of the droplets contained in a volume swept by the mean velocity ū over a
spray area A. The velocity distribution is simplified to an average drop velocity. The cross-sectional
area A represents the physical extent of the spray at a plane where full atomization is achieved and
can be calculated from the spray cone angle. The quantities n, di, p(di ), and �di denote the droplet
number density, the droplet diameter, the droplet-size distribution, and the droplet-size bin width,
respectively. The authors considered that the fragmentation of the jet liquid core into droplets occurs
at some velocity scale, taken as the mean liquid velocity ū, and at the length scale of the droplets,
taken as the Sauter mean diameter d3,2 since it is the scale at which droplets are created. This
approach is similar to the classic one of Tennekes and Lumley [36] in which (∂u/∂y)2 is linked
to the Taylor microscale, taken here as d3,2. This leads to the estimation of the average viscous
dissipation as

μl

〈(
∂u

∂y

)2〉
Vs ∼ μl

(
u

d3,2

)2

Vs. (19)

Finally, the model has one adjustable parameter K ′, as the exact relationship between the viscous
dissipation term and the spray volume is approximated. After solving Eq. (18a) for n, substituting
Eq. (19) into Eq. (18b) gives a quadratic equation for the d3,2-velocity relationship

ρl

(
u2

in j − ū2

2

)
d2

3,2 − 6σl-gd3,2 − Kμl ū
2 = 0, (20)

where K absorbs the spray volume term for the sake of simplicity. After discarding the negative
solution, this leads to a quadratic relationship between d3,2 and the velocity

d3,2 =
3σl-g +

√
9σ 2

l-g + Kρlμl ū2 u2
in j−ū2

2

ρl
u2

in j−ū2

2

. (21)

Equation (21) shows good agreement with the literature for pressure-atomized sprays with and
without swirl and allow Lee and An [20] to reconstruct the droplet-size distribution from the droplet
velocity distribution.

III. BIMODAL SIZE AND VELOCITY DISTRIBUTIONS

This section first gives a statistical description and the number PDF of the data from
Felis-Carrasco [10] and then tackles their modeling in the framework of turbulence. The
DTV measurements were obtained from positions along the jet axis located at x/dn =
{400, 500, 600, 700, 800}. At each axial position, measurements were made at different positions
perpendicular to the jet. In order to capture all the spray development, the limit radial positions are
different between the axial positions. At x/dn = 400, the radial positions span from y/dn = −20
to y/dn = 20 and they span from y/dn = −32 to y/dn = 32 at x/dn = 800. The measurements
give access to the diameter d , the axial velocity u, and the radial velocity v of every droplet over
a large section of the dispersion zone. Technically, the droplets are assumed to be spheroids and
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TABLE II. Mean values of the distributions of d , u, and v.

x/dn 400 500 600 700 800

〈d〉 (μm) 96.82 91.22 95.60 93.63 97.89
〈d〉V (μm) 125.0 126.2 129.3 125.0 121.7
〈·〉V/〈·〉 1.29 1.38 1.35 1.33 1.24
〈u〉 (m/s) 12.48 13.20 12.97 12.01 12.00
〈u〉V (m/s) 21.53 20.35 19.78 18.17 16.72
〈·〉V/〈·〉 1.72 1.54 1.52 1.51 1.39
〈v〉 (mm/s) 2.1 −38.9 −16.7 −40.3 −2.9
〈v〉V (mm/s) −161.5 −210.4 −84.4 −129.6 −54.3
〈·〉V/〈·〉 −76.9 5.41 5.05 32.2 18.7

the droplet volume V is estimated from the semiaxes given by the DTV measurements. Then the
droplet diameter d is calculated as the diameter of the sphere of the same volume. Unless otherwise
mentioned, the statistics given at a position x/dn aggregate all the data over the positions y/dn. For
the sake of clarity, the number PDF of any variable ζ will be denoted by Pζ in the following.

A. Experimental distributions

As a first step, one could look at the mean values of the velocity distributions and the size
distribution. Table II gives the algebraic mean 〈·〉, the volume weighted mean 〈·〉V , and the ratio
of the two for each distribution and each axial position. For any variable ζ , the volume-weighted
average reads 〈ζ 〉V = ∑Ntot

i=1 Viζi/
∑Ntot

i=1 Vi, where i is the droplet index, Ntot the total number of
droplets, Vi the volume, and ζi the ζ value of the ith droplet. While the ergodic condition can often
be assumed, it is important to note here that both means systematically depart from each other for
the three distributions. For the distribution of d , the volume-weighted mean is at least 24% larger
than the algebraic mean, while this difference decreases from 72% to 39% for the distribution of
u. Note as well that the means of u decrease along x/dn. Concerning the distribution of v, the ratio
of the two means shows a consequent variability, due to the proximity to zero of the mean values.
Even if the variability is large, the means show at least one order of magnitude of difference. In
the prospect of working with properly normalized variables, this systematic departure has to be
accounted for in the choice of the mean to use for the normalizing procedure. The mass and energy
conservation equations for the two-phase jet, introduced in Sec. II, rely on the phase indicator
αk . To ensure mass conservation in this context, the average of a variable ζ in the phase k must
be expressed as 〈αkζ 〉, which practically is equivalent to the volume-weighted mean. Thus, we
choose the volume-weighted mean 〈ζ 〉V as the normalizing quantity of ζ . Doing so is equivalent to
normalizing the droplet diameter by d4,3 and the velocities by the bulk velocity of the dispersion
phase. In the following, normalization is achieved by using the mean weighted by the droplet
volume, except for the radial velocity v. Because 〈v〉V is close to 0 and could be misevaluated
from the experimental measurements, the radial velocity v is normalized by 〈u〉V .

Knowing how to properly normalize the present data, it is possible to compute the PDF of
d/〈d〉V , u/〈u〉V , and v/〈u〉V (see Fig. 2). The size distribution is computed over 1730 bins and
the velocity distributions over 80 bins, with a total number of occurrences close to 400 000 on
average. In addition to the mean, the three distributions are characterized by higher-order statistical
moments. Figure 3 gives the evolution of the statistical moments up to the order 4 over the available
x/dn positions. The high-order moments under consideration here are the standard deviation σ , the
skewness S, and the kurtosis κ , also referred to as flatness.

The size distribution Pd/〈d〉V presents an important skewness and a very large kurtosis. The
former decreases along x from 10 to 5 and the latter decreases from 155 to roughly 35. Such values
of skewness represent the fact that the distribution spans two decades d/〈d〉V ∈ [0.1, 40] and that
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(a)

(b) (c)

FIG. 2. Distributions of (a) d/〈d〉V , (b) u/〈u〉V , and (c) v/〈u〉V for experimental data provided by Felis-
Carrasco [10]. (a) A logarithmic scale and (b), (c) a semilogarithmic scale are used.

most of the droplets lie in the first decade, with the median value of d/〈d〉V being equal to 0.51
on average. Regarding the kurtosis values, they are representative of the presence of large values,
relative to the mean, in the tail of the distribution. Finally, the value of the standard deviation is
almost constant over the five axial positions and equal to 0.93 on average, typical of distributions
showing a region with concentrated data. Indeed, on average, the 25% and 75% quartiles are equal
to 0.29 and 0.86 and the average interquartile is then 0.57, a range in which 50% of the droplets
lie. Concerning the tail behavior, the distributions show a power-law decay scaling as d/〈d〉−2.7

V ,

(a)

(b) (c)

FIG. 3. Statistical moments of (a) d/〈d〉V , (b) u/〈u〉V , and (c) v/〈u〉V for experimental data provided by
Felis-Carrasco [10]. The blue lines represent 〈·〉 (+), 〈·〉V (×), and σ (∗). The red lines represent S (�) and κ

(◦).
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which departs from the exponential decay found by Simmons [37]. Furthermore, two modes can
be seen on the distribution at each x/dn: one for d/〈d〉V ≈ 0.2 and the other for d/〈d〉V ≈ 0.4.
At the location x/dn = 400, a third mode is also visible for d/〈d〉V ≈ 1.0. Here it is worth
noting that the second mode corresponds to the characteristic length scale of the Kelvin-Helmholtz
instability [38]: λKH = σ/ρgu2

in j = 49.6 μm. Once normalized, this length scale is denoted by λ+
KH

and λ+
KH ≈ 0.4. We recall that λKH also respects Weg = dn/λKH. Finally, close similarity is achieved

for the distributions between x/dn = 500 and x/dn = 800 and characterizes a converged behavior
with steady mechanisms in this range.

The distribution Pu/〈u〉V presents two modes for every x/dn position as well. They are located
around u/〈u〉V ≈ 0.2 and 1.4. In contrast to Pd/〈d〉V , this distribution presents a slight departure
between the tails on the right side and does not show any additional mode at x/dn = 400. Except for
this modest departure, the similarity is close for the five axial positions. Concerning the statistical
moments, this PDF is characterized by lower skewness and kurtosis values than previously. Both are
almost constant and on average are equal to 0.58 and 2.14, respectively. This is representative of the
fact that the distribution shows a minor asymmetry, due to a difference of predominance between
the two modes, and that the distribution tails are short. The limited spanning of the distribution over
u/〈u〉V can be understood as a preponderant effect of the boundary conditions. The right limit might
be enforced by the fact that the droplet velocity reaches a maximum on the centerline, close to the
mean liquid velocity on the jet axis. The left limit might be enforced by the overall advection of the
liquid phase towards increasing x/dn, which prevent droplets from reaching negative values for u,
i.e., moving back to the nozzle. As for the skewness and the kurtosis, the standard deviation of the
distribution is almost constant and equal to 0.45, characteristic once again of the data concentration.
On average, the 25% and 75% quartiles are equal to 0.27 and 1.00, and thus the average interquartile
is 0.73. Finally, the values of S and κ depart from the ones obtained in the case of a monophasic jet.
The distribution of axial velocity for such jet is characterized by a skewness of −0.5 and a flatness
of 2.8, which is almost Gaussian. Here the present u distribution shows a reverse asymmetry and a
shorter spanning.

The distribution Pv/〈u〉V presents only one maximum located at 0. Its skewness is −0.05 on
average and the distribution can be considered symmetric. The distribution kurtosis seems to tend to
5 but is equal to 9.39 on average as its value at x/dn = 400 is relatively large, which is characteristic
of a large tail span and a strong departure from Gaussianity. Finally, the standard deviation is
almost constant over the axial positions with an averaged value of 0.069, which shows a constant
distribution width along x. This distribution seems to behave in a more classic manner than the
distribution of u/〈u〉V and d/〈d〉V as it shows only one mode and characteristics similar to what can
be found in the turbulence literature.

B. Modeling

Multiphase flows are inherently multidimensional. Their multidimensionality originates not only
in the physical space but also in the phase space. Typically, every droplet of the present jet flow
is, at first sight, characterized by three parameters: its size and two velocity components. Thus, in
order to depict this population, one would need to propose a model able to capture the behavior of
a three-dimensional joint PDF over the available axial positions. Doing so is very complex and it is
easier to first have a closer look at the PDF of each parameter. This section proposes a model for the
droplet-size distribution and the axial-velocity distribution.

1. Drop-size distribution

Sections II A and II B introduce two models of droplet distributions derived from different
backgrounds. The first one, given by Eq. (8), is derived from a fine analysis of the ligament
mechanics [22] experimentally studied in configurations like impacting droplets [25] or coaxial
jet [12], close to the nozzle. The second one, given by Eq. (17), is derived from a phenomenological
approach taking place in the framework of intermittent turbulence [16] and was initially developed
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(a) (b)
Expt.

FIG. 4. Fit of the marginal distribution of d/〈d〉V at the axial position x/dn = 800 by the distributions from
(a) Kooij et al. [26] and (b) Novikov and Dommermuth [15].

for turbulent spray around ships [15]. Those distributions will be respectively denoted by Prob� and
Probε in this section.

A test campaign was carried out to compare the performance of each distribution to model the
bimodal distribution obtained in Fig. 2. In order to reproduce the two modes of the experimental
distribution, the fitting functions are defined as a linear combination of two reference distributions
such that

f� (x) = α1Prob� (x, m1, n1) + α2Prob� (x, m2, n2), (22a)

fε (x) = α1Probε (x, a1, σ1) + α2Probε (x, a2, σ2), (22b)

where αi, mi, ni, ai, and σi are the fitting parameters. Note that both fit functions present the same
number of fit parameters. The fitting algorithm used is the one of the EZYFIT toolbox developed by
Moisy on MATLAB [39]. This algorithm is said to be able to capture a reference signal if the set of
initial guesses is of the order of the set of converged parameters.

A fit is said to show good agreement with a given reference when the Pearson correlation
coefficient, denoted by r, is close to 1. For a more discriminating criterion, one can use r2. The
performance of the fitting functions to capture the experimental distribution is measured with r2.
Both distributions are tested over 19 different initial guesses. The focus is on the region showing the
two experimental modes, while the tail of the distribution is omitted. Thus the fitting procedure uses
as reference the experimental distribution truncated at d/〈d〉V = 7 and the fitting is computed in the
linear mode. Figure 4 gives the best results obtained from this campaign for each fitting function.
The initial guesses, the final parameter values, and r2 are given in Table III. The main difference
between the two fitting functions is their ability to capture both peaks of the distribution. Using the
algorithm from the EZYFIT toolbox, f� systematically fails to capture the mode at d/〈d〉V ≈ 0.2,

TABLE III. Initial guesses, final parameters, and r2 for (a) Eq. (22a) and (b) Eq. (22b) given in Fig. 4. The
parameter values are truncated at the third decimal.

(a)
f� α1 m1 n1 α2 m2 n2 r2

initial 1 1 1 0.9 0.9 0.9
final 5.26 1.04 1.20 −10.86 0.10 11.78 1.04

(b)
fε α1 a1 σ1 α2 a2 σ2 r2

initial 1 1 1 0.5 0.5 0.5
final 0.99 0.79 0.66 0.05 0.22 0.01 0.97
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(a) (b)

FIG. 5. Fit of the marginal distributions of d/〈d〉V at the axial position (a) x/dn = 400 and (b) x/dn = 600
by the droplet-size distribution from Novikov and Dommermuth [15].

while fε is able to capture it for one set of initial guesses. One of the two amplitudes for the
fitting f� is negative. The fit is then not physical, as the objective is to model each mode with one
distribution. This behavior is observed for a large part of the chosen sets of initial guesses. It could
result from the optimization procedure for which a configuration with two modes does not perform
as well as the one in Fig. 4. Improvements of the fitting algorithm could be done to implement,
for example, parameter constraint or point weighting, to balance the weight of the points regarding
their experimental importance. So far, under previous considerations and limits, the fitting function
fε shows a better performance than f� .

In order to test the reproducibility of this result, the function (22b) is tested over the four other
x/dn positions using the set of final parameters given in Table III as the initial guess. The fits for the
positions x/dn = 400 and 600 are given in Fig. 5. Their respective Pearson correlation coefficient
values are 0.966 87 and 1.0026. In both cases, the two modes located at d/〈d〉V ≈ 0.2 and 0.4
are captured. The third mode of the distribution for x/dn = 400 is not captured, which can be
expected as fε is the combination of two distributions Probε . The distributions for x/dn ∈ {500, 700}
show behavior similar to the one at x/dn = 600, which is consistent with the distribution similarity
observed for x/dn � 500.

The distribution derived by Novikov and Dommermuth [15] seems to model well the present
experimental distribution, obtained from a turbulent flow, particularly for capturing both modes
located at small d/〈d〉V . Conversely, under the limitations of the present campaign scope and
methodology, the distribution from Kooij et al. [26] did not capture the higher and thinner peak
of the experimental distribution.

2. Axial-velocity distribution

Similarly to the size distribution, the axial-velocity distribution shows two distinct modes.
Looking at the distributions Pu/〈u〉V for different y/dn positions, Fig. 6 reveals that only the mode
for u/〈u〉V ≈ 0.2 remains in the dispersion zone of the jet, while the mode for u/〈u〉V ≈ 1.4 has
importance only in the region close to the jet axis, i.e., for y/dn = ±8. In addition, the distributions
over the radial positions show symmetry with respect to the jet axis. The exploration of modeling
is thus carried out differently in this section. The focus is first on modeling the axial-velocity
distribution in the dispersion region of the jet. We choose the position y/dn = 20 as it is the position
farther away from the jet axis which is available for all x/dn positions. The exploration is performed
by testing the distributions considered in the study of Yoon [40] on the effects of the Weber number
on the droplet-size distribution in a turbulent flow developing up to x/dn = 24. Then the insights
from this step are used to model the velocity mode u/〈u〉V ≈ 0.2, while another distribution is
proposed for the second mode, in order to depict the overall axial-velocity distribution.
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(a) (b)

(c) (d)

FIG. 6. Distributions of u/〈u〉V for x/dn = 800 at the radial positions (a) y/dn = 0, (b) y/dn = −8,
(c) y/dn = −20, and (d) y/dn = −32.

In the aforementioned study, Yoon [40] considers three different PDFs to model the droplet
velocity distributions: the Rosin-Rammler distribution fRR, the log-normal distribution fLN, and the
Nukiyama-Tanasawa distribution fNT. They are respectively defined by

fRR(u) = qX q−1

X q
exp

[
−

(
u

X

)q
]
, (23a)

fLN(u) = 1√
2πσu

exp

(
− [ln(u) − μ]2

2σ 2

)
, (23b)

fNT(u) = a × up exp(−buc) (23c)

and show good agreement with experimental and numerical data for a round jet injected in quiescent
air at high liquid Weber number, in the so-called atomization regime [1].

In order to model the axial-velocity distribution in the dispersion zone of the jet, the three
distributions of Eq. (23) are tested at the radial position y/dn = 20 over the five axial positions.
To ensure the collapse of the PDF, the data have to be normalized by the averaged velocity at
y/dn = 20, denoted by 〈u〉y/dn=20

V . The fitting procedure is carried out in both the linear mode and
logarithmic mode. Fitting with the log-normal distribution or the Nukiyama-Tanasawa distribution
offers accurate results on the first try with initial guesses set as unity. However, several sets of initial
guesses have to be tried for the Rosin-Rammler distribution to explore the performance of the fitting
function.

The discriminating criterion used here is the average of r2 over the x/dn positions. The fitting
function offering the r2 value the closest to unity, on average, is the log-normal distribution fLN

computed in the linear mode. The fitting procedure gives μ = 0.78 and σ = 0.75 as final parameter
values. Over the five x/dn positions, the correlation coefficient is such that |r2 − 1| ∈ [0.03, 0.28]
and the mean r2 is equal to 0.97. The upper bound of |r2 − 1| is obtained for x/dn = 400. The fitting
of the experimental data by fLN is given in Fig. 7.

When looking closely at the distribution of u/〈u〉V over the y/dn positions, it appears that only
the mode for u/〈u〉V ≈ 0.2 remains in the dispersion zone of the jet. The previous tests show that the
log-normal distribution fits well the experimental data at y/dn = 20. In order to fit the distribution
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(a) (b)

FIG. 7. (a) Fit of the distribution of u/〈u〉y/dn=20
V at the radial position y/dn = 20 by a log-normal distribu-

tion (23b) and (b) fit of the distribution Pu/〈u〉V over all the radial positions by the model f (u). The dotted lines
represent the experimental data and the solid line represents the models. Both graphs use a semilogarithmic
scale.

of u/〈u〉V for each x/dn position, as it was performed in the preceding section, it is possible to build
a fitting function as a linear combination of the two distributions. Knowing the performance of fLN

to fit the mode u/〈u〉V ≈ 0.2 in the dispersion region, we choose one of the two distributions to be a
log-normal distribution with μ = 0.78 and σ = 0.75. To be able to reproduce the right asymmetry
of the mode for u/〈u〉V ≈ 1.4, the second distribution is chosen to be a skewed normal distribution.
This distribution is denoted by fSN and is defined by

fSN = 1√
2πσ

e−[(x−μ)/
√

2σ ]2

[
1 + erf

(
S

x − μ√
2σ

)]
, (24)

where μ, σ , and S are the mean, the standard deviation, and the skewness of the distribution,
respectively. The fitting function is then

f (u) = α1 fLN(u) + α2 fSN(u). (25)

The fit of the experimental data over all the radial positions by Eq. (25) is given in Fig. 7. As
expected, the mode for u/〈u〉V ≈ 0.2 is well captured by f and the fitting function reproduces the
left boundary for u/〈u〉V = 0. Regarding the mode for u/〈u〉V ≈ 1.4, the fitting function is able to
capture the peak but fails to reproduce the right boundary for u/〈u〉V � 1.5. The overestimation of
the distribution tail towards +∞ is due to the participation of the log-normal distribution which does
not decay fast enough. As a consequence, the fitting function f correctly captures the experimental
axial velocity only over the range u/〈u〉V ∈ [0, 1.50]. As a reminder, the average interquartile range
of Pu/〈u〉V , given in Sec. III A, is u/〈u〉V ∈ [0.27, 1.00]. The validity range of f not is only larger
than the average interquartile range but also contains it. So the fitting function f accurately depicts
more than 50% of the droplet population.

Using the ability of the log-normal distribution to describe accurately the axial-velocity PDF in
the dispersion region of the jet, a fitting function was built up as a linear combination of log-normal
and skewed normal distributions to depict Pu/〈u〉V over all the radial positions. This fitting function
captures both modes and accurately depicts more than 50% of the droplet population but fails to
depict the distribution tail towards +∞ and so the right boundary on the axial velocity.

IV. DROPLET-SIZE–VELOCITY JOINT DISTRIBUTION AND POPULATION SUBGROUPS

The presence of bimodal distributions for the droplet size and axial velocity was highlighted
in the preceding section. The modes of each distribution could naturally represent a subgroup of
droplets characterized by a given size or axial-velocity range. Thus, the present droplet population
would present two subgroups with distinct velocities, u/〈u〉V around 0.2 and 1.4, and two other
subgroups with specific sizes, d/〈d〉V around to 0.2 and 0.3 (see Fig. 2). However, the PDFs of
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(a) (b)

FIG. 8. Droplet-size–velocity joint PDF at (a) x/dn = 400 and (b) x/dn = 800.

u/〈u〉V and d/〈d〉V do not give any information about the correlation between the modes and thus
the subgroups. In Sec. IV A the focus is on the droplet-size–velocity joint PDF to determine droplet
subgroups. The validity of the quadratic formula given by Lee and An [20] to model the joint PDF
for x/dn � 400 is investigated in Sec. IV B.

A. Characterization of size-velocity subgroups

In a previous study, Felis et al. [8] highlighted the existence of different droplet behaviors
depending on the droplet size and velocity. The Reynolds stress field, computed for different size
classes, arbitrarily set, emphasizes that small droplets tend to show large velocity fluctuations while
bigger droplets show a high axial mean velocity with almost zero fluctuations. The distributions of
the droplet size and axial velocity presented in Sec. III show several modes, indicating the potential
existence of droplet subgroups within the overall population. However, no information regarding
the mode correlation is yet available. The influence of the size on the axial velocity and vice versa
is given by the joint PDF of the droplet size and axial velocity, presented in Fig. 8 for the axial
positions x/dn = 400 and 800.

First and foremost, a comment must be made on the joint PDF values being larger than one.
Those quantities are computed with a regular sampling such that the axis along d/〈d〉V is sampled
in 340 sets and the axis along u/〈u〉V in 150 sets. Consider the joint PDF at x/dn = 400. Each axis
respectively spans [0.10, 33.59] and [−0.92, 2.58]. Thus the bin widths along d/〈d〉V and u/〈u〉V
are equal to �x = 9.85 × 10−2 and �y = 2.33 × 10−2, respectively. In a given bin, the value of the
joint PDF is calculated as the product of the probability in this bin and the inverse of the bin area. As
probabilities are truly between 0 and 1, the PDF values lie between 0 and (�x�y)−1 = 4.36 × 102.
For x/dn = 400, the maximum value of the joint probability is 7.9 × 10−3. Then it is natural that
the joint PDF values in Fig. 8 span up to around 3.

Both joint PDFs present a limited extension along the axis u/〈u〉V , included within [−0.1, 2],
while the extension along d/〈d〉V is limited on 0 but spans towards large positive values, up to
30 for x/dn = 400. This characterizes a data set with little dispersion along the velocity axis and
important dispersion along the size axis, which corresponds to the behavior of the PDF of u/〈u〉V
and the one of d/〈d〉V . The maximum joint PDF values are concentrated in a relatively limited
region located at small sizes and low axial velocities. The tail expansion along d/〈d〉V is specific in
the sense that it exists only for high axial velocities.

For both axial locations, the joint PDF tail tends toward a velocity asymptote located between
1.5 and 2. For x/dn = 400, the tail reaches large values up to d/〈d〉V = 30 and is concentrated
near this asymptote. For x/dn = 800, the tail spans only up to d/〈d〉V = 20 and seems more
dispersed near the asymptote. The reduction of the droplet-size maxima from 30 to 20 can be
explained by the ongoing fragmentation process, which globally reduces the size of the water
fragments and specifically the largest ones issued from the liquid core breakup. Regarding the
velocity dispersion near the asymptote, one has to consider the non-normalized joint PDF in order to
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FIG. 9. Size-velocity joint PDF for x/dn = 600 and droplet subsets discriminated with the characteristics
of the size and axial-velocity distributions.

draw a conclusion independent of the evolution of 〈u〉V along x/dn, given in Fig. 3. Furthermore, it
is possible to observe a “path” of relatively large PDF values, colored in light blue, leaving from the
maximum values of the joint PDF, leading to its tail, and following the elbow shape. A close look
at the joint PDF for x/dn = 400 even allows us to observe two paths. Concerning the correlation
between d/〈d〉V and u/〈u〉V , the large-size droplets show little correlation to their velocity and the
low-velocity droplets show little correlation to their size, as both sets present a small dispersion
along each axis, respectively. However, the in-between range of droplets seems to indicate a strong
correlation between the size and the axial velocity.

Different droplet subsets can be derived from the description of the joint PDF. The maximum
values of the joint PDF are representative of the most probable pairs (d/〈d〉V , u/〈u〉V ) and are
concentrated in the region of low velocities and small sizes. Thus, it naturally depicts a first subset
of droplets which are likely to behave like passive tracers. A second subset can be drawn by the tail
expansion along the d/〈d〉V axis. The tail along this axis exists only for high velocities and depicts
the existence of a group of droplets characterized, at the same time, by a high velocity and a large
size, which are likely to behave like ballistic objects. In addition, the joint PDFs show a third region
of relatively high PDF values corresponding to the corner of the elbow. This region depicts a subset
of droplets characterized by a high velocity and a small or intermediate size. While the first two
droplet subsets cross-check the conjecture of Felis et al. [8], the existence of a third droplet subset
is brought to light.

Knowing that subgroups with different physical behavior exist in the present droplet population,
it could be possible to define them using some characteristics of the PDF of d/〈d〉V and u/〈u〉V like
the spanning limits, the mode limits, and the dispersion. Consider the joint PDF for x/dn = 600 as
an example. In a straightforward manner, the spanning limits of the PDFs Pd/〈d〉V and Pu/〈u〉V give
the outward limits of the possible droplet subsets: 0 < d/〈d〉V < 20 and −0.1 < u/〈u〉V < 2. The
modes of Pd/〈d〉V and Pu/〈u〉V depict specific sizes and velocities, potentially connected to distinct
physical behaviors, and their delimitations can be used to discriminate subsets of the joint PDF.
The value u/〈u〉V = 1 is chosen to delimit the axial-velocity modes, while the value d/〈d〉V = 0.3
is chosen to delimit the size modes. Finally, the delimitation of the size modes and the dispersion
zone of Pd/〈d〉V , i.e., its tail, is taken as 3σd ≈ 3. It is worth noting that the droplets whose size
is between 0 and 3σd represent around 96% of the overall population, a percentage close to the
Gaussian dispersion property. The delimitations detailed here are shown on the size-velocity joint
PDF for x/dn = 600 in Fig. 9.

Five subsets appear from those delimitations. Consider first the droplets showing a low axial
velocity, i.e., a velocity corresponding to the first velocity mode u/〈u〉V ≈ 0.2. Those droplets are
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TABLE IV. Repartition of the droplet volume, number, and Stokes number of the joint PDF subsets at
x/dn = 600.

No. u/〈u〉V d/〈d〉V Volume (%) Number (%) St

1 [0, 1] [0, 0.3] O(10−2) 25.2 0.83
2 [0, 1] [0.3, 3] 3.69 48.8 7.92
3 [1, 2] [0,0.3] O(10−3) 1.20 0.39
4 [1, 2] [0.3, 3] 10.8 22.2 7.61
5 [1, 2] [3, 20] 85.5 2.55 44.0

located in the bottom left corner of the joint PDF, u/〈u〉V < 1, and are depicted by two subsets:
(d/〈d〉V , u/〈u〉V ) in [0, 0.3] × [−0.1, 1] and [0.3, 3] × [−0.1, 1]. Two droplet populations seem to
coexist in this range of velocities. Each of them is respectively characterized by a size d/〈d〉V ≈ 0.2
with a little dispersion and a size d/〈d〉V ≈ 0.4 with a larger dispersion. Thus the droplet set of low
velocity and small size pointed out in [8] not only can be defined but is also made of two distinct
droplet populations showing different characteristic sizes.

Now consider the droplets showing a high axial velocity, i.e., a velocity corresponding to
the second velocity mode u/〈u〉V ≈ 1.4. Those droplets are located in the upper part of the
joint PDF, u/〈u〉V > 1, and are depicted by three subsets: (d/〈d〉V , u/〈u〉V ) in [0, 0.3] × [1, 2],
[0.3, 3] × [1, 2], and [3, 20] × [1, 2]. The top right subset presents a droplet population showing
little dispersion in velocity, which increases slightly when the droplet size decreases. That is to say,
the droplet size has little impact on the droplet axial velocity. Thus, the fragments of this population
tend to decrease in size with an almost constant velocity, which cross-checks the existence of a
group of droplets showing a ballisticlike behavior highlighted in [8]. The middle top subset presents
relatively high joint PDF values, around 1. These values highlight the presence of a preferential
droplet population. This population is characterized by a high axial velocity u/〈u〉V ≈ 1.5 and an
intermediate size d/〈d〉V ≈ 1. Such velocity and size values respectively correspond to the second
velocity mode and the third size mode, clearly visible for x/dn = 400 in Fig. 2. In addition, this
means as well that the third mode of Pd/〈d〉V , visible for x/dn = 400, also has importance for higher
values of x/dn. Finally, the last subset drawn by the chosen delimitations is the one on the top left
corner. This subset presents joint PDF values less than 0.5. Such values are relatively low compared
to the values of the nearby subsets, which are 1.5–3 for the bottom left subset and around 1 for the
middle top subset. Thus, this subset could be considered as the expression of the tails of the nearby
populations instead of depicting a droplet population characterized by a specific size and velocity.

Table IV gives for x/dn = 600 the repartition of the droplet volume and number in the joint PDF
subsets as well as the Stokes number associated with each subset. The low-velocity subsets in Fig. 9,
u/〈u〉V � 1, are denoted by 1 and 2. The upper subsets are denoted by 3, 4, and 5. The ordering
reads from left to right. The low-velocity subsets 1 and 2 represent 74% of the droplets but only
3.7% of the overall droplet volume. In contrast, for the high-velocity subgroups, subset 5 represents
85% of the overall droplet volume for only 2.55% of the droplets. Subset 4 aggregates 22.2% of
the droplet population and 10.8% of the total volume. Such values are modest, but balanced, and
could highlight the role played by this subset to link the populations of large and small droplet size.
Finally, subset 3 only represents 1.2% of the population and a relative volume of O(10−3). Such
values are negligible compared to the other subsets and they support the interpretation of a subset
being the “tail” of its neighbors.

The Stokes number St of each subset is calculated with the formulation from [10,41], using the
Schiller-Naumann relation for the drag coefficient and the averaging operator 〈·〉V , which is written
as

St = τd

τt
, τd = ρl d2

18μg(1 + 0.15 Re0.687
d )

, τt = y0.5u√
R̄11,g

, Red = |u − ūg|d
νG

, (26)
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TABLE V. Mean velocity values on the jet axis from the DTV
measurements.

x/dn uaxis (m/s)

400 33.2
500 31.8
600 30.4
700 29.0
800 28.0

where Red is the Reynolds number seen by the droplet calculated using the gas mean velocity ūg,
τd is the droplet aerodynamic time constant, and τt is a turbulent timescale estimated from the axial

standard deviation for the velocity fluctuations in the gas phase
√

R̄11,g and the radial position y0.5u

at which the fluid velocity is half the fluid velocity on the jet axis. The five droplet subsets are
distributed over two decades of St and show three different trends. The Stokes number of subset 5,
containing the droplets of high velocity and large size, reaches 44 and is representative of a ballistic
behavior. The Stokes-number values for subsets 2 and 4 are between 7 and 8. As these values are
larger than but close to unity, the droplets belonging to those subsets are in a ballistic regime but
might be sensitive to large velocity fluctuations due to turbulence. Subsets 1 and 3 show a Stokes
number less than unity, which makes those droplets the most sensitive to turbulence fluctuations.
However, the droplets of this range might be unresponsive to the smallest scales of turbulence, as
both Stokes numbers are relatively close to 1. It is important to note here that the velocity has
little influence on the Stokes number. For example, subsets 2 and 4 present similar Stokes numbers
whereas they are characterized by different velocities. The observation holds for subsets 1 and 3 as
well, even if a slight departure due to the velocity difference is noticeable.

In addition to validating the conjecture drawn by Felis et al. [8] regarding the existence of two
different droplet subgroups, this section precisely depicts and characterizes such groups among
the overall droplet population. Specifically, a precise criterion is given for the low-velocity droplets
which leads to the discrimination of two populations with different characteristic sizes. Furthermore,
a subset of droplets showing high axial velocity and intermediate size is depicted and characterized.
Complementarily, the weight of each subset in terms of droplet number and volume is given along
with their Stokes number. Knowing the different subsets in the present droplet population now opens
the way to understanding the underlying mechanisms leading to their existence.

B. Quadratic formula for joint PDF modeling

Section II C presented the work of Lee and An [20] and the quadratic formula (21) they derived
to depict the relationship between the droplet velocity and the Sauter mean diameter d3,2 for x/dn �
100. In their study, the authors concluded that the good performance of the relationship enabled them
to reproduce experimental and numerical data. In particular, this relationship is said to perform a
good fitting of the centerline of a droplet-size–velocity joint PDF from Rimbert and Castanet [42],
even if no mathematical definition of a joint PDF centerline is given. Finally, the authors claimed
that the droplet-size PDF can be reconstructed from the diameters computed due to the quadratic
formula. This section investigates the ability of this quadratic formula to fit the centerline of the
present size-velocity joint PDF and the possibility to reconstruct the droplet-size distribution for
x/dn � 400. This investigation will consider the diameter d instead of d3,2, as it is the available
quantity in the present study for characterizing the droplet diameter. In addition, two reference
velocities will be compared: the injection velocity uin j and the mean liquid velocity on the jet axis
at each x/dn, denoted by uaxis. The values of the latter for each axial position are given in Table V.
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(a) (b)

FIG. 10. (a) Comparison of two reference velocities for fitting the centerline of the size-velocity joint PDF
at x/dn = 600 by Eq. (27) where the fit parameter K is set to 3.15〈u〉6

V × 10−3. (b) Comparison of different
values of K for fitting the centerline of the size-velocity joint PDF for x/dn = 600 by Eq. (27). The arrow
indicates increasing values of the fitting parameter K .

The reference velocity is denoted by ure f and Eq. (21) is rewritten as

d =
3σl-g +

√
9σ 2

l-g + Kρlμl ū2 u2
re f −u2

2

ρl
u2

re f −u2

2

. (27)

Let us tackle first what the centerline of a joint PDF is. Considering the fitting of the joint PDF
from Lee and An [20], the centerline of a joint PDF seems to be a line of PDF values such that
it describes the main trend of the two-dimensional map. Here the centerline would correspond to
the path of relatively large PDF values, visible in Fig. 8 and mentioned in the preceding section.
The centerline would then correspond to local maximum values along each direction and could be
defined by the zero values of the joint PDF gradient. As this path of relatively large PDF values
spans large values of d , the gradient should be computed along d to capture all of the centerline.
Thus, it could be possible to define the joint PDF centerline as the zero isoline of the joint PDF
gradient computed along d .

Technically, there is an ambiguity when using the latter definition as the borders of the joint
PDF also present gradient values close to zero. As a first approach, the centerline of the joint PDF
is defined as the local maximum values of the PDF and is captured by searching for the local
maximum in each bin along the direction d . The centerline produced by this approach is given in
Fig. 10 and is referred to as the line of maxima. It is possible to observe a jump from u/〈u〉V = 0.2
to u/〈u〉V = 1.4 which is due to the existence of a local maximum in the region of low velocity and
small size, corresponding to the bottom right subset in Fig. 9. Even if this estimation of the joint
PDF centerline presents a discontinuity, it depicts well the overall trend of the joint PDF. Using
this estimation, it is possible to compare the two reference velocities uin j and uaxis for fitting the
joint PDF centerline. A fitting procedure is carried out for the fit parameter K and gives a value of
3.15〈u〉6

V × 10−3. It appears in Fig. 10 that using the injection velocity as a reference overestimates
the centerline. In contrast, using the mean liquid velocity on the jet axis leads to a more satisfactory
result. The latter velocity uaxis is then used in the following as the reference velocity. In addition,
it also appears that the quadratic formula proposed by Lee and An [20] performs nicely to capture
the trend of the present joint PDF at large x/dn, while it was initially derived for d3,2 at small x/dn

distances.
Figure 10 presents the droplet-size velocity at x/dn = 600 and Eq. (27) for different values of K .

It can be seen that Eq. (27) qualitatively depicts the trend of the joint PDF for values of K between
1.00 × 10−3〈u〉V and 1.00 × 10−2〈u〉V . This questions the value of K chosen to model the centerline
in Fig. 10, especially under the limitation of discontinuity of the previous estimation.
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FIG. 11. Comparison of the experimental size PDF and the PDF reconstructed from the size given
by Eq. (27) with (a) K = 3.15〈u〉6

V × 10−3 and (b) K = 7.00〈u〉6
V × 10−3. The pluses indicate the relative

difference between the two PDFs. The dotted and dashed lines represent relative differences of 0.3 and 0.1,
respectively.

In order to figure out a physically meaningful value of K , one could have a look at the
reconstruction of the droplet-size PDF from the sizes given by Eq. (27). Figure 11 compares the
experimental droplet-size PDF with the reconstructed PDF for two values of K : 3.15〈u〉6

V × 10−3

and 7.00〈u〉6
V × 10−3. In addition to comparing the experimental and model PDF, Fig. 11 gives the

relative difference between the two, defined as |1 − Pmodel/Pexpt | and represented by the red pluses.
An estimation is commonly considered as acceptable when the relative difference is less than 30%
and considered as relatively good when it is less than 10%. Those two thresholds are indicated in
Fig. 11 as well. On the one hand, the droplet-size PDF reconstructed with K = 3.15〈u〉6

V × 10−3

reproduces a trend similar to the experimental PDF but shows an almost constant offset with a
relative difference systematically larger than 0.3. On the other hand, the PDF reconstructed with
K = 7.00〈u〉6

V × 10−3 reproduces as well a trend similar to the experimental PDF and presents a
smaller offset than previously. The relative difference is less than 0.3 up to d/〈d〉V ≈ 3, where the
distribution tail begins. However, in both cases, the relative difference between the two PDF tails
presents large values, up to 10, and the model PDF is not able to capture the two modes for d/〈d〉V ≈
0.2 and 0.4. The box-and-whisker plot of the relative difference with K = 7.00〈u〉6

V × 10−3 reveals
that almost 50% of the relative difference values are under 0.3. It is worth noting that excluding the
PDF tail would improve this result as most of the large values of relative difference are recorded
in the tail region, whereas it represents only 4% of the total droplet number. Thus, the latter value
of K enables us to estimate a joint PDF centerline which produces a droplet-size PDF close to the
experimental one.

Even if Eq. (27) were derived in the context of turbulent combustion, i.e., for small x/dn

distances, and using the Sauter mean diameter d3,2, good agreement is found by depicting the trend
of the droplet-size–velocity joint PDF under the condition that the mean velocity on the jet axis uaxis

is used as a reference. In addition, this formulation is able to produce a droplet-size PDF with a
trend similar to the experimental one, if the value of the fitting parameter K is chosen in order to
minimize the difference between the model and the experimental PDF. However, the model PDF
fails to capture the first two modes in size.

V. CONCLUSION

In this work, it has been shown that, for agricultural-like jets lying in the second-wind-induced
regime [1], both the droplet-size and axial-velocity distributions present distinct modes. On the
one hand, the size distribution presents three modes for d/〈d〉V ∈ {0.2, 0.4, 1}, the second one
corresponding to the Taylor scale, and a large dispersion towards d/〈d〉V = 30 with a decay
scaling as d/〈d〉−2.7

V . On the other hand, the axial-velocity distribution presents two modes for
u/〈u〉V ∈ {0.2, 1.4} and a little dispersion. The dispersion of the latter is limited by two boundary
conditions: the global advection of the water fragments and the mean axial velocity on the jet axis.
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Regarding the distribution of v/〈u〉V , only one mode appears to exist and the distribution seems to
behave in a more classical manner, similar to what can be found in the turbulence literature. Close
similarity is observed for each distribution over the axial positions. Two theories have been tested
to model the droplet-size distribution. The first one comes from the work of Villermaux et al. [22]
based on a fine analysis of the ligament dynamics in low-turbulence fragmentation flows while the
second one comes from Novikov and Dommermuth [15], who used intermittency in turbulence. In
the limits of this study, it appears that, for x/dn � 400, the distribution proposed by Novikov and
Dommermuth [15] describes better the experimental size distribution and is able to capture the two
modes at small d/〈d〉V . Regarding the modeling of the axial-velocity distribution, only the mode
of low velocity u/〈u〉V ≈ 0.2 exists in the dispersion zone of the jet. Among the three distributions
derived for combustion applications, this mode is better depicted by the log-normal distribution.
Taking benefit from this insight, a model PDF was proposed to depict the overall distribution of
u/〈u〉V at a given x/dn. It does not capture the tails of the experimental distribution but describes
nicely the two velocity modes, i.e., more than 50% of the overall droplet population.

Multimodal distributions suggest that different characteristic groups could exist in the droplet
population. The analysis of the droplet-size–velocity joint PDF highlights the existence of three
different behaviors. Two of them cross-check the conjecture of Felis et al. [8], who highlighted the
existence of droplets behaving like passive tracers, with a small size and high-velocity fluctuations,
or like ballistic objects, with a large size, high mean velocity, and almost zero fluctuations. In
addition, this analysis reveals the existence of a third droplet group, characterized by a high axial
velocity and an intermediary range of size. Using the characteristics of the size and axial-velocity
PDF such as the spanning limits, the mode limits, and the distribution dispersion, it is possible
to characterize precisely five subsets of droplets. Four seem to depict droplet groups with specific
characteristic size and velocity while the last one seems to be the expression of the tails of the
nearby populations. The Stokes numbers of those subsets follow three trends and span from 0.39 to
44, which corroborates the ballistic and passive tracer behaviors. However, this quantity presents
a little dependence on the droplet velocity and is not able to discriminate droplet subsets with
similar characteristic velocities. In the combustion framework, Lee and An [20] derived a quadratic
formula to model the centerline of the joint PDF. After proposing a mathematical definition of such
a centerline, the formula was tested on the present experimental data. It qualitatively described
well the trend of the joint PDF. The size PDF reconstructed from this formula offers an acceptable
description of the experimental data but fails to capture the two small size modes. It appears that
results from combustion studies, developed in the region close to the nozzle, are valid as well in the
dispersion region of agricultural-like configurations, i.e., far away from the nozzle.

Knowing the most probable droplet groups in the present flow opens the way to better understand
the mechanisms at work. Several questions remain open. Which mechanism is responsible of the
small-droplet-size mode? Which mechanism do the largest droplets undergo? Which mechanism
produces such a power-law decay in the droplet-size distribution? Further works could focus on
analyzing the turbulent energy spectra or on characterizing the droplet geometry in each subset
of the size-velocity joint PDF to target such mechanisms. Complementary works could also be
achieved to numerically reproduce similar configurations and investigate the ligament dynamics
close to the nozzle.
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