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Roughness, inertia, and diffusion effects on anomalous transport
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We study how the complex interplay between channel roughness, inertia, and diffusion
controls tracer transport in rough channel flows. We first simulate flow and tracer transport
over wide ranges of channel roughness, Reynolds number (Re), and Péclet number (Pe)
observable in nature. Pe exerts a first-order control on first-passage time distributions,
and the effect of roughness on the tracer transport becomes evident as Re increases. The
interplay between the roughness and Re causes recirculating flows, which intensify or
suppress anomalous transport depending on Pe. At infinite Pe, the late-time scaling follows
a universal power-law scaling, which is explained by conducting a scaling analysis. With
extensive numerical simulations and stochastic modeling, we show that the roughness,
inertia, and diffusion effects are encoded in Lagrangian velocity statistics represented
by velocity distribution and velocity correlation. We successfully reproduce anomalous
transport using an upscaled stochastic model that honors the key Lagrangian velocity
statistics.
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I. INTRODUCTION

Fluid flow and mass transport in rough-walled channels are ubiquitous phenomena occurring
in numerous engineering applications and natural processes, including microfluidics, biomedical
devices, heat exchangers, and fractured geological media [1–7]. Quantifying and predicting solute
transport in channel flows are essential for the effective design and optimization of these various
applications. For example, contaminant transport in fractured geological media is fundamentally
governed by flow and solute transport in rough channels (fractures), and quantifying solute spread-
ing in fractured media is essential for the risk assessment of contaminated fractured aquifers and the
design of underground nuclear waste repositories. Since Taylor’s seminal work on solute dispersion
in shear flows [8], many studies have proposed various methods to quantify the effective dispersion
in more complex flow fields [9–21]. Although these effective dispersion approaches are useful
in capturing solute transport in many applications, the Fickian regime is often not reached and
anomalous transport, often manifested by the power-law tailing of tracer breakthrough curves and
the nonlinear scaling of second spatial moments, that cannot be captured by Taylor dispersion are
widely observed [22–31]. The solute transport in rough channel flows is a representative example
of such preasymptotic systems [17,32–34].

Recent studies highlighted the importance of inertia effects (Re) and medium heterogeneity
on initiating nonlinear flows and anomalous transport in porous and fractured media [27,35–37].
For example, the critical Re that initiates vortical flows is shown to vary more than three orders
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of magnitude depending on the pore-scale heterogeneity [36], and flow and transport behavior at
channel intersections are proven to be sensitive to Re and the roughness of channel walls [38]. Also,
the interplay between inertia effects (Re) and the medium heterogeneity is shown to fundamentally
change both flow and transport processes [27,37]. A key manifestation of inertia effects in channel
flows is the emergence of recirculation zones, and recent studies on tracer transport through rough
channel flows revealed the importance of recirculation zones on solute transport: recirculation zones
are shown to trap solute particles and cause heavy tailing of tracer breakthrough curves [35,39–41].
However, the effects of recirculating flows were investigated for specific channel geometries and
over relatively narrow ranges of Reynolds number (Re) and Péclet number (Pe). In practice, the
roughness, inertia, and diffusion effects can vary over wide ranges, potentially leading to complex
transport behaviors [27,38,42,43]. For example, the trapping mechanism induced by the diffusion
of solute particles into recirculation zones should strongly depend on Pe, and the occurrence of
recirculation zones are governed by both channel geometries and Re. However, we currently lack a
systematic study that comprehensively investigates the combined effects of channel roughness, Re,
and Pe on flow and transport in rough channel flows. This limits our ability to predict and control
transport processes in channel flow systems.

In this study, we elucidate how the complex interplay between channel roughness, inertia, and
diffusion effects governs the tracer transport in rough channel flows by combining high-performance
numerical simulations, stochastic modeling, and scaling analysis. We first independently vary chan-
nel roughness, Re, and Pe over wide ranges and conduct high-performance numerical simulations
to generate comprehensive data set on fluid flow and tracer transport. We systematically analyze the
obtained tracer breakthrough curves and quantify the effects of recirculation zones on anomalous
transport. We then elucidate channel roughness, inertia, and diffusion effects on Lagrangian velocity
statistics and parametrize an upscaled transport model with key Lagrangian velocity statistics.

II. FLUID FLOW AND SOLUTE TRANSPORT IN ROUGH CHANNELS

Rough surfaces are ubiquitous in nature, and there are various measures that quantify the surface
roughness [44,45]. We consider self-affine rough walls, as rough surfaces in nature are often found
to be statistically self-affine [46–49]. Self-affine surfaces are scale-invariant in that the standard
deviation of the height difference �z between two points separated by lateral distance �x can be
expressed as σ�z(�x) = λ−Hσ�z(λ�x), and H is the Hurst exponent that characterizes the surface
roughness [32,50]. We investigate the roughness effects on flow and transport by varying the Hurst
exponent (H) in the range of 0.7–0.9, which is consistent with that observed in nature [7,32,51].
We use the successive random addition algorithm [50,52] to generate rough surfaces of length
L = 10 cm. The generated rough surfaces are duplicated and detached to have a constant aperture of
1 mm, which is comparable to the roughness amplitude. Figure 1(a) shows examples of generated
rough channels. By varying H , we can systematically vary the ratio between the roughness length
scale and the aperture, which is a key factor that determines the roughness effects on flow and
transport [32,53]. We also confirmed that the root mean square of the surface height values increases
as H decreases. Note that natural fractures often show a significant aperture variability [54].
Although we do not explicitly consider the aperture variability, the surface roughness introduces
the variability in effective hydraulic aperture [55,56].

We investigate the inertia effects on tracer transport by varying the Reynolds number defined
as Re = ub

ν
, and investigate the diffusion effects on tracer transport by varying the Péclet number

defined as Pe = ub
2D . u is the average fluid velocity, b is the aperture, ν is the kinematic viscosity

of the fluid, and D is the molecular diffusivity. We consider seven different inertia regimes: Re =
[1, 10, 20, 40, 60, 80, 100], and five different Pe regimes: Pe = [102, 103, 104, 105,∞]. Pe = ∞
implies that the tracer transport is purely advective with zero diffusion coefficient, D = 0. We fix u
and vary Pe by varying D and vary Re by varying ν. We choose Pe and Re ranges such that they
cover the observable Schmidt number, Sc = Pe

Re , in nature [1,57]. Therefore, this study is not limited
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FIG. 1. (a) Rough channels with three different Hurst exponents (H ). The channel roughness increases as
H decreases. (b), (c) Tracer locations between x = 1 cm and x = 2 cm at pore volume injections (PVIs) of 0.04
and 0.3 are indicated using red circles for Pe = [103, 105] at Re = 100, and recirculation zones and streamlines
inside them are indicated with blue lines. (d), (e) Projected tracer concentration profiles at 0.04 and 0.3 PVI for
Pe = [103, 105] at Re = 100. The symbols indicate the CTRW predictions for H = 0.7 (triangles), H = 0.8
(circles), and H = 0.9 (diamonds).

to a specific solute or solvent, and considers various solute-solvent combinations under various
thermal conditions.

We simulate a Newtonian fluid flow by solving steady-state incompressible Navier–Stokes equa-
tions for rough channels using the finite volume method [58]. A constant flux boundary condition
is imposed on the left boundary of the channel, and a zero-pressure gradient boundary condition is
imposed on the right boundary. We discretize the channel with a resolution of 0.002 mm, yielding
50, 000×500 grid cells within the channel domain.

We simulate passive solute transport using a particle tracking method [59]. The advective
transport is simulated using a streamline-based particle tracking algorithm that considers no-slip
boundary conditions at solid–fluid interfaces [60]. The diffusive displacement is modeled using a
random walk method: a particle jumps

√
4D�t in a random direction over time-step �t [61]. The

Lagrangian method is free of numerical dispersion and can accurately simulate particle transport
at high Pe regimes. We inject 104 particles in each realization with a flux-weighted line injection.
To avoid undesired inlet and outlet boundary effects, we inject tracers 1 cm away from the inlet
boundary and measure the arrival times of tracers 1 cm from the outlet boundary. Thus, the total
longitudinal (x-directional) travel distance is 8 cm.

In summary, to establish the comprehensive understanding of tracer transport in rough channels,
we simulate the flow and solute transport by varying H , Re, and Pe independently over wide ranges:
H = [0.7, 0.8, 0.9], Re = [1, 10, 20, 40, 60, 80, 100], and Pe = [102, 103, 104, 105,∞]. The inde-
pendent variation of H , Re, and Pe helps discern the role of each factor. To avoid being case-specific,
we simulate an ensemble of 10 realizations for each combination of H , Re, and Pe. Therefore, the
total number of flow and transport simulations is 10×#(H )×#(Re)×#(Pe) = 10×3×7×5 = 1050.
We made use of the cutting-edge high-performance computing resources at the Minnesota Super-
computing Institute to meet the considerable computational cost requirements for this purpose.

III. SIMULATION RESULTS AND SCALING ANALYSIS

To highlight the complex interplay, we first present the effects of H and Pe on tracer transport
at Re = 100. As shown in Figs. 1(b) and 1(c), an increase in the roughness increases the size and
frequency of the recirculation zones. The role of recirculation zones on tracer transport is sensitive
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FIG. 2. First-passage time distributions (FPTDs) at x = 9 cm. The presented FPTDs are ensemble averages
over 10 realizations. The lines indicate the FPTDs from direct simulations, and the symbols indicate the CTRW
predictions for H = 0.7 (triangles), H = 0.8 (circles), and H = 0.9 (diamonds). At Pe = ∞, the FPTDs show
a universal scaling of −3.

to Pe. At Pe = 103, tracers readily diffuse into recirculation zones, and the recirculation zones trap
these tracers. Interestingly, the recirculation zones play the opposite role at Pe = 105. At Pe = 105,
the tracers can no longer easily enter the recirculation zones, and the recirculation zones rather
facilitate tracer transport near the channel walls. See Supplemental Material for videos showing
tracer transport simulations at Pe = 103 and 105 [62]. This is because the dividing streamlines that
separate the recirculation zones and the main flow channel effectively act as slip boundaries at high
Pe. This effect is clearly manifested in the projected concentration profiles at pore volume injection
(PVI) of 0.3, as shown in Figs. 1(d) and 1(e), where one PVI is the time duration required to inject
fluid as much as one pore volume of a channel. The tailing in the projected concentration profile
becomes stronger with the increase in the roughness at Pe = 103; however, the trend is opposite at
Pe = 105. The tailing decreases as the roughness increases at Pe = 105.

The normalized breakthrough curves or first-passage time distributions (FPTDs) for the various
combinations of H , Re, and Pe are shown in Fig. 2. First, note that Pe is the most significant factor
in determining the overall shapes of the FPTDs. The effects of roughness on FPTDs are minimal at
low Re (the first row of Fig. 2) and only become evident at higher Re (the second row of Fig. 2).
The overall shapes of FPTDs are most sensitive to Pe. We focus on two key characteristics of the
anomalous transport: early arrival and late-time tailing in the FPTDs. We observe an enhanced early
arrival as both the roughness and Re increase. A high roughness coupled with significant inertial
effects (high Re) causes recirculation zones to enlarge. We delineate recirculation zones based on
the mass balance principle [63], and calculate the ratio between the total area of recirculation zones
and the channel domain area for all H–Re combinations as shown in Fig. 3(a). While the ratio is
zero (i.e., no recirculating flows) regardless of Re in smooth channels (H = 0.9), the ratio increases
as Re increases for rough channels (H = 0.7, 0.8). As shown in Fig. 1, the enlarged recirculating
flows narrow the mobile zone (the main flow channel), and the decreased cross-sectional area of
the main flow channel leads to an overall increase in the velocity along the main flow channel [63].
This explains the enhanced early arrival of the tracers at high roughness and high Re, as shown
in Fig. 2.

The late-time behavior of the FPTDs is determined by the particles traveling through low-velocity
regions. No-slip boundary conditions and recirculation zones create low-velocity regions near the
channel walls. To quantify the trapping effects of recirculating flows on FPTD, we subtract particle
residence times spent in recirculation zones from first passage times. From the delineation of
recirculation zones and the Lagrangian particle trajectories obtained from the particle tracking
method, we can calculate the total time spent in recirculation zones for each particle trajectory.
This allows us to directly quantify the contribution of recirculation zones on the total residence
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FIG. 3. (a) The area ratio between the recirculation zones (RZ) and the channel domain. Recirculation
zones enlarge as the channel roughness and Re increases. (b) Comparison between the FPTD at H =0.7 (RZ +)
and the residence time of the tracers only in the main channels (RZ −) where RZ stands for recirculation zones.
The residence times of particles in the main channels are calculated by subtracting the particle residence times
in recirculation zones from the first-passage times.

times of solutes. The red dashed lines in Fig. 3(b) show the distributions of subtracted first passage
times (first passage times subtracted by total residence times in recirculation zones) at H = 0.7
and Re = 100 and clearly demonstrate trapping effects. As Pe increases, the trapping effects are
observed much later (see black dashed arrows). This indicates that the contribution of recirculating
flows to late-time tailing emerges at later times as Pe increases.

In Fig. 2, for Pe = 105, we can observe that the FPTD of H = 0.7 case decays faster than H =
[0.8, 0.9] upto t ∼ 3 PVI as shown in Fig. 2(i). More than 99% solute particles breakthrough before
3 PVI. This implies that, the larger recirculation zones for H = 0.7 case aid the transit of most
particles at high Pe regimes. This is because the particles cannot easily enter the recirculation zones
due to the limited diffusion, and the recirculating zones do not delay but rather aid the transit of the
particles by acting as slip boundaries and by reducing effective flow area. Consequently, the FPTDs
in the smoother cases (e.g., H = [0.8, 0.9]) show stronger tailing than that in the H = 0.7 case up to
t ∼ 3 PVI [Fig. 2(i)]. This observation is consistent with the projected tracer concentration profiles
[Figs. 1(d) and (e)]. Although fewer particles are captured at high Pe regimes, once captured, the
trapped particles stay longer inside the recirculation zones compared with that observed at lower
Pe regimes. This explains the change in scaling at PVI ∼3 in Fig. 2(i) and the rightmost column of
Fig. 3(b).

At Pe = ∞, the late-time scaling of the FPTDs shows a universal power-law scaling of t−3 for
all combinations of Pe, Re, and H [Figs. 2(e) and 2(j)]. We perform a scaling analysis to explain
the observed universal power-law scaling. The low-velocity regions should determine the late-time
scaling, and the tracers at Pe = ∞ cannot enter the recirculation zones. Thus, we hypothesize
that the late-time scaling at Pe = ∞ is determined by the no-slip boundary conditions. For a
Poiseuille flow with an aperture b, the velocity profile across the channel follows the parabolic
equation u(y) = 6qb−3[(b/2)2 − y2], where q is the constant influx into the channel. The Eulerian
velocity probability density function (PDF) corresponding to the parabolic profile is given as
follows [64]:

fe(u) = −2

b

dy

du
= 1

6q
√

1
4b2 − u

6qb

. (1)

The PDF of the Lagrangian velocities is related to the Eulerian velocity PDF through flux
weighting as fL (u) = u fe(u)∫

du u fe(u) [65]. The late-time scaling of the FPTD, ft (t ), should be determined
by the distribution of the low velocities in fL (u). Since t is a random variable proportional to
the reciprocal of the random variable u, the late-time scaling of ft (t ) follows that of the inverse
distribution of u as [66]

ft (t ) ∝ 1

t2
fL

(
1

t

)
∝ 1

t3
· 1√

c1 − c2/t
, (2)
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where c1 = (4b2)−1 and c2 = (6qb)−1. For large t , we obtain ft (t ) ∝ t−3. This confirms that the
no-slip boundary condition indeed governs the late-time scaling at infinite Pe regardless of the
roughness and Re.

IV. LAGRANGIAN VELOCITY STATISTICS

Recent studies reported that pore structures govern underlying velocity distributions and pore-
scale velocities are strongly correlated [24,37,59,64,67–69]. Also, the effective transport in porous
media has been successfully characterized by considering the interplay between the velocity distri-
bution and the velocity correlation [26,40,65,70–72]. For channel flows, the roughness of the wall
can lead to a significant difference in velocity between the main channel flow and the near-wall
low-velocity zones, causing a broad velocity distribution [43,73,74]. Moreover, the Lagrangian
velocities sampled along a particle trajectory in the channel flows should retain the memory of the
prior velocities because of the mass conservation constraint. A natural conjecture is that Lagrangian
velocity statistics will capture the compound effects of H , Re, and Pe on anomalous transport.

We characterize the Lagrangian velocity statistics using the Lagrangian velocity PDF (veloc-
ity distribution) and velocity correlation. We first quantify the motion of the solute particles in
equidistance, �x, in the mean flow direction. The velocity distribution is characterized using
the PDF of the transition time τ = �x

v
, where v is the average Lagrangian velocity over �x

which incorporates both the advective and diffusive motions of particles. The transition times are
sampled at every �x = 1 mm from all the particle trajectories. Herein, we refer to the PDF of
the transition times as the Transition Time Distribution (TTD). We characterize the Lagrangian
velocity correlation by quantifying the velocity correlation lengths conditional to initial velocity
values. At preasymptotic regimes, velocity correlation can strongly depend on the initial velocity
values [75,76]. We classify the initial Lagrangian velocities into 10 classes, wherein each class is
equidistantly spaced in a log-scale. Based on the initial log-velocity values, the particles are assigned
into one of the 10 classes, i = [1, . . . , 10], where i = 10 is the class with the highest velocities. We
estimate the characteristic correlation length for each class i as �i = ∫ L

0 C(x|i)/C(0|i)dx, where
C(x|i) = ∫ ∞

−∞ |P(log v|i, x) − P(log v, L)|d log v [75]. Here, P(log v|i, x) is the conditional log-
velocity distribution for particles belonging to class i, and P(log v, L) is the marginal log-velocity
distribution at the outlet.

The underlying mechanisms of the early arrival and late-time tailing are effectively captured
in the TTDs (Fig. 4) and velocity correlation (Fig. 5). We first discuss the early arrival behavior.
The probability of having short transition times (high-velocity) increases with the increase in the
roughness and Re (Fig. 4). This implies that the flow channeling effect is encoded in the TTDs.
The channeling effect is also encoded in the correlation length (Fig. 5). The correlation length of
the velocity class i = 10 controls the early arrival of the tracers, and we observe that, for i = 10, the
correlation length in the H = 0.7 case is larger than those in the smoother cases as Re increases
[Fig. 5(c)]. Recirculation zones, which enlarge with the increase in Re [Fig. 3(a)], reduce the
cross-sectional flow area and cause a strong preferential path (Fig. 1). The strong preferential
flow reduces the velocity fluctuation and thereby increases the velocity correlation. The higher
probability of having higher velocities combined with a strong velocity correlation explains the
early arrival behavior at H = 0.7, Re = 100.

Similar to the early arrival behavior, the late-time behavior is also encoded in the TTDs and
velocity correlation. To quantify the tail of the TTDs, we fit the tail to a generalized Pareto
distribution Gξ,σ,θ (τ ) = 1

σ
(1 + ξ (τ−θ )

σ
)−1− 1

ξ , of which the support is τ > θ when ξ > 0 or for
θ < τ < θ − σ/ξ when ξ < 0. The rationale for the use of the generalized Pareto distribution is
based on the Pickands–Balkema–de Haan theorem [77,78], which states that for a large class of
distributions, the conditional distribution of values exceeding a certain high threshold converges to a
generalized Pareto distribution [79]. We use the generalized Pareto distribution as a way to quantify
late-time tailing. The three parameters θ , σ , and ξ are the location, scale, and shape parameters,
respectively, and estimated using the maximum likelihood method. The threshold θ is set as the 0.9
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FIG. 4. Transition time distributions (TTDs) for different Pe and Re combinations. The 0.9 quantiles are
indicated using triangles for H = 0.7, circles for H = 0.8, and diamonds for H = 0.9. Insets: tail index ξ as a
function of Pe and H at (b) Re = 1 and (d) Re = 100. ξ quantifies the heavy-tailedness.

quantile, i.e., τ0.9, of the cumulative distribution of the transition times. The scale parameter σ can
be related to the smallest and the largest transition times. The shape parameter ξ , often called the
tail index, quantifies the heaviness of a tail (the greater the value of ξ , the heavier the tail) [80]. Note
that the method of maximum likelihood finds the parameter values that maximizes the likelihood
function L (ξ, σ, θ |t) where t = {τ |τ � τ0.9}.

FIG. 5. Conditional velocity correlation lengths for Pe = [103, 105] at (a) Re = 1 and (b) Re = 100.
Correlation length increases with the increase in Pe and velocity class. (c) Evolution of �i as a function of
Re at Pe = 105 for the velocity class i = 10 and (d) i = 1. For H = 0.7, �i=10 increases as Re increases, and
�i=1 decreases as Re increases. This behavior is well correlated with the increase in the relative area of the
recirculation zones [Fig. 3(a)].
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The insets in Fig. 4 show the estimates of the tail index. When recirculating flows are strong
(H = 0.7, Re = 100), the tail index significantly increases with the increase in Pe from 100 to 103

[inset of Fig. 4(d)]. This is due to the stronger trapping effect at Pe = 103. At Pe = 100, the particles
easily enter the recirculation zones but also easily exit. When Pe increases beyond 103, the tail index
decreases significantly at H = 0.7, confirming that the particles cannot efficiently sample velocities
in the recirculation zones.

Not only the transition times but also the velocity correlation determines the late-time behavior.
The role of velocity correlation on the late-time behavior can be highlighted from the trend of
�i=1 as a function of Re at H = 0.7. At high Pe regimes, the particles traveling near the walls will
alternate between low (no-slip wall) and relatively high (recirculation zone interface) velocities, thus
decreasing the velocity correlation. For the low velocity class i = 1, the correlation length indeed
decreases with the increase in Re at Pe = 105 and H = 0.7 [Fig. 5(d)], confirming the effect of
recirculation zones acting as slip boundary conditions. This trend is also well correlated with the
increase in the relative area of recirculation zones as a function of Re [Fig. 3(a)].

The decreased tailing in the TTDs (due to less trapping effects) and the loss of velocity correlation
(induced by the slip boundaries) explain how recirculation zones suppress the anomalous transport
at high Pe. Finally, the role of Pe in determining the overall shape of the FPTD is also evident from
the TTDs and velocity correlation. Pe has a strong effect on both TTD and velocity correlation,
whereas the roughness at Re = 1 has little effect on both the TTD [inset of Fig. 4(b)] and velocity
correlation [Fig. 5(a)]. In summary, the effects of roughness, inertia, and diffusion on effective
transport are evident in Lagrangian velocity distribution and velocity correlation.

V. UPSCALED STOCHASTIC TRANSPORT MODEL

We hypothesize that the complex H–Re–Pe interplay in rough channels is effectively encoded in
velocity distribution and velocity correlation, which in turn determine the effective transport. To test
our hypothesis, we quantify the effective tracer transport using an upscaled model that only takes
the velocity distribution and correlation as input parameters. The continuous time random walk
model with one-step velocity correlation, often referred to as the spatial Markov model (SMM),
has been successfully applied to predict anomalous transport across spatial scales including pore
scales [24,68], network scales [26,81], and Darcy scales [70].

We test the hypothesis by running the spatial Markov model as an effective transport model. The
effective particle transport can be characterized using the Langevin equations,

x(n+1) = x(n) + �x, t (n+1) = t (n) + τ (n), (3)

where {τ (n) = �x
v(n) }L/�x

n=0 is a series of transition times. The transition time, τ (n), in Eq. (3) is modeled
as a Markov chain, whose transitions can be characterized using a transition matrix. We sample the
Lagrangian velocity transitions at every �x = 5 mm, which is smaller than the estimated correlation
length (Fig. 5). We classify {v(n)}L/�x

n=0 into 10 classes equidistantly spaced in a log-scale, and then
construct the transition matrix Ti j , which characterizes the transition probability from class i to
class j. Although we parameterized the spatial Markov model using the pore-scale simulation
results, the model could also be constructed from more practical information such as breakthrough
curves [82] and geostatistical properties of media [83]. Recent studies also showed that the transition
matrix could be efficiently parametrized with only one or two parameters [65,76,84]. However,
the efficient parametrization of SMM is not the focus of this study. The spatial Markov model
accurately predicts the projected concentrations and FPTDs for all combinations of H , Re, and Pe
[Figs. 1(d), 1(e) and 2]. This confirms the hypothesis that the H–Re–Pe interplay is effectively
encoded in the velocity distribution and correlation and that they are sufficient for quantifying the
effective transport.

We also present model predictions that do not consider the velocity correlation between suc-
cessive jumps, as shown in Fig. 6. The model accurately captures FPTDs at low Pe, but the
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FIG. 6. FPTDs from direct numerical simulations (lines) and model predictions with no velocity correlation
between successive jumps (symbols) for H = 0.7 (triangles), H = 0.8 (circles), and H = 0.9 (diamonds).

model fails to capture FPTDs as Pe increases. The velocity correlation increases as Pe increases,
and this is why the model performance deteriorates significantly as Pe increases. Interestingly,
the model without velocity correlation still well captures late-time tailing of H = 0.7, Re = 100,
Pe = 104, and Pe = 105 cases [Figs. 6(g) and 6(h)]. This is because the recirculation zones at
high Pe reduce low-velocity correlation by acting as slip boundary conditions, as discussed in
the previous section [Fig. 5(d)]. This result highlights the importance of velocity correlation in
controlling effective transport, and the model predictions are consistent with the velocity correlation
structure characterized in the previous section.

VI. CONCLUSIONS AND OUTLOOK

In this study, we successfully established a mechanistic understanding of roughness (H), inertia
(Re), and diffusion (Pe) effects on solute transport in rough channel flows. Wide ranges of H , Re, and
Pe observable in nature were investigated, and Pe is shown to exert major control over first-passage
time distributions. The effect of roughness on the tracer transport becomes evident as Re increases,
and the interplay between the roughness and Re is shown to cause recirculating flows. We combined
the recirculation zone delineation method with the particle tracking algorithm to quantify the effects
of recirculation zones on solute transport. Through this analysis, we could quantitatively analyze and
understand the role of recirculation zones on anomalous transport and found that recirculating flows
can either induce or nonintuitively suppress the anomalous transport depending on the Pe value.
For Pe = ∞ regime, we observed the universal power-law scaling, t−3, in FPTDs. Using a scaling
analysis, we showed that no-slip boundary conditions at channel walls determine the scaling even
for high Re and rough channel cases.

Based on the improved understanding, we effectively captured anomalous transport over wide
ranges of H , Re, and Pe with a stochastic model that honors the interplay between velocity distri-
bution and correlation. A key finding of this study is that the effects of channel roughness, inertia,
and diffusion are effectively encoded in Lagrangian velocity statistics, and the identified Lagrangian
velocity statistics are sufficient to effectively capture solute transport in rough channel flows. This
result implies that the effective transport model can potentially be directly parameterized from the
information of a medium heterogeneity (e.g., channel roughness), Re, and Pe. This study should
provide insights into the development of such powerful parametrization. This study investigated
limited channel geometries and assumed a constant aperture, but we expect that the key findings in
this study will be valid for various other geometries. For example, the aperture variability will make
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the recirculation zones to more readily occur [74], and this implies that the increase in geometrical
complexity will in general have similar effects as the decrease in H . A more comprehensive study
on channel geometry effects on solute transport should be an important next step.

This study investigated two-dimensional (2D) systems, and 2D rough channels are relevant in
many real systems when the variation of roughness in one direction is significantly larger than
the other direction, such as fault surfaces with slickenlines [85], corrugated channels [6], and
microfluidic devices [86]. Therefore, the results of this study are applicable to various systems. Also,
we were able to comprehensively explore the compound effects of H , Re, and Pe by limiting our
study to 2D. However, recent studies revealed that three-dimensional effects could exert distinctive
impacts on flow and transport processes [38,43], and the extension of this study to 3D will be an
important next step. Last, the excellent performance of the stochastic model shows a promise for
extending the model to upscale reactive transport in rough channel flows [4,87].
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