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Stability analysis of a resonant triad in a stratified uniform shear flow
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The amplitude equations governing the temporal evolution of internal waves forming a
resonant triad in a two-dimensional inviscid stably stratified uniform shear flow, bounded
between two infinite horizontal parallel plates, are derived in the absence of diffusive
effects. The density is considered to be a linear function of the vertical coordinate. The
interaction of two vertically confined and horizontally propagating primary internal waves
having the same frequency is considered. Specifically, for different local Richardson
numbers, we show the existence and stability of the resonant triad formed by three
different internal waves having the wave vector and frequency pairs as (�km, ω), (�kn, ω), and
(�km + �kn, 2ω). For each resonant triad, we solve the amplitude equations numerically as an
initial value problem. The equilibrium solutions of the amplitude equations are obtained
analytically. Furthermore, the linear stability analysis of the resonant triads, around the
equilibrium solutions, is carried out for various interaction cases. The triads containing a
wave with the lowest mode number are found to be linearly unstable. The exact solutions
of the amplitude equations are presented under the pump-wave approximation, in which
the amplitude of one of the waves in the triad is larger than the amplitudes of the other two
waves initially. From the exact solutions, the amplitudes of the waves forming a resonant
triad are found to be unbounded when the wave with the mode number 1 acts as the pump
wave. The present study helps one to have a better understanding of the stability of resonant
triads of internal waves formed in a stratified shear flow.

DOI: 10.1103/PhysRevFluids.6.014802

I. INTRODUCTION

Stratified flows are encountered everywhere in nature, for instance, in the atmosphere, oceans,
and lakes. Stratified flows occurring in nature are usually stably stratified—a class of stratified
flows in which the mean density increases in the direction of gravity. A disturbance in a stably
stratified flow produces gravity waves driven by the restoring action of buoyancy forces and appear
spontaneously at the interior parts of the flow in the form of internal waves. Internal waves in the
atmosphere and ocean may develop, for instance, by blowing wind over a mountain and by tides, re-
spectively [1–4]. Internal waves play an important role in atmospheric and oceanic circulation [5–8].
In particular, internal waves in the ocean break down to turbulence and lead to small-scale ocean
mixing, which is crucial to oceanic circulation [7] that enhances marine productivity and affects the
global climate [5,6,8–11].

The linear stability of stably stratified flows has been studied for decades by a number of
researchers. Taylor [12] and Goldstein [13] analyzed the linear stability of inviscid shear flow in
an exponentially stratified medium and derived the linearized disturbance equation, referred to as
the Taylor-Goldstein equation. Taylor [12] stated that the sufficient condition for the stability of
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inhomogeneous shear flow is that the local Richardson number Ri, defined as being the ratio of
the buoyancy term to the flow shear term, must be higher than 0.25 everywhere in the domain. In
another study, Case [14] examined the stability of an inviscid stratified shear flow in an idealized
atmosphere and concluded that (i) the perturbation decays as 1/

√
t for Ri > 0.25, where t denotes

time, and (ii) there exists an infinite number of distinct neutrally stable eigenvalues [15]. A more
general case that includes viscosity in a uniformly stratified medium was undertaken by Davey and
Reid [16].

A nonlinear theory becomes important when the amplitude of the “wavelike” perturbation
becomes finite [17]. Due to finite amplitude perturbations, wave interactions take place, which are
responsible for the redistribution of energy among different interacting waves [18]. Wave interac-
tions among finite-amplitude surface gravity waves on deep water were presented by Phillips [19]
and furthered by Longuet-Higgins [20] and Hasselmann [21]. The focus of their studies was to
understand the evolution of initial energy distribution among different gravity waves. After these
works, a vast amount of research was carried out on wave interactions among geophysical waves,
such as water waves and currents in deep water and shallow water [22,23], ocean surface waves [24],
Rossby waves [25,26], and solitary waves [27], to name a few. From previous studies based on the
perturbation expansion [19–21,24,25], the energy distribution is due to higher-order resonant wave
interactions, which arise when the wave vectors and frequencies of the interacting waves satisfy the
same functional relationship.

Various kinds of nonlinear interactions are involved in energy exchange among internal waves
that are important to understand the instabilities and mixing processes in the ocean. A specific
class of such interaction mechanisms in the context of oceanic internal waves is resonant triad
interactions (RTIs). RTIs involve three waves whose wave vectors and frequencies satisfy the spatial
and temporal resonance conditions, namely, �k3 = ±�k1 ± �k2 and ω3 = ±ω1 ± ω2, where �k1,2,3 and
ω1,2,3 are the wave vectors and frequencies of the interacting waves; see [7] and references therein.
A special type of RTI in internal waves is the triadic resonance instability (TRI) [7,28,29] in which
a primary wave—forming a resonant triad with a pair of secondary waves of smaller frequencies—
becomes unstable, resulting in the transfer of energy from the primary wave to the secondary waves.

To understand the nonlinear effects on the stability of internal waves forming a resonant triad, it is
customary to use the amplitude equations [30–34]. In practice, the amplitude equations are derived
and solved to track the nonlinear evolution of the amplitudes of the waves forming a resonant triad.
Note that the amplitude equations are derived under the assumption of small but finite amplitude
waves and are valid in the weakly nonlinear regime. In an inviscid fluid, a criterion for the stability
of a resonant triad formed by one primary internal wave of finite amplitude and a pair of secondary
internal waves of infinitesimal amplitudes was given by Hasselmann [35], which assumes that the
primary wave has the highest frequency in the triad. Under the above conditions, a triad is unstable
when �k1 + �k2 = �k3 and ω1 + ω2 = ω3. Here, (�k1,2, ω1,2) and (�k3, ω3), ω1,2,3 > 0 represent the wave
vector and frequency pairs of the infinitesimal and finite components of the triad, respectively. The
assumption wherein the initial amplitude of one of the waves in a triad is much larger than the
amplitudes of other two waves is known as the pump-wave approximation, and the wave with the
largest amplitude is referred to as the pump wave [31,35]. In this approximation, the effect of the
waves with smaller amplitudes on the pump wave is neglected, and the amplitude of the pump
wave is treated as a constant. In the case of RTIs among internal waves, the growth rates of the
secondary internal waves are maximum when ω1 = ω2 = ω3/2, and |�k1|, |�k2| � |�k3|; due to this
instability, energy transfer occurs from the long internal wave to short internal waves [7]. Under
the pump-wave approximation, Craik et al. [31] presented and analyzed some exact solutions of the
amplitude equations wherein the amplitude was assumed to be a slowly varying function of both
space and time. In a subsequent study, Craik and Stewartson [30] discussed a class of exact solutions
of the amplitude equations for RTIs, which deals with the bursting of localized perturbations in the
case of RTIs.
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Within the framework of the amplitude equations, several studies [17,34,36,37] have been carried
out to understand RTIs arising in different variants of stratified flows. Notably, in the absence of any
background shear, RTIs among three internal waves having three distinct mode numbers in continu-
ously stratified fluids was discussed by Thorpe [38]. He presented an analytical relationship among
the mode numbers and frequencies of the waves present in the resonant triad. Grimshaw [34] studied
the local evolution of the RTIs of internal waves originating from a stratified shear flow through
the slowly varying amplitude equations. The present work closely follows and extends Thorpe’s
work [38] by including a background shear and focuses on the uniformly stable stratification (i.e.,
density decreases uniformly with the height). Following the approach of the amplitude equation, in
the present study, we investigate a nonlinear wave interaction forming a resonant triad in an inviscid
stratified uniform shear flow.

The main objectives of the present work are to derive the weakly nonlinear amplitude equations
for RTIs arising in a uniformly stratified shear flow and to analyze the stability of resonant triads.
In particular, we focus on RTIs in which two primary waves of frequency ω interact and produce a
superharmonic wave. To understand the evolution of amplitudes of the resonant waves, we solve the
coupled amplitude equations numerically. We present the analytical solution of amplitude equations
under the pump-wave approximation by assuming a primary wave of the lowest mode number as
the pump wave. We shall illustrate the stability of resonant triads for different local Richardson
numbers from the temporal behavior of the amplitudes of the internal waves involved in the triad,
starting from different initial values. The stability of such solutions of amplitude equations is crucial
for understanding the stability of a resonant triad, and hence the energy transfer mechanism among
waves in a resonant triad.

Here we identify the aforementioned resonant triads arising in a stably stratified uniform shear
flow. Although other studies [34,38] have approached similar problems, the effect of background
shear flow on RTIs among two primary and one superharmonic modes is still poorly understood. For
instance, it is unclear how the presence of uniform shear in a stratified flow affects the formation
of resonant triads among three different modes and the evolution of their amplitudes. For more
realistic scenarios, one needs to consider the effect of viscosity, diffusivity, and Earth’s rotation on
triad interactions. The inclusion of such effects on the RTIs of internal waves is far beyond the scope
of the present study and will be considered elsewhere in the future.

The paper is organized as follows. In Sec. II, the description of the problem, governing equations,
and details of the disturbance equations are presented. The analytical solution of the linear problem
and the existence of RTIs are demonstrated in Sec. III. The formulation of the nonlinear problem
consisting of the adjoint problem is outlined in Sec. IV A. The amplitude equations for the problem
under consideration are derived in Sec. IV B. The equilibrium solutions and their linear stability
are discussed in Sec. IV C. The exact solution under the pump-wave approximation is analyzed in
Sec. V. At the end, conclusions are given in Sec. VI.

II. PROBLEM FORMULATION

Let us consider a two-dimensional parallel shear flow driven by two oppositely moving horizontal
plates with speed Up located at z = ±H . Here, x and z are the streamwise (horizontal) and transverse
(vertical) directions, respectively. The basic flow assumes unperturbed velocity U = Upz/H and
density profile ρ̄(z) with pressure P(z). We also assume that the shear is uniform (i.e., overall shear
rate Up/H is a constant) and that the density profile is linearly stably stratified [i.e., ρ̄(z) ∝ −z].
The total velocity, pressure, and density fields are indicated here, which are decomposed into the
basic (or unperturbed) flow fields plus the perturbation fields as (U + u,w), P + p, and ρ̄ + ρ,
respectively, where the perturbations u, w, p, and ρ may depend on the horizontal x and vertical
z directions and the time t . Under the Boussinesq approximation, in which the density variations
can be neglected in the inertial term, the balance equations for the mass, energy, and momentum
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reduce to

∂x(U + u) + ∂zw = 0, (1)

∂t (ρ̄ + ρ) + (U + u)∂x(ρ̄ + ρ) + w∂z(ρ̄ + ρ) = 0, (2)

∂t (U + u) + (U + u)∂x(U + u) + w∂z(U + u) = − 1

�m
∂x(P + p), (3)

∂tw + (U + u)∂xw + w∂zw = − g

�m
(ρ̄ + ρ) − 1

�m
∂z(P + p), (4)

where ∂t ≡ ∂/∂t , ∂x ≡ ∂/∂x, and ∂z ≡ ∂/∂z denote the partial derivatives with respect to t , x, and
z, respectively, and �m is a constant background density. Since ∂xU = ∂xρ̄ = ∂xP = 0 and gρ̄/�m +
∂zP/�m = 0, we get

∂xu + ∂zw = 0, (5)

(∂t + U∂x )ρ + w ∂zρ̄ = −(u ∂xρ + w ∂zρ), (6)

(∂t + U∂x )u + w∂zU = −(u ∂xu + w ∂zu) − 1

�m
∂x p, (7)

(∂t + U∂x )w = −(u ∂xw + w ∂zw) − g

�m
ρ − 1

�m
∂z p. (8)

Eliminating the pressure from (7) and (8), replacing the base state density gradient from the left-hand
side of (6) by the squared buoyancy frequency N2 defined as N2 = −g/�m∂zρ̄, and introducing the
perturbed stream function ψ (x, z, t ) with (u,w) = (∂zψ, − ∂xψ ), we get the following equations:

(∂t + U∂x )ρ + �mN2

g
∂xψ = J (ψ, ρ), (9)

(∂t + U∂x )∇2ψ − (∂xψ )(∂zzU ) = g

�m
∂xρ + J (ψ,∇2ψ ), (10)

where ∇2 denotes the Laplacian and J is the Jacobian determinant. In general, the buoyancy
frequency N depends on the vertical coordinate z, e.g., in the ocean, N is larger in the thermocline
than in the abyss. Here, we study the uniform shear flow with stable stratification, i.e., N2 > 0. We
also assume a constant buoyancy frequency, which implies uniform stratification throughout the
flow domain.

For nondimensionalization, we choose the reference scales for density, velocity, length, time, and
buoyancy frequency as �m, Up, H , H/Up, and

√
g/H , respectively. Using this scaling and a further

simplification that U varies linearly with z, the dimensionless equations read

(∂t + U∂x )ρ + N2∂xψ = J (ψ, ρ), (11)

(∂t + U∂x )∇2ψ = Ri0 ∂xρ + J (ψ,∇2ψ ), (12)

where Ri0 = gH/U 2
p is the (dimensionless) bulk Richardson number and N is the dimensionless

buoyancy frequency. For simplicity, the same notations are kept in Eqs. (11) and (12) for the
nondimensional variables and the parameter N . Furthermore, we assume no-slip and zero density
perturbation conditions at the boundaries z = ±1.

III. LINEAR PROBLEM: NORMAL MODE SOLUTION

In this section, we perform the linear stability of the base flow subject to infinitesimal pertur-
bations. For this, we neglect the nonlinear perturbation terms of (11) and (12) to get linearized
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perturbation equations,

(∂t + U∂x )ρ + N2∂xψ = 0 and (∂t + U∂x )∇2ψ − Ri0 ∂xρ = 0. (13)

Since the linear equations (13) are transnational invariant in x and t , we can assume a normal mode
solution for the perturbation variables,

(ψ, ρ) = [ψ̂ (z), ρ̂(z)] eik(x−ct ), (14)

where k is the real horizontal wave number, c = c(r) + ic(i) is the complex phase velocity with
superscripts (r) and (i) denoting the real and imaginary parts, and ψ̂ (z) and ρ̂(z) represent z-
dependent amplitudes of the perturbed stream function and perturbed density, respectively, which
can be complex-valued functions. The linear stability of the base flow is determined by the sign
of the imaginary part of the complex phase velocity c; the flow is stable, unstable, or neutrally
stable if c(i) < 0, c(i) > 0, or c(i) = 0, respectively. Substituting (14) into (13), we get the following
generalized matrix eigenvalue problem:

LX = cMX, (15)

where

L =
[
U (D2 − k2) −Ri0

N2 U

]
, M =

[
D2 − k2 0

0 1

]
, D = d

dz
, and X =

[
ψ̂

ρ̂

]
. (16)

The resulting eigenvalue problem (15) and (16), along with the boundary conditions ρ̂ = ψ̂ = 0 at
z = ±1, is solved numerically using the Chebyshev spectral collocation method [39].

For long-wave (i.e., k = 0) perturbations, the eigenvalues of the linearized system have been
determined in terms of the hyperbolic functions [16,40],

c j (Ri) = coth

(
jπ

2
√

Ri − 0.25

)
, j = 1, 2, 3, . . . , Ri > 0.25, (17)

where Ri = Ri0N2 is the local Richardson number, which represents the local gradient of back-
ground density. Due to the uniform stratification (N = constant), the local Richardson number
remains constant in the present problem. Note that to find the parameters for which resonant triad
interactions (RTIs) exist, one needs to find a set of wave numbers and frequencies satisfying the
dispersion relation, which is explained in Sec. III A.

A. Analytical solution

The linearized problem (15) admits an analytical solution in terms of the modified Bessel
functions [41,42]. To find the analytical solution of (15), we eliminate density, which yields the
simplified version of the well-known Taylor-Goldstein equation,

[(U − c)2(D2 − k2) + Ri]ψ̂ = 0, (18)

where U = z, ∀z, z 	= c in order to avoid singularity. Here, we fix the local Richardson number
greater than 0.25 to ensure the existence of an infinite number of discrete eigenvalues of (15) as well
as the linear stability of the stratified flow [14]. Note that (18) can be transformed to the modified
Bessel equation [40] as

ψ̂ (z) = [k(z − c)]1/2{Kν[k(−1 − c)]Iν[k(z − c)] − Iν[k(−1 − c)]Kν[k(z − c)]}, (19)

where z 	= c, and Iν and Kν are the modified Bessel functions of the order of ν = (0.25 − Ri)1/2.
Here, ν is a purely imaginary number as Ri > 0.25, which also assures neutrally stable modes in the
system. By employing the boundary conditions, we get the dispersion relation relating the frequency
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FIG. 1. (a) The forward and backward propagating mode 1, ψ̂ (z), for Ri = 8.2 and k = 3.599 with
frequencies ω = 4.51 and −4.51, respectively. ψ̂ (z) is normalized in such a way that maxz∈[−1,1] |ψ̂ (z)| = 1.
(b) Variation of frequency ω of different forward modes (mode 1 to mode 4) of wave number k = 1 with the
local Richardson number Ri, where the solid, dashed, dotted, and dash-dotted lines represent the frequencies
of mode 1 to mode 4, respectively.

(ω = kc) and the wave number (k) as

D(k, ω) =
∣∣∣∣Iν (−k − ω) Kν (−k − ω)

Iν (k − ω) Kν (k − ω)

∣∣∣∣ = 0. (20)

By solving dispersion relation (20) empirically for different local Richardson number, an infinite
set of wave numbers at a fixed frequency as well as an infinite set of frequencies at a fixed wave
number are obtained. Note that as the flow domain is vertically bounded, the waves appearing in
the flow are confined in a finite-depth region between the plates at z = ±1; therefore, one can
describe such waves in terms of different modes. These different modes at a particular frequency
ω having wave numbers k1, k2, k3, . . . are arranged in ascending order of their wave numbers, i.e.,
k1 < k2 < k3 · · · ; these modes are referred to as the first mode, second mode, third mode, and so
on. It is clear from the relation ω = kici that for a fixed frequency ω, as the mode number increases,
the phase speed ci decreases, and thus the first mode has the maximum phase speed, i.e., the first
mode is the fastest traveling mode.

It is verified that the numerically obtained eigenvalues from (15) match excellently with those
obtained by solving (20) analytically. In the present study, we observe that the growth rates are
zero, and hence all the modes are neutrally stable (i.e., c = c(r) and ω = ω(r) = kc(r) are real).
This is expected from the choice of the local Richardson number Ri > 0.25 [19]. The discrete
modes present in the system can be classified into two categories depending on their phase speeds,
namely, the forward (c = c(r) > 1, ω = ω(r) > k) and backward (c = c(r) < −1, ω = ω(r) < −k)
propagating modes. Physically, the forward (backward) propagating mode travels faster (slower)
than the background shear flow without altering its stability.

Figure 1(a) depicts the forward propagating mode 1 (ω = 4.51) and the backward propagating
mode 1 (ω = −4.51) for Ri = 8.2 and k = 3.599. It has been found [but shown only for mode
1 in Fig. 1(a)] that for every forward propagating mode ψ̂ (z) having frequency ω, there exists
a backward propagating mode −ψ̂ (−z) having frequency −ω. In other words, the forward and
backward propagating modes have symmetry about the origin in the (ψ̂, z) plane. Therefore, in
what follows, we shall consider only the forward propagating modes; a similar analysis for the
backward propagating modes can be carried out analogously. For wave number k = 1, the variation
of frequencies of the first four forward propagating modes with the local Richardson number Ri
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FIG. 2. First four forward propagating modes for ω = 4.51 and Ri = 8.2, where numbers near the curves
represent the counting of local extrema. The wave numbers k1 to k4 for mode 1 to mode 4 are 3.59903, 4.506,
4.50996, 4.50998, respectively. The inset in (d) shows a zoomed portion near the third and fourth local extrema.

is presented in Fig. 1(b). Here, the bulk Richardson number Ri0 is specified as 1. It is clear that
the frequency of each mode is a strictly increasing function of Ri, and the rate of change of the
frequency is maximum for mode 1. As the mode number increases, the frequency increases slowly
with Ri. Physically, the frequency of the mode having the maximum phase speed increases most
rapidly with the squared natural frequency of the vertical oscillation of the fluid, i.e., N2, since Ri0

is a constant. In other words, increasing the buoyancy frequency leads to high-frequency waves in
the system.

The first four forward propagating modes having frequency ω = 4.51 for Ri = 8.2 are illustrated
in Fig. 2. It is evident from Fig. 2 that a mode structure depends on its mode number because the
number of extrema of a mode inside the flow domain is equal to the mode number. It is worth noting
that in the absence of background shear flow, the vertical structures of the internal modes are simply
the sine and cosine functions [8]. However, in the presence of shear, the vertical structures of these
modes turn out as the modified Bessel functions (19). In what follows, the symmetry of the mode
structures breaks down due to (uniform) shear flow; see Fig. 2.

Figure 3(a) illustrates the variation of frequency of the first and third forward propagating modes
with the wave number; the other parameters are the same as those in Fig. 2. It is seen that the
frequency of each mode increases with the wave number. The wave number and frequency pairs of
the waves forming a resonant triad, listed in the first row of Table I, are marked with circles; see

FIG. 3. (a) Variation of frequency with the wave number for the first (solid line) and third (dashed line)
modes, where the circle denotes the wave number and frequency pairs of the waves forming a resonant triad.
(b) Variation of two primary modes (solid and dashed lines) and a secondary mode (dot-dashed line). Other
parameters are the same as in Fig. 2.
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TABLE I. The parameters associated with resonant triad interactions among waves with mode numbers m,
n, and r in a stably stratified uniform shear flow.

(m,n) Ri ω km kn km + kn kr 2ω ωr |2ω − ωr |
(1,3) 8.2 4.51 3.59903 4.50996 8.10899 8.10899 9.02 9.02000 9.2455 × 10−7

(1,4) 7.3 4.21 3.39878 4.20994 7.60872 7.60872 8.42 8.42000 5.2173 × 10−8

(2,3) 6.7 4.21 4.20482 4.20956 4.41438 8.41482 8.42 8.41998 1.1682 × 10−5

(2,4) 2.2 1.81 1.79103 1.80979 3.60082 3.60081 3.62 3.62000 7.9970×10−7

(3,4) 2.0 2.61 2.60865 2.60987 5.21852 5.21865 5.22 5.2200 6.4018×10−8

next section for more detail. It is found that at frequency ω = 4.51, mode 1 and mode 3 give rise
to a secondary wave with frequency ω = 9.02 (see the next section for more details). Indeed, this
secondary wave is a mode 1 of double frequency as its wave number and frequency pair satisfies the
dispersion relation (top circle lying on the solid line) along with the mode boundary conditions; see
the variation of the mode shown by the dash-dotted line in Fig. 3(b). These three interacting modes,
depicted by circles in Fig. 3(a), are illustrated in Fig. 3(b). The secondary mode (dash-dotted line)
satisfies the dispersion relation and boundary conditions. Note that the secondary mode carries mode
number 1 and has a shorter wavelength than primary mode 1 (solid line).

Similarly to Fig. 3, for other interacting wave pairs, one can check whether or not a secondary
wave generated by the resonant triad interaction of two primary modes is a mode. If a secondary
wave satisfies the dispersion relation as well as the mode boundary conditions, then it is a mode. In
order to verify that the secondary wave satisfies the mode boundary conditions, one needs to verify
the spatial structure of the wave having the same wave number and frequency as the secondary
wave.

B. Evidence of resonant triad interactions

In general, three waves form a resonant triad if their wave vectors (�k1, �k2, �k3) and frequencies
(ω1, ω2, ω3) satisfy the following conditions:

�k3 = ±�k1 ± �k2 and ω3 = ±ω1 ± ω2. (21)

The wave vector in the present problem is one dimensional [see (14)], i.e., (|�k1|, |�k2|, |�k3|) =
(k1, k2, k3), with k1,2,3 being the wave numbers along the x direction. In the present paper, we
focus on a special type of resonant triad, where two primary waves of different wave numbers
k1 = km and k2 = kn having the same frequency ω1 = ω2 = ω interact and produce the secondary
wave of frequency ω3 = 2ω and wave number k3 = km + kn; thus satisfying conditions k3 = k1 + k2

and ω3 = ω1 + ω2. Here, the subscripts m and n denote the mode numbers of the primary waves
(see Sec. III A). Since the present flow configuration is vertically bounded, the primary waves are
described as modes. Usually, the secondary wave is not compelled to be a mode. However, for
the interaction cases considered here, the secondary waves are turned out as modes; see Fig. 4
and Table II for more detail. To search for parameter space pertaining to a resonant triad, we
solve the dispersion relation (20) by appropriately choosing the range of ω and Ri. For each pair
of ω and Ri, the dispersion relation (20) is solved for k. Hence, the obtained wave numbers k
can be arranged in ascending order, k1 < k2 < k3 < k4 · · · . Once again, we solve (20) for finding
frequencies ω at fixed k = km + kn and Ri, where km and kn are the wave numbers obtained from the
previous calculations. From these calculations, we get countably many ω satisfying the dispersion
relation D(km + kn, ω) = 0, among which we pick a particular solution, say ωr , such that 2ω = ωr .
Owing to the computational limitations, 2ω can never be exactly equal to ωr ; however, the absolute
difference |2ω − ωr | can be made arbitrarily small, which determines the strength of a resonant
triad. The existence of a resonance triad is confirmed if the condition |2ω − ωr | = 0 is satisfied
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4.81.86.72.56.3
0

3.62

5.22

8.42
9.02

FIG. 4. Graphical representation of the resonant triad condition for the parameters listed in Table I.
Vertically aligned circles represent the eigenvalues of the linear problem at wave number km + kn (sixth column
of Table I). The horizontal lines depict 2ω (eighth column of Table I) corresponding to each (m, n). The points
(km + kn, 2ω) are marked by black stars. Insets show the zoomed portion of those parts where a circle is
overlapping with a star.

with some specified accuracy, i.e., |2ω − ωr | ≈ 0. By testing this condition, we get parameters
ω and Ri leading to strong resonant triads. For a few pairs of different mode numbers such that
1 � m � 4 and 1 � n � 4 with m < n, Table I summarizes the values of the parameters at which
|2ω − ωr | ≈ 0, thereby leading to strong resonance triads.

The existence of resonant triad interactions (RTIs) in the present system is represented graph-
ically in Fig. 4. All possible frequencies for the modes corresponding to the wave number k =
km + kn are shown in Fig. 4, where km and kn are chosen from the fourth and fifth columns of
Table I. The same color circles in Fig. 4 represent the frequencies at fixed Ri and fixed pair of mode
numbers (m, n). For reference, the frequencies listed in the eighth column of Table I are shown
by the horizontal lines. The intersection of a circle and a horizontal line, marked with a (black)
star, represents the point (km + kn, 2ω) at which RTIs appear. It is evident that in each case, the
number 2ω (star) matches exactly with one of the frequencies ωr at wave number k = km + kn.
Consequently, there exists a primary mode with frequency 2ω at wave number km + kn, and hence
conditions (21) of a resonant triad are satisfied exactly for the considered parameter values (listed
in Table I).

TABLE II. The wave numbers of modes at frequency 2ω for different Ri. The wave numbers in bold
represent the wave numbers of the superharmonic wave generated by the interaction of two primary waves of
frequency ω and wave numbers km and kn as listed in Table I.

Ri 2ω k1 k2 k3 k4 k5 k6

8.2 9.02 8.10899 8.92412 8.98854 9.00968 9.01661 9.01889
7.3 8.42 7.60872 8.17609 8.34542 8.39716 8.413 8.41786
6.7 8.42 7.67696 8.20797 8.35854 8.40216 8.41482 8.4185
2.2 3.62 3.43751 3.60081 3.61798 3.61979 3.61998 3.62
2.0 5.22 5.0635 5.20547 5.21865 5.21987 5.21999 5.22
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For more clarity, we solve dispersion relation (20) by replacing the frequency ω in (20) with
the values listed in the sixth column of Table I (corresponding to 2ω) to determine the associated
wave numbers, which are displayed in Table II. Clearly, each value of km + kn listed in the eighth
column of Table I appears in each corresponding row of Table II; see the bold cells in Table II (note
that the wave numbers in each row of Table II are sorted in ascending order). Thus the existence
of a secondary mode with wave number km + kn and frequency 2ω is also confirmed from Table II.
Moreover, the mode number of the secondary wave, resulting from the interaction of two primary
waves, can be determined from Table II. For instance, the mode number of the secondary wave is
equal to two for the parameters corresponding to the fourth row.

In the no-shear case, Thorpe [38] derived an explicit expression for the existence of RTIs,

ω

N2
= (3m − n)(3n − m)

16mn
, (22)

where m, n, and ω are the mode numbers and frequency of two primary waves of a triad, respectively.
Further, he found that the mode number of the superharmonic wave, forming a resonant triad with
these two waves, is equal to |m − n|. Consequently, for a given buoyancy frequency N , we can
easily examine whether or not the mode m and mode n at frequency ω lead to a resonant triad. For
instance, RTIs are not possible when forward propagating modes with (m, n) = (1, 3) and (1,4) at
any given frequency ω interact. In the presence of shear flow, no such analytical expression relating
the mode numbers and frequency of the interacting waves exists for RTIs. In this case, the only way
to calculate the mode number of the superharmonic mode is to count the number of local extrema in
their vertical structures. In the next section, we investigate the nonlinear problem, where we derive
the amplitude equations for the waves forming RTIs.

IV. NONLINEAR PROBLEM

A. Adjoint problem and biorthogonality relation

To derive the amplitude equations, one requires the orthogonality relation between the regular
and adjoint eigenfunctions that can be obtained as follows. We first define an inner product,

〈LX, X †〉 =
∫ 1

−1
X †∗LX dz =

∫ 1

−1
(L†X †)∗Xdz = 〈X, L†X †〉, (23)

where L† and X † = (ξ, η)T denote the adjoint operator and the adjoint eigenfunction, respectively,
and the superscript ∗ denotes the conjugate transpose. By employing a few steps of integration by
parts and applying the boundary conditions, we obtain the adjoint operator L† associated with the
linear operator L as

L† =
[
U (D2 − k2) + 2U ′D N2

−Ri0 U

]
. (24)

Recall that the operator M is a self-adjoint operator, and thus the adjoint problem takes the
following form:

L†X † = c∗ MX † with ξ = η = 0 at z = ±1. (25)

It is well known that the eigenvalues of the adjoint problem (25) are the complex conjugate of
the eigenvalues of the regular problem (15). In the present problem, all eigenvalues of the regular
problem are real and, therefore, c = c∗.

To derive the orthogonality relation, we rewrite (23) as∫ 1

−1
[X †∗

j LiXi − (L†
jX

†
j )∗Xi]dz = 0, (26)
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where Li = L(k → ki ) and L†
j = L†(k → k j ). Here, the notations L(k → ki ) and L†(k → k j )

imply that the wave numbers k in the operators L and L†, defined in (16) and (24), are replaced
by the wave numbers ki of the ith mode and k j of the jth mode, respectively. Substituting LiXi and
L†

jX
†
j from (15) and (25) into (26), we obtain

ci

∫ 1

−1
X †∗

j MiXidz − c∗
j

∫ 1

−1
(M jX

†
j )∗Xidz = 0,

where Mi = M(k → ki ) and M j = M(k → k j ). Applying integration by parts in the second term
of the above equation, we obtain

(ci − c∗
j )

∫ 1

−1
X †∗

j MiXidz = 0, (27)

which can also be written as∫ 1

−1
X †∗

j MiXidz = Cδi j or 〈MiXi, X †
j 〉 = Cδi j, (28)

where δi j is the Kronecker delta. The regular and adjoint eigenfunctions can be normalized such
that C = 1.

B. Derivation of the amplitude equations

In this section, we derive the amplitude equations when the two primary waves interact with
the superharmonic wave and form a resonant triad [17,43]. Note that the amplitude equations are
strictly valid in the weakly nonlinear region, i.e., close to the linear stability threshold. Nevertheless,
in fully nonlinear regimes, these equations can provide qualitative information about the underlying
physics. It is worth mentioning that the amplitude equations are independent of the choice of a
physical system, and that the coefficients of the amplitude equations are enough to know the growth
or decay of a weakly nonlinear perturbation.

To derive the amplitude equations for resonant triad interactions, we assume the normal mode
expansion in a general form,

(ψ, ρ) =
∑

j

[ψ̂ j (z), ρ̂ j (z)]Aj (t ) Ej, (29)

where Aj’s are the algebraic time-dependent amplitudes of the jth wave, and Ej = eik j (x−c jt ).
Substituting (29) with only three modes j ∈ {m, n, r} into (12) and collecting the coefficients of
Em, En, and Er , we get

(
dAm

dt
− ikmcmAm

)[
D2 − k2

m 0

0 1

][
ψ̂m

ρ̂m

]
= A∗

n(t )Ar (t ) fm(z),

(
dAn

dt
− ikncnAn

)[
D2 − k2

n 0

0 1

][
ψ̂n

ρ̂n

]
= A∗

m(t )Ar (t ) fn(z), (30)

(
dAr

dt
− ikrcrAr

)[
D2 − k2

r 0

0 1

][
ψ̂r

ρ̂r

]
= Am(t )An(t ) fr (z).
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Here, fm(z), fn(z), and fr (z) are the nonlinear terms,

fm(z) =
[

fm1(z)

fm2(z)

]
=

[
J (ψ̂r, ψ̂

∗
n ) + J (ψ̂∗

n , ψ̂r )

J (ψ̂r, ρ̂
∗
n ) + J (ρ̂∗

n , ψ̂r )

]
,

fn(z) =
[

fn1(z)

fn2(z)

]
=

[
J (ψ̂r, ψ̂

∗
m) + J (ψ̂∗

m, ψ̂r )

J (ψ̂r, ρ̂
∗
m) + J (ρ̂∗

m, ψ̂r )

]
, (31)

fr (z) =
[

fr1(z)

fr2(z)

]
=

[
J (ψ̂m, ψ̂n) + J (ψ̂n, ψ̂m)

J (ψ̂m, ρ̂n) + J (ρ̂n, ψ̂m)

]
,

where J (ψ̂i, ψ̂ j ) = (ikiψ̂i )(MjDψ̂ j ) − (Dψ̂i )(ik jMjψ̂ j ), J (ψ̂i, ρ̂ j ) = (ikiψ̂i )(Dρ̂ j ) − (Dψ̂i )(ik j ρ̂ j ),
and Mj = D2 − k2

j . Multiplying (30) with the conjugate transpose of the corresponding adjoint
eigenfunction from the left and integrating with respect to z from −1 to 1, we get

dAm

dt
− iωmAm = λmA∗

n(t )Ar (t ),

dAn

dt
− iωnAn = λnA∗

m(t )Ar (t ), (32)

dAr

dt
− iωrAr = λrAm(t )An(t ),

where λm, λn, and λr are the complex coupled coefficients of the amplitude equations and are defined
as

λ j =
∫ 1
−1[ξ ∗

j η∗
j ]
[ f j1(z)

f j2(z)
]
dz

∫ 1
−1[ξ ∗

j η∗
j ]
[(D2 − k2

j ) 0
0 1

][ψ̂ j

ρ̂ j

]
dz

for j = m, n, r. (33)

It is numerically verified that for the parameters considered here, both the regular (ψ̂ j, ρ̂ j ) and
adjoint (ξ j, η j ) eigenfunctions are purely imaginary, which further implies that λ∗

j = −λ j , i.e., λ j’s
are purely imaginary numbers. Our goal is to study the evolution of RTIs, i.e., the evolution of
the amplitudes of the three waves (two primary waves and one secondary wave) having the wave
number and frequency pairs as (km, ω), (kn, ω), and (km + kn, 2ω). For such choices of wave number
and frequency pairs, the coefficients of the linear terms in (32) become ωm = ωn = 1

2ωr = ω and
kr = km + kn. The coupling coefficients λm,n,r are calculated from (33) and are listed in Table III
for the parameters given in Table I. It is evident from Table III that the coefficients λm,n,r of the
amplitude equations (32) are purely imaginary.

With the known values of the coefficients of the amplitude equations, we analyze the solution
of the amplitude equations (32), which is obtained numerically using the Runge-Kutta fourth-order

TABLE III. Coefficients of the amplitude equations for RTIs for various mode number pairs.

(m,n) Ri ω km kn λm λn λr

(1,3) 8.2 4.51 3.59903 4.50996 2.58820 i 0.01190i −0.01463i
(1,4) 7.3 4.21 3.39878 4.20994 2.77645i 0.00745i −0.32486i
(2,3) 6.7 4.21 4.20482 4.20956 −0.34448i −0.02592i −0.24006i
(2,4) 2.2 1.81 1.79103 1.80979 0.16221i 0.00144i −0.00430i
(3,4) 2.0 2.61 2.60865 2.60987 1.02676i 0.10173i 0.19710i
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method (RK4) for different initial conditions. The variation of the normalized amplitudes,

||Aj || = |Aj |∣∣A0
j

∣∣ , (34)

for j = m, n, r with time for different initial conditions Aj (t = 0) = A0
j is illustrated in Fig. 5.

The rows from top to bottom in Fig. 5 correspond to (m, n) = (1,3), (1,4), (2,3), (2,4), and (3,4),
respectively, and the other parameters are given in Table III. For the initial conditions considered
here, it can be seen from Fig. 5 that the absolute amplitudes of the two interacting primary waves
(with amplitudes Am and An), having the same frequency ω, increase or decrease simultaneously at a
different rate. For the case of (m, n) = (1, 4), (2,3), (2,4), and (3,4), the amplitude of the secondary
wave, Ar , increases or decreases when the amplitudes of the two interacting primary waves (Am and
An) decrease or increase, respectively. In contrast, for (m, n) = (1, 3), the amplitudes of all waves
in a triad follow the same trend. It is also evident from Fig. 5 that the amplitudes of waves forming
a triad depend on the mode numbers as well as the initial conditions. It is worth recalling that the
waves of a resonant triad exchange energy continuously and, due to this, the amplitudes of the waves
change in time.

C. Equilibrium solution and linear stability

We shall now study the behavior of the equilibrium amplitude in the presence of a resonant triad.
Let us write the amplitude equations (32) into real form, by assuming

Am = |Am|eiθm (t ), An = |An|eiθn (t ), Ar = |Ar |eiθr (t ), � = θr − θm − θn. (35)

Using (35), the six-dimensional system (32) reduces to a four-dimensional system,

d|Am|
dt

= (
λ(r)

m cos � − λ(i)
m sin �

)|An||Ar |,
d|An|

dt
= (

λ(r)
n cos � − λ(i)

n sin �
)|Am||Ar |,

d|Ar |
dt

= (−λ(r)
r cos � + λ(i)

r sin �
)|Am||An|,

d�

dt
= |Am||An||Ar |

[
− sin �

(
λ(r)

r

|Ar |2 + λ(r)
n

|An|2 + λ(r)
m

|Am|2
)

+ cos �

(
λ(i)

r

|Ar |2 − λ(i)
n

|An|2 − λ(i)
m

|Am|2
)]

.

(36)

Since the coefficients λm, λn, and λr are purely imaginary (see Table III), system (36) further reduces
to

d|Am|
dt

= −λ(i)
m |An||Ar | sin �,

d|An|
dt

= −λ(i)
n |Am||Ar | sin �,

d|Ar |
dt

= λ(i)
r |Am||An| sin �,

d�

dt
= |Am||An||Ar |

(
λ(i)

r

|Ar |2 − λ(i)
n

|An|2 − λ(i)
m

|Am|2
)

cos �. (37)

The equilibrium amplitudes are obtained by substituting d|Am|
dt = d|An|

dt = d|Ar |
dt = d�

dt = 0, which
yields two types of equilibrium solutions:

(i) Pure-mode solutions in which the amplitudes of waves forming a resonant triad are indepen-
dent,

Am| = A
√

sgn(λ(i)
m )A1 λ

(i)
m , |An| = A

√
sgn(λ(i)

n )A2 λ
(i)
n , |Ar | = A

√
sgn(λ(i)

r )A3 λ
(i)
r ,

� = pπ, p = 0,±1,±2, . . . , (38)

where A is any nonzero positive constant and Ai, for i ∈ 1, 2, 3 are nonzero positive constants

satisfying sgn(λ(i)
n )

A2
+ sgn(λ(i)

m )
A1

= sgn(λ(i)
r )

A3
. These solutions exist only when λ(i)

m , λ(i)
n , λ(i)

r are nonzero.
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FIG. 5. Variation of the normalized amplitudes (34) with time for mode pairs (m, n) =
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4) (depicted row-wise from top to bottom). The columns from left
to right display ||Am||, ||An||, and ||Ar ||, respectively. The initial conditions for (Am, An, Ar ) are
(0.1 + 0.1i, 0.1 + 0.1i, 0.1) (black line); (0.1, 0.1, 0.005) (magenta line); (0.1i, 0.1i, 0.2) (red line),
and (0.6, 0.6, 0.2i) (blue line). Other parameters are the same as those listed in Table III.
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Note that the governing equation for � [i.e., last equation of (37)] is invalid when at least one of
|Am|, |An|, and |Ar | is zero. Thus, from the first three equations of (37), we get � = pπ , where p is
any integer.

(ii) Mixed-mode solutions in which the amplitude of the secondary wave in a triad is dependent
on the amplitudes of the two primary waves,

Am| = C1, |An| = C2, |Ar | =
√

λ
(i)
r |Am||An|√

λ
(i)
m |An|2 + λ

(i)
n |Am|2

, � = pπ, p = 0,±1,±2, . . . ,

(39)

where C1 and C2 are positive constants. A mixed-mode solution (39) corresponds to a resonant triad.
In order to study the stability behavior of a resonant triad, we linearize (37) around the mixed-

mode solution (39). Without loss of generality, we assume that C1 = C2 = 1, i.e., |Am| = |An| =
1 and |Ar | =

√
λ

(i)
r√

λ
(i)
m +λ

(i)
n

. The stability of the system (37) is determined by the eigenvalues of the

Jacobian matrix, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 λ(i)
m

√
λ

(i)
r√

λ
(i)
m +λ

(i)
n

0 0 0 λ(i)
n

√
λ

(i)
r√

λ
(i)
m +λ

(i)
n

0 0 0 −λ(i)
r

−2 λ(i)
m

√
λ

(i)
r√

λ
(i)
m +λ

(i)
n

−2 λ(i)
n

√
λ

(i)
r√

λ
(i)
m +λ

(i)
n

−(
λ(i)

m + λ(i)
n

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

The four eigenvalues of the Jacobian matrix are

0, 0, and ± 2i

√
λ

(i)
r

(
λ

(i)2
m + λ

(i)
m λ

(i)
n + λ

(i)2
n

)
λ

(i)
m + λ

(i)
n

. (41)

It is clear that the eigenvalues depend only on the coupled coefficients. Thus, the linear stability of
system (37) can be ascertained by observing the signs of the imaginary part of coupled coefficients
λ(i)

m , λ(i)
n , and λ(i)

r . The following are two cases arising from RTIs among the different wave modes
considered in this paper:

(i) The system is linearly stable if λ(i)
m , λ(i)

n , and λ(i)
r are of the same signs. From Table III, it is

seen that for pairs (m, n) = (2, 3) and (3,4), all the coefficients λ(i)
m,n,r are negative and positive,

respectively. Thus, the linear stability analysis suggests that the system is stable when a triad
involves primary waves with mode numbers as (m, n) = (2, 3) and (3,4).

(ii) The system is linearly unstable if the sign of λ(i)
r is different from the other two. In this case,

there exists an eigenvalue of (40) with positive real part. For (m, n) = (1, 3), (1, 4), and (2,4), the
coefficients λ(i)

m and λ(i)
n are positive and λ(i)

r is negative; thus, a triad is unstable for all these cases
(see Table III).

V. SOLUTIONS UNDER THE PUMP-WAVE APPROXIMATION

Following Craik et al. [31], we solve (32) under the pump-wave approximation in which the
amplitude, say Am, of a primary wave in a resonant triad is much larger than the other two, say An

and Ar , i.e., |Am| � |An|, |Ar |. Such a wave with the largest amplitude is referred to as the pump
wave. Neglecting the effect of An and Ar on the evolution of Am, the amplitude equations (32) reduce
to

dAm

dt
= 0,

dAn

dt
= iωnAn + λnA∗

mAr,
dAr

dt
= iωrAr + λrAmAn. (42)
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TABLE IV. Stability characteristics of the linearized system (43) when A0
m = 100. Other parameters are

the same as in Table III.

(m,n) σ1 σ2 Stability characteristics

(1,3) 2.004 + 6.765i −2.004 + 6.765i Unstable
(1,4) 4.447 + 6.315i −4.447 + 6.315i Unstable
(2,3) − 1.849i 14.479i Neutrally stable
(2,4) 1.845i 3.585i Neutrally stable
(3,4) −10.305i 18.135i Neutrally stable

The first equation gives Am(t ) = A0
m, where A0

m is the initial amplitude of the pump wave. The other
two equations of (42) form a linear system,

d

dt

[
An

Ar

]
=

[
iωn λnA0∗

m

λrA0
m iωr

][
An

Ar

]
. (43)

The solution of (43) can be written in terms of the eigenvalues σ1,2 and eigenvectors V1,2 of the
matrix on the right-hand side of (43),[

An

Ar

]
= b1 eσ1tV1 + b2 eσ2tV2, (44)

where

σ1,2 = ±1

2

√
4λnλr

∣∣A0
m

∣∣2 − (ωn − ωr )2 + i
ωn + ωr

2
, (45)

V1,2 =
[√

4λnλr |A0
m|2 − (ωn − ωr )2 ± i(ωn − ωr )

±2A0
mλr

]
, (46)

and b1, b2 are arbitrary constants that can be calculated from the predefined initial conditions on An

and Ar . Note that the eigenvalues depend on the amplitude of the pump wave A0
m, which remains

constant under the pump-wave approximation.
For illustration purposes, the initial amplitude of the pump wave is fixed to A0

m = 100. The
amplitudes of other two waves, i.e., An and Ar , are obtained numerically by solving (43). For each
interaction case, the normalized amplitudes ||An|| and ||Ar || [see (34)] of two smaller amplitude
waves in the triad, i.e., mode n and mode r, obtained from the numerical solution of (43) with
the initial conditions A0

n = A0
r = 0.01 are illustrated in Fig. 6, where the other parameters are the

same as given in Table III. In the case of (m, n) equal to (1, 3) and (1, 4) [see Figs. 6(a)–6(d)], the
normalized amplitudes increase monotonically with time and hence the amplitude functions become
unbounded. For other mode pairs [see Figs. 6(e)–6(j)], the normalized amplitudes are periodic in
nature, thereby the amplitude functions remain bounded. The above observation can also be seen in
Fig. 7, which illustrates trajectories in the phase space associated with the dynamical system (42)
from t = 0 to t = 25, with other parameters being the same as in Fig. 6. The amplitudes at the
starting and ending times are marked by a (black) circle and a (red) square, respectively. It is seen
from the figure that for all mode pairs except (m, n) = (1, 3) and (1,4), the amplitudes An and Ar

are oscillatory functions of time.
For the stability of a resonant triad when A0

m = 100, we determine the eigenvalues of the matrix
on the right-hand side of (43) for different mode pairs (m, n); see Table IV. As the entries of the
matrix are complex, the eigenvalues may not appear as a complex conjugate pair. For the case of
(m, n) = (1, 3) and (1,4), there exists an eigenvalue with a positive real part (see the first and the
second rows of Table IV), which implies that the amplitudes grow exponentially with time. On the
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FIG. 6. Variation of the normalized amplitudes (34), ||An|| (left column) and ||Ar || (right column), for
various mode number pairs (top to bottom), obtained by solving (42) with A0

m = 100, A0
n = A0

r = 0.01. Other
parameters used in each panel are listed in the respective rows of Table III.
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FIG. 7. Trajectories in the phase space for various mode number pairs (depicted row-wise) starting from
dimensionless time t = 0 (marked by black circle) to t = 25 (marked by red square). The columns from left
to right exhibit the trajectories in the (A(r)

n , A(i)
n ), (A(r)

r , A(i)
r ), and (A(r)

n , A(r)
r ) planes, respectively. Here the

amplitude of the pump wave is Am(t ) = A0
m = 100, and the initial amplitudes of the remaining waves in the

triad are A0
n = A0

r = 0.01. Other parameters are listed in Table III.
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other hand, for (m, n) = (2, 3), (2,4), and (3,4), the real parts of both the eigenvalues are zero, and
thus the amplitudes are periodic functions of time. The above conclusions are in tune with Figs. 6
and 7. It is clear that when the mode 1 primary wave acts as the pump wave, the amplitudes of other
two waves present in the triad increase with time.

VI. CONCLUSION

In the present paper, the stability of the resonant triad interactions (RTIs) of internal waves in an
inviscid stably stratified uniform shear flow has been investigated. Specifically, we have focused on
a situation wherein both the buoyancy frequency and the local Richardson number Ri are constant
with Ri > 0.25. As the system is considered to be vertically bounded between two parallel plates,
the internal waves appearing in the system can be represented as the vertical modes satisfying the
imposed boundary conditions on the top and bottom plates. The normal mode solution of the linear
stability problem has been expressed in terms of the modified Bessel functions of complex order,
which represent the vertical structures of internal wave modes. From linear stability analysis, it has
been found that the frequency of each forward mode increases with increasing Ri, and the frequency
of the first mode increases the most rapidly.

In contrast to the no-shear case, resonant triads comprised of the primary modes (1, 3) and
(1, 4) and the corresponding superharmonic modes do exist in the present system. In a nutshell,
the presence of the uniform shear can render RTIs, which otherwise are not possible in the absence
of shear. It has also been verified that due to uniform shear in the flow, the exact mode number of the
secondary mode cannot be determined in terms of the mode numbers of the primary modes. Thus,
the mode number of the secondary mode in a triad has been extracted in two ways: (i) by observing
the vertical structure of the secondary wave and (ii) by analyzing the wave numbers associated with
the mode at frequency 2ω, as shown in Table II.

The frequency ω, which gives rise to a resonant triad, has been identified for various mode-
number pairs. The amplitude equations of a resonant triad comprised of two primary internal modes,
with mode numbers m and n, having the same frequency ω, and a secondary (superharmonic) mode,
with mode number r, of frequency 2ω have been derived through the orthogonality conditions.
The coupling coefficients, linked with the nonlinear terms in the amplitude equations, have been
computed numerically for the interaction among two primary internal modes of mode numbers m
and n, with m, n ∈ {1, 2, 3, 4}, and a superharmonic mode of mode number r. For various interaction
cases, these coefficients have been calculated and are presented in Table III. It turns out that all
coupling coefficients are purely imaginary numbers in the present case of the uniformly stratified
uniform shear flow.

The amplitude equations have been solved numerically using the RK4 method. It has been shown
that the evolution of the amplitudes of the waves involved in RTIs depends on the mode numbers
as well as on the initial conditions. In other words, the amplitude of the superharmonic wave may
increase or decrease depending on the mode numbers and initial conditions, irrespective of the
amplitudes of the primary interacting waves present in a triad. For the chosen parameters, the linear
stability around the mixed-mode equilibrium solution shows that resonant triads are stable when
the primary waves with the mode-number pairs (2,3) and (3,4) interact. In contrast, resonant triads
are unstable for interactions among the primary waves with mode-number pairs as (1,3), (1,4), and
(2,4). The results discussed in this paper provide a qualitative analysis of the stability of the waves
forming RTIs.

The solutions under the pump-wave approximation have also been illustrated in detail, wherein
the primary wave having the lowest mode number is considered as the pump wave. The cases of
RTIs leading to oscillatory bounded and unbounded solutions have been analyzed. In the considered
configuration, the bounded solutions for the tested Ri values have been found to be periodic in
nature and to be related to interactions among the second-fastest primary mode (mode 2) onward.
In contrast, the interactions involving the fastest primary mode (mode 1) have been found to
be unstable. Under the pump-wave approximation, the phase-space trajectories of the dynamical
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system, formed by the differential equations governing the amplitudes of the waves forming a triad,
have been portrayed. Interestingly, for the chosen parameters, it has been found that the presence
of a high-amplitude primary wave having mode number �2 in a resonant triad makes the system
stable. To summarize, the stability of resonant triads depends on the system parameters (for instance,
frequency, mode numbers, local Richardson number) as well as on the initial amplitudes of the
interacting waves.

The results presented in this paper are the first step to understand energy transfer among
different wave modes present in a resonant triad. Although the derivation and analysis performed
here are for an inviscid stratified uniform shear flow, the work can readily be extended to more
realistic scenarios, for instance, oceanlike stratifications, where the stratification can be nonuniform.
Furthermore, the present analysis is also expected to pave the way to handle more general wave
interactions arising in many fluid-wave interaction problems with or without resonance. To predict
the existence and stability of RTIs in a more realistic scenario, one must include the effect of three
dimensionality, nonuniform stratifications, Earth’s rotation, viscosity, and diffusivity in the present
idealized problem. The inclusion of all these effects may significantly affect the formation of RTIs
and their stability, which will be an interesting topic of future research.
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