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The resonant interactions between two gravity wave trains in deep water are studied
numerically using a three-dimensional (3D) nonhydrostatic free surface flow model. After
model validation, four cases of resonant interactions are simulated and analyzed to study
the effect of the primary waves’ steepness on the evolutions of the tertiary resonant wave,
3D wave patterns, and velocity profiles. It is found that for primary waves with small
steepness, the theories of Longuet-Higgins [J. Fluid Mech. 12, 321 (1962)] predict well the
growth of the resonant wave, that the crest and trough lines of wave patterns are basically
straight and regular, and that the linear wave theory roughly estimates well the velocity
profiles. For primary waves with moderate steepness, the applicable distance of Longuet-
Higgins’s theory decreases with an increase of the primary waves’ nonlinearity. At greater
distances, the growth of the resonant wave is smaller in comparison to Longuet-Higgins’s
predictions. Strong resonant interactions can lead to the bending and then splitting of
crests and troughs. The curvatures of the crests and troughs increase with an increase of
the primary waves’ steepness and the resonant wave’s propagation distance. For primary
waves with small steepness, the crest and trough lines will eventually split, as long as the
propagation distance is sufficiently large. The crest line is split into a longer segment with
a larger wave crest and a shorter one with a smaller wave crest. With an increase of the
primary waves’ nonlinearity, the maximum nondimensionalized wave crest down-wave
is found to be larger and more peaked, and its occurrence is earlier, which precisely
corresponds to the separated larger wave crest. Meanwhile, the intense resonant and the
subsequent quasiresonant interactions have such a significant influence on the velocity
profiles that the velocity fields cannot be predicted from the linear predictions.

DOI: 10.1103/PhysRevFluids.6.014801

I. INTRODUCTION

In the retrospective narrative of O. M. Phillips [1], he theoretically reviewed the interactions
between two deep-water gravity waves with arbitrary wave-number vectors on the horizontal plane
and noted that there were only bound harmonics at second order, whose amplitudes remained forever
small in comparison to those of the primary waves. While to the third-order approximation, under
certain conditions the amplitude of a third wave, if initially zero, would grow linearly with time. The
elaborate theoretical derivations of this work are from Phillips [2], which uncovered the mechanism
of nonlinear resonant interaction between two or more progressive gravity wave trains in deep water.
Subsequently, the resonance theory in deep-water gravity waves was developed considerably by
Longuet-Higgins [3], Benney [4], Hasselmann [5–7], and Bretherton [8] to mention but a few.
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The study of resonance mechanisms is of fundamental importance as resonant interactions
between different wave components lead to redistribution of energy in a gravity wave spectrum.
Hasselmann [5–7] obtained the rate of transfer of energy within a continuous wave spectrum due
to four-wave resonant interactions and found that the modification of the wave spectrum by this
mechanism should be appreciable. By means of direct numerical simulations of random surface
gravity waves in deep water, Tanaka [9] revealed that four-wave resonant interactions control
the evolution of the spectrum at every instant of time, whereas nonresonant interactions do not
contribute significantly even during short-term evolution. Gibson and Swan [10] investigated the
physical mechanisms that govern the evolution of unidirectional and directional focused waves. It is
discovered that the formation of a focused wave event involves significant changes to the underlying
wave spectrum and these changes are mainly due to the third-order resonant interactions, which
are capable of altering not only the amplitude of wave components but also their relative phasing.
Onorato et al. [11] and Janssen [12] studied the statistical properties of unidirectional random waves
and revealed that the modulational instability (i.e., a third-order quasiresonant interaction process),
can be responsible for the occurrence of large amplitude waves. As is evident, resonant interaction
has a profound influence on the evolution of gravity waves through the significant energy transfer
among dominant wave trains.

The earliest verifications of the resonance mechanism were conducted by Longuet-Higgins and
Smith [13] and McGoldrick et al. [14], considering resonant interactions between two perpendicular
gravity wave trains in a small wave tank. The initial growth of the generated resonant wave was
identified to be in the manner predicted by Longuet-Higgins [3]. These studies effectively dispelled
the initial skepticism of the importance of nonlinear resonant interactions. Then Tomita [15]
conducted similar experiments in a large wave tank and investigated both the initial and long-term
evolution of the resonant wave. It was shown that for primary waves with small amplitudes, the long
fetch behavior of the resonant wave was essentially straight and showed good consistency with the
theory of Longuet-Higgins [3]. On the other hand, for primary waves with increased amplitudes,
the growth of the resonant wave was small and could be explained better by the Zakharov theory.
Recently, Bonnefoy et al. [16] extended previous experimental studies from perpendicular gravity
waves to oblique gravity waves; the growth of the resonant wave was again verified to agree well
with the predictions of Longuet-Higgins [3]. Bonnefoy et al. [17] increased the steepness of the
primary waves in Ref. [16] and found that new resonant wave components were generated as a
result of new four-wave interactions involving the resonant wave and primary waves, which were
measured and explained by means of the Zakharov theory.

Although there are experimental studies of resonant interactions between two gravity wave trains
in deep water, they concentrate on the spatial evolution of the generated resonant wave through
the surface elevations collected from a finite number of distributed wave gauges. Likely due to
the difficulties in data acquisition and visual observation, the effect of the third-order resonant
interaction on three-dimensional (3D) wave patterns and velocity profiles is rarely mentioned. It
is well known that because of four-wave quasiresonance, nonlinear wave groups would become
asymmetric in the propagation direction and deform like a crescent [18,19]. So Fujimoto et al. [20]
recently examined the averaged wave patterns of two observed freak waves in the northwest Pacific
Ocean to estimate the impact of four-wave quasiresonance in the formation of a freak wave in
deep water. This study implies that if the wave characteristics of exact resonant interaction could
be acquired, they may be used to estimate the impact of the four-wave exact resonance in the
nonlinear evolutions of water waves. Hence, the effect of the third-order resonant interaction on
the evolution of three-dimensional wave patterns and velocity profiles is needed to explore to enrich
our understanding of the resonance mechanism. This is pursued in the present study.

By considering the resonant interactions between two gravity wave trains in deep water, Longuet-
Higgins [3] provided an explicit expression for the growth of the resonant wave and it has been
effectively used to validate previous experimental results for the initial growth of the resonant wave.
Bonnefoy et al. [16] defined this early stage as the nonlinear propagation distance of the resonant
wave less than 1. Are the predictions of Longuet-Higgins [3] always accurate and applicable as long
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as this early stage condition is satisfied? This question is another motivation of the present study. As
expected and as mentioned above, the theories of Longuet-Higgins [3] predict well the growth of
the resonant wave in a long fetch for primary waves with small amplitude in Tomita’s experiment.
However, it will no longer be accurate if the primary wave’s steepness is increased [15].

The rapid development of mathematical techniques and computer power has led to the increasing
popularity of numerical methods. In comparison to physical experiments, numerical simulations
are more economical and more convenient to implement. In addition, the surface elevations,
velocity profiles and three-dimensional wave patterns can be acquired easily without operational or
observational difficulties, and the range of the input wave parameters is not limited by experimental
constraints. Hence, numerical simulations of the third-order resonant interactions between two
gravity wave trains with a fully nonlinear, highly accurate and computationally efficient numerical
model is favored, and this is the research tool used in the present study.

For numerical simulation of 3D nonlinear wave evolution, high computational efficiency is
desirable, which partly accounts for the widespread use of Schrödinger-type equations and the
higher-order spectral method [21–25]. Since the 1990s, continuous efforts have focused on develop-
ing nonhydrostatic free surface flow models for simulating water waves. The increasing popularity
of this kind of model is due primarily to the following: (1) under the assumption that the free surface
is single-valued for all abscissa values, the surface elevation can be efficiently calculated without
additional tracking techniques [26–28]; (2) the implementation of the Keller-box scheme enforces
the zero pressure boundary condition at the exact free surface, and allows for the use of a small
number of vertical layers to obtain accurate dispersion (which further improves the computational
efficiency for large-scale wave transformation simulations) [26–28]; and (3) momentum conserva-
tion schemes or shock-capturing schemes permit the prediction of discontinuous flows [26,29,30]. In
view of these advantages, a nonhydrostatic model based on the Navier-Stokes equations is adopted
herein.

In the present study, a fully nonlinear and highly accurate 3D nonhydrostatic model developed
by Ai et al. [27] and Ai and Jin [30] is utilized to simulate the resonant interactions between two
gravity wave trains in deep water. The performance of this model has been demonstrated previously
by simulating the process of wave breaking and run-up, and by simulating the nonlinear evolution
of two- and three-dimensional focusing wave groups and unidirectional random waves [30–32]. A
brief introduction to the third-order resonance theories of surface gravity waves is given in Sec. II,
followed by an introduction to the numerical model in Sec. III. In Sec. IV, the validation of the
numerical model is demonstrated first. Then, four cases of resonant interactions are simulated to
study the effect of the primary waves’ steepness on the evolutions of the resonant wave, three-
dimensional wave patterns and velocity profiles. The concluding remarks are given in Sec. V.

II. RESONANCE THEORY

In the third-order gravity wave approximation, it is possible for a transfer of energy to occur from
three primary waves (of wave-number vectors k1, k2, and k3) to a fourth wave (of wave-number
vector k4) in such a way that the amplitude of the fourth wave, if initially zero, grows linearly with
time [2]. The condition for this is

k1 + k2 = k3 + k4, ω1 + ω2 = ω3 + ω4, (1)

where the angular frequency ωi and the magnitude of the wave number |ki| are related by the linear
dispersion relation for a free wave in deep water, i.e., ωi = √

g|ki| (i = 1, 2, 3, 4).
For simplification, many subsequent theoretical and experimental studies are based on the

assumption of a degenerate case, i.e., two of the primary wave-number vectors are equal, say,
k1 = k2, so that the resonance conditions Eq. (1) becomes

2k1 = k3 + k4, 2ω1 = ω3 + ω4. (2)
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FIG. 1. (a) Figure-of-eight resonance loop. (b) The coupling coefficient G vs θ .

With k1 fixed, the locus of k3 is a figure-of-eight loop as shown in Fig. 1(a), i.e., for any point on
this curve, the wave-number vector set {2k1, k3, k4} satisfies Eq. (2).

Under the simplification of k1 = k2, Phillips [2] estimated the order of magnitude of the
interaction. With an improved analysis, Longuet-Higgins [3] produced an exact expression for the
coupling coefficient G(r, θ ) and gave the amplitude of the resonant wave as

a4 = ε2
1ε3dG(r, θ ), (3)

where a4 is the amplitude of the generated resonant wave, εi = kiai is the wave steepness of the
primary wave ki (i = 1, 3), d is the propagation distance of the resonant wave k4, r = f1/ f3 is
the frequency ratio, and θ denotes the crossing angle between k1 and k3. It can be seen that for a
fixed coupling coefficient, the amplitude of the resonant wave grows linearly with its propagation
distance.

The expression of G(r, θ ) can be found in Longuet-Higgins [3] and is rewritten here for
convenience as

G(r, θ ) = (2r − 1)(1 + cos θ )

2r3

[
(r − 1)(r2 + 1 −

√
r4 + 1 − 2r2 cos θ ) + r(1 + cos θ )

2

− 2r(r − 1)(2r − 1)(
√

r4 + 1 − 2r2 cos θ + cos θ − r2)

(r − 1)2 − √
r4 + 1 − 2r2 cos θ

]
, (4)

where r and θ are related through cos θ = 2r2(1/r − 1)3 + 2r − r2. Thus G(r, θ ) may also be
defined as a function of G(r) or G(θ ). Clearly, from Eq. (4), the coupling coefficient G is seen to
be an even function of θ . Figure 1(b) depicts the curve of G(θ ) for θ � 0, i.e., in the upper loop of
Fig. 1(a). The points from A to D correspond to the locus of k3 in the left-hand loop, and the points
from D to F correspond to the right-hand loop. Since the locus of k3 is not single valued with respect
to θ , G(θ ) is double or triple valued for θ � 11.85◦ (corresponding to point E). It is shown that the
maximum value Gmax = 1.32 is achieved at θ = 25.1◦, which indicates where the growth rate of
the resonant wave is the greatest and the resonant interactions are the most intense. The previous
experimental studies involving two perpendicular wave trains correspond to point B [13–15], while
involving two oblique wave trains with Gmax correspond to point C [16,17]. In Ref. [16], the resonant
experiments were conducted over a wide range of θ with −15◦ � θ � 40◦.

It is worth noting that the third-order theoretical prediction in Eq. (3) is only valid for the initial
growth of the resonant wave. Otherwise, the energy of the resonant wave would keep growing,
which is physically impossible. In particular, the growth rate of the resonant wave is derived under
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the assumption that the primary waves’ amplitudes are unaffected by the amplitude growth of the
resonant wave, so that Eq. (3) remains valid as long as a4 � a1 and a4 � a3.

III. NUMERICAL MODEL

A. Governing equations

A fully nonlinear and highly accurate 3D nonhydrostatic free surface flow model [27,30] is
employed in this study. One significant feature of the nonhydrostatic model is that the total pressure
p is split into a hydrostatic part and a nonhydrostatic part, p = ρg(η − z) + q, so the incompressible
Navier-Stokes equations can be expressed as

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (5)

∂u

∂t
+ ∂uu

∂x
+ ∂uv

∂y
+ ∂uw

∂z
= −g

∂η

∂x
− 1

ρ

∂q

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
, (6)

∂v

∂t
+ ∂uv

∂x
+ ∂vv

∂y
+ ∂vw

∂z
= −g

∂η

∂y
− 1

ρ

∂q

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
, (7)

∂w

∂t
+ ∂uw

∂x
+ ∂vw

∂y
+ ∂ww

∂z
= − 1

ρ

∂q

∂z
+ ν

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
, (8)

where u(x, y, z, t ), v(x, y, z, t ), and w(x, y, z, t ) are the velocity components in the x, y and z
directions; t is the time; η(x, y, t ) is the free surface elevation; q(x, y, z, t ) is the nonhydrostatic
pressure component; ρ (=103 kg/m3) is the constant density; g (=9.81 m/s2) is the gravitational
acceleration, and ν (=10−6 m2/s) is the kinematic viscosity.

Another significant feature of the nonhydrostatic model is the single-valued assumption of the
surface elevations η(x, y, t ) in the horizontal plane. Integrating the continuity equation over the
vertical water volume and combining the following kinematic boundary conditions

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w|z=η, (9)

−u
∂h

∂x
− v

∂h

∂y
= w|z=−h, (10)

the governing equation of the free surface movement can be obtained as

∂η

∂t
+ ∂

∂x

∫ η

−h
udz + ∂

∂y

∫ η

−h
vdz = 0. (11)

B. Numerical algorithms

This model is built on the horizontal Cartesian grid framework and vertical boundary-fitted
coordinate system. A two-step projection method, known as pressure correction method, is utilized
to solve the governing equations. The overall numerical algorithms consist of the following three
steps.

In the first step, an intermediate velocity field Un+1/2 is solved from the momentum equations
containing the nonhydrostatic pressure component at the previous time level as

un+1/2 − un

	t
= −

(
∂uu

∂x
+ ∂uv

∂y
+ ∂uw

∂z

)n

− g
∂ηn

∂x
− 1

ρ

∂qn

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)n

, (12)

where the superscript n denotes the time step. The solution procedures for vn+1/2 and wn+1/2 are
similar and so omitted. In the following steps, the solutions for vn+1 and wn+1 are omitted as well.
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FIG. 2. Sketch of the plan view of the numerical wave tank where k1 and k3 represent two primary waves,
and k4 = 2k1 − k3 denotes the generated resonant wave.

In the second step, the new velocity field Un+1 is updated by including the nonhydrostatic
pressure component at the new time level as

un+1 − un

	t
= −

(
∂uu

∂x
+ ∂uv

∂y
+ ∂uw

∂z

)n

− g
∂ηn

∂x
− 1

ρ

∂qn+1

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)n

. (13)

Subtracting Un+1/2 from Un+1, one obtains

un+1 = un+1/2 − 	t

ρ

∂	q

∂x
, (14)

where 	q = qn+1 − qn. The divergence-free velocity field Un+1 leads to the Poisson equation for the
nonhydrostatic pressure correction term, 	q, which could be solved by preconditioned conjugated
gradient method. Once 	q is calculated, both qn+1 and Un+1 can be determined.

In the last step, substituting the updated velocity field Un+1 into a discretized form of Eq. (11),
the new free surface elevation ηn+1 is subsequently calculated.

Detailed spatial discretizations and variable definitions can be found in Refs. [27,30].

C. Numerical wave tank

Bonnefoy et al. [16] conducted an experiment to observe the growth of the resonant wave in
a rectangular wave tank (50×30×5 m) at Ecole Centrale de Nantes. Two primary waves were
mechanically generated by a flap-type wavemaker along the width direction and to avoid spurious
reflections on the sidewalls, the Dalrymple method [33] was used to control the motions of the
wavemaker. This method yields a finite zone of the quasiuniform wave field as shown by the gray
zone in Fig. 3(a) in Ref. [16].

To prevent the sidewall reflections and to maximize the interaction zone, a 3D numerical wave
tank with two adjacent wavemaker boundaries is established. A plan view sketch of the wave tank
is shown in Fig. 2, where two regular gravity waves k1 and k3 are generated from the x and y axes
boundaries simultaneously. For consistency with previous experimental studies, linear wave theory
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is used to generate the wavemaker conditions. Thus, the incident waves are generated by specifying
the inlet velocity components as follows:

u(x, y, z, t ) =
∑
i=1,3

aiωi
cosh ki(z + h)

sinh kih
cos

(
π

2
+ kix cos θi + kiy sin θi − ωit

)
cos θi,

v(x, y, z, t ) =
∑
i=1,3

aiωi
cosh ki(z + h)

sinh kih
cos

(
π

2
+ kix cos θi + kiy sin θi − ωit

)
sin θi, (15)

w(x, y, z, t ) =
∑
i=1,3

aiωi
sinh ki(z + h)

sinh kih
sin

(
π

2
+ kix cos θi + kiy sin θi − ωit

)
,

in which ai, ωi, ki, and θi are the wave amplitude, angular frequency, magnitude of the wave-number
vector, and propagation direction of the wave-number vector ki (i = 1, 3), respectively. Once the
crossing angle between k1 and k3 is specified, i.e., θ31 = θ3 − θ1, the directions of k1 and k3 with
respect to the positive x axis are determined to be θ1 = 45◦ − θ31/2 and θ3 = 45◦ + θ31/2. If the
resonance conditions Eq. (2) are satisfied, then a tertiary resonant wave k4 = 2k1 − k3 would be
generated and its amplitude would grow linearly along its propagation direction as predicted by
Eq. (3).

The numerical tank is 45 m long, 40 m wide, and 5.0 m deep (i.e., in the x, y, and z directions). At
the inflow boundaries, a ramp function fi(t ) = 0.5[1 + tanh (2t/Ti − 2)], buffering three periods of
Ti, is applied to the inlet velocities to prevent initially short waves with relatively large amplitudes.
At the outflow boundaries, numerical sponge layers with a width of 3L1 and 3L3 are embedded at the
(x = 45 m, y) and (x, y = 40 m) boundaries, respectively, to help absorb wave energy and prevent
wave reflections, where Li is the wavelength of ki (i = 1, 3).

IV. RESULTS AND DISCUSSION

Bonnefoy et al. [16] experimentally observed the third-order resonant interactions between
two oblique gravity wave trains for −15◦ � θ31 � 40◦. To validate the present model, the wave
parameters are chosen to be consistent with their experiments. Thus h = 5.0 m, f1 = 0.9 Hz,
f3 = 0.715 Hz, r = f1/ f3 = 1.259, θ31 = 25.1◦, which are the wave parameters corresponding to
the maximum value of the coupling coefficient (Gmax = 1.32). The sketch of the wave-number
vectors of the primary waves k1, k3 and the generated resonant wave k4 is illustrated in Fig. 2.

A. Model validation

In this subsection, both nonresonant and resonant interactions between k1 and k3 are simulated
to test the reliability of the employed model. Table I lists the wave parameters of five cases to
be investigated, where εi = kiai (i = 1, 3) denotes the wave steepness of each primary wave. The
horizontal grid size 	x = 0.03 m and 	y = 0.04 m, and the time step 	t = 0.005 s are used in the
simulations. In the vertical direction, 13 layers are set to discretize the water volume.

TABLE I. Wave parameters of the five cases for model validation, where h = 5.0 m.

Cases f1 (Hz) f3 (Hz) ε1 ε3 θ31 k1h k3h

A01 0.9 0.715 0.05 0.05 60◦ 16.3 10.3
A02 0.9 0.715 0.1 0.1 60◦ 16.3 10.3
B01 0.9 0.715 0.041 0.05 25.1◦ 16.3 10.3
B02 0.9 0.715 0.056 0.05 25.1◦ 16.3 10.3
B03 0.9 0.715 0.068 0.05 25.1◦ 16.3 10.3

014801-7



XIE, MA, DONG, AND PERLIN

FIG. 3. Comparisons of the surface elevations between the simulated results and the third-order (nonreso-
nant) theories of Madsen and Fuhrman [34] at the location (12 m, 12 m) for A01 and A02, respectively.

In cases A01 and A02, the crossing angle between k1 and k3 is set to θ31 = 60◦ for off-resonance
so that the third-order theories of Madsen and Fuhrman [34] for bichromatic bidirectional waves
can be used for comparison. Figure 3 compares the surface elevations between the simulated and
theoretical results at the location (12 m, 12 m). It can be seen that when the resonance conditions are
far from being satisfied, the simulated results agree quite well with previous third-order theories for

FIG. 4. Comparisons of the generated resonant wave’s amplitude for the theoretical predictions of Longuet-
Higgins [3], the experimental results of Bonnefoy et al. [16], and the simulated results for B01 (blue), B02
(olive), and B03 (red), respectively.
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FIG. 5. Time series of the surface elevations and their corresponding amplitude spectra at d = 25.9 m
(x = 24 m, y = 9.6 m) for B01, B02, and B03, respectively.

the nonlinear interactions between k1 and k3 with small (ε = 0.05) and moderate (ε = 0.10) wave
steepness.

In cases B01–B03, the resonant interactions between k1 and k3 are simulated. The amplitude
growth of the resonant wave k4 = 2k1 − k3 is determined and compared with the experimental
results of Bonnefoy et al. [16] and the third-order theoretical prediction of Longuet-Higgins [3]. The
crossing angle between k1 and k3 is set to be θ31 = 25.1◦ and a series of numerical wave gauges
are arranged along the direction of k4 with θ4 = 21.84◦ to detect the growth of the resonant wave
(see Fig. 2). Figure 4 compares the amplitude of the resonant wave a4 for the previous theoretical
predictions, experimental results and the present simulated results, where d = x0/ cos θ4 is the
propagation distance of the resonant wave and x0 is the x coordinate of the numerical wave gauges.
The numerical amplitudes are obtained by applying a fast Fourier transformation (FFT) to the time
series of surface elevations at each wave gauge. It is shown that for resonant cases B01–B03, the
simulated results agree well with the previous solutions and the amplitude of the resonant wave
indeed exhibits a linear growth along its finite propagation distance. These tests again demonstrate
the reliability and accuracy of the employed numerical model.

For the resonant cases B01–B03, the simulated surface elevations and their amplitude spectra
at d = 25.9 m (x = 24 m, y = 9.6 m) are given in Fig. 5. It can be seen that except for the
primary waves, the amplitude of the resonant wave component f4 ( f4 = 2 f1 − f3 = 1.085 Hz) can
be observed to be finite. With an increase of ε1, the amplitude of the resonant wave component also
increases. This is consistent with the theoretical predictions in Eq. (3). Meanwhile, the amplitudes of
the bound wave components resulting from self- and mutual-interactions between the two primary
waves ( f1 − f3, 2 f1, 2 f3, f1 + f3) always remain small. In addition, it is noticed that the amplitude
of another wave component f5 = 1.27 Hz, which is also initially zero, exhibits a mild growth
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TABLE II. Wave parameters for resonant interactions, where h = 5.0 m.

Cases f1 (Hz) f3 (Hz) ε1 ε3 θ31 θ1 θ3

C01 0.9 0.715 0.03 0.03 25.1◦ 32.45◦ 57.55◦

C02 0.9 0.715 0.05 0.05 25.1◦ 32.45◦ 57.55◦

C03 0.9 0.715 0.08 0.08 25.1◦ 32.45◦ 57.55◦

C04 0.9 0.715 0.1 0.1 25.1◦ 32.45◦ 57.55◦

with the increase of ε1 and it exceeds that of all the second-order components in case B03. This
wave component has been detected by Bonnefoy et al. [17] in a case with primary waves of
0.07 � ε1 = ε3 � 0.14. It can be seen from Fig. 5(b) that f5 is also generated from the resonant
interactions of two primary waves with smaller steepness. As to the cause of its generation, it is
discussed in the next subsection.

B. Resonant interactions

The resonance theory of Longuet-Higgins [3] gives only the growth rate of the resonant wave
along its propagation distance, while the previous experimental studies mainly concentrated on the
evolution of the resonant wave. Due to the difficulties in data acquisition and visual observation,
the effect of the third-order resonant interactions on three-dimensional wave patterns and velocity
profiles has not yet been discussed. In this subsection, the resonant interactions between k1 and
k3 are simulated to investigate the effect of the primary waves’ steepness on the evolutions of the
resonant wave, three-dimensional wave patterns and velocity profiles. The wave parameters are
listed in Table II and the numerical parameters are consistent with those in the previous subsection.

Figure 6 presents a comparison of the resonant wave’s amplitude between the theoretical predic-
tions of Longuet-Higgins [3] and the present numerical results. It can be seen that for primary waves
with a small wave steepness as in C01 and C02 (ε = 0.03, 0.05), the simulated amplitude growth
of the resonant wave coincides well with the resonance theory of Longuet-Higgins [3]. On the
other hand, for primary waves with a moderate wave steepness as in C03 and C04 (ε = 0.08, 0.10),
evident discrepancies appear. Specifically, the numerical and theoretical solutions are consistent

FIG. 6. Comparisons of the resonant wave’s amplitude between the theoretical predictions of Longuet-
Higgins [3] and the present numerical results for C01 (blue), C02 (red), C03 (olive), and C04 (magenta),
respectively.
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FIG. 7. Amplitude spectra for C01 with ε1 = ε3 = 0.03, where the hollow circles denote the input ampli-
tudes of the primary waves and a3 = ε3/k3.

within only a short propagation distance of d < 12.5 m in C03 and within a shorter propagation
distance of d < 5.0 m in C04. Beyond these d values as indicated by the dash dot lines, the
discrepancies become increasingly evident and the third-order theoretical predictions of Longuet-
Higgins [3] overestimate the growth of the resonant wave.

To explore the reason for the curve divergences, Figs. 7–10 present the amplitude spectra at
different propagation distances of the resonant wave in cases C01–C04, respectively. By compar-
ison, it is found that in C01 and C02, the resonant wave f4 = 2 f1 − f3 = 1.085 Hz is the only
frequency component of which the amplitude grows evidently with its propagation distance, while

FIG. 8. Amplitude spectra for C02 with ε1 = ε3 = 0.05, where the hollow circles denote the input ampli-
tudes of the primary waves and a3 = ε3/k3.
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FIG. 9. Amplitude spectra for C03 with ε1 = ε3 = 0.08, where the hollow circles denote the input ampli-
tudes of the primary waves and a3 = ε3/k3.

the amplitudes of the primary waves basically remain unchanged. In C03 and C04, except for the
rapid amplitude growth of the resonant wave f4, the amplitude of another newly generated wave
component f5 = 1.27 Hz also exhibits distinct increase. Additionally, a slight amplitude growth
of the frequency component f6 = 1.455 Hz is observed as well. Due to transferring energy to
these generated wave components, the amplitude of the primary wave k1 decreases significantly
along the propagation direction of the resonant wave. As can be seen, for primary waves with
moderate steepness, the resonant interactions are so significant that additional wave components
are generated and the amplitude spectrum experiences obvious change. Note that the total energy

FIG. 10. Amplitude spectra for C04 with ε1 = ε3 = 0.10, where the hollow circles denote the input
amplitudes of the primary waves and a3 = ε3/k3.
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has been determined for each of the four cases by summing ρga2/2 of each wave component, and
this value is seen to be constant along the direction of the resonant wave.

As mentioned previously, the resonance theory of Longuet-Higgins [3] was derived using
perturbation methods under the assumption that the primary waves’ amplitudes are unaffected by
the growth of the resonant wave. Therefore, this theory is only valid on the condition that a4 � a1

and a4 � a3. It can be seen from Figs. 7 and 8 that the evolutions of the amplitude spectra in cases
C01 and C02 are in accord with this assumption, so that the numerical amplitude of the resonant
wave coincides well with the theoretical predictions. However, in cases C03 and C04, because of
the significant energy transfer, the amplitude of the primary wave k1 reduces so that the resonant
wave’s amplitude becomes comparable to or even exceeds it at d = 24.3 m as shown in Figs. 9
and 10. Apparently, the evolutions of the amplitude spectra in C03 and C04 are inconsistent with
the assumption of Eq. (3), leading to the discrepancies shown in Fig. 6. This is as expected for
moderate wave steepness.

Due to the preconditions that a4 � a1 and a4 � a3, the predictions of Longuet-Higgins [3] are
valid only in the early stage of resonant interactions. Bonnefoy et al. [16] defined the early stage
as the nonlinear distance k4dε2 < 1, where ε denotes the steepness of the primary waves, k4 and d
are the wave number and propagation distance of the resonant wave, respectively. It was stated in
Ref. [16] that for a longer distance or greater steepness, the pumping of the primary wave by the
resonant wave and the decrease of the resonant-wave growth were observed. In the present study, the
maximum nonlinear distances k4dmaxε

2 in C01–C04 are 0.116, 0.322, 0.823, and 1.287, respectively,
where dmax = 27.16 m. Although the early stage condition is satisfied in C01–C03 and in C04 for
d < 21.11 m, it is shown from Fig. 6 that the numerical and theoretical solutions are consistent
only within d < 12.5 m or k4dε2 < 0.379 in C03, and within d < 5.0 m or k4dε2 < 0.237 in C04.
Otherwise, Eq. (3) overestimates the growth of the resonant wave. It is not difficult to see that the
propagation distance d or nonlinear distance k4dε2 of the resonant wave, within which the theory
of Longuet-Higgins [3] is accurate, decreases with an increase of the primary waves’ nonlinearity.
Beyond theses distances, numerical or experimental studies are necessary to supplement this theory.

As indicated in Figs. 9 and 10, except for the rapid amplitude growth of the resonant wave
component, f4, the amplitudes of the frequency components f5 and f6 also show visible growth.
Figure 11 compares the normalized steepness evolutions of f4, f5, and f6 for the numerical solution
of the Zakharov equation, the experimental results of Bonnefoy et al. [17] and the present numerical
results in case C04 with ε1 = ε3 = 0.10. It can be seen that for the small nondimensionalized
propagation distance of k4, all the solutions are consistent. As the resonant interactions evolve
further, the simulated results show relatively better agreement with the solution of the Zakharov
equation. However, overall, the employed numerical model predicts well the dominant energy
transfer during the significant resonant interactions between k1 and k3.

The amplitude evolutions of the primary wave components and the newly generated wave
components f4, f5, and f6 in cases C03 and C04 are shown in Fig. 12. It can be seen that within the
finite computational domain, there is continuous energy transfer into the components f4, f5, and f6,
and the amplitude of the resonant wave k4 basically equals that of the primary wave k1 in C03 at
d = 25.5 m (k4dε2 = 0.77) and in C04 at d = 19.6 m (k4dε2 = 0.93). It is noticed that essentially
all the energy is supplied by the primary wave k1. In contrast, the amplitude of the primary wave
k3 is found to be slightly larger down-wave than its initial input value. In the theoretical part of
McGoldrick et al. [14], it is stated that the initial growth of the resonant wave component k4 is
accompanied by an increase in the energy density of the k3 component, both at the expense of
the k1 component. It can be seen from Fig. 12 that the simulated results are supportive of their
theoretical descriptions.

The generation of the component f4 = 2 f1 − f3 is undoubtedly due to the third-order exactly
resonant interactions between the primary waves k1 and k3. Bonnefoy et al. [17] attributed
the formation of f5 and f6 to new four-wave quasiresonant interactions among k1, k3, and
k4 either in degenerate quartets as k5 = 2k4 − k1 and k6 = 2k4 − k3, or in general sets as
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FIG. 11. Normalized steepness evolutions of f4, f5, and f6 with nondimensionalized propagation distances
of the resonant wave for C04.

FIG. 12. Amplitude evolutions of the frequency components fi (i = 1, 3, 4, 5, 6) along the propagation
direction of the resonant wave k4 for C03 and C04, respectively.
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FIG. 13. Wave-number vectors involved in the degenerate quasiresonant interactions.

k5 = k1 + k4 − k3 and k6 = k4 + k5 − k1. The wave-number vectors involved in the degenerate
quasiresonant interactions are shown in Fig. 13, where the resonant loop with respect to k4 is
plotted for reference. Obviously, neither the wave-number vector set {2k4, k1, k5} nor the set
{2k4, k3, k6} satisfies the resonance conditions Eq. (2). Since k4 = 2k1 − k3, the general sets
{k1, k4, k3, k5} and {k4, k5, k1, k6} do not satisfy the resonance conditions, Eq. (1), either. Accord-
ing to Longuet-Higgins [3] and McGoldrick et al. [14], a mismatch defined as δk5 = [|2k4 − k1| −
(2ω4 − ω1)2/g]/2 = −0.095 and δk6 = [|2k4 − k3| − (2ω4 − ω3)2/g]/2 = −0.31 exists for the
two degenerate sets, and the growth of the tertiary wave components f5 = 2 f4 − f1 = 1.27 Hz and
f6 = 2 f4 − f3 = 1.455 Hz is given by

a5 = ε2
4ε1

G5

|δk5| |sin (δk5d )|, a6 = ε2
4ε3

G6

|δk6| |sin (δk6d )|, (16)

where G5 = G(r = f4/ f1) = 1.31 and G6 = G(r = f4/ f3) = 1.01 are the coupling coefficients for
exact resonant interactions. According to Eq. (16), the amplitudes of f5 and f6 are periodic functions
with G5/|δk5| = 13.79 and G6/|δk6| = 3.26 influencing their growth rate. Thus, the ratio of the
maximum growth of f5 to f6 equals 4.23ε1/ε3, which accounts for the rapid growth of f5 in
comparison to f6 shown in Fig. 12. In addition, similar to the energy transfer in exact resonance,
the energy of f5 and f6 in the degenerate quartets should not be directly transferred from k1, but
contributed by k4, which would subsequently suppress the growth of k4 down-wave.

Figure 14 exhibits the contour plots of the normalized surface elevations η/(a1 + a3) in the four
cases listed in Table II, where the dashed line denotes the propagation direction of the resonant
wave k4 and the squares are marked to compare the variations of wave patterns. It is observed that
in C01 with ε1 = ε3 = 0.03, basically all the crest and trough lines are straight and regular. As
the primary waves’ steepness is increased to ε1 = ε3 = 0.05, although the crest and trough lines
near the wavemaker boundaries still remain straight, they become curved further down-wave in
the direction of k4. For increased steepness in C03 and C04, the crest lines at longer distances
are shown to split into a longer segment with a larger wave crest and a shorter one with a smaller
wave crest. The same phenomenon also occurs in the troughs. More explicitly, Fig. 15 shows the
magnified evolution process of the crests. Through observation and comparison, it is found that the
crest and trough lines’ curvatures strengthen with an increase of the primary waves’ steepness and
the resonant wave’s propagation distance.

014801-15



XIE, MA, DONG, AND PERLIN

FIG. 14. Contour plots of the normalized surface elevations η/(a1 + a3) at t = 50 s, where the dashed line
denotes the propagation direction of the resonant wave k4: (a) C01, (b) C02, (c) C03, (d) C04.

In previous experimental studies of the third-order resonant interactions between two deep-water
gravity waves, primary waves’ steepness larger than 0.05 were studied (e.g., Refs. [14,16,17]), while
the splitting phenomenon of the crests and troughs has never been shown. Nevertheless, Gibbs and
Taylor [35] numerically investigated the spatial evolution of steep, directionally spread transient
wave groups on deep water, and observed obliquely propagating “shoulders” or “wings” at the
periphery of the wave group. The formation of such structure was attributed to energy transfer to
high-wave-number components propagating at an angle to the mean direction, and the third-order
resonant and quasiresonant interactions were responsible for the energy transfer. Subsequently, the
growth-rate of the resonant components was calculated and found to agree well with the faster
“dynamical” time-scale associated with quasiresonant interactions rather than the slower “kinetic”
time-scale associated with exact resonant interactions [36]. The separated shorter wave crests shown
in Figs. 14(c)–14(d) are similar to the “wing waves” observed in Refs. [35,36]. In the present study,
the splitting of the crests and troughs is attributed to the resonant or quasiresonant interactions but
requires further identification.

Due to the third-order resonant and quasiresonant interactions, there is an obvious energy transfer
from the primary wave f1 to high-frequency components f4 and f5 as observed in Fig. 12. Extracting
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FIG. 15. Magnified evolution process of the crests: (a) C01, (b) C02, (c) C03, (d) C04.

the amplitudes of f1, f3, f4, and f5 from the amplitude spectra of C04 in Fig. 10 and then linearly
superposing them, one obtains the five normalized wave patterns exhibited in Fig. 16. The upper
one corresponds to the linear superposition of k1, k3, and k4 aiming to isolate the effect of the
exact resonance on the variation of wave patterns in which the phase of the resonant wave k4 is
locked to −π/2 with respect to the primary waves [3,16]. It is observed that with an increase of the
propagation distance (i.e., with more energy transferred to the obliquely propagating high-frequency

FIG. 16. Contour plots of the normalized surface elevations η/(a1 + a3) obtained from the linear superpo-
sition of k1 + k3 + k4 (upper) and k1 + k3 + k4 + k′

5 (lower).
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FIG. 17. Contour plot of the normalized surface elevations η/(a1 + a3) in C02 at t = 120 s with an enlarged
computational domain. The dashed line denotes the propagation direction of the resonant wave k4.

component f4), the wave crest is first elongated, and then a small wave crest gradually lags behind
and separates from the main crest as a result of the lower phase velocity of k4. The variations of the
wave patterns turn out to be qualitatively consistent with the splitting process shown in Figs. 14(d)
and 15(d). The lower portion of the figure corresponds to the superposition of k′

5 (wave-number
vector of f5) intended to show the impact of the quasiresonance in which the phase of k′

5 is
locked to 2k4 and k1. It is shown that the superposition of k′

5 enhances the splitting extent and
that the contour plots are quantitatively more similar to the splitting process shown in Figs. 14(d)
and 15(d). However, the superposition of k′

5 causes no essential change to the wave patterns. Hence,
the bending and then splitting of the wave crests and troughs is actually attributed to the energy
transferring from the primary wave k1 to the obliquely propagating high wave-number vector k4,
which has a lower phase velocity in comparison to the primary waves as a result of exact resonant
interaction. The subsequent quasiresonant interactions involving the resonant wave and the primary
waves enhance the splitting extent without making essential changes to the wave patterns. Therefore,
for primary waves with small steepness as in C01 and C02, if the propagation distance of the
resonant wave is sufficiently large (i.e., with more energy transferred to obliquely propagating
resonant wave k4), the crests and troughs will eventually split as in Figs. 14(c)–14(d). Hence, C02
is again simulated over an enlarged computational domain, 80 m long and 60 m wide, with the
numerical parameters remaining unchanged. The simulated contour plot is shown in Fig. 17.

Figure 18 compares the time series of the nondimensionalized surface elevations η/(a1 + a3)
in cases C01–C04. It is shown that in the near propagation distance at d = 3.6 m, the nondi-
mensionalized surface elevations in the four cases agree. However, as the propagation distance d
increases, only the simulated results of C01 and C02 with small wave steepness show good agree-
ment. Obvious discrepancies appear among C02, C03, and C04, and these inconsistencies become
increasingly evident with the increase of the propagation distance. First, the phase difference among
the four cases is larger with an increase of the propagation distance, which is caused by the evident
growth of the wave components f4 and f5, together with the effect of amplitude dispersion. Then,
with the increase of the primary waves’ steepness, the maximum nondimensionalized wave crest
becomes larger and more peaked, and its occurrence in C03 and C04 is clearly earlier than in C01
and C02 as indicated by tη_max in this figure, which precisely corresponds to the separated larger
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FIG. 18. Nondimensionalized surface elevations η/(a1 + a3) at different propagation distances of the
resonant wave k4 for C01, C02, C03, and C04, respectively.

wave crest as shown in Figs. 14 and 15. Furthermore, it is noticed that as the interactions propagate
further, the surface elevations show obvious front-to-rear asymmetries in C03 and C04. It is well
known that wave amplitude asymmetries and crescent shape deformations are characteristics of
nonlinear wave groups due to four-wave quasiresonance [18,19]. That is why Fujimoto et al. [20]
examined the degree of the asymmetry of the averaged freak wave shape to indicate the effect of the
four-wave quasiresonance. Hence, the front-to-rear asymmetries of the surface elevations observed
in Fig. 18 indicate the impact of the third-order quasiresonant interactions, which indirectly indicate
that the frequency components f5 and f6 are generated from the quasiresonant interactions among
the primary waves k1, k3 and the resonant wave k4.

Finally, the effect of the resonant interactions on velocity profiles is examined. Figure 19 com-
pares the velocity profiles between the linear wave theory and the simulated results in C02 and C04,
respectively. In this figure, the time at each propagation distance corresponds to the maximum wave
crest of C04 as indicated in Fig. 18 (i.e., t0 = 53.38 s at d = 3.6 m, t0 = 54.55 s at d = 13.9 m and
t0 = 56.93 s at d = 24.3 m) and is expected. It is found that for primary waves with small steepness
as in C02 (ε1 = ε3 = 0.05), as the resonant interactions are relatively weak, the linear wave theory
works well within the computational domain, although some slight discrepancies are observed at
d = 24.3 m caused by the continuous growth of the resonant wave k4. For primary waves with
moderate wave steepness as in C04 (ε1 = ε3 = 0.10), because of the increased nonlinearity, some
visible discrepancies are even observed at d = 3.6 m. Moreover, due to enhanced energy transfer as
a result of intense resonant and quasiresonant interactions, the inconsistencies become increasingly
evident as the nonlinear interactions evolve further. Since the selected time corresponds to the
maximum wave crest of C04, the simulated vertical component w is approximately zero expectedly.
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FIG. 19. Comparisons of the velocity profiles between the linear wave theory and the present numerical
results in C02 and C04. (Note that there would be numerical speeds above mean water level, z = 0, only if
η > 0.16 m, which is related to the vertical grid system but does not occur.)

It is noticed that the horizontal velocities at the maximum wave crest are shown to increase with the
growth of the resonant wave’s propagation distance. This corresponds to the increasingly peaked
wave crest observed in Fig. 18. In the meantime, the velocity component u in the x direction
evidently grows in comparison to the component v in the y direction and even exceeds the value of
v for d � 13.9 m. It can be seen in Fig. 12 that the energy of the primary wave k1 with θ1 = 32.45◦
decreases significantly with an increase in d , and that the energy of the primary wave k3 with
θ3 = 57.55◦ shows a slight gain. The growth of the velocity u in the x direction is attributed to the
rapid growth of f4 and f5, with their propagation directions toward the positive x axis. Consequently,
for primary waves with moderate steepness, the intense resonant and the subsequent quasiresonant
interactions have such a profound influence on the velocity profiles that the velocity fields cannot
be predicted from the linear predictions.

V. CONCLUDING REMARKS

The resonant interactions between two gravity wave trains in deep water are numerically studied
using a 3D nonhydrostatic free surface flow model. First, five cases of nonresonant and resonant
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interactions between two gravity wave trains are simulated and compared to known theories and
experiments to test the reliability of the model. Then, four cases of resonant interactions are
simulated and analyzed to study the effect of the primary waves’ steepness on the evolutions of
the tertiary resonant wave, three-dimensional wave patterns and velocity profiles.

As expected it is found that for primary waves with small steepness, the growth of the reso-
nant wave could be predicted well by both the numerical results and the third-order theoretical
predictions of Longuet-Higgins [3]. While for primary waves with moderate steepness, apparent
discrepancies are observed at greater propagation distances, and the propagation distance or nonlin-
ear distance of the resonant wave, within which the predictions of Longuet-Higgins [3] are accurate,
decreases with the increase of the primary waves’ nonlinearity. As is evident via spectral analysis, it
turns out that the resonant interactions are sufficiently significant that the amplitude of one primary
wave reduces substantially to transfer energy to generated tertiary wave components. This is actually
inconsistent with the assumptions of Longuet-Higgins’s resonance theory, which accounts for its
overestimation of the resonant wave’s growth.

Ever since the pioneering work of Phillips [2], the effect of resonant interactions in two dimen-
sions has been studied extensively. However, less effort has been focused on three-dimensional
wave patterns. Through numerical simulations, it is found here that for primary waves with small
steepness, essentially all the crest and trough lines within the computational domain are straight
and regular. As the wave steepness increases, the crests gradually become curved and then split
into a longer segment with a larger wave crest and a shorter one with a smaller wave crest.
Simultaneously, the curvature extent increases with the growth of the primary waves’ steepness
and the resonant wave’s propagation distance. The same phenomenon also occurs in the troughs.
Through analysis, it is identified that the bending and splitting of the crests and troughs are caused
by the energy transfer from the primary waves to obliquely propagating high-frequency resonant
wave with lower phase velocity due to exact resonance interaction. The subsequent quasiresonant
interactions involving the resonant wave and the primary waves enhance the splitting extent. For
primary waves with small nonlinearity, if the propagation distance is sufficiently large, i.e., with
more energy transferred to obliquely propagating high-frequency resonant wave, the crest and
trough lines will eventually split as well. Additionally, with an increase of the primary waves’
nonlinearity, the maximum nondimensionalized wave crest down-wave is found to be larger and
more peaked, and its occurrence is seen earlier. This precisely corresponds to the separated larger
wave crest shown in the contour plots.

The effect of the resonant interactions on velocity profiles is investigated as well. By comparing
the simulated results with the linear wave theory, it is shown as expected that for primary waves
with small steepness, the linear wave theory roughly estimates the velocity profiles within the
computational domain. For primary waves with moderate steepness, however, due to the significant
resonant and quasiresonant interactions, the discrepancies between the linear and simulated results
become increasingly evident as the nonlinear interactions evolve further. Besides, the horizontal
velocities at the maximum wave crests increase as the interactions propagate, especially the velocity
component in the x direction. Therefore, again as expected, the velocity fields can no longer be
predicted from the linear theory.
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