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Biphase as a diagnostic for scale interactions in wall-bounded turbulence
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The phase of the bispectrum of a turbulent velocity signal is presented as a unified tool to
relate the geometry and energetics of interactions between large- and small-scale motions
in wall-bounded turbulence. The normalized bispectrum naturally describes nonlinear
triadic interactions and thus is ideally suited for measuring the magnitude of coupling
between the different scales of turbulence without the use of filtering procedures. In this
study, the corresponding biphase is shown to represent the delay between large and small
scales imposed by convective interactions and simultaneously to describe the direction of
the turbulent streamwise energy cascade. The bispectrum and biphase are measured from a
direct numerical simulation of a high-Reynolds-number channel flow and used to illustrate
the relationship between the relative geometry of the interacting scales, the interaction
delay, and the cascade of energy between them, offering an integrated perspective on scale
interactions in turbulence through a single statistic.
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I. INTRODUCTION

The interaction between large- and small-scale coherent structures in wall-bounded turbulence
has been recognized since Rao et al. [1] reported that small-scale bursting events near the wall
were characterized by the timescales of large-scale features in the outer flow. Bandyopadhyay and
Hussain [2] introduced a systemic approach to studying these interscale interactions by calculating
the cross correlation between a low-pass-filtered velocity signal (representing the large scales) and
the rectified envelope of the remaining high-frequency signal content (the corresponding small
scales). This cross-correlation approach was rediscovered and refined by the work of Mathis et al.
[3], where the cross-correlation function was consolidated into a correlation coefficient R that
was interpreted to represent amplitude modulation by the large scales. Subsequent investigators
applied these correlation coefficients to the transverse velocity components (e.g., [4]) and defined
new correlation coefficients to distinguish amplitude from frequency modulation (e.g., [5]). Jacobi
and McKeon [6] reconsidered the full cross-correlation function and analyzed its spectral analog,
the cross spectrum, to study the modulation effect on a scale by scale basis, showing that very-
large-scale motions (VLSMs) were the most significant contributor to the perceived modulation of
the small scales.

The similarity between the cross-correlation coefficient for amplitude modulation and the skew-
ness moment of the fluctuating velocity was recognized early on by Mathis et al. [3]. Schlatter
and Örlü [7] showed that R was indeed dependent on the skewness, and Mathis et al. [8] derived
the precise form of this dependence via scale decomposition, indicating that the scale-decomposed
skewness can provide an alternative perspective on the amplitude modulation process. Duvvuri
and McKeon [9] performed a formal analysis of the correlation coefficient and skewness moment
and showed that both represent a phase lag between triadically interacting velocity modes in the
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turbulent boundary layer, consistent with the earlier phase interpretation of Chung and McKeon
[10]. The fact that the amplitude modulation coefficient represents phase differences between
wave-number triads is highly significant in light of the fact that the convective nonlinearity of
the incompressible Navier-Stokes equations allows only nonlinear interactions between triadically
coupled wave numbers k′, k′′, and k = k′ + k′′. Therefore, the correlation coefficients between
large- and small-scale motions reflect a fundamental feature of the convective nonlinearity in
turbulent flows which may have important implications for modeling and prediction.

The consensus of previous investigations is that amplitude fluctuations in the small-scale turbu-
lence occur downstream of corresponding fluctuations in the large scales, although the relationship
between this phase lead of the small scales and the energy transfer between different scales has
not been fully explored. However, the general question of the correspondence between specific
coherent motions and the turbulent energy cascade has been studied extensively in the context of
resolved and unresolved scales in large-eddy simulations. Piomelli et al. [11] observed that events
of intense interscale energy transfer are found in close spatial proximity to strong sweeps. More
recent computational experiments by Dong et al. [12] have identified specific spatial orientations
between coherent sweeps, ejections, and regions of interscale energy transfer. Works by Cimarelli
et al. [13,14] and Lee and Moser [15] have shown that spatially localized inverse energy cascades
are a significant feature of wall-bounded flows, and Kawata and Alfredsson [16] demonstrated that
the cascade of Reynolds stress fluctuations is inverse, opposite that of turbulent kinetic energy, thus
indicating again the important connections between the local structural picture of turbulence and
the energy transfer dynamics.

In this study, we apply a new tool to the scale-interaction problem in turbulence: the biphase.
We first show how the bispectrum and its corresponding biphase are the natural diagnostics with
which to explore the triadic interactions between large- and small-scales and that they can be
utilized without any arbitrary signal filtering. Through a simple toy-problem, we show how the
biphase captures the essential phase information of the earlier cross-correlation analysis while also
providing a simple energetic interpretation of the phase-relationship between scales. Finally, we
report bispectrum and biphase measurements from a high Reynolds number, turbulent channel flow
and interpret them in the context of the physical orientation, interaction delays, and energy transfer
between different streamwise scales of motion.

II. CORRELATION COEFFICIENTS, PHASE LAG, AND BIPHASE

A. Triadic interactions and quadratic phase coupling

We assume that a statistically stationary, streamwise fluctuating velocity signal u(x) can be
decomposed into its Fourier modes with wave numbers kn, amplitudes αn, and phases φkn over a
finite domain (epoch) of length L with M total spatial points, where the mean has been removed
via a Reynolds decomposition over many epochs. All quantities are assumed to be nondimensional
with respect to the channel half-height h and bulk velocity U :

u(x) =
M/2∑
n=1

αn cos (knx + φkn ), kn = 2πn

L
. (1)

Out of all the modes in this signal, only triadically coupled modes contribute to the streamwise
momentum and turbulent kinetic energy at a particular scale k and thus we consider just a single
triad associated with that wave number k′ + k′′ = k for 0 < k′ < k′′ < k, with uniformly random
phases φk′ , φk′′ , and φk distributed between [−π, π ] such that

u(x) = αk′ cos (k′x + φk′ ) + αk′′ cos (k′′x + φk′′ )

+ {αk cos (kx + φk ) + αk′ cos (k′x + φk′ )αk′′ cos (k′′x + φk′′ )}, (2)
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where we have explicitly included the possibility that the spectral power measured at wave number
k may be the result of convective (quadratic) interactions between the other two wave numbers k′
and k′′, which combine triadically to contribute at k, in a process known as quadratic phase coupling
(QPC). Expanding the signal trigonometrically and labeling the mode amplitudes of the QPC and
uncoupled terms as αQPC and αuc, respectively, we obtain

u(x) = αk′ cos (k′x + φk′ ) + αk′′ cos (k′′x + φk′′ )

+ αuc cos(kx + φuc) + αQPC cos(kx + φk′ + φk′′ + �φk ), (3)

where we have dropped the contribution at (k′ − k′′) for simplicity, assuming all wave numbers in
the triad are positive.

Finally, following Shils et al. [17] and Jamšek et al. [18], we have explicitly included in (3)
the possibility that this quadratic interaction precedes a potentially wave-number-dependent phase
delay �φk . The functional form of that phase delay �φk determines its physical interpretation, as
discussed by Preis [19] and briefly reviewed here. A wave-number-independent delay �φk = �φ0

is referred to as an intercept delay. Every output k of the triadic interaction experiences an identical
phase shift with respect to a pure triadic interaction without delay, and thus a signal constructed from
all of the different triadic output wave numbers appears distorted. A sinusoidal signal experiencing
an intercept delay will appear as the sum of two copies of itself: one phase shifted by π/2, with
amplitude magnified by sin(�φ0), and another in phase, with amplitude magnified by cos(�φ0)
[20]. Thus, triadic mode interactions with intercept delays can be observed via their effect on the
amplitude of the resulting signals. A linear phase delay �φk = k�x means that the magnitude of
the delay for each triad is proportional to its wave number k with a constant slope �x. Because
each triad is shifted in phase proportional to its wave number, the overall signal constructed from
all of the different triadic outputs will appear undistorted but shifted in space by �x. A linear phase
delay is typically interpreted in nonlinear system analysis to reflect finite transport times for the
interacting modes to arrive at or depart from the interaction site or (in a temporal sense) finite
interaction times between those modes. Applying the spatial interpretation here, the presence of a
linear phase delay would indicate that all of the small-scale modes k resulting from interacting large
scales are shifted from the interaction site by a distance �x such that for �x < 0 the small scale
appears farther downstream. Combinations of intercept and linear delays, written as �φ0 + k�x,
are also possible, along with more complicated, nonlinear phase delays that describe significant
phase distortion between different interacting triads.

B. Phase of the amplitude modulation coefficient

Applying the scale interaction analysis of [3], we low-pass filter the velocity signal at cutoff
wave number kc, where k′ < kc < k′′ < k, to obtain the large-scale signal uL = αk′ cos(k′x + φk′ ).
The small-scale signal is simply the remainder uS (x) = u − uL. The envelope of the small-scale
signal E (x) is obtained from the magnitude of the analytic signal of uS via its Hilbert transform
H(x):

E = u2
S (x) + H(x)2

= α2
k′′ + α2

uc + α2
QPC + 2αk′′αuc cos(k′x − φk′′ + φuc) + 2αk′′αQPC cos(k′x + φk′ + �φk )

+ 2αucαQPC cos(φuc − φk′ − φk′′ − �φk ).

Mathis et al. [3] calculated the correlation coefficient R between uL and the filtered envelope E .
However, Chung and McKeon [10] noted that this correlation coefficient can be interpreted as the
cosine of the phase difference ��k′ between the two signals at wave number k′ such that R =
cos(��k′ ). The sign of this phase difference is obscured by the cosine but can be revealed directly
via the Fourier transform of the cross correlation

��k′ = −arg{〈ûL(k′)Ê∗(k′)〉}, (4)
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where ˆ(·) represents the finite Fourier transform, 〈·〉 = 1
N

∑N
n=1(·) represents the ensemble averaging

over N epochs of measurements, where each epoch has random phases (φk′ , φk′′ , and φuc), and the
asterisk denotes the complex conjugate. The negative sign is due to complex conjugation in the
cross-correlation theorem. Substituting the Fourier-transformed signals and expanding the ensemble
averaging yields

��k′ = −arg
{〈αk′

2
eiφk′ [αk′′αuce−i(−φk′′ +φuc ) + αk′′αQPCe−i(φk′ +�φk )]

〉}

= − tan−1

{
sin(−�φk ) + αuc

αQPC
〈sin(φk′ + φk′′ − φuc)〉

cos(−�φk ) + αuc
αQPC

〈cos(φk′ + φk′′ − φuc)〉

}
≈ �φk .

The phase difference between the filtered and enveloped signals is the same as the phase delay
assumed for the nonlinear interaction, in the limit of large ensembles. This is consistent with the
report of Duvvuri and McKeon [9] that only triadically coupled scales contribute to the correlation
coefficient and its associated phase. The filtering and enveloping approach tends to indiscriminately
include a wide range of scales in its correlation analysis instead of focusing on only the triadically
coupled scales that actually matter. We will apply a more narrowly tailored process for studying
scale coupling that focuses on just the nonlinearly interacting wave-number triads themselves.

C. Bispectrum and biphase

The ideal tool for studying quadratic nonlinear interactions is the bispectrum B(k′, k′′), which is
the third-order spectrum of a signal u(x), defined as

B(k′, k′′) = 〈û(k′)û(k′′)û∗(k′ + k′′)〉 (5)

such that the statistical skewness 〈u3〉 is related to the bispectrum by 〈u3〉 = ∑
k′,k′′ B(k′, k′′).

Unlike the traditional second-order power spectrum S(k) = 〈û(k)û∗(k)〉, the complex bispectrum
preserves phase information between triadically interacting modes. For a complete background on
the bispectrum, see the classic works by Hinich and Clay [21], Kim and Powers [22], and Fackrell
et al. [23]. The bispectrum is most well known in the analysis of ocean waves but also appears
prominently in turbulence studies, to analyze isotropic turbulence [24,25], phase locking between
modes in transitional boundary layers [26], and, most recently, perturbed turbulent boundary layers
[27].

The bispectrum is typically normalized by the second-order power spectrum and referred to as
the bicoherence b(k′, k′′). Although a number of normalizations are discussed in the literature (see
[28]), the most straightforward defines bicoherence as

b(k′, k′′) = |B(k′, k′′)|√
S(k′)S(k′′)S(k′ + k′′)

. (6)

For the triadic signal considered above, the squared bicoherence is

b2(k′, k′′) = α2
QPC + α2

uc|〈ei(φk′ +φk′′ −φuc )〉|2 + 2αQPCαucRe{e−i�φk 〈ei(φk′ +φk′′ −φuc )〉}
α2

QPC + α2
uc + 2αQPCαuc〈cos (φk′ + φk′′ − φuc + �φk )〉 , (7)

which, after ensemble averaging over the random phases, simplifies to b2 ≈ α2
QPC

α2
QPC+α2

uc
. Thus, the

bicoherence represents the fraction of energy at wave number k associated with QPC from wave
numbers k′ and k′′. Greb and Rusbridge [29] note that for a signal with a continuous spectrum, the
bicoherence will always be significantly smaller than unity, since many uncoupled triads will appear
at the same wave number k where the coupling occurs. In other words, the αuc factor will represent
contributions from many different triads and can be approximated as α2

uc ∼ Mα2
QPC, where M is the

number of samples measured per epoch (which scales asymptotically with the number of triads).
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TABLE I. Equivalent, spatial, phase delay measures and their physical significance in three different
domains. For temporal phase measurements, like the hot-wire measurements, all of the signs should be
reversed.

Domain Phase measure (0, +π ) (−π, 0)

correlation analysis −��k′ , −k�x, −�φk small scales lead large scales lead
Fourier analysis arg{ûLÊ∗} small scales lead large scales lead
bispectral analysis β(k′, k′′) forward cascade reverse cascade

Therefore, bicoherences that are calculated using different epoch lengths M can be scaled by
√

M
to validate convergence, as discussed in the Appendix.

As noted above, the detection of a phase lag in the correlation analysis is possible only in the
presence of QPC, and the bicoherence indicates the magnitude of this QPC on a wave-number–by–
wave-number basis, without the need for any filtering procedures. In other words, the presence of
strong bicoherence identifies those velocity modes that most strongly contribute towards the phase
lag. However, because the underlying bispectrum is complex, it also preserves the phase lag itself.
The argument of the bispectrum is called the biphase β(k′, k′′). Unlike the bispectrum, the biphase
has not been widely utilized analytically [30]. For the triadic velocity signal above, the biphase is

β(k′, k′′) = arg{〈αk′αk′′ei(φk′ +φk′′ )(αuce−iφuc + αQPCe−i(φk′ +φk′′ +�φk ) )〉}

= tan−1

{
sin(−�φk ) + αuc

αQPC
〈sin(φk′ + φk′′ − φuc)〉

cos(−�φk ) + αuc
αQPC

〈cos(φk′ + φk′′ − φuc)〉

}
≈ −�φk,

which, in the ensemble limit, is precisely the Fourier phase difference measured between the large-
and small-scale signals (and the negative of correlation phase ��k′). Therefore, the phase difference
obtained by the correlation analysis of the filtered signals corresponds to the negative biphase
associated with any two large scales in a triadic phase-coupled interaction, obtained without any
filtering. The equivalence of the different measures of phase lag, across the spatial, spectral, and
bispectral domains, is summarized in Table I, where a linear phase delay −k�x is assumed for
illustration only.

D. Biphase and energy cascade

The bispectrum and biphase are also intimately connected to the energy transfer between the
different scales of a velocity mode triad. For homogeneous turbulence in the absence of mean
gradients, the interscale energy transfer rate T̂ (k) excluding the pressure transport contribution,
for the turbulent kinetic energy density Ê (k) = 〈û j (k)û∗

j (k)〉, is given by (see [31])

T̂ (k) = knδ jmRe

{
i
∑

k′
〈û j (k)û∗

m(k′)û∗
n(k − k′)〉

}
. (8)

Considering just the energy transfer between streamwise modes at streamwise wave numbers j =
m = n = 1 and k = (k, 0, 0), the transfer term can be simplified (using the natural symmetries of
the bispectrum) as

T̂ (k) = −k Im

{∑
k′

〈û(k)û∗(k′)û∗(k − k′)〉
}

(9)

= k Im

{ ∑
k′+k′′=k

B(k′, k′′) +
∑

k′−k′′=k

B(k′ − k′′, k′′) +
∑

k′′−k′=k

B(k′′ − k′, k′)

}
(10)
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for k′, k′′ > 0. The interscale transfer includes three contributions from the bispectrum, reflecting
different relative scales of velocity modes. The first term in (10) corresponds to the energy transfer
from two larger scales k′ and k′′ to a smaller scale k, as we assumed above that 0 < k′ < k′′ < k. The
second and third terms represent energy transfer between combinations of mixed large and small
scales. These three paradigms of energy transfer and their connection to the bispectrum were first
identified by Yeh and Atta [32] and Wilson [33] and subsequently used extensively in atmospheric
and stratified turbulence measurements [34,35]. The direction and magnitude of the streamwise
energy cascade at scale k is therefore given by the sum of the triadic contributions defined through
the bispectrum.

Focusing on just the transfer between large and small scales in the first term, the partial interscale
flux �T̂ can be written as a sum of the imaginary parts of individual triadic transfers or, equivalently,
the imaginary part of the cumulative transfer summed over all triads

�T̂ (k) = k
∑

k′+k′′=k

|B(k′, k′′)| sin[β(k′, k′′)] = kBs(k) sin[βs(k)], (11)

where the cumulative magnitude and corresponding average phase are denoted by Bs and βs,
respectively.

The individual triads within the summation represent the contribution to the energy cascade at k
from the discrete larger modes k′ and k′′. For 0 < β(k′, k′′) < π , the transfer represents the classical
(streamwise) energy cascade, with energy flowing towards the smaller scales. For −π < β(k′, k′′) <

0, the transfer represents a reverse cascade. Holding the bispectrum magnitude fixed, the optimal
forward energy transfer occurs when β(k′, k′′) = +π/2, corresponding to the location of R = 0 in
the amplitude modulation framework and thus roughly corresponding to the outer spectral energy
peak and the midpoint of the logarithmic region, as noted by Mathis et al. [3].

The biphase shows that the phase lag ��k′ (previously detected by filtering and correlation
techniques) indicates not only a phase delay of the nonlinearly interacting modes, but also the
direction of the energy transfer. Were there no delay between the interacting modes (i.e., β = 0) the
streamwise energy transfer between large and small scales would be zero. A positive lag (β > 0)
therefore indicates the presence of the classical forward energy cascade and a negative lag indicates
an inverse cascade. The cumulative biphase βs represents the same orientation and energy transfer
information, but in an averaged sense, over all triads summing to k. The biphase and bispectrum
combine energetic and spatial perspectives on the scale interaction problem.

III. BIPHASE BEHAVIOR IN THE TURBULENT CHANNEL

A. Channel computations

We present the bicoherence and biphase calculations for a direct numerical simulation (DNS)
of turbulent channel flow at Reτ ≈ 5200 and interpret the biphase with respect to the physical and
energetic orientation of the different scales. The details of the DNS were reported by Lee and Moser
[36]. Streamwise-wall-normal slices of the channel were 8πh × 2h in extent, containing 10 240 ×
1536 physical nodes, with uniform streamwise resolution �x+ = 12.7. The slices were sampled
from the full simulation at 11 different time instants (each separated by 0.7 flowthrough times) and
at spanwise locations separated by �z+ = 47.86. Each slice was divided into four epochs: mirrored
along the central y axis and divided in half in the streamwise direction, with M0 = 5120 points
per epoch. The epochs were averaged over their four-nearest neighbors in y, giving an effective
y resolution that ranged from �y+ = 0.67 at the wall to �y+ = 31.13 at the channel center. The
epochs were zero padded to twice their length and a Hanning window was applied prior to Fourier
transformation with 50% overlap and the construction of the energy spectrum and bispectrum. The
spectra were calculated from 1.5 × 105 total epochs and convergence was verified by varying the
number and length of epochs, as discussed in the Appendix. Finally, the bicoherence was calculated
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FIG. 1. (a) Bicoherence and (b) biphase maps near the outer spectral energy peak y ≈ 0.05. The biphase
has been thresholded to remove statistically insignificant phases. The horizontal dashed line marks the location
for the bispectral slices shown in Fig. 2 and the red ellipse marks the region of intense bicoherence for scales
coupled with the VLSMs. The magenta dash-dotted line indicates the line of constant k = 3 for the LSM
associated with the highly coherent coupling.

by normalizing the bispectrum according to (6), taking care to avoid artifacts from the normalization
by adding a small offset ε ≈ 10−9, following the approach of Collis et al. [37].

B. Results: Phase delay measures

The bicoherence and biphase at y ≈ 0.05 (with outer nondimensionalization, as above, corre-
sponding to the location of the outer spectral energy peak) are shown in Fig. 1. At this location, the
maximum bicoherence occurs around (k′, k′′) ≈ (1.5, 1.5), denoting nonlinear interactions between
two VLSMs to produce another large-scale motion (LSM). However, relatively high bicoherence
is observed along the whole line k′ = 1 for all k′′ (circled in red), thus indicating that the VLSM
interacts nonlinearly with a wide range of smaller-scale motions.

In order to interpret the biphase map, values of the biphase that correspond to statistically
insignificant levels of bicoherence are not physically meaningful and are thus eliminated [38] by
constructing a 99% confidence interval about the squared bicoherence value b2 = 0, utilizing the
empirical observation [39] that the squared bicoherence multiplied by the ensemble size follows a χ2

distribution with two degrees of freedom. The remaining physically meaningful biphase values are
approximately circular Gaussian distributed across ensembles [40] with variance σ 2

β = 1
2N ( 1

b2 − 1)
and thus are expected to be statistically significant for large ensemble size N . After eliminating
the nonmeaningful values of the biphase, it appears that the biphase everywhere in the bispectral
plane is positive, indicating that the nonlinear interaction induces a phase delay consistent with the
small-scale envelope leading the large scales, and a classical forward energy cascade from large to
small scales.

The two-dimensional form of the bicoherence makes observing trends with respect to the wall-
normal location difficult. Jeffries et al. [41] introduced the idea of slicing the bicoherence along
lines of constant wave number k′ and thus observing the variation with respect to k′′ only. The
variation of the bicoherence along the VLSM slice k′ = 1 as a function y is shown in Fig. 2(a). The
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FIG. 2. (a) Sliced bicoherence and (b) sliced biphase along the VLSM slice k′ = 1, corresponding to the
dashed line in Fig. 1. These maps represent the nonlinear coupling and delay interactions between the VLSM
scale and smaller scales within the flow.

sliced bicoherence indicates strong nonlinear coupling very near the wall and also near the channel
centerline, between the VLSM and a broad range of smaller wave numbers, along with a region of
milder coupling spread throughout the channel.

The sliced biphase in Fig. 2(b) is positive throughout the channel and at all wave numbers k′′
coupled with k′ = 1, varying from 0 near the wall to +π near the centerline. The profile of the
biphase appears remarkably uniform across the channel for all wave numbers k′′ � 60 (marked by
the vertical dashed line), whereas for k′′ � 60, the profile of the biphase is nonuniform over wave
number. As noted above, the biphase captures the delay associated with the triadic interaction and
the physical interpretation of that delay depends on the functional form of β(k′, k′′). In this sliced
biphase map, we observe both general types of interactions delays over different ranges of wave
numbers. In the region of high wave numbers, where β is roughly constant with respect to k′′ (and
thus k also, since k′ is held constant), the biphase indicates an intercept delay in the nonlinear
interaction. Therefore, all of the small scales resulting from the VLSM interaction are shifted by
a constant phase, resulting in a distortion of the small-scale signal in comparison to a pure triadic
interaction. This distorted small-scale signal cannot be meaningfully interpreted as a spatial shift,
since each wave number is shifted with respect to all others nonuniformly in space. By contrast,
in the low-wave-number region, β varies with k′′ according to the y location: Near the wall, β

decreases with k′′ and far from the wall, β increases with k′′. If the variation of β were perfectly
linear with k (where k = k′ + k′′), then all of the different small scales resulting from the VLSM
interactions would appear uniformly shifted in space with respect to the products of pure triadic
interactions, without any distortion to the small-scale signal at all. Because the biphase variation is
not perfectly linear, it represents some combination of uniform spatial delay across different triads
and distortion between the different triads. In addition, because the slope of β with respect to k varies
with wall-normal location, the implied spatial delay also depends on the wall-normal location, with
�x > 0 near the wall and the opposite far from the wall.

Aside from the delay information contained within the map of the biphase, individual biphase
profiles can be used to highlight the energetic interpretation of the biphase. The biphase profiles
for a single representative triad (k′, k′′, k) = (1, 2, 3) and the average biphase profile βs(k = 3)
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FIG. 3. (a) Biphase profile β for (k′, k′′) = (1, 2) (black solid line), the average biphase profile βs for
all triads associated with k = 3 (black dashed line), and the phase −��k′ from the filtered cross-correlation
approach (red solid line). (b) Profile of T̂ (k) for k = 3, indicating the region of maximal, streamwise, interscale
energy transfer just above the region where βs ≈ +π/2. (c) Relative orientation of uL and E for the forward
streamwise energy cascade, illustrating the physical implication of the biphase. The dashed ellipse indicates
the region of intense, interscale energy transfer.

associated with the interscale flux of all wave numbers (k′, k′′) triadically coupled to the same k
are both shown in Fig. 3(a). The phase lag calculated via filtering from the amplitude modulation
coefficient R is also shown and the expected similarity is observed.

The biphase captures the nonlinear interaction delay between large and small scales on a
wave-number–by–wave-number basis that had previously been available only via filtering on an
average basis. Moreover, the biphase indicates that the phase lead of small scales is consistent with
a forward cascade of streamwise interscale energy, thus connecting the (streamwise) energy cascade
and scale orientation information in a single statistic. The physical interpretation of the biphase
profile is illustrated in Fig. 3(c), where the region of intense streamwise energy transfer (circled in
dashes) corresponds to the profile of T̂ (k) in Fig. 3(b). The maximal interscale transport occurs in
approximately the same neighborhood as the the region of β ≈ +π/2, consistent with Eq. (11).

IV. CONCLUSION

The biphase was shown to naturally represent the phase lag between large- and small-scale mo-
tions in wall-bounded turbulence, without the use of filtering or enveloping procedures. Moreover,
the normalized bispectrum allows for a measure of the magnitude of nonlinear phase coupling
between scales, on a spectral basis, and can simultaneously be interpreted as an indication of
the streamwise energy cascade between scales. Measurements of the biphase for a high-Reynolds-
number turbulent channel flow were consistent with previous reports using cross correlations and
conditional averaging techniques, confirming that the envelope of small-scale motions leads large
scales in phase. However, the biphase also indicated that this phase lead was associated with the
classical forward cascade of energy. Moreover, the biphase revealed that the phase lead represented
a nonlinear interaction delay, which was shown to vary in functional form across different wave-
number triads and different wall-normal locations, with each functional form leading to different
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FIG. 4. (a) Upper bound of the relative error between different ensemble sizes for 90% of the wave numbers
for the premultiplied energy spectral density (black triangles), the bicoherence (blue circles), and the biphase
(red squares), measured at y = 0.05. (b) Collapse of diagonal slices of the bicoherence at y = 0.05 with
different truncated epoch lengths M, normalized by the square root of their epoch length, compared to the
full epoch length M0 = 5120: M = M0 (black line), M = 0.5M0 (red line), and M = 0.25M0 (blue line).

physical interpretations. The biphase represents an important tool in the ongoing effort to relate the
structure and energetics of wall-bounded turbulence.
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APPENDIX: BICOHERENCE AND BIPHASE CONVERGENCE

To examine the convergence of the bicoherence quantitatively, we define the relative error
ε(k′, k′′; N + �N ) between the bicoherence bN+�N calculated from an ensemble of N + �N epochs
with respect to the bicoherence bN calculated from N epochs on a wave-number basis, according to

ε(k′, k′′; N ) = |bN+�N − bN |/|bN |. (A1)

Then, for each ensemble N , we examine the cumulative density function of the resulting relative
errors for all wave numbers and select the upper bound relative error ε90 that bounds 90% of
the statistically significant bicoherence values. This upper bound represents the maximum relative
variation in bicoherence level between different size ensembles. The same process was applied to
the biphase and an analogous calculation was applied to the streamwise spectral energy density,
for comparison, all shown in Fig. 4(a). As expected, the higher-order spectra converge more slowly
than the spectral energy density and thus even with N = 1.5 × 105 epochs (with �N = 3 × 103), the
upper bound relative error appears larger, just below 2.0%, compared to the spectral energy density
which is easily bounded by 0.1%. However, the use of relative error is also expected to behave
differently in the two types of spectra, because the bicoherence values tend to be very small, which
is known to artificially inflate relative errors via the denominator of (A1) [42]. The larger-magnitude
biphase is bounded by 0.8%. Therefore, despite the slightly higher error bound, the very shallow
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slope of ε90 with respect to N indicates that the spectra are adequately converged and no qualitative
differences were observed among bicoherence maps even at significantly larger quantitative error
bounds. The converged bicoherence values also depend on the epoch length used, as noted above.
This epoch length dependence can be eliminated by normalization by the square root of the epoch
length itself, as shown in Fig. 4(b).
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