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We study the flow and thermal stratification of a closed domain subjected to different
combinations of line and distributed surface heating and cooling. Our observations are
drawn from a set of direct numerical simulations in which the ratio of the strength of
the distributed sources to the localized sources � is varied and shown to play a decisive
role in determining the system’s statistically steady state. Domains of sufficient horizontal
extent that are heated from below and cooled from above in equal amounts by two line
sources (� = 0) produce a stable two-layer stratification. The planar plumes generated
by each line source are connected by a large-scale circulation over the full depth of the
domain and induce secondary circulations within each layer. As the distributed component
of the heating, and therefore �, increases, the buoyancy difference between the layers
decreases, before being destroyed when � > 1. For increasing � ∈ [0, 1], we observe
an increasing tilt of the interface between the layers and the eventual disappearance of
the secondary circulation cells. The mean buoyancy transport between the two layers of
the stable stratification is dominated by the plumes for all � < 1 because the buoyancy
flux associated with interfacial mixing is negligible. Building on existing approaches that
typically assume uniform buoyancy within each layer, we develop a model that admits a
lateral buoyancy gradient. The model predictions of the buoyancy difference between the
layers, the tilt of the interface, and the large-scale circulation strength exhibit a reasonably
good agreement with the direct numerical simulation data.
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I. INTRODUCTION

Configurations of one or multiple plumes arising from localized sources of heat are commonly
used to model buoyancy-driven flows in geophysical and engineering applications. A specific
example concerns the ventilation and heating of buildings [1–4], where plumes can represent
the effect of radiators, air conditioners, electrical appliances, occupants, and/or lighting. More
generally, localized sources of heat are found in combination with distributed sources of heat, which
raises the question of how the flows resulting from the different types of forcing interact.

The flows and buoyancy structures produced by localized sources of heat differ from those
produced by distributed sources. Localized sources result in turbulent plumes [5], which are free-
shear flows that entrain and mix fluid from their environments. A confined plume typically leads to
a stable stratification of the surrounding environment [6]. In such cases, relatively warm, buoyant
fluid accumulates at the top of the space in a layer that deepens and gets warmer [7]. If the total heat
input is zero, a statistically steady state can be attained, of which the two-layer stratification created
by “equal and opposite” plumes [6,8] is a canonical example.
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FIG. 1. Combined localized (F̂�) and distributed (F̂d) buoyancy sources investigated in the literature
(F̂�, F̂d > 0). Depicted are the configurations for confined volume heating from Wells, Griffiths, and Turner
[10], using sources on (a) the same and (b) opposite boundaries. Also sketched are the configurations for
the heating of a ventilated domain as considered by (c) Chenvidyakarn and Woods [11] (based on textual
description) and (d) Hunt, Holford, and Linden [12] and Partridge and Linden [13].

Distributed heat sources produce flows and stratifications that are markedly different from those
produced by localized heat sources. An example is Rayleigh-Bénard convection [9], which is
characterized by vigorous turbulence throughout the domain that homogenizes the buoyancy field
and thus suppresses the emergence of stably stratified layers (note, however, that the flow can
organize into large-scale patterns or “wind” which cause spatial heterogeneity). The combination of
localized and distributed sources of heat, and therefore buoyancy, leads to a competition between
the stabilizing effect of the localized source, and the destabilizing effect of the distributed source
[10].

Despite their prevalence in realistic settings, cases of combined localized and distributed heating
have received relatively little attention. The combination of a single localized point source and
a distributed source in a closed domain was investigated experimentally by Wells, Griffiths, and
Turner [10] [Figs. 1(a) and 1(b)]. They found that the stable stratification created by the plume
breaks down when the buoyancy flux from the distributed source F̂d exceeds that of the plume, F̂�.
Work by Chenvidyakarn and Woods [11], Partridge and Linden [13], and Hunt, Holford, and Linden
[12] in this regard focused on open domains that support inflow and outflow through the bottom
and top of the domain [11] [Fig. 1(c)] or through openings in the side walls [12,13] [Fig. 1(d)].
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FIG. 2. Schematic of the investigated configurations. The horizontal boundaries are set to a constant local
buoyancy flux f̂� within a strip of width r; the remainder of each boundary is set to f̂d (top and bottom graphs).
The structure of buoyancy b̂ sketched in the middle depicts two plumes in a stable two-layer stratification.

In these cases, the volume flux or ventilation is an additional parameter on which the breakdown
of the stratification depends [11,13] (Hunt, Holford, and Linden [12] describe a breakdown that is
independent of the ventilation based on a set of preliminary experiments; this concept was improved
by Partridge and Linden [13]). In spite of differences in their models’ formulation, Chenvidyakarn
and Woods [11] and Partridge and Linden [13] both report successful predictions of the system.

In this paper, we study combinations of localized and distributed heating in a closed domain. In
contrast to Wells et al. [10], we focus on configurations involving no net heating or cooling of the
domain, which therefore admit statistically steady states, even for different ratios of localized and
distributed heating. This choice allows us to obtain statistics from averages with respect to time.
The specific case we consider consists of heating and cooling on the bottom and top boundaries,
respectively, from a combination of a localized line source and a distributed area source. The line
sources on the top and bottom boundary are of equal strength, as are the area sources. Previous work
has studied similar arrangements involving localized point sources in the absence of distributed
sources [6,8].

In Sec. II, we define the problem and describe the simulations in Sec. III, before presenting
results in Sec. IV. Building on the observations of Sec. IV, we construct two models of the steady
state buoyancy field in Sec. V, which adopt different assumptions about the horizontal distribution
of buoyancy within the domain. We compare both models with the simulation results in Sec. VI and
provide conclusions in Sec. VII.

II. PROBLEM DESCRIPTION

We consider a box of width Lx, depth Ly, and height H which is heated at the bottom and cooled at
the top by a combination of localized and distributed sources (Fig. 2). The origin of the coordinates
in the corresponding directions, (x̂, ŷ, ẑ), is placed at the center of the domain. The problem is
statistically homogeneous in the ŷ direction. At the vertical boundaries of the domain we impose
a free-slip condition on the flow velocity and at the horizontal boundaries we impose a no-slip
condition.
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We study the enclosure under different distributions of boundary heating, where the total buoy-
ancy flux F̂ per unit width on the top and bottom boundary,

F̂ ≡ 1

Ly

∫ Lx
2

− Lx
2

∫ Ly
2

− Ly
2

f̂ (x̂, ẑ)

∣∣∣∣
ẑ=± H

2

dx̂ dŷ , (1)

is held constant for different heating distributions. The local buoyancy flux f̂ (x̂, ẑ) which we impose
on the top and bottom boundary corresponds to a buoyancy gradient, f̂ |ẑ=± H

2
= −κ∂zb̂|ẑ=± H

2
,

since there is no advective buoyancy transport across the boundaries. The buoyancy field b̂ =
g (ρ0 − ρ)/ρ0 accounts for the density ρ of the fluid relative to a reference density ρ0, where g
is the absolute value of the gravitational acceleration and κ the thermal diffusivity. The buoyancy
flux at the side walls is set to zero.

The total buoyancy flux F̂ at each of the horizontal boundaries can be decomposed into a
buoyancy flux F̂� from a localized source and a buoyancy flux F̂d from a distributed source:

F̂ = F̂� + F̂d , (2)

where F̂� > 0 and F̂d > 0 assume the same values on the top and bottom boundary of the domain
(Fig. 2). The localized sources are line sources, realized as strips of width r, and result in a pair of
oppositely oriented planar plumes (Fig. 2). Distributed heating is included by setting the remaining
area of the horizontal boundaries to have the buoyancy flux F̂d. We consider the case of purely
localized heating (F̂d = 0) as the base case and investigate the flow and stratification for increasing
values of the distributed heat flux F̂d > 0.

The sources corresponding to F̂� and F̂d are heated or cooled uniformly, such that the respective
local buoyancy fluxes f̂� and f̂d are constants (Fig. 2). We only consider cases with f̂� � f̂d. Noting
the planar geometry of the problem, the quantities F̂ , F̂�, and F̂d are defined as buoyancy fluxes per
unit length, which we refer to as buoyancy fluxes for brevity. Equivalent terminology will be applied
to the the volume and momentum flux.

A combination of localized and distributed heating can result in a stable stratification into two
layers [10] at a buoyancy difference �b̂ (Fig. 2). The buoyancy difference is determined by the
geometry of the domain, Lx, Ly, H , the strip width r, the buoyancy fluxes F̂� and F̂d on the boundaries
and the fluid’s properties, the kinematic viscosity ν, and thermal diffusivity κ . Using H and F̂ to
nondimensionalize the problem, the dimensionless buoyancy difference �b = �b̂ H F̂− 2

3 becomes
a function of six dimensionless characteristic parameters

�b = h( λ, 
, 
y, Re, Pr, � ), (3)

where

λ = r

Lx
, 
 = Lx

H
, 
y = Ly

H
, Re = H F̂

1
3

ν
, Pr = ν

κ
, � = F̂d

F̂�

. (4)

The quantities λ, 
, and 
y are the aspect ratio of the plume source and the aspect ratios of the
domain’s width and depth, respectively, and therefore capture the geometry of the domain. Here,
an ideal line source of infinitesimal width corresponds to λ = 0. The Reynolds number Re is
defined independently of the distribution of the buoyancy flux on the boundary and Pr is the Prandtl
number. The ratio � of the distributed to the localized buoyancy flux measures the distribution of
the buoyancy flux on the boundaries. Due to the restrictions placed on F̂� and F̂d, the buoyancy flux
ratio in this problem is limited to � � 0. The buoyancy flux ratio � = 0 corresponds to the case
of localized sources in an insulated boundary, whereas for Rayleigh-Bénard convection its value is
� = λ−1 − 1. If the localized source was a line source of infinitesimal width, the latter value would
be independent of the line source width λ and � → ∞ for Rayleigh-Bénard convection.
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From (2) and (4), the dimensionless counterparts of F̂� and F̂d are

F� ≡ F̂�

F̂
= 1

1 + �
, Fd ≡ F̂d

F̂
= �

1 + �
, (5)

such that F� + Fd = 1. The dimensionless local buoyancy fluxes are termed f� and fd.
To maximize the distance between the plumes without introducing the additional complications

associated with no-slip boundary conditions, we use free-slip boundary conditions on the vertical
walls. However, a plume at such a wall should not be regarded as half of an unconfined plume,
because the impenetrable wall limits the scale of cross-stream turbulent motion and reduces entrain-
ment, nor does it represent an experimentally observable wall-bounded plume, due to the lacking
wall-shear stress (for details, see Appendix A).

III. SIMULATION DETAILS

The configurations introduced in Sec. II were investigated using direct numerical simulations
(DNS). To study the effect of the heating distribution, all characteristic parameters of the problem
were kept constant apart from the buoyancy flux ratio �. Simulations were run for different values of
the buoyancy flux ratio, ranging from the case of purely localized heating, � = 0, to a configuration
for which the distributed contribution to the buoyancy flux on the boundary exceeds the localized
one, � > 1.

The nondimensional governing equations are those of an incompressible fluid under the Boussi-
nesq approximation:

∇ · u = 0, (6a)

∂t u + (u · ∇ )u = −∇p + Re−1�u + b ez, (6b)

∂t b + u · ∇b = Pe−1�b, (6c)

where u, p, and b correspond to the velocity vector, the kinematic pressure, and the buoyancy,
respectively; Pe = Pr Re is the Péclet number. The scales used to nondimensionalize space x, time
t , velocity, pressure, and buoyancy are H , H F̂− 1

3 , F̂
1
3 , F̂

2
3 , and H−1 F̂

2
3 , respectively.

The Prandtl number was chosen as that of air, Pr = 0.7, and the Reynolds number is Re =
7.34 × 103, corresponding to a Rayleigh number Ra = Pr Re2 = 3.77 × 107. The buoyancy flux
ratio � on the boundary takes the values � ∈ {0, 0.10, 0.23, 0.39, 0.60, 1.29}. The governing
equations (6) were solved on a domain of aspect ratios 
 = 2 and 
y = 3

2 , discretized as a staggered
equidistant Cartesian grid of 1024 × 768 × 512 cells. The resulting grid spacing, �x = 2 × 10−3,
is appropriate for the Kolmogorov length ηKol ∼ Pr

3
8 Ra− 3

8 = 1.26 × 10−3. The initial volume
integrated buoyancy of the domain is zero.

The DNS were performed using the code SPARKLE [14], which is based on finite volume
discretization. The central differencing scheme employed is the fourth-order symmetry-preserving
method of Verstappen and Veldman [15]. Time integration was performed using a second order
Adams-Bashford scheme with adaptive time stepping. For further details about the code, see Craske
and van Reeuwijk [14]. A line source of width λ = 1

16 was found to be sufficiently small to produce
a planar plume (see Appendix A). To initiate turbulent plumes [16], we add 1% of white noise to
the vertical velocity on a single horizontal layer of grid points adjoining the source areas.

We define the mean of a field h(t, x, y, z) over the homogeneous y direction and time as

h(x, z) = 1

T 
y

∫ T

0

∫ 
y
2

− 
y
2

h(t, x, y, z) dy dt (7)

and h′ = h − h as the corresponding fluctuation. Statistics are taken at the steady state over T = 10
dimensionless turnover times, where the turnover time is one unit of nondimensional time consistent
with (6). Due to the symmetry of the boundary conditions, the mean fields of the Reynolds averaged
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FIG. 3. Isopycnals of two oppositely oriented plumes, arising from two localized line sources of equal
strength (� = 0). Red marks an isosurface at buoyancy b ≈ 5, blue corresponds to b ≈ −5; the color saturation
indicates the kinetic energy. The fluid in the bulk of the domain is stably stratified in two layers, which are
separated by an interface of zero buoyancy (violet). The displayed isosurface of zero buoyancy is cropped at
the boundaries so as not to obscure the plumes.

governing equations are (anti-)symmetric to the axis (x, z) = (0, 0) in the steady state. We exploit
this property when taking statistics, such that the resulting mean fields obey these symmetries
exactly.

Using a Reynolds decomposition and integrating (6c) over the width 
 of the domain, we obtain
the following relation for F , the mean buoyancy flux over a horizontal slice:

∂zF ≡ ∂z

∫ 

2

− 

2

(w b + w′ b′ − Pe−1 ∂zb) dx = 0. (8)

Thus, the mean buoyancy flux F is conserved in z. This relation is utilized to determine whether
the steady state is reached; we consider a state as statistically steady if the standard deviation of the
buoyancy flux F , with respect to the unit buoyancy flux at the top or bottom boundary, is less than
a given critical standard deviation σc = 10−2.

Depending on the buoyancy flux ratio �, one turnover time took between 4.4 × 103 and 7.4 × 103

core hours to compute.

IV. RESULTS

A. Buoyancy structure

Heating and cooling the domain via two localized line sources of buoyancy on an otherwise
insulated boundary (� = 0) leads to a stable stratification, consisting of two layers of near-uniform
buoyancy [Figs. 3 and 4(a)]. The line sources produce two oppositely oriented turbulent planar
plumes. Each plume supplies one layer of the resulting stable two-layer stratification by entraining
fluid from its ambient layer and discharging into the opposite layer. The two layers are separated by
an interface which has zero buoyancy, since the buoyancy sources on the top and bottom boundary
are of equal strength and the initial volume integrated buoyancy of the domain is zero. The mean
buoyancy b(x, z) of the domain, shown representatively at x = 0 in Fig. 6, is characterized by a
weak stratification in each layer and a thin transitional layer with a high buoyancy gradient at the
interface.

The two-layer stratification at � = 0 [Fig. 4(a)] manifests as two distinct peaks in the time-
averaged probability density function (PDF) of the buoyancy field (Fig. 5). The approximate
uniformity of the buoyancy field in each of the layers is evident from the narrow width of the PDF
peaks. The uniformly low value of the PDF between the peaks corresponds to the sharp separation
of the two layers, resulting in the distinct interface visible in Fig. 4(a).
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FIG. 4. Instances of the buoyancy field: the individual figures correspond to (a) � = 0, (b) � = 0.10,
(c) � = 0.23, (d) � = 0.39, (e) � = 0.60, and (f) � = 1.29.

When a distributed buoyancy flux is added to the boundary (� > 0), the buoyancy difference
between the layers decreases (Fig. 6), which means that the distance between the peaks of the PDF
in Fig. 5 decreases. This trend continues as the value of � increases, until the two-layer stratification
breaks down for 0.60 < � < 1.29 [Figs. 4(e) and 4(f)]. The transition is evident from the PDF, as the
two peaks of � < 1.29 merge into a single peak at � = 1.29 (Fig. 5). This behavior is in agreement

FIG. 5. Time-averaged probability density function of the buoyancy field.
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FIG. 6. Mean buoyancy b along a vertical slice in the middle of the domain (x = 0). At the chosen position
x = 0, the interface elevation is z = 0 for all configurations.

with the breakdown of the stable stratification for � > 1 reported by Wells, Griffiths, and Turner
[10]. The experimental configurations of Wells et al. are similar to the ones investigated here, if
one localized and one distributed source were removed from the latter [Figs. 1(a), 1(b), and 2]. The
correlation with Wells et al. suggests � = 1 as the critical value for the breakdown of the two-layer
stratification in the configurations considered in the present paper.

As � increases from 0 to 0.60, the buoyancy field of each layer of the stable stratification
decreases in homogeneity: the individual peaks in the PDF increase in width and decrease in
amplitude (Fig. 5). The interface between the upper and lower layer of the stratification in Fig. 4
appears less distinct as � increases and the gradient of the mean buoyancy between the layers
decreases (Fig. 6).

Between � = 0.23 and 0.39, the buoyancy difference between the layers decreases abruptly and
then shrinks only marginally as � increases to 0.60. The abrupt decrease of the buoyancy difference
between the layers is accompanied by a marked increase in the heterogeneity of the buoyancy field
in each layer, which is reflected in the width of the PDF peaks. The increase in the amplitude of
the peaks in the PDFs for � � 0.39 results from the growing overlap between the formerly distinct
peaks. The vertical gradient of the mean buoyancy in each layer, which is small for � � 0.23, is
markedly increased for � � 0.39 and becomes comparable in magnitude to the mean buoyancy
gradient at the interface (Fig. 6).

B. Flow structure

We first consider the flow at � = 0. Each of the localized sources produces a turbulent plume,
which entrains fluid from its environment, i.e., its adjoining buoyancy layer. Each plume discharges
fluid into the layer above (or below), which corresponds to the environment from which the
oppositely oriented plume entrains fluid. As a result, a large-scale circulation develops, which
transports fluid between the layers via the plumes and spans the width of the domain [Fig. 7(a)].

For simplicity of expression, we will now limit our considerations to the left-hand plume and
the upper layer. The flow in the plume is driven by the buoyancy of the plume’s fluid relative to the
local ambient fluid. As the plume penetrates the interface between the two layers of the stratification
(solid red line in Fig.[7]), the mean buoyancy difference between the plume and its ambient becomes
approximately zero (see Appendix A). Since the plume represents the only buoyancy source to the
layer into which it is discharging, the mean buoyancy of the upper layer is approximately equal to
the mean buoyancy of the plume where it penetrates the interface [6]. Thus, the plume is replaced in
the upper layer by a flow that is akin to a jet in the statistical average (see Appendix A for details).
The entrainment of fluid into the jet drives a secondary circulation cell, nested into the large-scale

023503-8



CONFINED TURBULENT CONVECTION DRIVEN …

FIG. 7. Mean buoyancy field b and stream lines of the mean flow u: the individual figures correspond
to (a) � = 0, (b) � = 0.10, (c) � = 0.23, (d) � = 0.39, (e) � = 0.60, and (f) � = 1.29. Dotted streamlines
correspond to a finer scaling than solid ones, marking a fifth of the difference between the solid streamlines.
The isosurface at buoyancy b = 0 is marked by a red dashed line; the interface between the layers and its
horizontal continuation to the boundaries is marked by a solid red line. The interface is separated from the
continuation by a “+.” For definitions of the interface and the “+” markers, see Appendix B.

circulation, as observed by Craske and Davies Wykes [8], albeit for slightly different boundary
conditions. The secondary circulation is confined to the upper layer.

The interface between two layers tilts with increasing � in the rotational direction of the global
circulation. Consequently, the vertical extent of the jet in the upper layer decreases. The horizontal
spread of the jet increases with �, since the width of the plume at the interface height increases with
�. At � = 0.39, the depth of the upper layer on the left-hand side is comparable to the width of the
plume where it penetrates the interface and the secondary circulation cells disappear [Fig. 7(d)]. The
collapse of the secondary circulations at � = 0.39 coincides with an abrupt increase of the buoyancy
field’s heterogeneity in each layer (Sec. IV A). The observed change in the vertical distribution of the
mean buoyancy (Sec. IV A) also appears to be connected to the secondary circulations. The mean
buoyancy profile, which is characterized by near-uniform values in each layer and a high interfacial
gradient in the presence of the secondary circulation cells (� � 0.23), takes on an approximately
constant vertical buoyancy gradient in the bulk as the secondary circulations disappear (� � 0.39,
Fig. 6).

Increasing � beyond � = 0.39, the interface tilts further, until the stable stratification breaks
down at � = 1.29 [Fig. 7(d)] and the isosurface b = 0 returns to a near-horizontal orientation in the
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FIG. 8. Profiles of mean velocities: (a) the horizontal velocity u along a vertical slice in the middle of the
domain (x = 0) and (b) the mean vertical velocity w in the left-hand plume at z = 0. At the position x = 0
depicted in (a), the interface elevation is z = 0 for all configurations and the mean velocity is antisymmetric to
z = 0, u(0, z) = −u(0,−z).

bulk. The flow retains a large-scale circulation, where the direction of rotation is determined by the
localized buoyancy sources. If � was increased further, we would expect a Rayleigh-Bénard-like
flow, where the bias of the flow orientation disappears (at least in an ensemble-averaged manner
[17]), although it is potentially susceptible to spontaneous change [18]. We therefore expect the
buoyancy distribution in the vertical to continue the trend visible in Fig. 6 and reach a near-uniform
buoyancy value in the bulk.

The slice of the mean buoyancy field in Fig. 6 was placed at x = 0 because at this position
the interface is conveniently at a constant elevation z = 0 for all �. The buoyancy in the layers
is, however, not uniform in x. A fluid parcel in the upper layer is gradually cooled by the top
boundary’s buoyancy flux as it is transported from left to right. Consequently, the distributed heating
in conjunction with a large-scale circulation results in a lateral buoyancy gradient within the layer,
where the gradient increases with � (Fig. 7). This lateral gradient will be the subject of further
analysis in Sec. V.

The value of the mean lateral velocity u in each layer peaks close to the horizontal boundary and
its highest absolute value increases with � [Fig. 8(a)]. Close to the interface [z = 0 in Fig. 8(a)],
the behavior of u appears to be nonmonotonic with � for small values of �. This is a result of the
changing width of the secondary circulation cells: at � = 0, the slice x = 0 does not intersect the
secondary circulation, but does so at � ∈ {0.10, 0.23}, leading to different curves u(0, z) close to the
interface. Figure 8(a) implies that the volume flux of the primary circulation increases with �, since
the horizontal velocity component dominates the mean flow at x = 0. Thus, we observe a larger
volume flux when the bias of the localized sources on the flow orientation is reduced. However, our
observations concern configurations where a two-layer stratification persists; the effect of localized
sources on the volume flux for � > 1 might differ.

The value of the mean vertical velocity w in the plumes peaks at the side walls, where a free-slip
condition is imposed [Fig. 8(b)]. The peak value of w at z = 0 decreases with increasing �, that is,
with diminishing strength of the localized sources F� = (1 + �)−1. In contrast, the volume flux of
w(x, 0) in Fig. 8(b) should increase with �, since the volume fluxes corresponding to the velocities
of Figs. 8(a) and 8(b) are approximately equal for � � 0.60. This is because the mean velocity field
is dominated by the vertical component w at z = 0 and by the horizontal component u at x = 0
and because the mean flow across the interface between the layers is weak for � � 0.60 (Fig. 7).
The opposite trends of volume flux and peak velocity in Fig. 8(b) are possible, since the spatial
distribution of w(x, 0) spreads in the horizontal with increasing �. The increase of the volume flux
with � will be shown rigorously in Sec. VI C.
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FIG. 9. Mean flow and turbulent contribution to the specific kinetic energy in the domain.

The specific kinetic energy of the flow,

Ek = 1

2 


∫ 

2

− 

2

∫ 1
2

− 1
2

(|u|2 + |u′|2)dz dx, (9)

consists of a mean and a turbulent contribution, corresponding to the first and second term in the
above expression, respectively. The turbulent kinetic energy increases with � (Fig. 9), particularly
at the transition from a stable (� � 0.60) to an unstable stratification (� = 1.29). The mean flow
contribution to the kinetic energy increases with � while the two-layer stratification persists, but
decreases slightly as the two-layer stratification breaks down. This decrease is consistent with the
flow that we anticipate for a further increased value of �: because of the the spontaneous reversal
of direction occurring in the large-scale circulation of Rayleigh-Bénard convection [18], the mean
flow velocity and associated kinetic energy should tend towards zero for � → ∞ (for sufficiently
long time averages).

C. Buoyancy transport between the layers

For � � 0.60, the buoyancy field is stably stratified in two layers, each supplied by a plume. The
layers are separated by the isosurface of zero buoyancy, which also envelops the plumes (red dashed
lines in Fig. 7). For a precise definition of the two layers, we introduce a separating curve s which
stretches over the full width of the domain (red solid lines in Fig. 7). The curve s coincides with
b = 0 in the bulk and is continued to the left and right boundary by a horizontal line (see Appendix
B); the points where it departs from the isosurface are marked by red “+” markers in Fig. 7.

Buoyancy exchanged between the two layers is either transported across the interface, defined as
s between the “+” markers, or via the plumes, i.e., across the two horizontal segments of s between
the markers and the boundaries. We denote the buoyancy fluxes across the interface and the plumes
as FI and Fp, respectively (for a formal definition, see Appendix B). In the steady state, the mean
total buoyancy flux between the layers should equal the total buoyancy flux across the horizontal
boundaries of the enclosure, 2 Fp + FI = 1. This equality holds to within an accuracy of 1% for all
simulations � � 0.60. The simulation at � = 1.29 is excluded, since the buoyancy field does not
show a clear two-layer stratification in this case.

Figure 10 shows that the buoyancy transport between the layers is dominated by the plumes in all
simulations � � 0.60. The value of the plumes’ buoyancy flux Fp is unaffected by the distribution
of the buoyancy flux on the boundary �. Splitting the buoyancy flux of the plume into a turbulent
buoyancy flux and a contribution of the mean flow (Fig. 10), we find that the latter accounts for
approximately 70% of the total Fp in the case of purely localized heating (� = 0). This is in
agreement with experimental observations of planar plumes [19]. As � increases, the flow becomes
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FIG. 10. Buoyancy exchange between the two layers of the stable stratification (i.e., across the red solid
lines in Fig. 7). Depicted are the buoyancy fluxes Fp and FI, corresponding to the discharge of one plume and
mixing across the interface, respectively. In case of Fp, the total, the mean flow, and the turbulent contribution
are depicted.

increasingly turbulent (Sec. IV B) and the turbulent buoyancy flux of the plume rises slightly, which
is accompanied by a corresponding decrease in the mean flow contribution (Fig. 10).

The buoyancy flux of each plume is slightly above 0.5. Thus, the equality 1 = 2 Fp + FI is
balanced by a negative buoyancy flux FI across the interface due to turbulent mixing. The cross-
interface buoyancy transport in the steady state has been studied by Chenvidyakarn and Woods
[11] and Partridge and Linden [13] for other configurations of combined localized and distributed
heating (Fig. 1). Chenvidyakarn and Woods find a value of FI ≈ 0.1 Fd, whereas Partridge and
Linden observe no mean buoyancy transport across the interface. Our results show a buoyancy
flux of interfacial mixing that is negligibly small for all simulations � � 0.60, at about 5% of the
total buoyancy flux of the boundaries. We did not observe a correlation between the value of the
distributed buoyancy flux Fd and the cross-interface buoyancy flux FI.

In spite of the �-independent and negligible value of FI, the turbulent kinetic energy increases
with � (Fig. 9). Indeed, the behavior of the turbulent kinetic energy might suggest an increase of the
cross-interface buoyancy flux FI with �, due to increased interfacial mixing. However, any increase
of FI would be counteracted by the behavior of the buoyancy difference �b between the layers of
the stratification. The value of �b decreases more rapidly with � than the turbulent kinetic energy
rises with � (compare Figs. 12 and 9). Thus, a constant buoyancy flux across the interface can be
consistent with a turbulent kinetic energy increasing with �.

V. MODELING THE BUOYANCY FIELD

We develop two models of the stably stratified buoyancy field found in a steady state using
volume and buoyancy conservation. The models are defined in a piecewise manner; they each
consist of four parts that correspond to the two plumes and the layers of the two-layer stratification
(Fig. 11). Model 1 uses a simple buoyancy structure by assuming that the buoyancy in each of the
stratified layers is uniform. Model 2 includes a lateral buoyancy gradient in the layers and admits a
tilt of the interface between the layers.

A. Model 1

We assume that each of the two layers of the stratification is well mixed and thus model the
buoyancy of the layers, ±ba, as uniform in x and z [Fig. 11(a)]. Due to the symmetry of the problem,
the buoyancy of the two layers differs in sign only and it is sufficient to consider a single layer with
its adjoining plumes. For the purpose of discussion, we will therefore focus on the upper layer of
buoyancy ba.
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FIG. 11. Schematics of the buoyancy structure for the models of (a) Sec. V A and (b) Sec. V B. The
highlighted section is the control volume used. The volume flux across all dashed boundaries is equal Qp.

The upper layer is supplied by the left-hand plume with a mean buoyancy flux Fp. The top bound-
ary of buoyancy flux Fd and the entraining right-hand plume act as buoyancy sinks. Consistent with
Sec. IV C, we neglect the buoyancy transport across the interface between the layers (FI = 0) and
hence set Fp = 1

2 (see Sec. IV C). In the steady state, the volume flux associated with entrainment
into the right-hand plume equals the volume flux Qp of the left-hand plume at the interface. Thus,
we model the buoyancy flux into the right-hand plume as Qp ba. Using Eq. (5) for Fd, the buoyancy
conservation of the upper layer in the steady state yields

1

2︸︷︷︸
Fp

= Qp ba + �

1 + �︸ ︷︷ ︸
Fd

. (10)

A plume from a source of strength F� = (1 + �)−1 placed at z = − 1
2 penetrates the interface at

zp with a volume flux [20] (see Appendix A)

Qp = α
2
3 (1 + �)−

1
3
(
zp + 1

2

)
, (11)

where α is the entrainment coefficient. We model the interface between the buoyancy layers as
horizontal and hence the plume height as zp = 0, neglecting the tilt that will be addressed in model
2 of Sec. V B.

Combining (10) and (11), we obtain the buoyancy ba of the upper layer as ba =
α− 2

3 (1 − �) (1 + �)−
2
3 . The corresponding buoyancy difference between the upper and lower layer

is

�b = ba − (−ba) = 2 α− 2
3 (1 − �) (1 + �)−

2
3 . (12)

Since the buoyancy is modeled as homogeneous in each layer, this difference is assumed to
correspond to the difference between the peaks of the buoyancy field’s PDF.

We defer discussion of the performance of the model to Sec. VI and proceed with the construction
of a second model, which incorporates a horizontal variation in both the buoyancy field and interface
height.

B. Model 2

For the first model, we assumed the two layers of the stratification to be of homogeneous
buoyancy ±ba. This results in a constant buoyancy flux Qa ba across any vertical slice of the upper
(or lower) layer, independent of its position in x. Thus, assuming layers of homogeneous buoyancy
neglects the spatial distribution of the buoyancy flux Fd across the upper (and lower) boundary. For
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the second model, we allow the buoyancy in each layer to vary in x, but continue to assume the
buoyancy layers to be well mixed over their smaller vertical dimension. The buoyancy of the upper
layer at x is denoted as ba(x). Due to the antisymmetry of the buoyancy field, the buoyancy of the
lower layer at position x equals −ba(−x).

We choose a segment of the upper layer as the control volume, stretching from the left-hand wall
to an arbitrary position x [Fig. 11(b)]. The buoyancy flux across the top boundary in this segment
is the integral of the boundary’s constant local buoyancy flux, fd = Fd 
−1, over the respective
interval: ∫ x

− 

2

fd dx = Fd

(
x



+ 1

2

)
. (13)

Similarly to Sec. V A, the buoyancy flux at x is modeled as Qp ba(x). The volume flux Qp is given
by (11) and dependent on zp. Combining these relations, the buoyancy conservation of the segment
in the steady state gives

1

2︸︷︷︸
Fp

= Qp ba(x) + �

1 + �︸ ︷︷ ︸
Fd

(
x



+ 1

2

)
, x ∈

[
−


2
,



2

]
. (14)

In the construction of this model, we neglect the horizontal spatial extent of the right-hand plume and
its source, assuming that the upper layer stretches from −


2 to 

2 for all z and that Fd is distributed

uniformly over this interval.
In contrast to the first model, zp is not necessarily equal to zero. Consistent with a laterally

dependent buoyancy, we consider the vertical position of the interface between the layers as
an x-dependent function zI(x). The left- and right-hand plume penetrate the interface at zp and
−zp, respectively, such that zI(∓


2 ) = ±zp. To obtain zI(x), we assume that the vertical velocity
in the bulk is sufficiently small for the pressure to be approximated as hydrostatic [21] and is
approximately constant at the top and bottom of the domain. Thus, the pressure difference between
the bottom and top boundary is

p|z=− 1
2
− p|z= 1

2
=

∫ zI (x)

− 1
2

−ba(−x) dz +
∫ 1

2

zI (x)
ba(x) dz (15)

= −Q−1
p (1 + �)−1

(
zI(x) + �

x




)
, (16)

where we inserted ba from (14). Due to the pressures being taken as constant in x, the above
expression results in zI(x) = −� x



+ zI(0). The offset is zI(0) = 0 since zI(x) needs to be an

antisymmetric function in x. Inserting zp = zI(−

2 ) and (11) into (14), we find the buoyancy of

the upper layer:

ba(x) = α− 2
3 (1 + �)−

5
3

(
1 − �

2 x




)
. (17)

For the model, the peaks in the PDF correspond to the buoyancy over the deepest part of the
layers. Thus, the buoyancy of the upper layer at x = 


2 , ba( 

2 ), corresponds to a peak in the

buoyancy’s PDF, as does the buoyancy at x = −

2 in the lower layer, −ba( 


2 ). Hence, the difference
between the peaks in the buoyancy field’s PDF is modeled as

�b = ba
(



2

) − [ − ba
(



2

)] = 2 α− 2
3 (1 − �) (1 + �)−

5
3 . (18)
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FIG. 12. Difference �b between the peaks of the buoyancy field’s PDF: comparing simulation results and
models. Depicted is the buoyancy difference from simulation data (Fig. 5), and the predictions of model 1 and
2 (19). The value �b(Qp) from (23) is a combination of modeling and observation (see Sec. VI C). The models
are valid for stable stratification corresponding to � < 1.

VI. MODEL VERIFICATION

A. Buoyancy difference between the layers

To summarize Sec. V, the model predictions for the difference �b between the peaks of the
buoyancy field’s PDF (Fig. 5) are

�b =
{

2 α− 2
3 (1 − �) (1 + �)−

2
3 , for ba = const (model 1),

2 α− 2
3 (1 − �) (1 + �)−

5
3 , for ba = ba(x) (model 2).

(19)

As discussed in Sec. IV A, the buoyancy difference �b is indicative of the stratification of the buoy-
ancy field. Both models predict a stable stratification, �b > 0, for boundary buoyancy flux ratios
� < 1. Beyond the critical value �c = 1, the buoyancy difference becomes negative, corresponding
to an unstable stratification. Thus, the buoyancy flux ratio � on the boundary takes the role of a
stability parameter within the models. Since both models are based on a stably stratified buoyancy
field, their validity is restricted to � < 1.

A critical value of �c = 1 is consistent with our observation of a stable stratification up to � =
0.60 and an unstable stratification at � = 1.29 (Fig. 5). Wells et al. [10] report the same critical value
for other experimental configurations of competing localized and distributed buoyancy sources in
an unventilated enclosure [Figs. 1(a) and 1(b), Sec. IV A]. To obtain numerical values from (19),
we estimate the entrainment coefficient α based on the case of purely localized heating and using

(11), which gives α = (2 Qp|�=0)
3
2 ≈ 0.16 (see Appendix A). We assume α to be independent of

the buoyancy flux ratio � on the boundary.
Both models approximate the buoyancy difference �b between the layers with comparable

accuracy for the three lowest values of the boundary buoyancy flux ratio, � ∈ {0, 0.10, 0.23}
Fig. 12. In these configurations, secondary circulation cells are present and the PDF of the buoyancy
field shows a near-uniform buoyancy in each of the two layers. Thus, the value of �b is slightly
overestimated by the homogeneous buoyancy model (model 1) and slightly underestimated when
the lateral buoyancy gradient is based on the hydrostatic pressure at the bottom boundary (model 2).

As the secondary circulation breaks down, � � 0.29, the lateral buoyancy gradient in the bulk
increases, and the assumption of homogeneous buoyancy layers used in model 1 is no longer
suitable. In contrast, model 2 shows good agreement with the measurements, despite neglecting the
marked vertical buoyancy gradient that establishes as the secondary circulation disappears (Fig. 6).
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FIG. 13. Tilt of the interface between the layers of the stratification: comparing simulation results and
model 2. The buoyancy field is separated into values above (red) and below (blue) zero; we consider
the resulting separation line between the “+” markers as the interface (Sec. IV C). The red curve shows
the interface zI(x) of model 2 (Sec. V B). The individual figures correspond to (a) � = 0, (b) � = 0.10,
(c) � = 0.23, (d) � = 0.39, (e) � = 0.60, and (f) � = 1.29.

B. The tilt of the interface

In Sec. V, we model the position of the interface between the layers as

zI =
{

0, for model 1,
− �



x, for model 2.

(20)

Using the corresponding height of the plume, zI|x=− 

2

+ 1
2 , �b in Eq. (19) can be written as

�b = α− 2
3 (1 − �) (1 + �)−

2
3
(
zI|x=− 


2
+ 1

2

)−1
(21)

for both models. Thus, the difference between the two expressions in Eq. (19) originates from the
different interface curves used in the models.

For � > 0, we find that the assumption of a hydrostatic environment and a constant pressure at
the bottom boundary in model 2 (Sec. V B) lead to a tilt that is in good agreement with the interface
curve defined in Sec. IV C from simulation data (Fig. 13). The upper limit � = 1 to the model’s
range of validity coincides with the interface touching the horizontal boundaries, zI(x = ∓


2 ) =
± 1

2 . Thus, the breakdown of the model beyond � = 1 is reflected in the interface curve [Fig. 13(f)]
as well as in the buoyancy difference �b (Sec. VI A). For � = 0, the model diverges slightly from
the simulation data [Fig. 13(a)], predicting a horizontal interface whereas the DNS data show a tilted
interface.

While the slope of the interface curve predicted by model 2 depends on the aspect ratio 
 (19),
the corresponding plume height, zI|x=− 


2
+ 1

2 = 1
2 (1 + �), is independent of 
. In Sec. IV B, we

noted that the secondary circulations are driven by a flow that is similar to a jet in the statistical
average. The vertical extent of the jet is limited by the depth remaining between the horizontal
boundary and the position at which the plume penetrates the interface between the layers; the height
of the jet thus decreases with a growing plume height. We therefore suspect a connection between
the presence or absence of secondary circulation cells and the plume height. If this is the case, model
2 implies that the breakdown of secondary circulations is solely determined by the distribution � of
boundary heating. The existence of secondary circulations at � = 0, however, is expected to depend
on the aspect ratio of the domain, as is the case for confined axisymmetric plumes [8].
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FIG. 14. Volume flux Qp of the plume where it penetrates the interface: comparing simulation results and
models. Depicted are the predictions of models 1 and 2 (23) as well as the volume flux of the plumes from
simulation data. The latter is defined as the volume flux through the horizontal continuation of the interface in
Fig. 7 (see Appendix B for a formal definition).

C. Volume flux

The volume flux Qp of the plumes can be determined from the DNS data analogously to the
plumes’ buoyancy flux Fp in Sec. IV C: we define Qp as an integral of the vertical velocity taken
over the separating curve s between the walls and the boundaries of the interface curve marked as
“+” in Fig. 7 (see Appendix B). The resulting volume flux increases with � (Fig. 14).

In the models, Qp appears implicitly in the expression of the buoyancy difference (19) as

Qp = α
2
3 (1 + �)−

1
3

(
zI|x=− 


2
+ 1

2

)
=

{
1
2 α

2
3 (1 + �)−

1
3 , for model 1,

1
2 α

2
3 (1 + �)

2
3 , for model 2.

(22)

Notably, the models predict contrary trends for the volume flux with �. Model 1 is in conflict with
the simulation data, showing a decrease of the volume flux with �, whereas model 2 correctly
captures the observed trend of Qp.

The decrease of the volume flux with growing � in model 1 is due to the decreasing velocity of
the plumes [Fig. 8(b)], since the plume velocity obeys wm ∝ (1 + �)−

1
3 (see Appendix A). In model

2, the decreasing plume velocity is countered by the growing height of the plume, 1
2 + zp ∝ 1 + �,

and a correspondingly growing width of the plume at the interface level. The effect of the increasing
area through which the plume discharges fluid to the adjoining layer on Qp dominates over that of
the decreasing plume velocity and leads to a volume flux increasing with �.

The volume flux of model 2 is in good agreement with the DNS data for buoyancy flux ratios
� � 0.23, until the volume flux from the DNS data increases abruptly at � = 0.39. The abrupt
increase of the volume flux coincides with the disappearance of the secondary circulation cells and
the increased vertical stratification of the buoyancy field in the layers between � = 0.23 and 0.39 in
comparison to � < 0.23 (Figs. 7 and 6). The vertical stratification is not realized in the models and
might account for the deviation of the second model’s volume flux from the DNS data.

Combining (19) and (22), the buoyancy difference of model 1 and 2 is

�b(Qp) = (1 − �) (1 + �)−1 Q−1
p . (23)

Inserting the volume flux from the DNS data into the models (23), we find that the corrected volume
flux has little impact on the value of �b (Fig. 12), since Qp stands in the denominator in Eq. (23)
and the abrupt increase in Qp is small relative to the overall magnitude of Qp.
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FIG. 15. Gradient Richardson number Rig along a vertical slice in the middle of the domain (x = 0). The
value Rig = 1

4 is marked by a dotted line. At the chosen position x = 0, the interface elevation is z = 0 for all
configurations.

D. The gradient Richardson number at the interface

To investigate the impact of the shear flow on the interface between the layers, we define a
gradient Richardson number:

Rig(x, z) ≡ ∂zb

(∂zu)2 . (24)

In inviscid nonturbulent parallel flows, a stratified shear profile is linearly stable if the gradient
Richardson number exceeds the critical value of 1

4 everywhere [22,23]. Gradient Richardson
numbers with values approximately independent of time and the flow-normal direction [24–30]
have been interpreted as an indicator of a turbulent equilibrium state [28]. In this context, it has
been proposed that turbulent shear flows are attracted to a state of marginal instability, which is
marked by a gradient Richardson number Rig ≈ 1

4 [27,31].
In the present paper, the profiles of the gradient Richardson number Rig(0, z) in the horizontal

middle of the domain far exceed those expected for marginal stability ( 1
4 ) at the interface (z = 0)

and in its vicinity for all simulations for which � � 0.39 (Fig. 15). Thus, the stabilizing effect of
the stratification is (significantly) larger than the destabilizing effect of the shear flow. The reason
is that the background stratification for the shear flow is not created by local mixing, but externally
by the plumes on the side walls and the convection from the distributed buoyancy flux sources,
which jointly determine both the horizontal velocity and the buoyancy difference. Equivalently, the
turbulence that disturbs the buoyancy interface [Figs. 4(a)–4(e)] does not originate from the interface
but arises from the plumes and the convection from distributed sources.

The gradient Richardson number Rig(0, 0) at the interface changes with the buoyancy flux
ratio � (Fig. 15). For � � 0.23, there exists no monotonic relationship between Rig(0, 0) and �;
however, Rig(0, 0) decreases with � for large � � 0.39. The nonmonotonic behavior of Rig(0, 0)
for � � 0.23 originates from the mean horizontal velocity u(0, z), the profile of which varies close
to the interface due to the changing width of the secondary circulation cells with � (see Sec. IV B).
The peaks in Rig(0, z) for � = 0.10 and 0.23 correspond to a sign change in ∂zu(0, z) close to the
interface [local minima in Fig. 8(a)], which appears as the secondary circulation cells intersect the
plane x = 0.

We can establish a relationship between � and the gradient Richardson number at the interface
by denoting the width of the shear layer as �U and the width of the buoyancy interface as �b and

023503-18



CONFINED TURBULENT CONVECTION DRIVEN …

estimating (24) at the interface as

Rig|z=zI
≈ �b

�U 2

�2
U

�b
= 1

16

�b

Q2
p

�2
U

�b
. (25)

Here, �b and �U are the characteristic differences in buoyancy and horizontal velocity between
the layers, respectively. The second identity in Eq. (25) results from estimating the absolute value
of the horizontal velocity in the layers as U = 2 Qp, using the plume volume flux Qp and the layer
depth 1

2 at x = 0, and taking �U = 2U . Utilizing model 2 for �b (19) and Qp (22) we obtain

Rig|z=zI
≈ 1

2
α−2 (1 − �) (1 + �)−3 �2

U

�b
. (26)

The layer depths �b and �U cannot be determined by the models. However, we expect them to depend
on the turbulence from the plumes and the convective instabilities from the distributed sources of
buoyancy flux. As such, �b and �U would be functions of �, rather than emerging naturally without
a dependence on � from a state of marginal stability.

VII. CONCLUSIONS

Localized sources of buoyancy at the top and bottom boundary of a closed domain produce
turbulent plumes that maintain a stable two-layer stratification in the steady state. The addition of
distributed heating leads to a competition between the stabilizing effect of the localized sources
and the destabilizing effect of the distributed sources. The ratio of the distributed to the localized
buoyancy flux, �, determines the system’s response. At � < 1, the stabilizing effect of the localized
sources dominates and the buoyancy field is stably stratified in two layers. The buoyancy difference
between the layers decreases with increasing �, until the two-layer stratification is destroyed for
� > 1. These remarks are consistent with the results of Wells, Griffiths, and Turner [10] for different
configurations of combined localized and distributed heating in a closed domain [Figs. 1(a) and
1(b)]. The buoyancy transport between the layers of the two-layer stratification (� < 1) is dominated
by the plumes. This agrees with the negligible interfacial buoyancy flux inferred by Partridge
and Linden [13] for a naturally ventilated domain heated by a localized and a distributed source
[Fig. 1(d)], which contrasts with Chenvidyakarn and Woods [11] [Fig. 1(c)].

Despite its focus on stably stratified states dominated by localized sources (� < 1), our pa-
per demonstrates the significance of distributed heating in determining the flow circulation and
buoyancy structure. Distributed heating produces a lateral buoyancy gradient in each layer, which
increases with �. A result of the lateral buoyancy gradient is a tilting of the interface separating the
two layers, which increases with �. The tilt of the interface affects the secondary circulations that
develop within each layer and the strength of the primary large-scale circulation.

In predictions of the buoyancy difference �b between the layers, the lateral buoyancy gradient
can be neglected for small values of �, but plays an essential role when � � 0.23. In contrast,
the lateral buoyancy gradient is crucial in predictions of the strength of the large-scale circulation
for all values of � < 1. Indeed, our model predicts that the height at which the plumes penetrate
the interface, which determines their volume flux, is solely a function of �. In this regard we note
that the two-layer stratification disappears as the plume height becomes comparable to the domain
height.

The configuration considered in this paper is relatively simple and might therefore provide a
useful starting point in the investigation of nonuniformly heated domains. In all such cases we would
expect to find a buoyancy structure that is more stably stratified than the well-mixed environments
produced by uniform heating. In the case of combinations of localized and distributed sources that
are not the same on the bottom and top of the domain, we would not necessarily expect to find the
resulting interface at the domain’s midplane. Conservation of volume suggests that in such cases the
interface would position itself to balance the interfacial volume flux from each plume.
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Predicting the effects of different heating distributions finds application in inverse problems relat-
ing to the estimation of boundary heat fluxes from temperature measurements. Such estimates are of
particular interest in building design and heating control, where the parameters that determine heat
transfer might be difficult to determine [32]. The models presented in this paper could be utilized in
such a context to infer boundary heating from a limited number of temperature measurements.
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APPENDIX A: PLANAR PLUMES

We consider wall-bounded planar plumes in an unstratified quiescent environment from a source
of buoyancy flux F�. At an elevation ζ sufficiently far above the plume source to consider the source
as one-dimensional, the plume’s buoyancy flux F̃ relative to the ambient of the plume, the volume
flux Q, and momentum flux M can be modeled as

F̃ = F�, Q(ζ ) = α
2
3 F�

1
3 ζ , M(ζ ) = α

1
3 F�

2
3 ζ , (A1)

with

F̃ (ζ ) =
∫
I

w b̃(x, ζ ) dx, Q(ζ ) =
∫
I

w(x, ζ ) dx, M(ζ ) =
∫
I

w2(x, ζ ) dx. (A2)

Here, α is the entrainment coefficient such that dQ
dζ

= α M
Q ; b̃ ≡ b − ba is the relative buoyancy of the

plume to its ambient of buoyancy ba. The domain I is the interval that corresponds to the horizontal
extent of the plume. The model (A1) is equivalent to the model of a wall-bounded axisymmetric
plume by Ezhova, Cenedese, and Brandt [33], where we neglect wall-shear stress due to the free-slip
condition imposed on the side walls of our simulated domain. The resulting expressions for F̃ , Q,
and M (A1) correspond to those describing an unconfined plume of half the source strength F� and
half the width (see, e.g., [20]). The effect of the side walls and confinement on the plumes will be
addressed at the end of this section.

In the following, we consider the vertical flow arising from purely localized heating (� = 0)
with respect to plume scaling relations. All simulation data correspond to the left-hand plume. We
define the integral quantities in Eq. (A2) by taking the integration interval I to be one half of
the domain, I1 = [−


2 , 0] (blue curves in Fig. 16). This approach relies on the assumption that the
vertical velocity outside the plume is negligible. The resulting volume flux [blue curve in Fig. 16(a)]
indicates that this assumption is not suitable. Close to x = 0, the secondary circulations induce a
non-negligible vertical velocity component in the mean flow of both layers [Fig. 7(a)], which leads
to a volume flux profile in the lower layer (z < 0) that is not consistent with plume scaling (A1).

A more suitable integration interval is I2 = [−

2 , xψ ], where the point (xψ, zψ ) marks the center

of the left-hand secondary circulation, manifest as a local extremum of the stream function. The
interval I2 can be understood as the smallest integration interval of constant width which contains
the plume and the adjoining jet. Using I2, we obtain a volume flux which scales according to (A1)
up to z ≈ 0, where the plume penetrates the interface between the layers [Fig. 16(a), red curve].

In Fig. 16(b), the displayed buoyancy flux is calculated as

F̃ =
∫
I

w (b − ba) + w′ b′ dx, (A3)
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FIG. 16. Scaling of the plume’s (a) volume flux Q and (b) relative buoyancy flux F̃ at � = 0. Both the total
buoyancy flux F̃ of the plume and its contribution from the mean flow are shown. F̃ and Q are calculated from
(A2) and (A3), respectively, for two integration intervals, I1 and I2 (see text).

with the ambient buoyancies ba1 and ba2 for the intervals I1 and I2, respectively, being defined as

ba1 ≡ 2 
−1
∫
I1

b dx, ba2 ≡ |xψ |−1
[∫

I1
b dx − ∫

I2
b dx

]
. (A4)

The relative buoyancy flux differs only slightly between the two integration intervals [Fig. 16(b)].
In agreement with (A1), the relative buoyancy flux in the lower layer is approximately constant at
the buoyancy flux value F� = 1 of the localized source. At the bottom boundary F̃ (− 1

2 ) = 0 �= F�,
since F̃ does not include a diffusive buoyancy flux. As the plume penetrates the interface between
the layers (z ≈ 0), F̃ decreases abruptly, but does not reduce to zero. In contrast, the mean flow
contribution to F̃ goes to zero in the upper layer (z > 0). Thus, the flow in the upper layer
corresponds to a jet in the sense of integrals of mean quantities b and w [8], but carries a residual
buoyancy flux as a result of w′ b′.

To evaluate the models of Sec. V, we require the value of the plume entrainment coefficient. Two
independent estimates of the entrainment coefficient can be deduced from observations, using the
plume equations (A1) [8]. Inverting the expression for the volume flux in Eq. (A1) at the interface
z = 0, i.e., ζ = 1

2 , we define an entrainment coefficient:

αQ ≡ F�
− 1

2

(
1

2

)− 3
2

Q
(

1
2

) 3
2 = 2

3
2 F�

− 1
2

(∫ 0

− 

2

w
(
x, 1

2

)
dx

) 3
2

. (A5)

We use I1 for simplicity, as the difference to the result from I2 is small at z = 0 [Fig. 16(a)].
Assuming plumes of width rm with top-hat profiles of velocity wm and relative buoyancy b̃m, we

obtain from (A1)

rm(ζ ) = α ζ , wm(ζ ) = α− 1
3 F�

1
3 = const, b̃m(ζ ) = α− 2

3 F
2
3

� ζ−1, (A6)

where we neglect turbulent contributions to the relative buoyancy flux. Inverting the expression for
b̃m at ζ = 1

2 , we define a second approximation of the entrainment coefficient:

αb ≡ F�

(
1

2

)− 3
2

b̃m
(

1
2

)− 3
2 = F�

(
1

2

)− 3
2

�b− 3
2 . (A7)
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TABLE I. Literature values for the entrainment coefficient of planar plumes from experiments. Given are
the values of the entrainment coefficient α′ as defined in the respective publication and of the corresponding
α consistent with the definition used in the present paper, i.e., dQ

dζ
= 2 α M

Q for free plumes and dQ
dζ

= α M
Q for

wall-bounded plumes.

α′ α

Lee and Emmons [34] α = √
2 α′ 0.16 0.23

Kotsovinos [35] α = √
2 α′ 0.11 0.16

Free plumes Ramaprian and Chandrasekhara [36] α = α′/
√

2 0.23 0.16
Yuana and Cox [37] α = √

2 α′ 0.13 0.18
Parker et al. [38] α = α′ 0.14 0.14

Grella and Faeth [39] α = √
2 α′ 0.067 0.095

Lai and Faeth [40] α = √
2 α′ 0.071 0.100

Wall-bounded plumes
Sangras et al. [41] α = √

2 α′ 0.068 0.096
Parker et al. [38] α = α′ 0.08 0.08

The buoyancy of a layer corresponds to the buoyancy of its supplying plume where it penetrates the
interface. Therefore, the relative buoyancy of the plume at the interface is b̃m( 1

2 ) = ba − (−ba) =
�b, where �b is the distance between the peaks of the buoyancy field’s PDF.

The entrainment coefficients can be estimated from the DNS data via (A5) and (A7) as

αQ ≈ 0.161, αb ≈ 0.169. (A8)

The good agreement between the two entrainment coefficients αQ and αb confirms that the vertical
flows from the line sources at � = 0 can be modeled as planar plumes from sources at z = ± 1

2 . The
agreement between both values also attests to a sufficiently small width λ of the localized sources
for them to act as virtual line sources. The buoyancy based entrainment coefficient αb is slightly
larger than αQ, possibly due to the neglected term of turbulent buoyancy transport in Eq. (A6).
Accordingly, the value of αQ is used as the entrainment coefficient in this paper.

While the macroscopic characteristics of a wall-bounded plume can be modeled similarly to
those of a plume in an unconstrained environment (A1), a turbulent flow along a wall differs from a
freely evolving one. The entrainment of wall-bounded plumes is significantly reduced compared to
free plumes, with an entrainment coefficient slightly larger than half of that of a free plume [38]. The
adjoining wall prevents the large-scale wavering motion present in free plumes [38], thus reducing
mixing, and has been proposed to suppress cross-stream turbulent fluxes [41].

The entrainment coefficient α ≈ 0.161 we obtain is closer in magnitude to values of α typical
for free planar plumes than to those of wall-bounded plumes (Table I). This might partly be due
to the wall-shear stress, which is nonzero in all experimental realizations of wall-bounded plumes
(Table I), but disappears in our configurations because of free-slip boundaries. Parker et al. [38]
expect an increased entrainment with reduced wall-shear stress. A second factor that potentially
increases plume entrainment is our specific configuration of two confined plumes connected by
a large-scale circulation with background turbulence. In a related setup of confined axisymmetric
plumes, Craske and Davies Wykes [8] observed entrainment coefficients of slightly less than twice
the value typical for unconfined axisymmetric plumes, noting that background turbulence disrupts
the near-source necking of lazy plumes.

APPENDIX B: INTERFACE BETWEEN THE LAYERS OF THE STABLE STRATIFICATION

The two layers of the stable stratification (� < 1) are separated by an interface at zero buoyancy.
This isosurface is generally tilted and shows a local maximum or minimum in z close to where
the plumes penetrate the interface. Figure 17 shows an example of the buoyancy field, with the
isosurface’s extrema marked as points B and C. We define the interface between the two layers as

023503-22



CONFINED TURBULENT CONVECTION DRIVEN …

FIG. 17. Schematic for the definition of a separating surface between the two layers of the stratification,
using the mean buoyancy field. The red dashed line marks the isosurface at zero buoyancy. The solid red line
corresponds to the separating curve s (see text).

the isosurface of zero buoyancy between its local extrema, i.e., BC. We continue the curve of the
interface from B and C by horizontal segments to the left and right, respectively, which intersect
the vertical boundaries at points A and D. Buoyancy exchanged between the two layers of the
stratification is either transported across the interface, BC, or via the the plumes, i.e., across AB and
CD. The entire curve over the points A, B, C, and D will be denoted as s.

The buoyancy flux across an arbitrary surface S can be calculated as

FS = 1


y

∫
S

∑
i

fi ni dS, (B1)

where fi = ui b − Pe−1 ∂ib is the local buoyancy flux in the spatial direction specified by i and ni

are the components of the unit vector perpendicular to the surface. Thus, the mean buoyancy flux
between the two layers, calculated across the separating curve s, is

Fs =
∫ 


2

− 

2

[
−dzs

dx
· f x(x, zs(x)) + f z(x, zs(x))

]
dx ≡

∫ 

2

− 

2

fs(x) dx, (B2)

with fs defined as the corresponding mean local buoyancy flux. Here, zs(x) is the elevation of the
separating curve s. The buoyancy flux Fs is well defined, since zs is differentiable at the junction of
the segments AB, BC, and CD.

Separating the buoyancy flux Fs into the buoyancy transport of the two plumes and the buoyancy
transport across the interface, Fs = 2 Fp + FI, we define

Fp = 1

2

∫ xA

− 

2

fs(x) dx + 1

2

∫ 

2

xB

fs(x) dx, FI = Fs − 2 Fp. (B3)

Equivalently, the volume flux of the plumes is determined from the simulation data as

Qp = 1

2

∫ xA

− 

2

w(x) dx + 1

2

∫ 

2

xB

w(x) dx. (B4)

[1] P. F. Linden, G. F. Lane-Serff, and D. A. Smeed, Emptying filling boxes: The fluid mechanics of natural
ventilation, J. Fluid Mech. 212, 309 (1990).

[2] G. G. Rooney and P. F. Linden, Strongly buoyant plume similarity and “small-fire” ventilation, Fire Safety
J. 29, 235 (1997).

023503-23

https://doi.org/10.1017/S0022112090001987
https://doi.org/10.1016/S0379-7112(97)00063-5


MADER, VAN REEUWIJK, AND CRASKE

[3] P. F. Linden and P. Cooper, Multiple sources of buoyancy in a naturally ventilated enclosure, J. Fluid
Mech. 311, 177 (1996).

[4] P. F. Linden and N. B. Kaye, Interacting turbulent plumes in a naturally ventilated enclosure, Int. J.
Ventilation 4, 301 (2006).

[5] B. R. Morton, G. Taylor, and J. S. Turner, Turbulent gravitational convection from maintained and
instantaneous sources, Proc. R. Soc. A 234, 1 (1956).

[6] W. D. Baines and J. S. Turner, Turbulent buoyant convection from a source in a confined region, J. Fluid
Mech. 37, 51 (1969).

[7] M. G. Worster and H. E. Huppert, Time-dependent density profiles in a filling box, J. Fluid Mech. 132,
457 (1983).

[8] J. Craske and M. S. Davies Wykes, The entrainment and energetics of turbulent plumes in a confined
space, J. Fluid Mech. 883, A2 (2020).

[9] G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh-
Bénard convection, Rev. Mod. Phys. 81, 503 (2009).

[10] M. G. Wells, R. W. Griffiths, and J. S. Turner, Competition between distributed and localized buoyancy
fluxes in a confined volume, J. Fluid Mech. 391, 319 (1999).

[11] T. Chenvidyakarn and A. W. Woods, On underfloor air-conditioning of a room containing a distributed
heat source and a localised heat source, Energy and Buildings 40, 1220 (2008).

[12] G. R. Hunt, J. M. Holford, and P. F. Linden, Natural ventilation by the competing effects of localised
and distributed heat sources, Proceedings of the 14th Australasian Fluid Mechanics Conference (Causal
Productions Pty Ltd, Australia, 2001).

[13] J. L. Partridge and P. F. Linden, Steady flows in a naturally-ventilated enclosure containing both a
distributed and a localised source of buoyancy, Building Environment 125, 308 (2017).

[14] J. Craske and M. van Reeuwijk, Energy dispersion in turbulent jets. Part 1. Direct simulation of steady
and unsteady jets, J. Fluid Mech. 763, 500 (2015).

[15] R. Verstappen and A. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys.
187, 343 (2003).

[16] M. V. Pham, F. Plourde, and S. D. Kim, Effect of swirl on pure turbulent thermal plume development, Int.
J. Heat Fluid Flow 27, 502 (2006).

[17] M. van Reeuwijk, H. J. J. Jonker, and K. Hanjalić, Identification of the wind in Rayleigh-Bénard
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