
PHYSICAL REVIEW FLUIDS 6, 023202 (2021)

Lagrangian analysis for turbulent transport in variable-density turbulence

G. S. Sidharth* and J. R. Ristorcelli
X-Computational Physics, Los Alamos National Laboratory NM, USA

(Received 22 July 2020; accepted 1 February 2021; published 25 February 2021)

Lagrangian analysis of materially conserved scalars is applied to the problem of tur-
bulent transport in variable-density flows. The consequences of an additional material
conserved quantity, the density, is generally not acknowledged and leads to significant and
meaningfully different expressions for turbulent transport in the moment equations. The
formal Lagrangian analysis produces gradient transport expressions substantially different
from those obtained by the physically intuitive “argument by analogy” method used
in computational models. Various intuitive arguments, in Favre and Reynolds averaged
settings, are contrasted to the formal Lagrangian results. Using expressions from the formal
analysis, we derive consistent gradient transport closures for the turbulent transport terms
that appear in the first- and second-order Favre moment equations. Results for coupled
multispecies turbulent transport are given. The analysis is limited to variable-density
turbulence in which the dilatation of the fluctuating velocity is small. The results are
applicable to turbulent combustion and to stellar convection problems in which the density
fluctuations are on the order of the mean density.
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I. INTRODUCTION

Moment closures for turbulent transport invoke eddy-viscosity or linear gradient transport mod-
els. Gradient transport models are generally argued for on the basis of mixing-length ideas [1] and
Lagrangian analyses by Taylor [2] and Corrsin [3] of the transport of a materially conserved passive
scalar in constant density flows. In addition to the requirement of material conservation, gradient
transport is valid when the characteristic scale of the turbulent transport mechanism is smaller than
that associated with the inhomogeneity of the mean scalar [4]. Engineering models also apply the
gradient transport model to turbulent fluctuations of velocities, scalars as well as higher moments of
these quantities [5,6].

Closures involving higher-order moments are commonly encountered in variable-density tur-
bulence and turbulent combustion [7,8]. Unclosed moments in these regimes are often expressed
in Favre-averaged variables. In an argument by analogy, gradient transport models developed for
constant density turbulence are used for transport models of Favre-fluctuating quantities. This strat-
egy is applied not just for k-epsilon models but also for second moment closures in which several
additional equations are carried. All such gradient transport models are based on an argument by
analogy with the constant density modeling and are inconsistent with a formal Lagrangian analysis.
There are several problematic issues with developing turbulent transport models in Favre variables
based on argument by analogy to the Reynolds variables in constant density flows.

There are several problematic issues with developing turbulent transport models in Favre vari-
ables based on argument by analogy to the Reynolds variables. The two most salient issues are
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(1) The fluctuating velocity in Reynolds averaged coordinates, u′
i has a zero mean. The anal-

ogous fluctuating velocity in Favre averaged variables, u′′
i does not have a zero mean. It is not

a centered variable and argument by analogy for quantities not based on centered variables are
specious.

(2) In variable-density turbulence,1 the density is an additional material conserved variable
and the consequences of this additional constraint on turbulent transport is substantial and is not
accounted for in any transport models in Favre treatments.

To address these shortcomings not accounted for in the Favre argument by analogy, we work only
with centered variables in a formal Lagrangian analysis and account for the additional constraint
required by a materially conserved density.

To close higher moments such as ρ ′c′u′
k , we generalize the Lagrangian arguments to use simul-

taneous material conservation of the density ρ and the conserved scalar ρc.
A formal Lagrangian analysis using this method produces some very interesting and unexpected

formal results. For example, the Lagrangian gradient transport model for the third moment in the
turbulent flux is bilinear in the gradients of mean density and mean mass fraction. Our general
principle result is that the turbulent fluxes of second moments have the form

〈ρ ′c′vk〉 = 〈ξiξ jvk〉 ρ,i C, j , (1)

where ξi, vi are Lagrangian objects. In comparison, the conventional model for the second moment
flux [9] results in an expression that is proportional to the down gradient of the second moment ρ ′c′.
Simultaneous dependence of the turbulent flux on density and scalar gradients is consistent with the
density-fluctuation-correlation in variable-density turbulent jets and wakes [10].

The formal Lagrangian results not only apply to variable-density turbulent transport but to all
third and higher moments. An example is the turbulent flux of the Reynolds stress u′

iu
′
ju

′
k (or its

trace u′
iu

′
ku′

k) in constant-density turbulence. While several improved closures for third and higher
moments have been proposed in the literature [11–14], the present work is novel and mathematically
formal application of Lagrangian analysis to extend gradient transport to turbulent flux of second
and higher-order moments. The formal results are applicable to the class of physical problems where
the assumptions of fine-grained turbulence and fluctuations in the presence of mean gradients hold,
as is typical of gradient-transport and mixing-length modeling hypotheses.

Within the context of conserved scalars, we find that formal gradient transport can result in coun-
tergradient fluxes even with isotropic eddy viscosity models for the Lagrangian transport coefficient.
This is not the case for the gradient transport by analogy for Favre fluxes. Countergradient fluxes
are observed in variable-density mixing and combustion [15–17]. In such flow regimes, the scalar
is, in the general case, linked to the density field and therefore becomes an active scalar. In the
simplest case this issue is made clear by the relation between mass fraction and density used in the
variable-density turbulence analyses of isothermal and isobaric binary mixing [18,19]:

1

ρ
= υ = c

ρ1
+ 1 − c

ρ2
, ρ = ρ2

1 + rc
, r = ρ2

ρ1
− 1 > 0, (2)

ρc′u′
k = −1 + rC

r
ρ ′u′

k . (3)

More generally, for multispecies/multimaterial mixing under such conditions, the species mass
fluctuations are coupled to the mass flux via mass conservation and equation-of-state constraints,∑

α

(ρcα )′ = ρ ′,
∑

α

(ρcα )′

ρα

= 0, (4)

1We limit our work to the case of negligible fluctuating dilatation.
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where cα denotes the mass fraction of the species α and ρα is the corresponding species microdensity
[20].

In the next few sections, the constant density Lagrangian analysis (see also Ref. [21]) is reviewed
as a foundation that we extend to multiple materially conserved objects. The gradient transport
expressions are derived using formal Lagrangian analysis and compared to the heuristic arguments
used in models. We then move on to the variable-density case. Our results are presented in the
context of a first-order Favre moment k-epsilon type closure as well second-order Favre moment
closures.

Our general style of presentation is to contrast the formal Lagrangian results with expressions
based on arguments of analogy approach.

II. A REVIEW OF LAGRANGIAN GRADIENT TRANSPORT
IN CONSTANT-DENSITY TURBULENCE

The Lagrangian gradient transport is a widely invoked hypothesis in turbulent transport. It is
also commonly referred to as the mixing-length and sweeping decorrelation hypothesis [22,23]. We
review to cosntant-density Lagrangian gradient transport in this section to introduce nomenclature
and basic relations.

Gradient transport hypothesis is based on material conservation in a Lagrangian trajectory
(Fig. 1). Let c be a materially conserved scalar. Then,

D

Dt
(c) = 0 ⇒ c(t0; ai ) = c(t0 + t ; ai ), (5)

where ai is the initial position of a Lagrangian particle, and the particle is displaced by ξi from ai in
the time period t .

For simplicity, let us choose our co-ordinate system so that t0 = 0. We can decompose the
variable c in terms of its Eulerian mean C and fluctuation c′ as

c′(t ; ai ) + C(t ; ai ) = c′(0; ai ) + C(0; ai ). (6)

For clarity, we drop the information in the parentheses that specifies the Lagrangian time co-ordinate
and use the subscript 0 to imply the quantities at the beginning of the trajectories t = 0. Material

FIG. 1. Illustration of a Lagrangian trajectory in stationary homogeneous isotropic turbulence: the
Lagrangian displacement vector ξi, Lagrangian velocity vi, and the Lagrangian fluctuation cL (introduced in
the next section) are labeled.
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conservation of the scalar during the Lagrangian trajectory is then expressed as

c′ + C = c′
0 + C0. (7)

Eulerian mean scalar fields C and C0 are independent of time and only a function of the spatial
co-ordinate. In the presence of mean scalar gradient C, j , the mean scalar field can be expressed as
a linear function of the Lagrangian particle displacement vector

C − C0 = C(ai + ξ j ) − C(ai ) = ξ jC, j . (8)

With Eq. (8), we can express C − C0 in Eq. (7) in terms of the Lagrangian particle displacement
vector ξi such that

c′ + C0 + ξ jC, j = c′
0 + C0, c′ − c′

0 = −ξ jC, j . (9)

The displacement vector ξ j in homogeneous turbulence is a stochastic variable. To obtain a single
point closure for the statistical average of turbulent scalar flux in homogeneous turbulence, we
take the moment of Eq. (9) with the Lagrangian velocity at the end of the Lagrangian trajectory
vk (t ; ai ) = uk (ξi, t ). We then have

〈c′vk〉 − 〈c′
0vk〉 = −〈ξ jvk〉 C, j . (10)

The angled bracket operator 〈·〉 represents averaging over an ensemble of Lagrangian trajectories
in the turbulent flow-field such that c(x, t ) = c(t ; ai ). The term 〈vkc0〉 = 〈vk (t )c(0)〉 represents
the correlation of the Eulerian fluctuation in the scalar value at the beginning of the Lagrangian
trajectory with the velocity fluctuation at the end of the Lagrangian trajectory. For a passive scalar,
the objects at initial and final points of the trajectory decorrelate over the timescale of particle
transport and we have

〈c0vk〉 = 0. (11)

Equation (11) results in the well-known gradient transport equation for the passive scalar

〈c′u′
k〉 = c′u′

k = 〈c′vk〉 = −〈ξ jvk〉C, j . (12)

The object 〈ξ jvk〉 is the Lagrangian particle displacement flux and is the unclosed object. The
single-point turbulent scalar flux has now been re-expressed in terms of a temporal Lagrangian
cross-correlation, which can be obtained from theoretical and/or data-driven models of Lagrangian
dynamics. The Lagrangian particle displacement flux can be expressed in terms of the cross-
correlation using the definition of the displacement vector in homogeneous turbulence:

dξi

dt
= vi, ξi(t ) =

∫ t

0
vi(t

′)dt ′, (13)

〈vkξ j〉 = 〈vk (t )
∫ t

0
v j (t

′) dt ′〉 =
∫ t

0
〈vk (t )v j (t

′)〉 dt ′. (14)

Here the trajectory ensemble average commutes with the integral over the trajectory. The cross-
correlation can be normalized in the form

〈ξ jvk + ξkv j〉 =
∫ t

0
〈v j (t

′)vk (t ) + v j (t )vk (t ′)〉 dt ′ (15)

= σ 2
v

∫ t

0
Rv j ,vk (τ ) dτ = σ 2

v T jk . (16)

Here σv = 2k = 〈vkvk〉 = 〈u′
ku′

k〉 is the velocity variance or twice the turbulent specific kinetic
energy, Rv j ,vk (τ ) is the normalized two-time Lagrangian correlation function and T jk is the resulting
Lagrangian timescale tensor. Therefore, gradient transport for a passive scalar can be expressed as

c′u′
k = −k T jk C, j . (17)
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For homogeneous shear flow, additional moments are involved [24]. We now look into how Eq. (17)
is modeled for moment closures and subgrid-scale closures in numerical computations.

A. Constant density moment closure: The long-time limit

Moment closures capture mean-gradient turbulent transport over length-scales much larger than
the transport process, i.e., over regions with 〈vi(t ; ai )〉 = 0 and the Lagrangian timescales are large
so that the t → ∞ limit for the cross-correlation be employed. The Lagrangian timescale tensor is
therefore, a constant and depends on the state of turbulence.

In engineering models, the Lagrangian timescale tensor is modeled as an isotropic tensor,

T jk ≈ T Lδ jk . (18)

The Lagrangian timescale, in Eq. (18) is often modeled using an Eulerian timescale Cμk/ε, resulting
in the well-known gradient transport expression

c′u′
k = −Cμ

k2

ε
C,k . (19)

The approximation of the Lagrangian timescale using an Eulerian timescale is valid in turbulent
flows with a single timescale. In turbulent flows with competing timescales, due to different physical
mechanisms, the Eulerian timescale may be a poor approximation.

An anisotropic engineering approximation for the timescale tensor may also be employed.
One such approximation uses the Reynolds stress anisotropy as a proxy for the timescale tensor
anisotropy:

T jk ≈ T L

(
u′

ju
′
k

2k

)
. (20)

B. Constant density subgrid-closures: The small-time limit

In the context of large-eddy simulations, the timescale of the turbulent processes being modeled
is imposed by observer’s resolution and is typically constrained by the numerical grid resolution

. When gradient transport is modeled over small transport length-scales due to high resolution,
the small-time or the ballistic dispersion limit of the integral in Eq. (15) can also become relevant.
In such a case, the upper limit of the integral over the Lagrangian trajectory, t is small and as t =
t
 → 0, the two-time correlation tensor 〈v j (t ′)vk (t )〉 can be approximated with 〈v j (t = 0)vk (t =
0)〉 ≈ u′

ju
′
k . Equation (15) then results in

〈vkξ j + v jξk〉 =
∫ t


0
〈vk (t
)v j (t

′) + vk (t ′)v j (t
)〉 dt ′ (21)

≈ 〈v jvk〉
∫ t


0
dt ′ = u′

ju
′
k t
. (22)

An important point to be noted from this limit is that gradient transport at length-scales much
larger than the turbulent transport length-scale ST = T L/σv can assume a constant Lagrangian
particle displacement flux tensor. At small length-scales, however, when 
 	 ST , the displacement
flux tensor scales with 
 = t
/σv .

The small-time limit of gradient transport has also been previously received attention in the con-
text of modeling near-field transport of scalar atmospheric constituents near and within vegetation
canopies which serve as spatially distributed scalar sources [25].
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III. LAGRANGIAN GRADIENT TRANSPORT FOR SECOND MOMENT TURBULENT
FLUX IN CONSTANT DENSITY TURBULENCE

Gradient transport for variable-density turbulence requires closures of Favre fluxes. Due to the
density weighted nature of the fluxes, third moments arise as unclosed terms. These third moments
are turbulent fluxes of second moments. For example, the third moment ρ ′c′u′

k appears in the
transport of conserved scalar ρC̃ = ρ C + ρ ′c′ and is the turbulent flux of ρ ′c′.

The primary objective of this section concerns with derivation of the formal Lagrangian gradient
transport hypothesis for the turbulent flux of the second moment. In this section, we consider second
moments in constant-density turbulence and use the results in this section as a pedagogical tool
before its application to closures in variable-density turbulence.

We consider two scalar species, cα and cβ . All three variables, cα , cβ , and cαcβ are materially
conserved in the nondiffusive limit:

Dcα

Dt
= 0,

Dcβ

Dt
= 0,

D

Dt
(cαcβ ) = 0. (23)

The object c′
αc′

β represents the covariance between two species cα and cβ in multi-

species/multimaterial transport. The transport equation for the second moment c′
αc′

β is

c′
αc′

β,t +(c′
αc′

β U k + c′
αc′

βu′
k ),k +c′

αu′
k Cβ,k +c′

βu′
k Cα,k = εαβ. (24)

The unclosed term of focus is the second moment turbulent flux c′
αc′

βu′
k . The key idea is to to

derive the formal gradient transport expression for c′
αc′

βu′
k and apply it to second moment fluxes

involving density fluctuations. By substituting cα with ρ and cβ with a scalar c, we can use the
result derived for c′

αc′
βu′

k to obtain the corresponding formal gradient transport for objects of the

form ρ ′c′u′
k . The result derived in this section will also serve as the template for closure of several

second and third moment turbulent fluxes in the variable-density turbulence section.

A. Gradient transport by analogy for second moment turbulent flux in constant-density turbulence

We first review the gradient transport by analogy for c′
αc′

βu′
k and discuss why this commonly

employed gradient transport expression is not formally correct. The gradient transport expression
for second moment turbulent flux c′

αc′
βu′

k using analogy to the passive scalar flux in Eq. (12) is [9,26]

c′
αc′

βu′
k = − 〈ξ jvk〉(c′

αc′
β ), j ≈ −Cμ

k

ε
u′

ju
′
k (c′

αc′
β ), j . (25)

From a Lagrangian perspective, this model approximates an empirical gradient transport of the form

c′
αc′

βu′
k = − 〈ξ jvk〉 (c′

αc′
β ), j . (26)

Equation (26) is empirical because an argument is employed that (c′
αc′

β )′ = c′
αc′

β − c′
αc′

β is a
materially conserved scalar. Gradient transport for the passive scalar [Eq. (12)] is then conveniently
employed. However, (c′

αc′
β )′ is not materially conserved as its Lagrangian derivative is not zero in

the presence of mean species gradients:

D

Dt
(c′

αc′
β )′ = −(c′

αu′
k )′ Cβ,k −(c′

βu′
k )′ Cα,k . (27)

In the Appendix, we discuss more about the limitations of the assumptions that lead to Eq. (26)
from both perspectives, Eulerian (Appendix A 7) and Lagrangian (Appendix A 4). We will now
derive formal gradient transport expression for c′

αc′
βu′

k using Lagrangian principles discussed in the
previous section.
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B. Lagrangian gradient transport for binary passive scalar fluctuation in constant-density turbulence

In this subsection, we derive formal gradient transport expression for the turbulent flux of the
second moment c′

αc′
βu′

k using Lagrangian analysis. As we mentioned before, the conserved scalars
in this setup are cα, cβ, cαcβ :

Dcα

Dt
= 0,

Dcβ

Dt
= 0,

D

Dt
(cαcβ ) = 0. (28)

We introduce the notation of the Lagrangian fluctuations to avoid cumbersome expressions. The
Lagrangian fluctuation is defined as the difference between a quantity at a time t in the Lagrangian
trajectory and its Eulerian mean at the initial point in the trajectory. Therefore, Lagrangian fluctu-
ations can be defined for both, total quantities and as well as their Eulerian means. For example,
for a scalar c, the Lagrangian fluctuation of the total quantity is denoted by cL and the Lagrangian
fluctuation of the Eulerian mean is denoted by C

L
:

cL(t ; ai ) = c(t ; ai ) − C(0; ai ), (29)

C
L
(t ; ai ) = C(t ; ai ) − C(0; ai ). (30)

The passive scalar gradient transport equation Eq. (12) can be rewritten using Lagrangian fluctua-
tions as

〈cLvk〉 = 〈c′
0vk〉 = 0. (31)

In other words, the flux of the Lagrangian fluctuation of a passive scalar is zero. The zero flux
results from material conservation of the scalar and a decorrelation of the Lagrangian velocity from
the initial point Eulerian fluctuation of the scalar. Expanding cL = c′ + C

L
and using C

L = ξ jC, j

for mean gradient homogeneous turbulence,

〈c′vk〉 = −〈CL
vk〉 = −〈ξ jvk〉C, j . (32)

For binary fluctuations, using cL
α = c′

α0 and cL
β = c′

β0, we can conveniently write

cL
αcL

β = c′
α0c′

β0. (33)

A formal proof of Eq. (33) starting from material conservation of the object cαcβ is presented in the
Appendix. Additionally, we also show there that (cαcβ )L = (cαcβ )′0 is equivalent to Eq. (33). Next,

expanding the Lagrangian fluctuations in Eq. (33) as cL = c′ + C
L
, we have

c′
αc′

β + c′
αC

L
β + c′

βC
L
α + C

L
α C

L
β = c′

α0c′
β0. (34)

Equation (34) can be re-expressed using c′
α = c′

α0 − C
L
α and c′

β = c′
β0 − C

L
β to obtain

c′
αc′

β − C
L
α C

L
β = c′

α0c′
β0 − c′

α0C
L
β − C

L
αc′

β0. (35)

In the case of constant mean species gradients, a linear spatial variation of Cα and Cβ exists and
we express the Lagrangian fluctuations of Eulerian means using Lagrangian particle displacement
vector as C

L
α = ξiCα,i and C

L
β = ξ jCβ, j to write

c′
αc′

β = ξiξ jCα, j Cβ, j +c′
α0c′

β0 − c′
α0ξiCβ,i −c′

β0ξ jCα, j , (36)

〈c′
αc′

βvk〉 = 〈ξiξ jvk〉 Cα,i Cβ, j . (37)

The moments of final-point Lagrangian objects with initial point scalar Eulerian fluctuations vanish.
As a consequence, 〈c′

α0c′
β0vk〉 = 0, 〈c′

α0ξivk〉 = 0, and 〈c′
β0ξ jvk〉 = 0. Equation (37) is the primary

result of the paper and has been formally derived using material conservation of cα, cβ along
Lagrangian trajectories. Equation (37) will later be used to propose formal gradient transport
expressions for all second moment turbulent fluxes encountered in variable-density turbulence.
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The result in Eq. (37) is interesting in that gradient transport for second moment turbulent flux is
proportional to the product of mean gradients of the two objects in the second moment. Compare this
to the gradient transport by analogy to the passive scalar, which is, as intuition suggests, proportional
to the down gradient of the second moment. Inclusion of mean gradient terms in second moment
turbulent fluxes have also been proposed earlier in the literature to improve the conventional gradient
transport expressions [27]. However formal gradient transport naturally brings mean gradients into
the equation, not as an additional “proposed tensor basis.” Numerical experiments suggest that
gradient of first-order moments can improve modeling accuracy (Appendix A 9). The bilinear form
of the mean gradient and the higher-order Lagrangian moments, are both new objects that have
not been studied previously. Future investigations into their properties are critical to close turbulent
fluxes of high-order Eulerian moments with gradient transport.

C. Comparison of formal and gradient transport by analogy for second moment turbulent flux

Formal Lagrangian analysis results in expression for second moment turbulent flux that is bilinear
in mean gradients. This expression is different from the expression by analogy (Harlow-Hirt-Daly
[9,26]) proposed by applying an analogy between the passive scalar and the second moment.
Equations (38) and (39) provide a comparison between these two expressions:

Analogy [Eq. (26)] : 〈c′
αc′

βu′
k〉 = −〈ξ jvk〉(c′

αc′
β ), j , (38)

Formal Analysis [Eq. (37)]: 〈c′
αc′

βu′
k〉 = 〈ξiξ jvk〉 Cα,i Cβ, j (39)

In the second-moment modeling, second moment turbulent fluxes of type u′
iu

′
ju

′
k , φ′u′

ju
′
k , and φ′φ′u′

k
require closure. Here φ is a scalar. Using the sweeping hypothesis for ui, we can compare the two
gradient transport expressions for these three classes of moments:

Analogy: u′
iu

′
ju

′
k = −〈ξpvk〉(u′

iu
′
j ),p −〈ξpvi〉(u′

ju
′
k ),p −〈ξpv j〉(u′

ku′
i ),p , (40)

Formal Analysis: u′
iu

′
ju

′
k = 〈ξpξqvk〉 U i,p U j,q + 〈ξpξqvi〉 U j,p U k,q + 〈ξpξqv j〉 U k,p U i,q ,

(41)

Analogy: φ′u′
ju

′
k = −〈ξpvk〉(φ′u′

j ),p −〈ξpv j〉(φ′u′
k ),p , (42)

Formal Analysis: φ′u′
ju

′
k = 〈ξpξqvk〉�,p U j,q +〈ξpξqv j〉�,p U k,q , (43)

Analogy: φ′φ′u′
k = −〈ξpvk〉 (φ′φ′),p , (44)

Formal Analysis: φ′φ′u′
k = 〈ξpξqvk〉 (�,p �,q ). (45)

The third moment φ′φ′u′
k provides an useful perspective on the difference in the two expressions.

The expression by analogy is proportional to gradient in the scalar variance, while the formal
expression is proportional to flux of the scalar variance itself, indirectly, via the product of the
mean gradients.

We can also assess the formal gradient transport from the point of view of second moment
transport. Substituting Eq. (38) into the third moment in Eq. (24), GT by analogy results in

c′
αc′

β,t +(c′
αc′

β U k ),k = −c′
αu′

k Cβ,k −c′
βu′

k Cα,k +εαβ + (〈ξpvk〉c′
αc′

β,p ),k , (46)

while substitution with the formal result in Eq. (37) leads to

c′
αc′

β,t +(c′
αc′

β U k ),k = −c′
αu′

k Cβ,k −c′
βu′

k Cα,k +εαβ − (〈ξpξqvk〉Cα,p Cβ,q ),k . (47)

With the expression by analogy, the third moment accounts for turbulent diffusion in the second
moment equation. However, the nonisotropic approximation for 〈ξiξ jvk〉 in the formal expression
yields terms proportional to mean gradients. The role of the third moment then becomes reminiscent
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of a production/destruction term. In particular, the “energy” associated with c′
αc′

β with formal
gradient transport is affected by the term

Analogy: (c′
αc′

β )2,t + · · · = −2 〈ξivk〉 (c′
αc′

β ),i (c′
αc′

β ),k , (48)

Formal: (c′
αc′

β )2,t + · · · = 2 〈ξiξ jvk〉 Cα,i Cβ, j c′
αc′

β,k . (49)

The energetics associated with third moment is no longer straightforward and depends on product
of four tensors. The modeling choice for the object 〈ξiξ jvk〉 will affect the computational stability of
the second moment equation. Therefore, future work will investigate the Lagrangian third moment
〈ξiξ jvk〉 to develop stable and accurate models for second moment turbulent fluxes.

Assumptions for the gradient transport expression in Eq. (37): We reiterate and list the basic
assumptions on the flow state using which the formally exact expression in Eq. (37) is derived.

(1) High Reynolds number turbulence: The correlation length-scale of the Lagrangian fluid
particle is small so that molecular diffusion for the transported quantity can be neglected.

(2) Mean gradient as fluctuation production mechanism: A linearly varying mean field is assumed
along the particle path and so the materially conserved scalar analysis assumes the existence of a
constant mean gradient. This, on the level of principle precludes Eulerian fluctuations in flows with
no mean gradients.

(3) Fine grained turbulence: For Lagrangian statistical analysis to hold, the length-scale of the
transport mechanism must be small compare to the mean-gradient length-scale. This is also required
for the fluctuations to become decorrelated between the initial and final points in the trajectory.

For third moments of the type in Eqs. (40) and (42), the flows must contain mean velocity
gradients for turbulence production. This is a consequence of the sweeping hypothesis applied
to fluid velocity, which is inconsistent with Lagrangian gradient transport assumptions in the
absence of a mean velocity gradient. This limits the use of formal Lagrangian gradient transport
to flows where velocity fluctuations are associated with mean velocity gradient. When used in
moment-closure modeling of buoyancy-driven or decaying turbulent layers, these principles are not
valid. However, in large-eddy simulations and scale-resolving simulations, formal gradient-transport
expressions remain valid and useful since turbulence producing coherent structures provide
nonzero mean velocity gradients.

D. Third-order Lagrangian correlation

The Lagrangian third moment in Eq. (37) contains a quadratic term in Lagrangian particle
displacement vector. This term is further expressed in terms of a bicorrelation tensor as

〈viξ jξk〉 + 〈v jξkξi〉 + 〈vkξiξ j〉

=
∫ t

0

∫ t

0
〈vi(t )v j (t

′
1)vk (t ′

2)〉 + 〈v j (t )vk (t ′
1)vi(t

′
2)〉 + 〈vk (t )vi(t

′
1)v j (t

′
2)〉 dt ′

1 dt ′
2 (50)

= Sv (σ v )3
∫ t

0

∫ t

0
Bviv jvk (τ1, τ2) dτ1 dτ2. (51)

The bicorrelation tensor Bi jk is defined as

Bi jk (τ1, τ2)

= 〈vi(t )v j (t + τ1)vk (t + τ2)〉 + 〈v j (t )vk (t + τ1)vi(t + τ2)〉 + 〈vk (t )vi(t + τ1)v j (t + τ2)〉
Sv (σ v )3

,

(52)

and Sv is the skewness of the Lagrangian velocity field, defined as

Sv =
〈
v3

i

〉
(σ v )3/2

. (53)
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Approximations to the Lagrangian correlation object may be devised using first moment gradi-
ents, as well as second moments such as Reynolds stress and turbulent mass flux. A data-driven
approach can then be used to identify the optimal bases. In the present work, we do not focus on the
closure of the Lagrangian moments.

IV. LAGRANGIAN GRADIENT TRANSPORT FOR VARIABLE-DENSITY TURBULENCE

Variable-density turbulence is a turbulent transport regime in which the inertial effects due to
density differences in the fluid affect the state of turbulence. In the incompressible limit, the density
differences can relate to differences in material composition, temperature, and/or phase [28].

Simulations of variable-density turbulence employ conserved variable sets which results in Favre
solution variables. The convective terms of these Favre solution variables involve unclosed third
moments, as we discussed in the previous section.

The conserved scalar equation and its Favre averaged form is

(ρc),t + (ρcuk ),k = 0, (54)

(ρ C̃),t + (ρ C̃Ũk + ρ c̃′′u′′
k ),k = 0. (55)

The molecular diffusion terms are not included as we focus on the turbulent transport arising from
the convective term.

The third moment ρ ′c′u′
k appears in the Favre turbulent flux as a consequence of transport of ρ ′c′,

which is a part of the Favre solution variable ρ C̃ = ρ C + ρ ′c′. The Favre turbulent flux ρ c̃′′u′′
k is

ρ c̃′′u′′
k = ρ c′u′

k + ρ ′c′u′
k − ρ c′′ u′′

k . (56)

Modeling within the Favre framework is common because Favre variables re-express the turbu-
lent fluxes as a second Favre moment. An implicit assumption in modeling the second Favre moment
is that the physics can be represented solely on the basis of mass-weighted variables. The closures
are then borrowed from constant-density turbulence and applied using arguments by analogy.

A. Gradient transport by analogy for Favre turbulent fluxes

Engineering models almost exclusively employ gradient transport by analogy for Favre fluxes.
However, the analogy for Favre fluxes is not consistent with formal Lagrangian analysis. In the
Appendix (Appendix A 1), we discuss why gradient transport cannot provide closed expressions for
moments involving Favre variables.

The analogy to passive-scalar gradient transport [Eq. (12)] in Favre variables is

Passive scalar: c′u′
k ≡ 〈c′vk〉 = −〈ξ jvk〉 C, j , (57)

Favre analogy: ρ c̃′′u′′
k ≡ 〈ρc′′v′′

k 〉 = −〈ρξ jv
′′
k 〉C̃, j , (58)

where Favre-fluctuating Lagrangian velocity is defined as

v′′
k = vk + ρvk

ρ
. (59)

The analogy is obtained by using a Favre decomposition for the scalar c instead of the Reynolds
decomposition. Then, similar to constant-density passive scalar Lagrangian gradient transport
[Eq. (12)], the moment with c′′ is replaced with a moment with −ξ jC̃, j .

Equations (60)–(64) provide gradient transport expressions obtained by applying the analogy
for second- and third-order Favre moments. The unclosed second Favre moments on the left-hand
side (LHS) appear in the governing equations for conserved scalar ρ C̃, momentum ρ Ũi, total
energy E = ρ (Ẽ + ũkuk/2). The third Favre moments appear in the total energy, Favre stress and
Favre scalar variance ρ c̃′′c′′ equations. The governing equations for the relevant Favre first- and
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second-order moments are provided in the Appendix (Appendix A 6):

ρ c̃′′u′′
k = −〈ρξpv

′′
k 〉 C̃,p , (60)

ρ ũ′′
i u′′

k = −〈ρξpv
′′
k 〉 Ũi,p −〈ρξiv

′′
k 〉 Ũj,p , (61)

ρ ẽ′′u′′
k = −〈ρξpv

′′
k 〉 Ẽ,p , (62)

ρ ˜u′′
i u′′

j u
′′
k = −〈ρξpv

′′
k 〉 R̃i j,p −〈ρξpv

′′
i 〉 R̃ jk,p −〈ρξpv

′′
j 〉 R̃ki,p , (63)

ρ ˜c′′c′′u′′
k = −〈ρξpv

′′
k 〉 c̃′′c′′ ,p . (64)

Here, e = E + e′ denotes the specific internal energy. For the third-order Favre moment of the form
˜c′′
αc′′

βu′′
k , gradient transport by analogy is

ρ ˜c′′
αc′′

βu′′
k = 〈ρc′′

αc′′
βv′′

k 〉 = −〈ρξ jv
′′
k 〉 (c̃′′

αc′′
β ), j . (65)

The object 〈ρξ jv
′′
k 〉 in Eq. (58) is often approximated as an isotropic object using Favre kinetic

energy 2ρ k̃ = ρu′′
k u′′

k as 〈ρξpv
′′
k 〉 ≈ ρ k̃ k̃

ε

ρ c̃′′u′′
k = −〈ρξpv

′′
k 〉 C̃,p ≈ −ρ Cμ

k̃2

ε
C̃,k . (66)

In anisotropic closures, the object 〈ρξ jv
′′
k 〉 is approximated using the Favre stress ρ R̃i j = ρu′′

i u′′
j

and the Eulerian timescale k̃/ε:

ρ c̃′′u′′
k = −〈ρξpv

′′
k 〉 C̃,p ≈ −ρ Cμ

k̃

ε
R̃kp C̃,p . (67)

B. Gradient transport analogy for Reynolds turbulent fluxes

The gradient transport closures may also be applied to the Favre turbulent fluxes in their expanded
Reynolds form, in which moments with density are explicitly accounted for. Different second and
third Favre moments in their Reynolds form are expanded exactly as

ρ c̃′′u′′
k = ρ c′u′

k + ρ ′c′u′
k + ρ aic′′ , (68)

ρ ũ′′
i u′′

k = ρ u′
iu

′
k + ρ ′u′

iu
′
k − ρ aiak , (69)

ρ ˜u′′
i u′′

j u
′′
k = ρ ′u′

iu
′
ju

′
k + ρ [u′

iu
′
ju

′
k − (R̃i jak + R̃ jkai + R̃kia j + aia jak )], (70)

ρ ˜c′′c′′u′′
k = ρ ′c′c′u′

k + ρ (c′c′u′
k − c′′c′′ak + 2c′′ c̃′′u′′

k − c′′ c′′ ak ). (71)

Consider the second Favre moment ρ c̃′′u′′
k in the conserved scalar equation [Eq. (55)]. It

comprises of three second moments and one third-order moment [Eq. (56)]. The scalar flux c′u′
k

is closed using gradient transport [Eq. (12)] in the general case. The density-species covariance
ρ ′c′, can be transported or estimated using a transported variance. The third moment is closed using
Eq. (26), which we have earlier referred to as gradient transport by analogy for second moment
turbulent flux. Note that the analogy is made in this case by applying the sweeping hypothesis to the
zero-mean binary fluctuation ρ ′c′ − ρ ′c′:

ρ ′c′u′
k = −〈ξpvk〉 (ρ ′c′),p . (72)

Second moment turbulent fluxes appear in transport equations for first Favre moments, conserved
scalar ρ C̃ and momentum ρ Ũi as well as second moments such as the turbulent mass-flux ρ ′u′

i, the
density-specific-volume covariance ρ ′υ ′ and the scalar variance c′c′. When the sweeping hypothesis
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is applied to the zero-mean binary fluctuations ρ ′u′
i − ρ ′u′

i, ρ ′υ ′ − ρ ′υ ′ and c′c′ − c′c′, Eq. (26)
results in

ρ ′u′
iu

′
k = −〈ξpvk〉 (ρ ′u′

i ),p −〈ξpvi〉 (ρ ′u′
k ),p , (73)

ρ ′υ ′u′
k = −〈ξpvk〉 (ρ ′υ ′),p , (74)

c′c′u′
k = −〈ξpvk〉 (c′c′),p . (75)

Similarly, third moment turbulent fluxes (which are fourth-order moments) can also be closed
using gradient transport by analogy. These fourth-order moments appear in transport equations of
second Favre moments. For example, ρ ′u′

iu
′
ju

′
k appears in Favre stress R̃i j = ũ′′

i u′′
j equation and the

fourth moment ρ ′c′c′u′
k appears in Favre scalar variance c̃′′c′′ equation. The corresponding transport

equations are provided in the Appendix (Appendix A 6). The gradient transport expressions for these
two fourth moments are obtained by applying the analogy to the zero-mean ternary fluctuations
ρ ′u′

iu
′
j − ρ ′u′

iu
′
j and ρ ′c′c′ − ρ ′c′c′, respectively:

ρ ′u′
iu

′
ju

′
k = −〈ξpvk〉 (ρ ′u′

iu
′
j ),p −〈ξpvi〉 (ρ ′u′

ju
′
k ),p −〈ξpv j〉 (ρ ′u′

iu
′
k ),p , (76)

ρ ′c′c′u′
k = −〈ξpvk〉 (ρ ′c′c′),p . (77)

We reiterate that the sweeping hypothesis for zero-mean binary (and ternary) fluctuations is not
valid formally.

C. Formal closures from Lagrangian gradient transport

In contrast to gradient transport expressions using analogy, we present closures for third and
fourth moments based on the formal Lagrangian gradient transport analysis that leads to Eq. (37).
Formal Lagrangian gradient transport for the turbulent flux of the third moment is derived in the
Appendix, and follows a procedure similar to that used for the second moment turbulent flux in
Eq. (37).

Using Eqs. (37) and (A25), we have the following closures for third and fourth Reynolds
moments. The third moments ρ ′c′u′

k and ρ ′u′
iu

′
k appear in the transport equations for first Favre

moments, conserved scalar ρ C̃, and momentum ρ Ũi, respectively:

ρ ′c′u′
k = 〈ξpξqvk〉 ρ,p C,q , (78)

ρ ′u′
iu

′
k = 〈ξpξqvk〉 ρ,p U i,q + 〈ξpξqvi〉 ρ,p U k,q . (79)

The third moments c′c′u′
k and ρ ′υ ′u′

k appear in the transport equations for density-specific-volume
covariance and Favre scalar variance, respectively:

c′c′u′
k = 〈ξpξqvk〉 C,p C,q , (80)

ρ ′υ ′u′
k = 〈ξpξqvk〉 ρ,p υ,q . (81)

The fourth moments ρ ′u′
iu

′
ju

′
k and ρ ′c′c′u′

k appear in the Favre stress ρ R̃i j = ρ ũ′′
i u′′

j and Favre

scalar variance ρ c̃′′c′′ equations, respectively:

ρ ′u′
iu

′
ju

′
k = 〈ξpξqξrvk〉 ρ,p U i,q U j,r + 〈ξpξqξrvi〉 ρ,p U j,q U k,r +〈ξpξqξrv j〉 ρ,p U k,q U i,r , (82)

ρ ′c′c′u′
k = 〈ξpξqξrvk〉 ρ,p C,q C,r . (83)

In Eqs. (78)–(83), the sweeping hypothesis has been applied to the scalars ρ, υ, c and the turbulent
velocity vector ui. These results are valid for flows with negligible dilatation at the timescales
relevant to turbulent transport.

The turbulent fluxes in variable-density flows, however, unlike constant-density passive scalar
fluxes experience dynamic effects in the presence of pressure-gradient driven acceleration [29].
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As a consequence, Lagrangian gradient transport for moments involving density and associated
“active” scalars involve unclosed terms when dynamic effects are important. We discuss this in
Appendix A 8.

D. Comparison of different gradient transport expressions for Favre fluxes

The gradient transport expressions in Eqs. (78)–(83) for the second/third moment turbulent fluxes
can be used to derive formal Lagrangian transport expression for Favre turbulent fluxes.

Equations (84)–(86) show different gradient transport expressions for the Favre conserved scalar
flux.

Favre conserved scalar flux ρ c̃′′u′′
k in ρ C̃ transport:

Analogy(F): ρ c̃′′u′′
k = −〈ρξpv

′′
k 〉 C̃,p , (84)

Analogy(R): ρ c̃′′u′′
k = −〈ξpvk〉 ρ̄C̃,p + c′′(〈ξpvk〉ρ,p +ρ̄ak ) , (85)

Formal: ρ c̃′′u′′
k = −〈ξpvk〉 ρ̄C̃,p +c′′(〈ξpvk〉ρ,p +ρ̄ak ) + (〈ξpvk〉(ρ ′c′),p

+ 〈ξpξqvk〉ρ,p C,q ). (86)

In “Analogy(F)” equation, we have used gradient transport by analogy for Favre fluxes [Eq. (60)].
In “Analogy(R)” and “Formal” equations, we have applied gradient transport to Reynolds fluxes.
The difference between “Analogy(R)” and “Formal” is the choice of closure for the second moment
turbulent flux ρ ′c′u′

k . In “Analogy(R),” the flux is closed using analogy [Eq. (26)], while in “Formal,”
we use formal Lagrangian analysis derived in Eq. (37).

There is an important difference in applying gradient transport to Favre vs Reynolds fluxes. The
Lagrangian particle displacement flux tensor in the Favre analogy 〈ρξ jv

′′
k 〉, involves Lagrangian

fluctuating velocity and is a dynamical variable due to density. We have shown in Appendix that
the analogy using Favre fluctuating velocity is not valid (Appendix A 1). Formal gradient transport,
instead, involves transport coefficients only in Reynolds (centered) fluctuations such as 〈ξ jvk〉
and 〈ξiξivk〉. Physically, this is a consequence of the fact that Lagrangian analysis is a kinematic
description of transport.

1. Beyond down-gradient conserved scalar flux

We now discuss the additional physics captured in gradient transport expressions in Eqs. (85) and
(86), in comparison to the popular Favre analogy [Eq. (84)] to constant-density gradient transport.
In Eq. (86), there are two new terms in addition to the Favre mean scalar gradient. The first term
which results from applying gradient transport to centered fluctuations, or Reynolds moments, is
ρak + 〈ξpvk〉ρ,p. Note that gradient transport for mass flux without assumptions on initial-final
point Lagrangian moments implies ρak + 〈ξpvk〉ρ,p = 〈ρ ′

0vk〉 Therefore, the term ρak + 〈ξpvk〉ρ,p

incorporates the non gradient transport physics associated with the mass flux. Gradient transport
by analogy for Favre moments does not contain this term, and therefore implicitly asserts gradient
transport closure for the turbulent mass flux. This assertion is inaccurate during the mass-flux pro-
duction/destruction phase in buoyancy-driven or decaying variable-density turbulence. Numerical
simulations of buoyancy-driven turbulent mixing layers indicate that this term can be significant for
large [O(10)] density contrasts (see Appendix A 9).

The second term, that appears as a consequence of invoking formal Lagrangian gradient transport
for the third moment, is (〈ξpvk〉(ρ ′c′),p + 〈ξpξqvk〉ρ,p C,q ). This term is the difference between the
formal and the empirical gradient transport expressions for the third moment ρ ′c′u′

k . The term may

also be recast in terms of Lagrangian fluctuations as 〈(ρLC
L + ρ ′c′L )vk〉 ≈ 〈(ρ ′c′ + ρ ′c′L )vk〉. If the

binary fluctuation ρ ′c′ was a materially conserved quantity, then this term would reduce to zero.
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However, this is not the case in the presence of mean scalar and density gradients, as can be inferred
from Eq. (27).

2. Gradient transport expressions for Favre fluxes of momentum, stress, and scalar variance

Next, we write the three gradient transport expressions (two analogies and the formal expression)
for Favre stress and third Favre moments, in a manner similar to how Eqs. (84)–(86) are presented
for the Favre conserved scalar flux. For the Favre analogy, we also show the modeling approximation
employed in second moment closures for the Lagrangian particle displacement flux tensor. For the
ternary fluctuation flux, formal gradient transport derived in Eq. (A25) is employed. The Favre stress
appears in transport of Favre velocity. The stress flux appears in transport of Favre kinetic energy
and Favre stress, while the scalar variance flux appears in the transport of Favre scalar variance. The
transport equations are provided in the Appendix (Appendix A 6).

Favre stress ρ ũ′′
i u′′

k in ρ Ũi transport equation:

Analogy(FW): ρ ũ′′
i u′′

k = −〈ρξpv
′′
i 〉 Ũk,p −〈ρξpv

′′
k 〉 Ũi,p

≈ −Cμ ρ
k̃

ε
(R̃ip Ũk,p +R̃kp Ũi,p ) , (87)

Analogy(RU): ρ ũ′′
i u′′

k = −〈ξpvk〉 ρ̄Ũi,p − ai(〈ξpvk〉ρ,p + ρak/2)

−〈ξpvi〉 ρ̄Ũk,p − ak (〈ξpvi〉ρ,p + ρai/2) , (88)

Formal: ρ ũ′′
i u′′

k = −〈ξpvk〉 ρ̄Ũi,p −ρ (aiak/2 − 〈ξpvk〉ai,p ) + 〈ξpξqvk〉ρ,p Ui,q

−〈ξpvi〉 ρ̄Ũk,p −ρ (aiak/2 − 〈ξpvi〉ak,p ) + 〈ξpξqvi〉ρ,p Uk,q . (89)

Favre stress flux ρ ˜u′′
i u′′

j u
′′
k in ρ R̃i j transport equation:

Analogy(F): ρ ˜u′′
i u′′

j u
′′
k = −〈ρξpv

′′
k 〉 R̃i j,p −〈ρξpv

′′
i 〉 R̃ jk,p −〈ρξpv

′′
j 〉 R̃ki,p

≈ −Cμ ρ
k̃

ε
(R̃kp R̃i j,p + R̃ip R̃ jk,p + R̃ j p R̃ki,p ) , (90)

Analogy(R): ρ ˜u′′
i u′′

j u
′′
k = −(〈ξpvk〉ρ R̃i j,p +〈ξpvi〉ρ R̃ jk,p +〈ξpv j〉ρ R̃ki,p )

+Ri j〈ξpvk〉ρ,p +R jk〈ξpvi〉ρ,p +Rki〈ξpv j〉ρ,p

−R̃i j (ρ ak + 〈ξpvk〉ρ,p ) − R̃ jk (ρ ai + 〈ξpvk〉ρ,p )

−R̃ki(ρ a j + 〈ξpvk〉ρ,p ) − 〈ξpvk〉(ρ aia j ),p

−〈ξpvi〉(ρ a jak ),p −〈ξpv j〉(ρ akai ),p −ρ aia jak, (91)

Formal: ρ ˜u′′
i u′′

j u
′′
k = ρ〈ξpξqvk〉Ui,p Uj,q +ρ〈ξpξqvi〉Uj,p Uk,q +ρ〈ξpξqv j〉Uk,p Ui,q

−〈ξpξqξrvk〉ρ,p Ui,q Uj,r −〈ξpξqξrvi〉ρ,p Uj,q Uk,r

−〈ξpξqξrv j〉ρ,p Uk,q Ui,r −ρR̃i jak − ρR̃ jkai − ρR̃kia j − ρaia jak .

(92)

Favre scalar variance flux ρ ˜c′′c′′u′′
k in ρ c̃′′c′′ transport equation:

Analogy(F): ρ ˜c′′c′′u′′
k = −〈ρξpv

′′
k 〉 c̃′′c′′ ,p

= −Cμ ρ
k̃

ε
R̃kp (c̃′′c′′ ),p , (93)

Analogy(R): ρ ˜c′′c′′u′′
k = −ρ 〈ξpvk〉 c̃′′c′′ ,p + c′c′ 〈ξpvk〉 ρ,p

−c̃′′c′′ (ρ ak + 〈ξpvk〉ρ,p ) + 2ρ c′′ c̃′′u′′
k − ρ c′′ c′′ak, (94)
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Formal: ρ ˜c′′c′′u′′
k = ρ 〈ξpξqvk〉C,p C,q −〈ξpξqξrvk〉 ρ,p C,q C,r

−ρ c̃′′c′′ ak + 2 ρ c′′ c̃′′u′′
k − ρ c′′ c′′ ak . (95)

The results in Eqs. (84)–(95) provide a useful perspective on the complexity of objects that
formal gradient transport produces. Compared to Favre analogy, the formal expressions include
the explicit terms with turbulent mass flux and higher-order Lagrangian objects contracted with the
mean density gradients. The formal expression therefore provides insight into how the mean density
gradients can produce countergradient diffusion in the turbulent flux, as observed in the turbulent
flux of kinetic energy in recent variable-density jet experiments [30].

V. CONCLUSIONS AND SUMMARY

Historically the formal Lagrangian analysis of a materially conserved scalar has been used to
model the scalar turbulent transport in constant density turbulence. That result is then applied to the
turbulent transport of other quantities despite the fact that these other quantities are not materially
conserved. In variable-density turbulence treated in Favre variables, most gradient transport models
for the Favre turbulent fluxes use an argument by analogy to produce expressions that are mathe-
matical analogues to the constant density passive scalar. One can expect that it would be unlikely
that constant-density Lagrangian analysis of a passive scalar would carry over to a conserved scalar
in the variable-density case. Argument by analogy to the constant density case is not formally valid
because it does not account for the additionally conserved scalar, density, and does not work with
centered variables. This raises the unexplored question of “What does a formal Lagrangian analysis
for turbulent transport in variable-density turbulence produce?” This paper gives the mathematical
details and conclusions of such a formal analysis. Computational models using these formal results
requires a deeper investigation of various moments of the Lagrangian particle displacement vector
and is the subject of a succeeding paper.

We can expect that the variable-density case will lead to substantial differences based on several
ideas all of which we have explored:

(1) In an analysis for materially conserved species in variable-density turbulence with negligible
dilatation, there is an additional materially conserved quantity, the density. The appearance
of density conservation constraint plays a substantial role in the expression of turbulent
fluxes. The most important consequence of an additional conservation principle in a formal
Lagrangian analysis is that the turbulent flux is (1) no longer a down gradient diffusion, (2)
involves a bilinear term in means species gradient and mean density gradient, and (3) the
turbulent transport depends on the relative orientation of the mean density and mean species
gradients:

ρ ′c′u′
k = 〈ξiξ jvk〉 ρ,i C, j . (96)

(2) In the gradient transport by analogy for Favre turbulent fluxes, u′′
i is erroneously assumed to

play the same role as u′
i, a fluctuation object with a zero mean. However, the turbulent mass flux

ρ ak = −ρ u′′
k �= 0 is an independent dynamical variable. Gradient transport in the argument by

analogy for the Favre flux asserts gradient transport for the turbulent mass flux which ignores
the active scalar effects experienced by the variable-density fluid in the presence of external
and pressure-gradient driven acceleration. Numerical simulations of buoyancy-driven mixing
layers show that these effects are sizable for large density differences and must be modeled.
Excluding active scalar effects is also inconsistent with second moment models where the mass
flux is explicitly transported.
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(3) The formal Lagrangian gradient transport model of Eq. (96) has important implications for
modeling of turbulent fluxes in the second moment transport equations. In gradient transport
by analogy, these third moments are modeled as diffusion of the second moments. The formal
Lagrangian gradient transport expression, however, is not strictly a gradient diffusion of
second-order moments. Consequently, it can represent transfer of ‘energy’ into and out of the
second moments.

(4) In contradistinction to the models arrived at in the argument by analogy method, the formal
Lagrangian analysis for the turbulent fluxes in Favre variables has three distinct physics
components. The first relates to dynamics of the turbulent mass flux and results from explicit
accounting of moments with density fluctuations. The second is the dynamics associated
the binary (and ternary) fluctuations, embodied in the third (and higher) moments involving
the Lagrangian particle displacement vector (e.g., 〈ξiξ jvk〉). The third important physical
distinction is that the Lagrangian particle displacement objects are kinematic in the formal
expression and do not involve the density. This is unlike the expression by analogy, which
involves density velocity product in the particle displacement moment and is thus related to
particle momentum, a dynamical quantity that does not appear in a formal Lagrangian analysis.
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APPENDIX

1. Favre decomposition in Lagrangian gradient transport

We analyze Lagrangian gradient transport in Favre averages and fluctuations. We demonstrate
why moments with Favre fluctuations cannot result in closed form gradient transport expressions.
We consider the Favre decomposition form of Eq. (9),

c′′ − c′′
0 = −C̃L , (A1)

which is equivalent to c′ − c′
0 = −C

L
. Moments of Eq. (A1) with vk, v

′′
k and ρv′′

k are evaluated
below. Here, v′′

k = vk + u′′
k . Moment with ρv′′

k results in the Favre turbulent scalar flux 〈ρc′′v′′〉 =
ρc′′u′′

k .

Moment with vk: 〈c′′vk〉 = −〈C̃Lvk〉 + 〈vkc′′
0〉 = −〈C̃Lvk〉 + 〈vkc′′

0〉. (A2)

Using two-point mean-fluctuation decorrelation, we can assume 〈vkc′′
0〉 = 0. If a linear variation of

the Favre mean scalar exists, then we have 〈c′′vk〉 = −〈ξ jvk〉C̃, j .

Moment with v′′
k: 〈c′′v′′

k 〉 = −〈C̃Lv′′
k 〉 + 〈c′′

0v
′′
k 〉. (A3)

We write v′′
k = v′′

k
L + u′′

k0, where v′′
k

L = vk + u′′
k

L
and c′′

0 = c′
0 + c′′

0. Moments of final-point La-
grangian objects (denoted with the superscript L) with initial-point Eulerian objects vanish. So,
we have

〈c′′v′′
k 〉 = 〈(c′

0 + c′′
0 )(v′′L

k + u′′
k0)〉 = c′′

0 u′′
k0. (A4)
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Similarly, we can expand 〈C̃Lv′′
k 〉 as 〈C̃Lvk〉 + 〈C̃Lu′′

k

L〉 to obtain

〈c′′v′′
k 〉 = −〈C̃Lv′

k〉 − 〈C̃Lu′′L
k 〉 + c′′

0u′′
k 0. (A5)

Therefore, due to the nonzero initial-point means, Lagrangian analysis cannot close the gradient
transport of 〈c′′v′′

k 〉.
Moment with ρv′′

k: 〈ρc′′v′′
k 〉 = −〈ρC̃Lv′′

k 〉 + 〈ρc′′
0v

′′
k 〉. (A6)

Similarly, moments with ρv′′
k are unclosed. Writing ρ = ρL + ρ0, we have

〈ρc′′
0v

′′
k 〉 = 〈(ρL + ρ0)(c′

0 + c′′
0 )(v′′L

k + u′′
k0)〉. (A7)

We can write ρL = ρ ′
0 as it is a materially conserved scalar. Since moments of Lagrangian fluctu-

ations with initial-point Eulerian objects vanish, the nonzero terms in the right-hand side (RHS) of
Eq. (A7) are ρ0 c′′

0 u′′
k0 and ρ ′

0c′
0 u′′

k0. Next, the term 〈ρC̃Lv′′
k 〉 is expanded as

〈ρC̃Lv′′
k 〉 = 〈(ρL + ρ0)C̃L(v′′L

k + u′′
k0)〉 = 〈(ρ ′

0 + ρ0)C̃L(v′′L
k + u′′

k0)〉 = ρ0(〈C̃Lvk〉 + 〈C̃Lu′′
k

L〉),
(A8)

resulting in

〈ρc′′v′′
k 〉 = −ρ0(〈C̃Lvk〉 + 〈C̃Lu′′

k

L〉) + ρ0 c′′
0 u′′

k0 + ρ ′
0c′

0 u′′
k0. (A9)

Therefore, analogy of the passive-scalar gradient transport in Favre variables is not valid. For refer-
ence, the analogy invoked in Favre variables can be expressed in the form 〈ρc′′v′′

k 〉 = −〈ρ〉〈C̃Lvk〉.

2. The Lagrangian fluctuation of the conserved binary scalar

In Eq. (33), we write cL
αcL

β = c′
α0c′

β0 using Eq. (31). Here, we prove the identity cL
αcL

β = c′
α0c′

β0
[Eq. (33)] independently starting from material conservation of cαcβ along its Lagrangian trajectory:

cαcβ = (cαcβ )0. (A10)

We carry out a Lagrangian decomposition of the LHS and an Eulerian decomposition of the RHS
in Eq. (A10). A key step is to express the mean-fluctuation decomposition for the product in a form
where the expansion only consists of means, total quantities, and the binary fluctuation. For the
Eulerian decomposition of the conserved scalar at the initial point in the trajectory, we have

cα0cβ0 = c′
α0c′

β0 + Cα0cβ0 + cα0Cβ0 − Cα0Cβ0. (A11)

Similarly, the Lagrangian decomposition at the end of the trajectory c = cL + C0 results in

cαcβ = cL
αcL

β + Cα0cβ + cαCβ0 − Cα0Cβ0. (A12)

Equating the right-hand sides in Eqs. (A11) and (A12) as c = c0, we obtain the second moment
turbulent flux counterpart to the scalar flux in Eq. (31). Alternatively, we can also show that

(cαcβ )L = (cαcβ )′0 ≡ cL
αcL

β = c′
α0c′

β0, (A13)

using (CαCβ )L = C
L
αCβ0 + Cα0C

L
β + C

L
αC

L
β .

3. Mean-field dependence on Lagrangian particle displacement vector in variable-density flows

An important step in gradient transport closures is the dependence of mean fields on the
Lagrangian particle displacement vector. The Lagrangian moments appearing in gradient transport
stem from this functional dependence.
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Linear C and ρ fields: With the passive scalar assumptions, formal Lagrangian analysis yields

〈ρ ′c′vk〉 = 〈ρL C
L
vk〉. (A14)

With linear variation of the form ρL = ρ, j ξ j and C
L = C, j ξ j , we have a quadratic dependence of

ρL C
L

on the displacement vector.
Linear ρC and ρ fields: With a linear variation of the form ρC

L = ρC, j ξ j and ρL = ρ, j ξ j , we

do not have a linear variation of C
L
. Instead, C

L
is expanded on dependent variables as

C
L = ρC

L − ρ ′c′L − ρLC0

ρ0 + ρL . (A15)

We must make an additional assumption about the variation of ρ ′c′. If a linear variation for ρ ′c′ is
assumed, then we have

C
L = ξp

ρC,p −ρ ′c′,p −ρ,p C0

ρ0 + ξqρ,q
, (A16)

which shows that that C
L

and consequently ρLC
L

cannot result in closed form gradient transport
expressions.

Linear C̃ and ρ fields: In the case of linear Favre mean field C̃, C
L

can simply be expressed as
C

L = C̃L + c′′L. The spatial variation of C
L

will depend on the spatial variation of the object c′′L.
When c′′L varies linearly, we have C

L = ξq(C̃,q +c′′,q ) such that a quadratic dependence of ρL C
L

is retained, as is the case with a linear C field.

4. Mean gradient inconsistency in Eq. (26)

We consider the validity of Eq. (26) using gradient transport applied to the conserved scalar cαcβ .
A straightforward expression for c′

αc′
βu′

k is suggested using the following arguments:

(cαcβ )′u′
k = −〈ξ jvk〉(cαcβ ), j , (A17)

⇒ Cα c′
βu′

k + Cβ c′
αu′

k + c′
αc′

βu′
k = −〈ξ jvk〉(cαcβ ), j , (A18)

⇒ c′
αc′

βu′
k = −〈ξ jvk〉(c′

αc′
β ), j , (A19)

where we have expanded the Eulerian fluctuation (cαcβ )′ and used the gradient transport hypothesis
for cα, cβ . There is an inconsistency in the logic which makes this argument, and Eq. (A19) invalid.
The following three relations for the mean fields cannot hold true simultaneously:

C
L
α = Cα, j ξ j, C

L
β = Cβ, j ξ j, cαcβ

L = cαcβ, j ξ j . (A20)

If the mean fields Cα , Cβ are linear in the displacement vector, then cαcβ will generally have a
quadratic dependence on the Lagrangian particle displacement vector thereby making Eq. (A17)
invalid.

5. Turbulent flux of ternary fluctuations

We consider three materially conserved scalars cα , cβ , and cγ . The turbulent flux of ternary
fluctuations is c′

αc′
βc′

γ u′
k . We derive the Lagrangian gradient transport closure for this turbulent flux.

The following quantities are materially conserved:

Dcα

Dt
= Dcβ

Dt
= Dcγ

Dt
= D

Dt
(cαcβ ) = D

Dt
(cβcγ ) = D

Dt
(cαcγ ) = D

Dt
(cαcβcγ ) = 0. (A21)
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The ternary counterpart to the mean-fluctuation decomposition in Eq. (A11) is the identity

cαcβcγ = c′
αc′

βc′
γ + CαCβCγ + Cαcβcγ + cαCβcγ + cαcβCγ − CαCβcγ − cαCβCγ − CαcβCγ ,

(A22)

which results in cL
αcL

βcL
γ = c′

α0c′
β0c′

γ 0, the ternary counterpart to Eq. (33). This relation can also

be derived using Eq. (33) using induction. Using a decomposition of the form c′
0 = c′ + C

L
in

Eq. (A22), the expression cL
αcL

βcL
γ can be expanded as

c′
αc′

βc′
γ + C

L
αC

L
βC

L
γ + C

L
αc′

β0c′
γ 0 + c′

α0C
L
βc′

γ 0 + c′
α0c′

β0C
L
γ − c′

α0C
L
βC

L
γ − C

L
αc′

β0C
L
γ − C

L
αC

L
βc′

γ 0

= c′
α0c′

β0c′
γ 0. (A23)

We then take moments with the velocity at the final position. For passive scalars, the moments with
initial point Eulerian and final point Lagrangian fluctuations are zero. Here, we do not distinguish
between unary, binary, or ternary fluctuations. For example, the moment of ternary final point
fluctuation with a unary initial point fluctuation is taken to be zero. Similarly, the moment of a
binary final point fluctuation with a binary initial point fluctuation is taken to be zero. Therefore, for
passive scalars, we have

〈c′
αc′

βc′
γ vk〉 + 〈

C
L
αC

L
βC

L
γ vk

〉 = 0. (A24)

Using linear dependence of the Lagrangian fluctuations of the means on the dispersion vector, the
gradient transport closure for the ternary fluctuation flux is

〈c′
αc′

βc′
γ vk〉 = −〈ξpξqξrvk〉Cα,p Cβ,q Cγ ,r . (A25)

6. Second-moment-based variable-density turbulence modeling

The present work addresses modeling within the Favre framework, specifically second-moment
closures, where transport equations for second moments inevitably require closure of third moments.

Second-moment-based closures solve for transport of averaged mass, momentum, energy and
Favre stress R̃i j = ũ′′

i u′′
j . In variable-density turbulence, additional second moments require evo-

lution equations. A relevant modeling framework is the Besnard-Harlow-Rauenzahn (BHR) [31]
modeling framework, in which the turbulent mass flux ρ ak = ρ ′u′

k and the density-specific-volume
covariance b = ρ ′υ ′ are additionally transported. Let us review the transport equations and the
closures involved in second moment modeling of variable-density turbulence:

Conserved scalar: (ρ̄C̃),t +(ρ̄C̃Ũk + ρ̄c̃′′u′′
k ),k = 0, (A26)

Momentum: (ρ̄Ũi ),t +(ρ̄ŨiŨk + ρ̄R̃ik + P̄δik ),k = 0, (A27)

Total energy: [ρ̄(Ẽ + ŨkŨk/2 + R̃kk/2)],t +[ρ̄(Ẽ + P + ŨkŨk/2 + R̃kk/2)Ũj

+ ρ̄ẽ′′u′′
j + ρ̄R̃ jkŨk + ρ̄ ˜u′′

k u′′
k u′′

j /2 − ρ̄P̄a j + p′u′
j], j = 0, (A28)

Favre stress: (ρ̄R̃i j ),t +(ρ̄R̃i jŨk ) + (ρu′′
i u′′

j u
′′
k + p′u′

jδik + p′u′
iδ jk ),k (A29)

+ ρ̄(R̃ jkŨi,k +R̃ikŨ j,k ) − (a jP̄i + aiP̄j ) − (p′u′
j,i + p′u′

i, j ) = 0, (A30)

Scalar variance: (ρ̄c̃′′c′′),t +(ρ̄c̃′′c′′Ũk + ρ̄ ˜c′′c′′u′′
k ),k = −2ρ̄c̃′′u′′

kC̃,k , (A31)

Turbulent mass flux: (ρ̄ai ),t +(ρ̄aiŨk ),k

= ρ̄υ ′ p′,i + bP̄,i −R̃ik ρ̄,k +ρ̄(akai ),k −ρ̄akŪi,k −ρ̄(ρ ′u′
iu

′
k/ρ̄ ),k , (A32)

b = ρ ′υ ′: (ρ̄b),t +(ρ̄bŨk ),k = −2(b + 1)ak ρ̄,k +2ρ̄akb,k −ρ̄2(ρ ′υ ′u′
k/ρ̄ ),k −2ρ̄2υ ′θ ′.

(A33)
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The unclosed Favre moments are c̃′′u′′
k ,

˜c′′c′′u′′
k and ˜u′′

i u′′
j u

′′
k . Unclosed turbulent fluxes in ai and b

equations are ρ ′u′
iu

′
k and ρ ′υ ′u′

k , respectively.

7. The Eulerian perspective on gradient transport for second moment turbulent flux

Gradient transport has previously also been derived from an Eulerian perspective [26] although
with strong empirical assumptions. We review the Eulerian approach for passive scalar gradient
transport and then derive results for the third moment:

c′u′
j,t +(c′u′

j U k + c′u′
ju

′
k ),k +u′

ju
′
k C, j +c′u′

k U , j

= −(p/ρ)′c′, j + (νcu′
jc

′,k + νc′u′
j,k ),k −(νc + ν)c′,k u′

j,k . (A34)

For steady-state, homogeneous turbulence, the balance between production and dissipation yields

u′
ju

′
k C, j = −(νc + ν)c′,k u′

j,k . (A35)

Next, the dissipation is assumed to be isotropic of the form c′,k u′
j,k ≈ (c′u′

j )/λ
2
v such that the

balance of production and dissipation results in

c′u′
j = − λ2

v

νc + ν
u′

ju
′
k C, j . (A36)

An outcome of this hypothesis is that the timescale of relevance in the transport process gets
associated with the viscous dissipation process. This is an inherent outcome of an Eulerian approach
to turbulent transport.

Now, we use the approach above to derive gradient transport for the turbulent flux of the binary
fluctuation ρ ′c′. From an Eulerian perspective, the transport equation for the third moment can help
in deriving an expression for the turbulent flux of the second moment:

(ρ ′c′u′
j ),t +(ρ ′c′u′

j U ,k +ρ ′c′u′
ju

′
k ),k

= −c′u′
ju

′
k ρ,k −ρ ′u′

ju
′
k C,k −ρ ′c′u′

k Uj,k −ρ ′c′(u′
ju

′
k ),k −ρ ′u′

j (c
′u′

k ),k −c′u′
j (ρ

′u′
k ),k

− ρ ′c′(p j/ρ)′ + (νcρ ′u′
jc

′,k ),k + (νρ ′c′u′
j,k ),k − νc(ρ ′u′

j ),k c′,k − ν(ρ ′c′),k u′
j,k . (A37)

The isotropic dissipation assumption is of the form

νc(ρ ′u′
j )kc′

k ≈ νc

ρ ′c′u′
j

λ2
v

, ν(ρ ′c′)ku′
j,k ≈ ν

ρ ′c′u′
j

λ2
v

. (A38)

Assuming the mean shear term is negligible and the turbulence is homogeneous and stationary,
the production-dissipation balance leads to the following expression for ρ ′c′u′

j :

ρ ′c′u′
j = − λ2

v

νc + ν
[−c′u′

ju
′
k ρ,k −ρ ′u′

ju
′
k C,k −ρ ′c′(u′

ju
′
k ),k −ρ ′u′

j (c
′u′

k ),k −c′u′
j (ρ

′u′
k ),k ]. (A39)

It is interesting that the Eulerian derivation for the second moment turbulent flux does not yield
the gradient transport expressions employed in the literature, which only consists of second moment
gradients. In contrast, the expression derived here also consists of first moment gradients. The
similarity to Lagrangian gradient transport of the form in Eq. (A45) is not a coincidence and is
demonstrative of the transport physics accurately captured in the Lagrangian analysis.
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8. Active-scalars and gradient transport

A passive scalar does not influence the velocity field. The mass density of the fluid, however,
affects the Lagrangian velocity field via inertia and is therefore active and not a passive scalar. This
has two consequences for gradient transport.

The Lagrangian moments involving the Lagrangian particle displacement vector are different
in constant and variable-density flows. This is due to differential acceleration effects [28] in the
presence of density variations:

〈ξ jvk〉CD = υconst

∫ t

0
〈ξ j p′

k〉 dτ, (A40)

〈ξ jvk〉VD = 〈υ〉
∫ t

0
〈ξ j p′

k〉 dτ +
∫ t

0
〈ξ jυ

′ p′
k〉 dτ, (A41)

where time-integration is carried out over a trajectory timescale long enough such that 〈ξ jvk (0)〉 =
0. Therefore, in contrast to constant-density turbulence, variable-density turbulence involves third
moments involving the pressure-gradient and the specific volume.

Dynamic effects on the active scalar flux are captured in gradient transport as unclosed initial-
final point Lagrangian moments. For example, For a passive scalar c, in Eq. (11) we used

〈c0vk〉 = 〈c′
0vk〉 = 0. (A42)

However, for density, Eq. (A42) does not necessarily hold. Instead,

〈ρ0vk〉 = 〈ρvk〉 = 〈ρ ′
0vk〉 �= 0. (A43)

The term 〈ρvk〉 cannot be zero because the acceleration and consequently, the velocity in the
Lagrangian trajectory depends on the mass-density ρ(t ; 0) associated with the Lagrangian particle.
Therefore, gradient transport for turbulent mass flux yields

〈ρ ′vk〉 = −〈ξ jvk〉 ρ, j + 〈ρ ′
0vk〉, (A44)

and 〈ρ ′
0vk〉 is an indicator of how well gradient transport approximates the turbulent mass flux.

Similarly, Eq. (36) for binary scalar fluctuations will have additional unclosed terms for active
scalars, such as density and those that are related to density via equation of state. As in Eq. (A43),
the moments of initial-point Eulerian fluctuations with final-point velocity can be nonzero in flows
with pressure-gradient driven differential acceleration (see Appendix). In such a case, the nonzero
moments that result from Eq. (36) are 〈c′

α0c′
β0vk〉, 〈c′

α0C
L
βvk〉, and 〈c′

β0C
L
αvk〉. These caveats hold for

all gradient transport closures in variable-density flows, including the expressions in Eqs. (78)–(83).
Note. The terms that incorporate active scalar effects in Eq. (37) gradient transport are 〈ρ ′

0c′
0vk〉,

〈ρ ′
0C

L
vk〉, and 〈ρLc′

0vk〉. The equation may alternatively be expressed in a form where only a single
unclosed term exists. By taking moments of Eq. (36) with the Lagrangian velocity vk (t ; 0), we
obtain

〈ρ ′c′vk〉 = −〈c′ξivk〉 ρ,i −〈ρ ′ξ jvk〉 C, j −〈ξiξ jvk〉 ρ,i C, j +〈vkρ
′
0c′

0〉. (A45)

Here, the gradient transport expression also consists of terms linear in first moment gradients, and
but the Lagrangian moments in such a case involve correlations with scalar fluctuations.

9. Numerical experiments

Two cases of numerical experiments are carried out to evaluate the relevance of the formal
expressions to turbulent mixing zones. The first case demonstrates the quadratic dependence of
scalar variance turbulent flux on the mean scalar gradient, as is predicted by formal gradient
transport. The second case evaluates the turbulent mass flux component of the Favre scalar flux in
buoyancy-driven turbulent mixing layers. For both cases, the data is reported for Cartesian grids with
2563 points. This resolution is found to be sufficient for the quantities inferred from the simulations.
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FIG. 2. Case 1: Scalar slab diffusing with time (left) and the instantaneous velocity component field of the
stationary homogeneous isotropic turbulence (right).

Case 1: Turbulent diffusion of passive scalar slab
The first numerical experiment involves mixing of a passive scalar slab in the presence of fine-

grained isotropic turbulence (Fig. 2). The scalar slab is introduced after the stationary turbulent
flow-field has evolved over several large-eddy turnover times tLE. Turbulent diffusion takes place in
the presence of mean scalar gradient that weakens with time. From the expression in Eq. (45), we
have for this case

c′c′u′
k = 〈ξpξqvk〉 (C,p C,q ) , (A46)

c′c′u′
2 = 〈ξ2ξ2v2〉(C,2 )2. (A47)

The turbulence is stationary, homogeneous and isotropic and is forced at relatively high
wavenumber range to ensure fine-grained turbulence with respect to the scalar gradient length-scale.
The Taylor-scale Reynolds number is 250. The fields are evolved using a pseudospectral method and
RK4 time integration.

Statistical averages are computed in the plane perpendicular to the direction of inhomogeneity x2.
Therefore, the overbars and prime operators denote spatial averages in the context of this subsection.

In Fig. 3(a), the instantaneous standard deviation σ of the moment 〈c′c′u′
2〉(x2) is seen to

scale as (C,2 )2 [Eq. (45)] post-transient. This is consistent with formal expression in Eq. (A47)
that predicts a quadratic dependence of the moment on the mean scalar gradient in stationary
turbulence. The standard deviation (in x2) is used here as a proxy for the magnitude of the third
moment.

Additionally, in Fig. 3(a), we observe that the scalar variance turbulent flux magnitude scales
as c′c′,2. This is predicted by the conventional gradient transport expression [Eq. (44)]. However,

FIG. 3. (a) Third moment magnitude, mean, and variance gradient as a function of time and (b) normalized
profiles in x2, averaged between 4 � t/tLE � 15.
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FIG. 4. Case 2. Buoyancy-driven turbulent mixing layers: (left) instantaneous density fields for three
Atwood numbers and (right) peak fluxes in the fully developed mixing zones. Arrows indicate direction of
acceleration.

in Fig. 3(b), we plot time-averaged normalized profiles of 〈c′c′u′
2〉,C,2 and c′c′,2. The mean scalar

gradient has two peaks, in the two mixing zones while the variance gradient has four peaks, two for
each mixing zone. The magnitude envelope of c′c′u′

2 can be seen to coincide with the mean gradient
and not the variance gradient. Therefore, formal gradient transport can potentially provide more
accurate estimates of second moment turbulent fluxes.

Case 2: Rayleigh-Taylor turbulent mixing layer
Turbulent mass flux is an important dynamical variable in Rayleigh-Taylor unstable mixing

layers. Therefore, simulations of incompressible buoyancy-driven mixing layers are carried out
for three Atwood numbers A = (ρ2 − ρ1)/(ρ1 + ρ2) = 0.5, 0.8, and 0.9 to evaluate the mass-flux
term. The details of the numerical method can be found in [8,32]. The Reynolds number based
on Taylor-microscale in the center of the mixing zone is approximately 75 for all three cases. The
Froude number is fixed at 0.5.

The mass flux term c′′(〈ξ2v2〉ρ,2 +ρ̄a2) [Eqs. (85) and (86)] is estimated using the approx-
imation 〈ξ2v2〉 ≈ −c′u′

2/C,2 and compared against the Favre scalar flux ρ̄c̃′′u′′
2. In Fig. 4, the

peak values of the fluxes in fully developed mixing zones are plotted. The values for the third
moment ρ ′c′u′

2 are also plotted for comparison. The active scalar effects in the turbulent mass
flux are seen to be negligible for moderate Atwood numbers but are important at higher Atwood
numbers. As discussed in the main text, active scalar effects are implicitly neglected when gradient
transport analysis is carried out with noncentered Favre fluctuations—the so-called argument
by analogy. The formal expression allows explicit modeling of the mass flux effects in Favre
fluxes.

10. List of symbols and operators

The list of symbols and operators used in the text and equations is summarized in Tables I
and II.

TABLE I. Averaging and fluctuation operators.

(), j Spatial gradient ()0 Initial point in Lagrangian trajectory
〈()〉 Lagrangian trajectory ensemble average ()L Lagrangian fluctuation
() Eulerian mean ()′ Eulerian fluctuation
(̃) Favre mean ()′′ Favre fluctuation
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TABLE II. Symbols for physical quantities.

ui Eulerian velocity vi Lagrangian velocity
ρ Density cα Scalar species α

ξi Lagrangian displacement vector υ Specific volume
k Specific kinetic energy ε Dissipation rate
Ri j Turbulent stress ρ̄ai Turbulent mass flux
b Density specific volume correlation θ Dilatation
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