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Red blood cells (RBCs)—erythrocytes—suspended in plasma tend to aggregate and
form rouleaux. During aggregation the first stage consists in the formation of RBC doublets
[S. M. Bertoluzzo, A. Bollini, M. Rasia, and A. Raynal, Blood Cells Mol. Dis. 25, 339
(1999)]. While aggregates are normally dissociated by moderate flow stresses, under some
pathological conditions the aggregation becomes irreversible, which leads to high blood
viscosity and vessel occlusion. We perform here two-dimensional (2D) simulations to
study the doublet dynamics under shear flow in different conditions and its impact on
rheology. A few illustrative results obtained here in 3D agree with 2D results. We sum
up our results on the dynamics of doublet in a rich phase diagram in the parameter space
(flow strength, adhesion energy) showing four different types of doublet configurations
and dynamics. We find that membrane tank-treading plays an important role in doublet
disaggregation, in agreement with experiments on RBCs. A remarkable feature found here
is that when a single cell performs tumbling (by increasing vesicle internal viscosity) the
doublet formed due to adhesion (even very weak) remains stable even under a very strong
shear rate. It is seen in this regime that an increase of shear rate induces an adaptation of
the doublet conformation allowing the aggregate to resist cell-cell detachment. We show
that the normalized effective viscosity of doublet suspension increases significantly with
the adhesion energy, a fact which should affect blood perfusion in microcirculation.

DOI: 10.1103/PhysRevFluids.6.023602

I. INTRODUCTION

The distribution of nutrients and oxygen to tissues and organs is ensured by red blood cells
(RBCs). Several cardiovascular dysfunctions and RBC anomalies may impair proper blood per-
fusion of the organism. For example, drepanocytosis [1,2], which results in a stiff cytoplasm of
RBCs under low oxygen conditions, compromises a proper RBC flow in small blood vessels due
to a formation of occlusions. In several blood diseases, such as diabetes and hypercholesterolemia,
as well as coronary heart disease, an enhanced tendency of RBCs to form aggregates [3–10] has
been reported. Fibrinogen (a protein contained in plasma) is the main cause of adhesion between
RBCs [11]. Under physiological conditions the range of human fibrinogen level is approximately
1.8–4 mg/ml [12], and RBCs aggregate and disaggregate reversibly under flow. In contrast, under
pathological conditions the level of fibrinogen may become high enough to lead to more stable
aggregates [9,13]. Foresto et al. [14] compared the aggregability of RBCs from diabetic and healthy
patients, using direct microscopic observation and numerical processing. They found that the RBCs’
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aggregation is highly enhanced in the case of diabetic patients compared to healthy patients. It
has been documented [15,16] that within these patients a degradation of the glycoprotein surface
of the RBC membrane (which controls the electrical as well as steric repulsion between RBCs)
favors aggregation. In addition, it has been reported that under pathological conditions, such as
diabetes and drepanocytosis, the fibrinogen concentration is higher [8,9,13]. It is to be noted also
that blood from pregnant women shows an important aggregability level which is correlated with
a high fibrinogen concentration [17]. It seems thus that enhanced adhesion can result both from an
increase of fibrinogen level and alteration of RBCs surface properties (within diabetic patients, for
example).

In a completely different context, that of microgravity during space missions, it has been reported
that the analysis of blood from cosmonauts [18] showed an increase of amylase activity. This
enzyme is known to digest partially the glycocalyx on the surface of cells, such as RBCs and
endothelial cells. This degradation promotes RBC-RBC aggregation [19] and their adhesion to
macrophages. This highlights the potential impact of long term space missions on cardiovascular
dysfunctions.

Theoretically, two models are evoked to describe the mechanism of adhesion between RBCs.
The first one, which was prevailing for a long time, is the bridging model and has been adopted to
account for fibrinogen and neutral dextran macromolecule-induced RBCs aggregation [20]. This
model assumed that the proteins adsorb onto the RBC membrane and form a cross-link to the
nearby RBC [21]. The second model is the depletion one, stating that configurational entropy of the
suspended molecules (e.g., fibrinogen) is lowered close to RBC surface, leading to a depletion layer,
so that when the gap between two RBCs becomes of the order of depletion layer, the gap becomes
less populated by fibrinogen molecules than elsewhere, and this results in osmotic attraction between
RBCs.

The erythrocyte doublet aggregation is the primary process in the formation of erythrocyte
aggregates in blood flow. Bertoluzzo et al. [22] studied the erythrocytes aggregation, using light
transmission through blood sample and observed that the aggregation starts by the formation of a
collection of RBC doublets. The doublet formation is a first basic building block for aggregation that
should be clarified. Ju et al. [23] found numerically, using a Morse potential to account for cell-cell
interaction (representing depletion forces), that a RBC doublet with a homogeneous deformability
sustains the adhesion, while an increased deformability difference between the two RBCs forming
the doublet favors the doublet dissociation. In another numerical study, Bagchi et al. [24] modeled
adhesion between RBCs by the ligand-receptor model (the bridging model). They analyzed the
dependence of dynamics of RBC aggregates on the adhesion energy. They found that the shearing
force due to an imposed flow is more efficient to break the bonds than the normal pulling force.
Wang et al. [25] observed numerically that the doublet performs rotation or undergoes dissociation
depending on the strength of intercellular force, the membrane deformability, and the shear stress.
Recently, Flormann et al. [26] analyzed the doublet shape in a quiescent fluid in vitro and in silico,
and observed that the contact surface of the doublet is flat for weak adhesion and becomes of sigmoid
type upon an increase of the adhesion energy (the protein concentration). Their results [26] show a
good agreement between 2D and 3D simulations and with in vitro experiments. Hoore et al. [27]
studied the effect of the spectrin network elasticity on the doublet shapes in equilibrium, and found
qualitatively the same doublet shapes found in 2D [26].

More recently Quaife et al. [28] studied dynamics of a doublet under extensional and shear flows
by using a 2D vesicle model. Under a linear shear flow (which is of interest to our study) they
observed that the doublet undergoes a tumbling regime, that we shall refer to as rolling (for the sake
of distinction with the classical single cell tumbling). By analyzing systematically dynamics of 2D
vesicle doublets under various conditions, we find, besides rolling, three other distinct dynamics:
flexible rolling (FR), rolling-sliding (RS), and flow alignment (FA). The FR motion corresponds to a
situation where the two vesicles undergo global tumbling (rolling) but the contact interface between
the two vesicles oscillates between flat and sigmoid shape. In the RS regime the two vesicles slide
with respect to each other during rolling. The FA regime corresponds to the situation where the two
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vesicles align with the flow. We present a general phase diagram of different phases of doublets.
We shall also analyze the overall rheology. RBC aggregation controls the rheological properties of
blood, which may constitute a promising diagnosis for cardiovascular diseases [29]. We will also
present a few illustrative simulations in 3D in the presence of shear elasticity. We find occurrence
of R, FR, RS, and S in the same regions of flow and adhesion strength as in 2D. While a systematic
analysis is under investigation, the preliminary results lend support to the general character of the
dynamics.

II. MODEL AND SIMULATION METHOD

A. Membrane model

We consider a 2D model, namely phospholipid vesicles. The two-dimensional vesicle model
has proven to capture several features known for RBCs. Shapes like parachute and slipper [30,31]
and dynamics such as tumbling and tank-treading [32,33] are also manifested by both systems. We
consider a set of phospholipid vesicles inside a straight channel, bounded by two rigid walls located
at y = 0 and y = W , where W is the channel width. The vesicles are subject to a linear shear flow
v∞

x (y) = γ̇ y where γ̇ is the shear rate. Periodic boundary conditions are used along the x axis (the
flow direction).

The force applied by the membrane on the surrounding fluid is obtained from the functional
derivative of the following energy, which is the sum of three terms: the bending energy (Helfrich
energy [34]), the membrane incompressiblity contribution, and the adhesion energy (Lennard-Jones
potential) between two vesicles:

E =
∑

i

Eb
i +

∑
i �= j

Eadh
i, j , (1)

where

Eb
i = k

2

∮
mi

c2ds +
∮

mi

ζ ds (2)

is the bending and incompressibility energy of the ith vesicle and

Eadh
i, j = ε

∮
mi

ds(Xi )
∮

mj

ds(X j )φ(|Xi − X j |) (3)

is the energy of adhesion between ith and jth vesicles. The variable s represents the curvilinear
coordinate on the vesicle contour, c is the local curvature of the membrane, k is the membrane
bending rigidity, ζ is a local Lagrange multiplier associated with the constraint of local perimeter
inextensibility, φ = −2( h

ri j
)
6 + ( h

ri j
)
12

is the Lennard-Jones potential which describes attractive
interaction at long ranges and repulsive interaction at short ranges. Here ri j = Xi − X j , where
Xi and X j are two position vectors of two material points on two different vesicles i and j. h
is the equilibrium distance between two points of the ith and jth vesicles and ε is the minimum
energy associated to this distance. The functional derivative (providing the force) of the bending
energy the membrane incompressiblity contribution can be found in [35]. The total force including
vesicle-vesicle interaction has the following form:

f (Xi ) = f (Xi )
b + f (Xi )

adh, (4)

where

f (Xi )
b = k

[
d2c

ds2
+ c3

2

]
n − cζn + dζ

ds
t (5)

and

f (Xi )
adh = −ε

∑
j �=i

∫
mj

[
dφ(ri j )

dri j

(
ri j

ri j
· n(Xi )

)
+ c(Xi )φ(ri j )

]
n(Xi )ds(X j ). (6)
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TABLE I. Fibrinogen level versus interaction energy between two RBCs measured using atomic force
microscopy [11].

Fibrinogen concentration (mg/ml) 0.898 2.391 4.197 5.402 6.597 8.098
Interaction energy (μJ/m2) −1.884 −2.719 −3.748 −4.655 −4.922 −6.566
Dimensionless macroscopic adhesion energy ε̄adh 42.38 61.17 84.33 104.73 110.74 147.73

n and t are the normal and tangential unit vector respectively. The force can be rewritten in a
dimensionless form:

f̄ (Xi )
b =

[
d2c̄

ds̄2
+ c̄3

2

]
n − c̄ζ̄n + d ζ̄

ds̄
t (7)

and

f̄ (Xi )
adh = −ε̄

∑
j �=i

∫
mj

[
dφ̄(r̄i j )

dr̄i j

(
r̄i j

r̄i j
· n(Xi )

)
+ c̄(Xi )φ̄(r̄i j )

]
n(Xi )ds̄(X j ), (8)

where dimensionless variables are defined as follows:

f̄ = R3
0 f

k
, ε̄ = R2

0ε

k
, c̄ = cR0, s̄ = s

R0
, r̄i j = ri j

R0
, φ̄(r̄i j ) = φ(r̄i jR0). (9)

R0 = √
A/π is the effective radius of the vesicle and A is the enclosed vesicle area.

Previously, Brust et al. [11] quantified the interaction energy between two RBCs at various
fibrinogen and dextran levels using single cell force microscopy. From their data (Table I), we can
estimate which range of protein level corresponds to our simulation condition. When the contact
length of two adhering vesicles is larger than the equilibrium distance h, the interaction energy
per unit surface is practically the energy of adhesion between two infinite plates. The distance h
corresponds to the minimal energy between two points, and does not necessary correspond to the
minimal energy for two planar surfaces. Let us denote that distance hp (see Fig. 1). We first calculate
the energy for a given separation hp,

εadh = −ε

∫ ∞

−∞
φ
(√

x2 + h2
p

)

dx = ε

∫ ∞

−∞

[
2

(
h2

h2
p + x2

)3

−
(

h2

h2
p + x2

)6
]

dx = ε

(
3πh6

4h5
p

− 63πh12

256h11
p

)
, (10)

where x is the coordinate along the vesicle-vesicle contact line. We easily find that this energy has a
minimum for hp = (231/320)1/6h, and is equal to

εadh � 1.6862hε. (11)

FIG. 1. Notations.
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This will define the adhesion energy of the doublet. The dimensionless macroscopic adhesion energy
(to be referred to in all following results) is defined as

ε̄adh = εadhR2
0

k
. (12)

We will take typical values of RBC membrane rigidity k = 4 × 10−19 J and radius R0 = 3 μm.

B. Boundary integral formulation

The RBCs’ velocity and size are very small, corresponding to a small Reynolds number (in the
range 10−4 to 10−2). Here we consider the limit of vanishing Reynolds number. In this case the fluid
velocity inside and outside the vesicles is described by the Stokes equations:

−∇p + ηi�v = 0 (13)

∇ · v = 0, (14)

where ηi, with i = 0, 1, is the viscosity of the internal (1) or the external (0) fluid, p is the pressure,
and v is the velocity field. Due to the linearity of Stokes equations we can transform the set of fluid
equations into an integral equation. This is based on the use of Green’s function techniques [36],
and is a quite accurate method for interface problems. More precisely, for a point r0 which belongs
to a membrane, the velocity v(r0) of that point has the following dimensionless expression:

v(r0) = 2

1 + λ
v∞(r0) + 1

2πCa(1 + λ)

∮
m

G(r − r0) · f (r)ds(r)

+ (1 − λ)

2π (1 + λ)

∮
m

v(r) · T (r − r0) · n(r)ds(r), (15)

where Gi j (r − r0) and Ti jk (r − r0) are the Green’s functions corresponding to the two-dimensional
channel bounded by two rigid walls [37] (Gi j refers to the so-called single-layer contribution, while
Ti jk accounts for the double-layer contribution). The Green’s functions satisfy the no-slip boundary
condition at rigid walls. Ca is the capillary number and λ the viscosity contrast, to be defined below.

We will analyze below the effect of the relevant blood flow and geometrical parameters on
the rheological behavior of a vesicle doublet and discuss the mechanism of separation. In order
to preserve high accuracy we use Fourier basis discretization of all functions and compute all
derivatives in the Fourier domain [38,39].

At high shear rates numerical stability problems may arise. In order to ensure long-term stability
of the simulations, we carefully keep the vesicle perimeter and surface fixed. Normally, fluid
incompressibility and membrane impermeability should keep the inner area of the vesicle constant.
However, a small drift due to numerical errors cannot be fully excluded. We compensate this drift by
reinflating or deflating the vesicle through homogeneous normal deformation. Several benchmark
simulations were performed with more refined meshes and time steps, higher numbers of Fourier
harmonics and sampling points, and reduced critical interparticle distance so as to avoid numerical
artifacts. Based on this verification and to ensure the numerical convergence and accuracy, each
vesicle was characterized by 63 Fourier harmonics. 512 sampling points were used to resolve the
short-range hydrodynamics interactions.

C. Dimensionless parameters

Dimensionless numbers are used to describe the vesicle and the flow characteristics:
(i) The capillary number allows one to quantify the flow strength over bending rigidity of the

membrane:

Ca = η0γ̇ R3
0

k
≡ γ̇ τc. (16)
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(ii) The confinement describes the ratio between the effective diameter of the vesicle and the
channel width:

Cn = 2R0

W
. (17)

(iii) The viscosity contrast is the ratio between the viscosities of the internal and external fluids:

λ = η1

η0
. (18)

(iv) The reduced area combines the vesicle perimeter L and its enclosed area A:

τ = (A/π )

(L/2π )2
. (19)

This value will be set to 0.65 (inspired by that of human RBCs). Throughout this paper, we will
use the following scales: R0 for the distance, τc for the time, and η0 for the viscosity.

III. RESULTS

The strategy followed in this work consists of preparing initially two vesicles in the middle of the
channel, separated by a small distance that allows them to adhere to each other in the absence of an
applied flow. Once they adhere to each other and reach a steady state configuration, which depends
on the adhesion strength, a shear flow is applied. The study of conformation of vesicle doublet in the
absence of flow allowed us to perform benchmarking of our code by reproducing previous results
[26,27].

A. Effect of viscosity contrast, flow strength, and adhesion on the phase diagram of doublet

We first analyzed the effect of the viscosity contrast λ, the capillary number Ca, and the adhesion
energy εadh on the dynamics of the doublet. The confinement parameter is set to Cn = 0.4. We
explored two values of viscosity contrast, λ = 1 and λ = 10. It is to be noted (for later purposes)
that a single vesicle exhibits a tank-treading motion in the range from λ = 1.0 (and also below that
value) to approximately 12 (when Cn = 0.4 and τ = 0.65), beyond which it undergoes tumbling.
This means that for both viscosity contrasts a single vesicle shows tank-treading. The critical value
for transition from tank-treading to tumbling also depends on Cn. We will explore a less confined
situation where a vesicle shows tumbling for λ = 10. We will see in the next section that having
tumbling will dramatically change our conclusion on the doublet separation process.

Once the doublet reaches a steady-state configuration at equilibrium (i.e., in the absence of
external flow), we applied a shear flow with different values of shear rate and analyzed the
dynamics exhibited by the doublet. We found a quite rich phase diagram [Fig. 2(a)] in a wide
range of capillary number Ca and dimensionless macroscopic adhesion energy ε̄adh. Before giving a
theoretical foundation to each phase exhibited by the doublet, let us first describe the phase diagram.
Three regimes have been identified in the case of λ = 1. (i) At low capillary number there is a rolling
phase: the two vesicles remain attached with constant contact length and show a rolling motion [akin
to tumbling; see Fig. 3(a)]. This regime is denoted as R in Fig. 2(a). (ii) When the adhesion energy
decreases, the contact interface shape transits from sigmoid to a flat interface over time as shown
in the snapshots of Fig. 3(b). (iii) Increasing the capillary number, the phase (FR) undergoes a
transition towards a phase of rolling + sliding (RS): the doublet shows rolling accompanied by a
sliding between the vesicles, and the length contact changes over time by oscillating between two
values [Fig. 3(c)]. The sliding of the two vesicles on each other is due to the competition between
the aggregation and disaggregation (flow) forces, as well as due to tank-treading of each membrane.
This regime is denoted as RS in Fig. 2(a). (iv) At high capillary number the separation between the
vesicles takes place, meaning the disaggregation force due to flow is high enough to overcome the
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FIG. 2. Phase diagrams showing the different behaviors of a doublet in the parameter space of the capillary
number and the dimensionless macroscopic adhesion energy. The simulation data are shown as dots. (a) λ =
1.0, (b) λ = 10.0. In (a) the square symbol represents 3D simulations which are shown in the Supplemental
Material [40] (R.avi, FR.avi, RS.avi, and S.avi).

adhesion between vesicles. This regime is denoted as S in Fig. 2(a). We will see below situations
where a doublet may persist whatever the magnitude of the shear flow is.

In order to check the robustness of our results we have briefly analyzed the doublet in 3D by
adopting a capsule model with shear elasticity (see [26] for a brief description of the model). We
present here four typical phases exhibited by a 3D doublet: R, FR, RS, and S. The green squares in
Fig. 2 (left panel) show the values of capillary number and adhesion energy corresponding to 3D

FIG. 3. Snapshots showing the dynamics of a vesicle doublet for different capillary number Ca and
viscosity contrast λ. Here ε̄adh = 84.00 and Cn = 0.4. The snapshots are taken over one period of the doublet
dynamic.
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FIG. 4. Bifurcation diagram in the absence of flow (blue) and in the presence of flow (red) showing
maximum deformation amplitude of the contact line. The dashed line is the unstable branch (drawn by hand
since the unstable branch can not be captured by dynamics). The red branches are captured by starting from
two different initial conditions (state 1 and 2, shown in Fig. 5). Note that if for state 1 the amplitude of the
contact line deformation is counted positive, then it is negative for state 2, and vice versa. Below the turning
point we have FR phase and beyond we have R phase.

simulations. We have taken the same bending rigidity as in 2D and the capillary number associated
with shear elasticity is defined as Cs = η0γ̇ R0/μ (where μ is cytoskeleton shear modulus, μ �
4 μN/m). The ratio between this number and bending one is μR2

0/κ � 100. This allows, if need
be, to convert the data in Fig. 2 in terms of Cs (we find 0.03 and 0.06). For these values usually
RBCs undergo tumbling due to shear elasticity [41,42]. In the Supplemental Material [40] we show
movies of the 3D simulations. We leave the exploration of the full phase diagram in 3D for future
works.

1. Theoretical foundation to the phase diagram

We have seen in [26] that at equilibrium (absence of flow) at small adhesion the cell-cell interface
is flat while at large enough adhesion energy the interface is deformed. The passage from the flat
to the deformed configuration is a supercritical bifurcation. The shape of the cell-cell interface is
characterized by the value of the amplitude of deformation of the contact zone between cells As

(when the contact interface is flat As = 0, and when the interface has a sigmoid form As �= 0).
Figure 4 (blue symbols) shows the supercritical bifurcation that we have reproduced here. After the
bifurcation there are two states (the upper and lower branches) where the two corresponding doublet
shapes (called state 1 and state 2 in Fig. 5) are mirror symmetric with respect to a horizontal mirror.

In the presence of flow the sigmoid interface confers chirality to the doublet, as explained in
Fig. 5. The order parameter As is a measure of the chirality of the doublet. Hence we conclude
that the transition from a straight doublet interface at low adhesion to a sigmoid interface at high
adhesion, as observed without flow, is a transition from achiral to chiral states. The shear flow is
chiral as well: Writing the shear flow as (γ̇ y, 0), we see that it can be represented as a sum of
an elongational flow (γ̇ y/2, γ̇ x/2) and a rotational flow (γ̇ y/2,−γ̇ x/2). While the elongational
flow is achiral, the rotational flow is clearly chiral. It is also easy to check directly that no rotation
of coordinates can transform flow (γ̇ y, 0) into flow (−γ̇ y, 0). Because the shear flow is chiral, a
doublet subject to this flow is chiral regardless of the adhesion energy. Indeed, if the shape of the
doublet under shear flow were achiral, the membrane and adhesion forces would also be achiral,
while the viscous forces of the chiral flow applied to an achiral shape are chiral. It would thus be
impossible for the two to balance each other (and to respect a force-free condition).

023602-8



ERYTHROCYTE-ERYTHROCYTE AGGREGATION DYNAMICS …

FIG. 5. (a) The two states 1 and 2. (b) The time evolution of the amplitudes of the interface between the two
cells for a given situation corresponding to the two branches in Fig. 4 in the regime of R phase. As is defined
as the algebraic amplitude measuring maximum algebraic values. More precisely, the amplitude is positive if
the interface is displaced counterclockwise (see upward and downward white arrows in the left panel) from the
straight line segment joining the two endpoints of the interface (shown as a white horizontal line) and negative
if displaced clockwise (right panel). For example it is positive in (a) and negative in (b). The black arrow shows
the value of As. (c) We see from amplitude evolution an asymmetry between the two branches confirming the
imperfect bifurcation in Fig. 4.

A systematic analysis (Fig. 4, red symbols) shows a typical diagram of an imperfect bifurcation.
When adhesion is small, and starting from state 1 or state 2 (Fig. 5), the final solution tends always
to the same branch (upper red branch, Fig. 4). If the adhesion energy is beyond the turning point
of the lower branch corresponding to the imperfect bifurcation (where dashed red line starts), we
find that an initial doublet configuration with state 1 leads ultimately to the upper branch while state
2 tends to the lower branch (see Movie 5.avi in the Supplemental Material [40]). The imperfect
bifurcation allows us thus to distinguish between FR and R. At low energy (before turning point)
the solution corresponds to the FR solution and after turning the point to the R solution. The turning
point corresponds to a demarcation line between FR and R.

Let us provide a qualitative picture of the imperfect bifurcation. We have seen in [26] that the
energy associated with interface deformation (with amplitude As) can be written as a(β − βc)A2

s +
bA4

s , with β ∼ εadh/κ , βc the critical value for bifurcation, and a and b are positive constants. In
the presence of flow the work due to interface deformation is proportional to CaAs (changing the
direction of flow changes sign of deformation, leaving CaAs invariant). The total energy takes thus
(apart from numerical prefactors) the form

E = CaAs + a(βc − β )A2
s + bA4

s . (20)

If Ca = 0 the energy is minimal for As = 0 if β < βc (low adhesion), and is minimal for As �= 0
when β > βc. In the presence of flow the energy has a typical form of imperfect bifurcation. Setting
the derivative of E with respect to As to zero yields a cubic equation for As which has either a single
(nonzero) real solution or three real solutions depending on β (for a given Ca). This is nothing but
the bifurcation represented in red in Fig. 4 showing a single solution with As �= 0 at small adhesion
and three solutions at large adhesion.

The transition from FR to RS corresponds to a sudden relative complete sliding of the two cells
with respect to each other. By complete we mean that the surfaces slides from one end to the other
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FIG. 6. Minimal contact length between the two cells as a function of adhesion energy showing its collapse
when passing from FR to RS.

where the two cells remain pinned by a very small area [Fig. 3(c)]; the two cells slide back and
forth over time. Figure 6 shows the minimal area of contact as one crosses the boundary FR-RS,
showing a sudden jump. Increasing Ca may either lead to FA or S phase. In the FA phase the two
cells align steadily with the flow, where each cell exhibits tank-treading [Fig. 3(d)]. Finally, the S
phase corresponds to the situation where the two cells cease to be bound to each other.

2. Effect of viscosity contrast

Subsequently we have evaluated the effect of the viscosity contrast on the phase diagram
discussed above. The results are shown in Fig. 2(b) for λ = 10. Several observations are made.
First, the rolling region becomes wider if viscosity contrast is increased. Second, the rolling-sliding
phase is absent for this viscosity contrast, in favor of a flow-alignment (FA) phase [Fig. 3(d)]. In
this phase the vesicles align with the flow direction, remain attached, and they show a tank-treading
motion of their membrane. In order to shed some light on the origin of the flow alignment at high
viscosity contrast, we performed simulations on a single vesicle at fixed values of the capillary
number Ca and the confinement Cn, and we varied only the viscosity contrast λ. Figure 7 shows that
the inclination angle � of a single vesicle (the angle between the long axis of the vesicle and the

FIG. 7. Inclination angle of a single vesicle as a function of viscosity contrast λ. The angle decreases with
λ. The snapshots show the vesicle under shear flow of Ca = 10.0.
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flow direction) decreases with the viscosity contrast, until it aligns with the flow direction at high
viscosity contrast. In this configuration (flow alignment) the doublet is in an orientation with a small
extensional tension which is not efficient to enforce the two vesicles to slide with respect to each
other.

B. The mechanism of doublet separation

One major question is whether or not doublet formation is reversible in vivo, and whether there
is any simple criterion (or hint) to answer this question. In this regard, Chien et al. [43] investigated
experimentally the disaggregation of RBC doublets under oscillatory shear flow. They prepared two
adhered cells in a flow channel where the bottom cell adheres to a fixed plane and a polystyrene latex
particle is used as a marker on the top cell. By applying an oscillatory shear flow they observed that
the velocity of the latex bead is twice the velocity of the upper cell. From this it was concluded that
the detachment occurs as rolling of the top cell along the bottom one and not as sliding. In other
words, the bottom surface of the top cell remained stationary in the laboratory frame except at the
point where the detachment occurred, while the velocity of the top surface of the top cell was twice
that of its center of mass. This motion is similar to tank-treading in the reference frame comoving
with the top cell, where its top and bottom surfaces move with opposite velocities, while the overall
shape of the cell remains virtually unchanged. Thus the ability of the cell membrane to tank-tread is
essential for the doublet separation. We now use our model to see whether preventing the membrane
from tank-treading would have an effect on doublet dissociation.

1. Suppression of doublet separation

We have seen above that there exists (Fig. 2) a region of separation (region S) for a given set of
parameters. In both diagrams of Fig. 2 the separation phase (S) is preceded either by RS or FA phase.
In both of the latter two phases the membrane undergoes tank-treading. The question naturally arises
of whether or not the separation phase is associated with the existence of membrane tank-treading.
We have thus investigated if the suppression (or a significant reduction) of membrane tank-treading
may affect separation. For that purpose we have chosen a wide enough channel (Cn = 0.2) and
only varied the viscosity contrast λ in order to reduce membrane tank-treading. As a guide, we
have first analyzed the case of a single vesicle and determined the critical λ for the transition from
tank-treading to tumbling, and found λ � 7.0 (note that when Cn = 0.4 this transition takes place
at about λ = 12). This means that for Cn = 0.2 a single vesicle shows tank-treading for λ = 1 and
tumbling for λ = 10. We have analyzed the phase diagram for these two values and the results are
shown in Fig. 8. For λ = 1 the same overall picture is found as in Fig. 2(a). However, the situation
is drastically different when λ = 10.0 [Fig. 8(b)]. Indeed, we see that RS and S phases are almost
absent, and they appear only for extremely weak adhesion, far below physiological ranges. In other
words, the doublet seems to be very robust even for a very large capillary number. We have attempted
to dig further into this result. The doublet precise shape is a compromise between adhesion, which
tends to increase vesicle-vesicle interface (like sigmoid shape) and bending energy, which tends
to minimize deformation, favoring a flatter interface. Deformation ability can be measured by Ca,
and dimensionless macroscopic adhesion energy by ε̄adh. An enlightening representation of our
result Fig. 8 is to plot ε̄adh as a function of Ca/ε̄adh. The results are shown in Fig. 9. This clearly
shows that the shape adapts itself to shear flow. Indeed, if that were not the case, namely that the
doublet conformation were independent of Ca for given adhesion energy, then the R/RS and RS/S
phase borders observed for the lowest dimensionless macroscopic adhesion energies would continue
vertically to high dimensionless macroscopic adhesion energies (in the representation of Fig. 9). In
other words, the transition value of Ca/ε̄adh would be independent of adhesion energy. Indeed, if
bending energy saturates, the only remaining two energy scales are shear and adhesion ones, so that
the critical Ca/ε̄adh would have been a numerical constant. The fact that the phase diagram in the new
representation shows the same trend as in Fig. 8(b) is a clear indication that the doublet adapts its
shape in order to escape dissociation. Figure 10 shows some doublet shapes highlighting adaptation
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FIG. 8. Phase diagrams showing the different behaviors of doublets in the parameter space of the capillary
number and the dimensionless macroscopic adhesion energy. The simulation data are shown as dots. (a) λ =
1.0, (b) λ = 10.0.

to shear flow. Our results are consistent with the work of Chien et al. [43], in that membrane
tank-treading plays an important role in doublet dissociation. For a single RBC the possibility of
membrane tank-treading depends on capillary number, defined by Cs = ηṘ0γ /μ, where we recall
μ is the cytoskeleton shear modulus (typically μ � 4 μN/m). For low enough Cs tumbling prevails
whereas membrane tank-treading is possible at high Cs [41,42]. Taking for η the value of water
viscosity (which is close to the plasma one) and R0 ∼ 3 μm, we obtain Cs ∼ 10−3γ̇ (with γ̇ in units
of s−1). For healthy RBCs the transition between tumbling and tank-treading takes place at about
Cs ∼ 0.1 [41,42]. In human vascular networks we expect membrane tank-treading to take place in
arterioles only (the only vasculature site where shear rate can reach values of about a few 103 s−1).
In some RBCs diseases, such as thalassemia [44], sickle-cell disease [45], and malaria [46], the
membrane shear modulus as well as cytoplasm viscosity may be significantly higher than healthy
ones. The corresponding shear rate beyond which membrane tank-treads may become significantly
larger for pathological cells [41] so that its occurrence in vivo becomes unlikely. We can speculate
that in this case RBC doublets and larger aggregates become irreversible, compromising thus a
proper blood perfusion to tissues and organs.

FIG. 9. Phase diagrams showing the different behaviors of doublets in the parameter space of the di-
mensionless macroscopic adhesion energy and the ratio of capillary number over dimensionless macroscopic
adhesion energy. The simulation data are shown as dots.
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FIG. 10. Phase diagrams (same as in Fig. 2) showing a few shapes of doublet in the parameter space of
the capillary number and the dimensionless macroscopic adhesion energy. The simulation data are shown as
dots. The darkest spots indicate the pairs of parameters for which the shape is shown. We clearly see shape
adaptation as Ca increases.

C. The effect of adhesion energy on the instantaneous normalized viscosity.

The goal of the next two paragraphs is to explore the effect of doublet dynamics discussed above
on the rheological behaviors of a doublet suspension. In order to quantify rheology we analyze the
normalized viscosity. Here we consider the very dilute regime. The effective viscosity can be written
in the following form:

η = η0(1 + [η]ϕ), (21)

where ϕ is the vesicle concentration and [η] is the normalized viscosity (called also the intrinsic
viscosity), representing the doublet contribution to the viscosity. The effective viscosity is the ratio
of the xy component of stress tensor to the applied shear rate:

η = 〈σxy〉
γ̇

, (22)

Where angle brackets 〈· · · 〉 denote a surface average (i.e., average over the simulation area).
Following Batchelor [47], the normalized viscosity is given by:

[η] = η − η0

η0ϕ
= 1

η0Aγ̇

∑
i

[∫
mi

y fxds + η0(λ − 1)
∫

mi

(nxvy + nyvx )ds

]
. (23)

The first term of the normalized viscosity describes the dynamical contribution which is due to the
membrane force, whereas the second term represents the kinematic contribution of the vesicle (the
membrane velocity).

We first analyzed how the normalized viscosity [η] changes during time for increasing adhesion
energy with a viscosity contrast λ = 1.0 and low capillary number Ca = 1.0. Figures 11(a)–11(d)
show that the viscosity of the suspension is periodic with time. At very low adhesion strength the
doublet shows RS regime [Fig. 11(a)]. This state undergoes a transition towards the R regime at
high adhesion strength [Fig. 11(d)]. This transition is accompanied by an increase of the amplitude
of the normalized viscosity. In the R phase the contact interface of the doublet does not evolve with
time. The amplitude as well as the period of the normalized viscosity oscillation decreases with the
adhesion strength. This is attributed to the fact that the two vesicles become more and more pinned
to each other [Fig. 11(d)] as the adhesion energy increases, so that the overall cross section of the
doublet which is exposed to the flow decreases, resulting in less resistance.
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FIG. 11. Evolution of the normalized viscosity [η] as function of time. The snapshots are taken over one
time period as shown with the red dots. Here λ = 1.0, Cn = 0.4. and Ca = 1.0. (a) ε̄adh = 5.30, (b) ε̄adh =
23.40, (c) ε̄adh = 41.80, (d) ε̄adh = 84.00.

D. Time average rheology of doublet suspension

As seen above, a single vesicle is known to exhibit both tank-treading motion (at low viscosity
contrast) and tumbling motion (at high viscosity contrast). A suspension of vesicles exhibit both
shear thinning and shear thickening depending on viscosity contrast [48]. Here we find that the
doublet suspension always exhibits shear thinning for the set of parameters explored so far. The
results are shown in Fig. 12 (note that capillary number axis in Fig. 12 is shown in logarithmic

FIG. 12. The normalized viscosity [η] as a function of capillary number Ca for different dimensionless
macroscopic adhesion energies ε̄adh. The simulation data are shown as dots. (a) λ = 1.0 and Cn = 0.4,
(b) λ = 10.0 and Cn = 0.4, (c) λ = 1.0 and Cn = 0.2, (d) λ = 10.0 and Cn = 0.2. The circle symbol represents
the rolling phase; star: flexible rolling; square: rolling + sliding; triangle: flow alignment; cross: separation.
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scale). In all the three studied cases [Figs. 12(a)–12(c)] the viscosity collapses by about 50%.
A common feature shown in Figs. 12(a)–12(c) is that all curves (obtained for different adhesion
energies) collapse on the same curve for high enough capillary number. This collapse corresponds
to the situation where all doublets are dissociated.

The persistence of shear thinning here is quite natural. Indeed, as Ca increases we have succession
of phases that tend to lower cross section of the doublet against the flow. At low Ca the doublet shows
a rigid-like rolling (R). Increasing Ca leads to FR. Because in this case the doublet flattens during
time (due to interface flexibility), we expect that the doublet offers less flow resistance. Similarly,
in the RS and FA regimes the doublet spends some time (RS) in the aligned direction with the flow,
and this should lead to viscosity reduction. In the FA regime the doublet viscosity is constant with
shear rate since the FA configuration remains steady during time. Since our preliminary simulation
in 3D shows the existence of R, FR, and RS upon increasing Ca, we expect the same impact on
rheology as in 2D.

Figure 12(d) shows a peculiar behavior, in that the curves do not collapse at large capillary
number, due to the absence of dissociation. This figure shows a peculiar behavior: at low capillary
number the suspension with high dimensionless macroscopic adhesion energy has a higher normal-
ized viscosity (which is quite intuitive), but at higher capillary number the opposite is found. Let us
provide an argument for this behavior. For a low dimensionless macroscopic adhesion energy [say,
the red curve in Fig. 12(d)] and at low capillary number the doublet shows the R motion where the
contact length between the two vesicles oscillates in time while keeping sigmoid shape (not to be
confused with FR; see Movie 1 in the Supplemental Material [40]). For a higher adhesion [say, the
blue curve in Fig. 12(d)], and at low capillary number, the contact surface has a persistent sigmoid
shape. In other words, for a high enough adhesion the doublet is quite rigid in its configuration,
yielding a higher viscosity, as intuitively expected. When the capillary number increases, for the low
adhesion case [the red curve in Fig. 12(d)] the shear stress is strong enough to pull on the doublet,
leading to a peeling off the tail of each vesicle at the poles (see Movie 3 in the Supplemental Material
[40]). The extra tails that stick out of the vesicles increase the cross section of the doublet, leading
to a higher viscosity than the case where adhesion is stronger (preventing tails from sticking out of
the doublet; see Movie 4 in the Supplemental Material [40]). This explains why, at high capillary
number, for weak adhesion the viscosity is higher than for strong adhesion (the blue and red curves
intersect).

Finally, let us quantify the effect of the dimensionless macroscopic adhesion energy on the
normalized viscosity. Note that the range of the dimensionless macroscopic adhesion energy from
5.0 to 75.0 corresponds to the physiological conditions of fibrinogen level (these values are estimates
from [11]). Pathological conditions correspond to a value of dimensionless macroscopic adhesion
energy greater than 75.0. Figure 13 shows that [η] increases monotonically with ε̄adh, except for
the case of Fig. 13(d) with λ = 10, which has been discussed in Fig. 12(d) where we have seen an
inversion of normalized viscosity behavior as a function of the dimensionless macroscopic adhesion
energy. Note also that the range of variation of normalized viscosity can be ample enough [it can
attain a factor of 2; see Fig. 13(a)]. Figure 13(b) shows that (for λ = 10) the normalized viscosity
exhibits two jumps, one at about ε̄adh = 12, which is due to a sudden transition from S to FA when
the adhesion energy increases, and a second jump at ε̄adh = 57, due to a transition from FA to
R. The plateau shown in Fig. 13(b) (triangles) corresponds to the FA regime, where the doublet
configuration remains the same upon increasing adhesion energy.

IV. SUMMARY AND CONCLUDING REMARKS

To summarize, in this paper we employed a boundary integral method and vesicle model to study
the dynamics and the rheology of a vesicle doublet under shear flow. We varied the dimensionless
macroscopic adhesion energy in this study from 5.0 to 105.0, a range which corresponds to
physiological and pathological conditions. We found that the doublet can exhibit rolling, flexible
rolling, rolling + sliding, and aligned vesicles, and that separation depends on several parameters
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FIG. 13. The normalized viscosity [η] as a function of the dimensionless macroscopic adhesion energy
ε̄adh for different values of viscosity contrast and confinement. The simulation data are shown as dots.
(a) Ca = 1.0 and Cn = 0.4, (b) Ca = 100.0 and Cn = 0.4, (c) Ca = 1.0 and Cn = 0.2, (d) Ca = 100.0 and
Cn = 0.2. The circle symbol represents the rolling phase; star: flexible rolling; square: rolling + sliding;
triangle: flow alignment; cross: separation.

(capillary number, adhesion energy, and viscosity contrast). A remarkable feature is that when each
single cell exhibits tumbling (for example due to a high enough internal viscosity), the doublet
becomes quite stable even for an extremely large shear stress (the separation region is almost absent
in the phase diagram, Fig. 8). Indeed, the doublet adapts its spatial configuration to the applied
flow in a way to escape dissociation. An in vivo RBC membrane may perform tank-treading in
arterioles only. However, several RBCs pathologies are associated with increased membrane rigidity
or cytosol viscosity. This may result in a collapse of the membrane tank-treading ability (even
in arterioles) causing a stability of doublets, and impairing blood perfusion in microcirculation.
Another important observation is that there are two stable configurations of the doublet at high
enough adhesion. These two states have quantitatively different dynamical signatures under shear
flow. Lowering the adhesion strength results in a loss of one of the configurations. This bifurcation
marks the transition from rolling to flexible rolling dynamics, due to the presence of a saddle node
(turning point of the imperfect bifurcation).

The rheological study showed shear thinning, and a quite significant increase of viscosity with
adhesion energy. This increase with energy is a priori expected, since the doublet becomes more
and more robust, and its higher cross section opposes more flow resistance. Rheology may be
an interesting alternative for a systematic blood diagnosis and estimate of adhesion energy. A
systematic numerical study in 3D including cytoskeleton is necessary before drawing more practical
conclusions. Our preliminary simulations in 3D presented here support phases like R, FR, RS, and
S in the same range of flow strengths explored in 2D. We hope to investigate this matter further in a
future work.
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