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Fiber alignment in oscillating confined shearing flows
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Fiber orientation in oscillatory shearing flow was studied both experimentally and
numerically. Optical measurements were made using a custom flow cell containing rigid,
noncolloidal fibers suspended at high concentration in a Newtonian fluid. Simulations
that account for hydrodynamic drag and excluded volume predict fiber alignment in the
vorticity direction for some conditions, in agreement with the measurements. Vorticity
alignment was found to be a complex function of strain amplitude and fiber concentration,
confinement, and aspect ratio.
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I. INTRODUCTION

Shearing concentrated particle suspensions using an oscillatory flow can create a microstructure
that is highly organized and substantially different from that observed in steady shearing flows.
For suspensions of hard spheres that are Brownian, techniques such as light scattering [1,2] and
microscopy [3–5] have established the existence of multiple phases, including face-centered-cubic
and string phases. The microstructure is controlled in part by the rate of shear, or frequency
of oscillation, relative to the timescale for Brownian diffusion. However, the amplitude of the
oscillatory strain largely controls the microstructural phase [2,5,6].

Highly concentrated suspensions of non-Brownian spheres also organize under oscillatory flow.
In this case, the strain amplitude and particle concentration control the microstructure; the rate of
shear (i.e., frequency of oscillation) is irrelevant so long as it is maintained within the creeping-flow
regime and since there is no Brownian timescale. Evidence for the strain amplitude-dependent
organization is given by rheological measurements [7,8] which have been correlated to the mi-
crostructure through simulation [9]. Changes in the microstructure are driven, at least partially, by
a transition from reversible dynamics at small strain amplitudes to irreversible dynamics at large
strain amplitudes, where the transition depends on the concentration of particles [10,11].

Oscillatory rheology is used commonly to characterize colloidal and noncolloidal particle
suspensions for materials development and quality control, hence the interest in examining the rela-
tionship between the applied flow, microstructure, and rheology. The possibility of using oscillatory
flows to alter favorably the microstructure for specific applications has also been suggested [2]. For
example, investigations have explored using oscillatory shear to assemble colloidal crystals [12,13],
and oscillatory shear may be relevant for self-assembly of noncolloidal particles as well [14].

The vast majority of studies concerning oscillatory flow of concentrated particle suspensions
have been limited to spheres rather than other particle shapes, which comprise many suspensions.
In the case of elongated particles that are non-Brownian and suspended at high concentration,
oscillating the flow can induce strong alignment in the vorticity direction [15,16]. This alignment
contrasts with the tendency of fibers to align with flow direction when sheared steadily within
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FIG. 1. Fibers were manufactured from the poly(methyl methacrylate) core of fiber optic cables of diameter
d by cutting them in segments of length L. Various aspect ratios of A = L/d were generated: (a) L = 5.2 ±
0.2 mm, d = 0.46 ± 0.06 mm, and A = 11 ± 2; (b) L = 5.2 ± 0.2 mm, d = 0.23 ± 0.02 mm, and A = 23 ± 2;
and (c) L = 10.4 ± 0.2 mm, d = 0.46 ± 0.06 mm, and A = 23 ± 2.

a Newtonian fluid. Simulations by Snook et al. [17] accurately predicted the alignment of the
fibers and indicated that particle collisions drive the organization of the orientation distribution.
Additionally, they speculated that the suspension must be confined in order for vorticity alignment
to occur.

Here, we address questions raised by the work of Franceschini et al. [15,16] and Snook et al.
[17], including the effects of fiber concentration and confinement on the orientation distribution.
Measurements of fiber alignment were made in a custom-built flow cell as functions of fiber
geometry and strain amplitude, as well as concentration and confinement (see Sec. II). Simulation
methods used to predict the orientation are described in Sec. III. Section IV B demonstrates that
the measurements are consistent with previous experiments at the same conditions, though the
dependence of alignment on the distance from the bounding walls must be considered when making
the comparisons (see Sec. IV A). Additional results in Sec. IV confirm that vorticity alignment
depends upon the confinement and concentration of particles, as well as particle size and geometry.

II. MATERIALS AND EXPERIMENTAL METHODS

Three batches of fibers, as shown in Fig. 1, were manufactured from fiber optic filaments with
poly(methyl methacrylate) cores. The filaments were soaked in dimethyl sulfoxide, mechanically
wiped to remove the outer fluorocarbon coating, and then cut to the appropriate length to produce
fibers with aspect ratios A = L/d of 11 ± 2 and 23 ± 2, where L and d are the fiber length and
diameter; two sets of fibers were used at A = 23, where L and d of one set are double the other set.
The fibers were suspended in a mixture of Triton X-100 (73% by mass), distilled water (11%), and
zinc chloride (16%). Fluorescent dye (rhodamine 6G) was added to the mixture at a concentration of
9 × 10−7 g/cm3. This fluid was Newtonian, with a viscosity of μ = 30 P, and the density (ρ = 1.24
g/cm3) and refractive index matched that of the fibers. These properties were characterized at the
same temperature (25 ◦C) at which the experiments were performed.

The suspension was sheared within the custom-built cell shown in Fig. 2. Specifically, the fiber
suspension was loaded in the region between the transparent belt [see Fig. 2(a)]. Pure suspending
fluid was loaded into the space between the shear cell walls and the belt. Since the belt extends from
the bottom of the shear cell to a point above the fluid, fibers were unable to escape the region between
the belts, and the concentration of fibers was maintained constant throughout the experiment. The
suspension was gently mixed and sheared, allowing trapped air to escape to the surface prior to each
experiment.

The belt was held in place by applying tension with the aluminum cylinders at either end of the
cell, and a shearing flow was generated by the relative motion of the transparent belt upon rotating
the cylinders as indicated in Fig. 2(a). Grooves were etched into the top of the belt for the cylinders
to grip and aid with rotating the belt. Gears on one of the cylinders were attached to a stepper motor
to actuate the motion, while the other cylinder rotated freely. Spacers made of acrylic were inserted
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FIG. 2. (a) Schematic of the shear cell as viewed from above. The suspension is sheared by the transparent
acrylic belt (red) which is driven by rotating the cylinders (white) at either end of the cell. A laser sheet (green)
of thickness 250 μm, centered in the gap, fluoresces the fluid and enables imaging of the particle orientation
distribution. (b) Photograph showing the controller and imaging equipment that surrounds the shear cell. A
stepper motor attached to the cylinders drives the shearing flow, which is oscillated using a controller that also
actuates the shutter and camera. (c) View of the shear cell from the same direction as the camera. The laser
sheet fluoresces the suspension in the flow-vorticity plane.

in the shear cell to set the gap size at either H = 15.6 or 7.8 mm, which corresponds to H = 1.5L
for the fibers of shorter length L = 5.2 mm. The length of the controlled gap (cylinder to cylinder)
was 11 cm, and the maximum height of fluid was 4.5 cm.

A controller operated the stepper motor to generate an oscillatory shearing flow. The rate of shear
was constant for the forward and backwards motions (i.e., a square wave), rather than a sinusoid,
and the instantaneous strain increased from zero to a value of 2γ0 before returning to zero for each
cycle. The range of strain amplitudes γ0, gap sizes H , volume fractions φ, and fiber aspect ratios A
were chosen similar to the experimental work of Franceschini et al. [15] and computational work of
Snook et al. [17]. The maximum shear rate of 1.67 s−1 used in the experiments gives a maximum
particle Reynolds number of Re = ργ̇ L2/μ = 0.07, and Brownian motion is negligible owing to
the large size of the fibers. The maximum stress exerted by the flow on the fibers was much smaller
than the stress required to buckle a fiber [18]; consequently, the fibers can be considered rigid under
the conditions of the experiment.

Figure 2(b) shows the spatial arrangement of the shear cell and surrounding imaging equipment.
The laser sheet that entered the cell from the top [see Fig. 2(a)] had a width of 250 μm and wave-
length of 532 nm. A shutter was mounted in front of the laser sheet to prevent photobleaching caused
by overexposure of the fluid. The shutter and camera were actuated by the same controller that
managed the oscillatory motion; at the end of each oscillatory cycle, a 5-s delay was implemented to
minimize the free-surface deformation from the shear, and then one image was captured. Figure 2(c)
shows the shear cell from the same direction as the camera, which allows for capturing images in the
flow-vorticity plane through the transparent walls of the shear cell. Images were only captured in the
flow-vorticity plane that is aligned with the center of the gap; the top metal piece in Fig. 2(c) restricts
the imagining plane from various positions in the gap, such as capturing images near the wall.

Images collected during the experiments, such as the example in Fig. 3, were processed to cal-
culate the orientation distribution. The fibers were marked, and the center of mass and orientations
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FIG. 3. (a) Example image showing fibers in the flow-vorticity plane, where α is the angle between the
projection of the fiber in this plane with the flow direction. (b) Fibers within each image were identified and
the orientation of each was determined. Only those particles at least one fiber length from the free surface and
bottom plate were included in calculations of the orientation distribution.

were measured. To minimize any effects of the free surface and the bottom bounding wall of the
apparatus, the window of analysis was limited to the region one particle length from each boundary.
Quantitative information on the orientation distribution was extracted from the processed images.
As depicted in Figs. 3(a) and 4(a), the angle α is the angle between the flow direction and the
projection of the fiber in the flow-vorticity plane. The angle α was used in the computation of
the order parameter Sα , a measurement of the fiber orientation. Here, Sα = 1 − 2〈cos2(α)〉, where
the 〈·〉 denotes an average over fibers in the window of analysis. Note that Sα = 0 for a suspension
with a random orientation distribution, and Sα = −1 or 1 indicates a suspension with perfect fiber
alignment in the flow or vorticity direction, respectively.

III. SIMULATIONS

To assist in interpreting the experimental results and spanning a wider range of the dimensionless
parameters, simulations were used. The model is similar to that used by Snook et al. [17] to
simulate the oscillatory shear of concentrated suspensions of rigid fibers. The equations ignore the

FIG. 4. (a) The x, y, and z directions are the flow, gradient, and vorticity directions, respectively. The angle
between the fiber projection in the flow-vorticity plane and the flow direction is α. (b) Each fiber of aspect ratio
A is defined by its center-of-mass position xi and orientation pi. A Hertzian repulsive force acts to separate
pairs of fibers when their minimum separation distance hi j indicates an overlap [refer to Eq. (3)].
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effects of inertia since the Reynolds number is small, and the hydrodynamic forces are modeled
using slender-body theory for a rigid rod at leading order [19,20]. Furthermore, the model excludes
hydrodynamic interactions between particles; this approximation has been used to predict accurately
the orientation distribution of high-aspect ratio fibers at sufficiently large concentrations [21–23], as
contact interactions between fibers predominately influence the dynamics.

Using the above assumptions and balancing the hydrodynamic drag and short-range repulsive
forces (F i) to maintain the excluded volume of the fibers gives

ẋi = u(xi ) + ξ−1(I + pi pi ) · F i, (1)

where ẋi is the velocity of the center of mass xi, and pi is the unit vector along the axis of fiber i [see
Fig. 4(b)]. An oscillatory shear flow, u(xi, t ) = γ̇ (t )yex, is imposed, with flow in the x direction and
the gradient in the y direction as defined in Fig. 4(a). The shear rate is a square wave of magnitude γ̇0

and the period is determined by the strain amplitude γ0; simulations were also run using a sine-wave
oscillation method, replicating the conditions of the previous work [15,17]. The coefficient for the
mobility is ξ−1 = ln(2A)/4πμL.

Likewise, the rotational motion is governed by a balance between the torque due to hydrodynamic
drag and torque caused by the repulsive forces between fibers (T i),

ṗi = � · pi + B(I − pi pi ) · E · pi + 12ξ−1

L2
T i × pi. (2)

In the above equation, rotation of a slender body due to a shearing flow has been replaced by
the rotation of a rod with a finite thickness. The fiber rotates in proportion to the rotation of the
fluid, � = 1

2 [(∇u) − (∇u)T ], and a fraction B = (A2
e − 1)/(A2

e + 1) of the extensional flow, E =
1
2 [(∇u) + (∇u)T ]. The parameter B is a correction for the rotation of a spherocylinder [24–26]
instead of an ellipsoid [27], using a fiber effective aspect ratio Ae = 0.8A, rather than the aspect
ratio A; for these calculations, Ae = 8.8 and 18.4 when the fibers are of aspect ratio A = 11 and 23,
respectively.

To maintain the excluded volume of the particles, Snook et al. [17] applied a repulsive force
between overlapping fibers that was constant. Here, a Hertzian force [28,29] was applied to prevent
the overlap of two fibers in contact [see Fig. 4(b)],

f (c)
i j =

{
0, if hi j > 2ε,

kn
( hi j

2ε

) 3
2 ni j, if hi j � 2ε,

(3)

where kn = 4πμγ̇ L2/ ln(2A), hi j is the minimum separation distance between two fibers i and j,
ε = 0.1d is the estimated roughness of a fiber in the experiments, and ni j = ±(pi × p j )/|pi × p j |
is the normal direction of the collision. The sign of the normal is chosen so that the fibers repel,
rather than attract, each other. Periodic boundaries were used in the flow and vorticity directions,
and particles were maintained within the bounding walls using a similar forcing,

f (w)
i =

{
0, if hi > ε,

kn
( hi

ε

) 3
2 ni, if hi � ε,

(4)

where hi is the minimum separation between the fiber i and the nearest wall, and the normal points
from the wall into the fluid.

The summation of interactions for a fiber i yields the total nonhydrodynamic force,

F i = f (w)
i +

νT∑
j=1

f (c)
i j , (5)
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FIG. 5. The order parameter Sα as a function of the oscillation number N of the simple contact force
simulations used in previous calculations [17] compared to the change in the forcing to a Hertzian contact
force. The conditions used were H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5; both curves were produced using
the sine-wave oscillation method and the initial distributions are identical. Averaging is performed over all
fibers within the gap and over 12 runs.

and torque,

T i = si pi × f (w)
i +

νT∑
j=1

si j pi × f (c)
i j , (6)

where si j is the point on fiber i where it collides with fiber j, as illustrated in Fig. 4(b), and si is the
point on fiber i where it collides with the wall. The sums over the total number of fibers νT exclude
when i = j.

Equations (1) and (2) were integrated in time using the Euler method, starting from an initial
set of particle positions and orientations. The initial distribution for each simulation was created by
randomly placing particles in the simulation box, while rejecting any placements that generated
an overlap. Simulations were performed using up to νT = 5052 particles (given a box size of
5L × 3L × 5L), which varies depending on box size, aspect ratio A, and concentration φ. The time
step was set to a value of 
t = 0.001L/(H γ̇0), which ensured that displacements were smaller
than the range over which the repulsive force operates. The computational expense, caused by the
combination of small time steps and total time over which simulations were run, was mitigated in
part by making use of link lists [30] to facilitate the search for collisions between particles.

Figure 5 compares Sα calculated using the constant repulsive force model used by Snook et al.
[17] and the Hertzian force model [see Eqs. (3) and (4)]. Twelve runs were performed for H = 1.5L,
A = 11, φ = 0.20, and γ0 = 2.5 using a sine-wave oscillation. The values of Sα were determined
by averaging over all fibers in the simulations within the gap, and the error bars shown in the figure
represent the standard deviation of the mean across the 12 runs. Given identical initial conditions,
Sα is slightly higher for the constant repulsive force model than the Hertzian force model following
each oscillation N , though the steady-state result is the same within the calculated error. The
predictions for Sα are similar since the range over which the forces operate (h < 2ε) are identical.
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FIG. 6. Visualization of an initial condition for the fibers and their predicted distribution after N = 400
and 4000 oscillations. Fibers generally rotated into alignment with the vorticity direction for this set of
conditions, which consisted of H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5 with a square-wave oscillation.
Vorticity alignment is reflected by the increased values of Sα , which were calculated using all fibers in the gap.

IV. RESULTS AND DISCUSSION

Section IV A describes simulation results that indicate spatially dependent alignment of the
fibers, and Sec. IV B compares experimental and numerical results from this work with previous
ones. Later sections present results on the larger range of conditions. Including the gap H , a total of
four length scales (L, d , and strain displacement γ0H) were varied in the experiments. Additionally,
the fiber concentration was varied and is reported as either a volume fraction φ or a dimensionless
number density nL2d = 4Aφ/π ; the number of fibers normalized by the total volume is the number
density n. Note that the alignment is assumed to depend only on the gap H , and not the length and
height of the test cell. Also, the alignment depends on the number of oscillations N , but not on time.
Time does not enter into the problem directly since the flow was in the creeping regime and there
were no other timescales due to the absence of Brownian motion and gravitational effects (i.e., the
particle and fluid densities matched). Consequently, the alignment (Sα) at any value of N is expected
to be a function of four dimensionless parameters (A, γ0, H/L, and either φ or nL2d) constructed
from the five variables and one independent unit (length).

A. Spatial dependence of the order parameter

Figure 6 illustrates a set of fibers, starting from the initial distribution (N = 0), and after
simulating N = 400 and 4000 oscillations using the methods presented in Sec. III. The order
parameters Sα reported in the figure were evaluated by averaging over all fibers in the gap; it
was found to increase from the initial value of Sα = −0.01 to 0.79, indicating a preferential fiber
alignment in the vorticity direction after 4000 cycles. Correspondingly, the images indicate that the
fibers tend to align in the vorticity direction throughout the gap, though alignment is a function of
position as seen more explicitly in Fig. 7(a). This figure shows slices of width d/2L at the center
of the gap and adjacent to a bounding wall for the same set of data as in Fig. 6. Initially, fibers
near the wall lie mostly in the flow-vorticity plane with no preferential alignment, while many
of the fibers that intersect the flow-vorticity plane in the center of the gap extend substantially in
the gradient direction. Additionally, the number of fibers intersecting the center slice exceeds the
number in the wall-adjacent slice. After oscillating 400 and 4000 times, fibers near the wall and in
the center of the gap aligned more fully in the flow-vorticity plane and preferentially oriented in the
vorticity direction. Notably near the wall, fibers organized more strongly than in the center, and the
relative number of fibers near the wall surpassed the number in the center of the gap after oscillating
approximately 100 times.

The order parameter Sα was evaluated as a function of oscillation number and was averaged over
multiple simulations. Figure 7(b) shows the results for the bulk value and for fibers in the center
and adjacent to the wall. Note that bulk values of Sα were produced by averaging over all fibers in
the gap, while the center slice and wall slice values of Sα were calculated using only those fibers
intersecting a slice of thickness d/2L at the center and adjacent to the wall, respectively. As N
increased to 4000 cycles, the bulk Sα first dropped to a minimum value of −0.32 ± 0.03 at N ≈

014302-7



SCOTT STREDNAK et al.

FIG. 7. Results from simulations with H = 1.5L, A = 11, φ = 0.20, γ0 = 2.5, and a square-wave oscil-
lation. (a) Illustrations of slices of the suspension at the center of the gap (left column) and near the wall
(right column) evolving from an initial state (N = 0) through the steady-state structure at N = 4000. Reported
values of Sα were calculated only over those fibers intersecting each slice. (b) The order parameter Sα as a
function of the number of oscillations N for the square-wave model presented in Sec. II using every fiber in
the gap (circles), fibers intersecting the center (open triangles), and fibers within a diameter of the wall (square
symbols). Order parameters measured from experiments are also shown (filled triangles). The inset shows
the calculated average number of fibers νS present in the wall and center slices as a function of N from the
square-wave model. Error bars represent the standard deviation of the mean values calculated from multiple
realizations of either the simulations or experiments.

25 before increasing and approaching a steady-state value of 0.79 ± 0.03. This set of conditions
(H = 1.5L, A = 11, φ = 0.20, γ0 = 2.5) gave the largest bulk value of the order parameter across
all conditions that were studied. The order parameter for the wall and center slices remain larger
and smaller, respectively, than the bulk value.

The steady-state distribution was highly vorticity aligned for the wall slice (Sα = 0.96), and the
fibers in the center of the gap began to align more in the flow direction (N ≈ 100) before weakly
aligning in the vorticity direction (Sα = 0.19) only after 500 oscillations. The numerical data in the
center slice agree most closely with the experimental measurements. The inset of Fig. 7(b) shows
the number of fibers (νS) intersecting slices at the center and adjacent to the wall as a function of
oscillation number N for the simulations. The number of fibers decreased in the center plane as
fibers rotated out of the gradient direction and into the flow-vorticity plane; fibers near the wall
self-organized as the concentration of fibers increased.

B. Comparisons with previous work

Figure 8 compares measurements reported by Franceschini et al. [15] [see Fig. 8(a)] to measure-
ments from the experiments described in Sec. II [see Fig. 8(b)] over a range of strain amplitudes
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FIG. 8. Experimental and simulation results for H = 1.5L, A = 11, and φ = 0.20. (a) The bulk order
parameter Sα measured in previous experiments [15] is compared to simulation results, including those of
Snook et al. [17]. The inset indicates the oscillation number NR at which Sα was determined for each γ0. (b) The
order parameter Sα measured from experiments are compared to simulations using square-wave oscillations.
Simulations show Sα as calculated using all fibers in the gap, though the open triangles and dashed line used
only those fibers intersecting the center plane of the gap when calculating Sα .

and identical conditions of H = 1.5L, A = 11, and φ = 0.20. Previous measurements indicate
fibers strongly align with the the vorticity direction at γ0 ≈ 2.5, where the order parameter Sα is
maximized. Experimental results in Fig. 8(b) appear to show a very different dependence of Sα on
γ0; as γ0 increases above 1.5, Sα not only decreases, but is also negative, indicating an increased
alignment of particles in the flow direction. The discrepancy in the results is due primarily to the
spatial positions over which the orientation distributions were sampled and, to a lesser extent, the
pattern of the shearing flow.

The laser sheet fluoresces the flow-vorticity plane in the center of the gap in the current
experimental work, and the alignment of the fibers is position dependent as demonstrated in Figs. 6
and 7. Hence, the experimental data for Sα shown in Fig. 8(b) compare well with simulation results
where only those fibers that intersect the center plane have been used in the evaluation. Similar to the
experimental data, the simulations indicate smaller values of Sα as the strain amplitude increases,
with quantitative agreement for γ0 > 1.5. Analysis of simulation results that include all fibers when
determining Sα , which are also shown in Fig. 8(b), indicate much larger values than seen in the
experiments. Likewise, Fig. 7(b) shows that the experimentally measured values of Sα as a function
of oscillation number are much better predicted by the simulated values of Sα from fibers in the
middle of the gap than across the entirety of the gap, as expected given the measurement position.

In the experiments by Franceschini et al. [15], fibers were sheared in a Couette cell and the
orientation distribution was measured for fibers intersecting a laser sheet. Few details were given
regarding the exact position and size of the laser sheet, but the curvature of the Couette cell prevented
aligning the sheet uniformly in the flow-vorticity plane, and fibers not in the center of the gap were
sampled as well. Figure 8(a) compares the order parameter measured by Franceschini et al. [15] with
the present simulations and those of Snook et al. [17] using different contact forces but calculating
Sα using all fibers in the gap; the inset indicates the oscillation NR at which Sα was determined for
each γ0 across all of the results shown. At the lower strain amplitudes (γ0 = 0.5–1.5), discrepancies
between the simulations and the experiments are most likely due to different initial configurations,
as the simulations used initially random orientations (Sα ≈ 0) and the experiments were prealigned
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FIG. 9. Bulk values of Sα at H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5 from simulations. (a) The order
parameter Sα as a function of the number of oscillations N is different for the sine-wave and square-wave
patterns of shear and measurement, and the inset shows the first nine cycles. (b) The order parameter as a
function of N when using the square-wave and recording the orientation distribution at end and half point of
each cycle.

slightly in the flow direction (Sα ≈ −0.20). The good agreement suggests that the measurements of
Franceschini et al. [15] sampled fibers across the entirety of the gap.

Though the spatial sampling of fibers is the primary reason that the experimental results in
Figs. 8(a) and 8(b) should not be compared directly, the pattern of oscillation and data collection also
causes some differences that affect any comparisons with the work of Franceschini et al. [15,16].
Their experiments and the corresponding simulations of Snook et al. [17] utilized a sinusoidal strain
displacement, where the instantaneous strain was increased from zero to a value of γ0, was decreased
to −γ0, and then returned to zero, at which point the orientation distribution was sampled. The
order parameter Sα from the previous works are compared in Fig. 8(a) to our simulations using the
same sine-wave oscillation, though simulations results in Fig. 8(b) used a square-wave oscillation
and sampling in order to mimic the experiments. For the square wave, the instantaneous strain
is increased to 2γ0 and then returned to 0, at which point the measurement of orientation was
made.

Using identical initial conditions, simulations shown in Fig. 9(a) demonstrate that the bulk
value of Sα is lower at each value of N when using a square-wave, as opposed to sinusoidal,
pattern of shear and measurement. At N = 4000 oscillations, the order parameter for the sine-wave
simulations is 0.83 ± 0.01 and for square-wave simulations is 0.79 ± 0.03. The order parameter Sα

also depends on when it is calculated throughout an individual cycle; evolution of Sα as a function of
N for various positions in the square-wave cycle is shown in Fig. 9(b) for square-wave oscillations.
Until around N = 200, the order parameter is consistently larger at the end of each cycle (dotted
line) compared to the calculations recorded halfway through the cycle (solid line), the point at which
the flow is reversed in the cycle. Similar differences in the Sα due to the oscillation methods were
observed for all conditions in the current work.

Having established, with the aid of simulations, that the experiments performed here are consis-
tent with those of Franceschini et al. [15], the remaining section presents a wider range of conditions.
The remaining simulation and experimental results use only the square-wave pattern of oscillation
and sampling, except where noted.
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FIG. 10. Calculations and measurements performed with A = 11 and φ = 0.20. (a) The order parameter
Sα was evaluated for fibers intersecting the center of the gap for simulations and experiments at different H and
γ0; here, Sα was measured at N = 1283, the largest common number of oscillations across every experiment
and simulation. (b) The bulk, center, and wall-adjacent values of Sα as a function of N for H/L = 3.0 and
γ0 = 1.5. The inset shows the calculated average number of fibers νS that intersect the center and wall plane as
a function of N .

C. Orientation dependence on gap size, aspect ratio, and concentration

The effect of confinement on the order parameter is depicted in Fig. 10, where A = 11 and
φ = 0.20. The order parameter of the final cycle recorded in the experiments compares well with
simulation results, as shown in Fig. 10(a); only fibers intersecting the center of the gap were included
in the calculation of Sα and the measurements and simulations are reported at N = 1283, the largest
common oscillation number among the experiments shown in the figure. For the smaller H/L of
1.5, fibers at the center of the gap orient only slightly in the direction of vorticity at intermediate
strain amplitudes at N = 1283. Fibers at the center of the gap align preferentially in the gradient
direction for H/L = 3.0, though a surprising dip in Sα is predicted by the simulations at γ0 ≈ 1.5.
Figure 10(b) explores the dynamics for this condition and shows that Sα for fibers in the center
diverges from the bulk value after approximately 100 oscillations, with the fibers in the middle
turning towards the flow direction while fibers adjacent to the wall strongly align with the vorticity
direction. The inset of Fig. 10(b) reports that the calculated average number of fibers in each of the
center and wall slices remains relatively constant throughout the development of the microstructure,
much unlike the conditions presented in the inset of Fig. 7(b).

Bulk values of Sα were evaluated from simulations at N = 4000 for gap sizes between H = 1.5
and 3.0 for a range of γ0 values; for all but the smallest strain amplitude of 0.5, the orientation
distribution was steady by N = 4000. Figure 11(a) shows that each confinement produces a maxi-
mum peak value in the bulk Sα at γ0 = 2.5, with the highest being Sα = 0.79 ± 0.03 at H = 1.5L.
As the confinement relaxes to H = 3.0L, Sα drops to 0.50 ± 0.04. At γ0 = 2.5, alignment in the
vorticity direction is remarkably similar as a function of distance from the wall (h/L) across all of
the studied gaps [see Fig. 11(b)]. Fibers adjacent to the wall are strongly aligned in the vorticity
direction, with Sα > 0.9. The orientation distribution returns toward a random alignment (Sα = 0)
as the distance h/L from the wall increases. Note that the inset of Fig. 11(a) shows that the peak
values of Sα scale as (H/L)−0.6, though calculating this result from Sα (h/L) requires consideration
of the position-dependent concentration. This is shown in the inset of Fig. 11(b) and indicates that
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FIG. 11. Simulation results for A = 11 and φ = 0.20. (a) The bulk order parameter Sα was evaluated for
multiple gap sizes H/L at N = 4000 across multiple γ0. The inset shows the maximum Sα for each gap size H
(occurs at γ0 = 2.5) as a function of H/L. (b) Spatial variation of Sα for various H when γ0 = 2.5, where h/L
is the distance from the wall [see Fig. 2(a)]. The inset shows the calculated average number of fibers νS as a
function of h/L.

the fibers are more concentrated near the wall where the fibers are highly organized and aligned
with the vorticity direction.

Two sets of fibers with an aspect ratio of A = 23 were used in experiments, as pictured in Fig. 1,
where both the length and diameter of one set is roughly double the second set. Experimental
measurements for both sets of A = 23 fibers are compared in Fig. 12 to simulation results at the same
confinement of H = 1.5L and oscillation number N = 1395, the largest common oscillation number
between experiments; to compare the measurements, Sα from the simulations was calculated only
for fibers intersecting the midplane between the bounding walls. The experiments and simulations
show slightly reduced values of Sα at γ0 = 2.5 vs 1.5, with the results indicating that the alignment
is close to random in the center and across the gap of the channel as well. The experimental results
should be the same, regardless of the physical size of the fibers since all other parameters (H/L,
γ0, and φ) were held constant. However, the values of Sα are larger for the bigger fibers, and the
reported measurement errors do not account for the differences. One notable possibility is that the
height of the fluid in the cell may have impacted the results.

To further assess the functional dependence of alignment on aspect ratio and concentration,
simulations were performed for two different aspect ratios and concentrations over a range of
strain amplitudes. The results for the predicted bulk values of Sα are given in Fig. 13(a) along
with some experimental results of Franceschini et al. [16] for a concentration of φ = 0.10. Similar
to the simulation results at the same conditions, a maximum Sα is observed around γ0 = 4–5 in the
experiments, though it should be noted that the comparison is at a different oscillation number and
the experiments were performed using a sine-wave oscillation. The simulation data in Fig. 13(a)
demonstrate that there is no simple agreement when comparing order parameters on the basis of
either volume fraction φ or dimensionless number density nL2d . At the same particle aspect ratio
A = 11, a decrease in the concentration by a factor of 2 (from φ = 0.20 to 0.10 or from nL2d = 2.88
to 1.44) yields distinctive fiber orientations, even though both are considered concentrated suspen-
sions; the higher concentration system (φ = 0.20 or nL2d = 2.88) indicates a strong alignment in
the vorticity direction (Sα = 0.79 at N = 4000), whereas the lower concentration system (φ = 0.10
or nL2d = 1.44) indicates increasing alignment in the flow direction (Sα = −0.35 at N = 4000).

014302-12



FIBER ALIGNMENT IN OSCILLATING CONFINED …

FIG. 12. Measurements and simulations with A = 23, H/L = 1.5, and φ = 0.10. The order parameter
Sα from experiments (solid symbols) is compared to simulation results where Sα was evaluated for fibers
intersecting the center of the gap (open symbols). The results are reported at the common terminal oscillation
N = 1395 of the experiments. The bulk order parameter Sα evaluated from simulation results is also shown.

Simulation results for A = 23 indicate little vorticity alignment relative to A = 11 when comparing
both at identical φ and nL2d .

The orientation distribution is controlled by contacts between particles and the bounding walls, as
indicated by the simulations by Snook et al. [17] and here. As the strain amplitude is increased at a

FIG. 13. (a) Bulk values of Sα from simulations for N = 2340, H = 1.5L, and A = 11 and 23 for a range
of concentrations. Some experimental results [16] are also shown for comparison; the inset indicates the
oscillation number at which the experimental data were reported. (b) Simulations results for the bulk values of
Sα are replotted by scaling the strain amplitude by φ/�c, where �c = 0.4 as found by Franceschini et al. [16]
from rheological measurements.
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FIG. 14. Average number of contacts (ν (c)) extracted from simulations with H = 1.5L and A = 11 and 23.
(a) The total number of fiber contacts with other fibers and bounding walls as a function of the oscillation
number N . Results below, near, and above the critical rescaled strain amplitude of γ0φ/�c = 1 are shown for
volume fractions φ = 0.10 and 0.20. (b) The total number of contacts are compared at N = 4000, after having
subtracted the minimum value of ν (c) at N = 4000 for each volume fraction. The number of contacts markedly
increases at γ0φ/�c ≈ 1. The inset shows the spatial distribution of contacts for A = 11 and φ = 0.2, where
h/L is the distance from the bounding wall.

fixed concentration, initially random rods experience more collisions during a cycle; below a critical
strain amplitude, particles organize into a state that significantly lowers the number of contacts, or
“activity” as defined by Franceschini et al. [15,16]. Likewise, at a fixed strain amplitude, a critical
concentration exists at which collisional activity transitions. Data from oscillatory rheology were
used to conclude an inverse relationship between the critical strain and concentration at which the
activity transitions. Assuming that the transition to and from vorticity alignment scales in a similar
manner, the data for Sα in Fig. 13(b) were replotted by a rescaled strain amplitude of γ0φ/�c. Here,
�c = γcφ is the critical volume fraction as defined by Franceschini et al. [16], which represents
the effective volume fraction swept out by the fibers rotating in the shear flow of amplitude γc. We
use the value of �c ≈ 0.4 that they found for fibers at high concentration. As shown in the inset
of Fig. 13(b), the data for A = 11 collapse for this choice of scaling, with the maximum close to a
value of one. For A = 23, the success of the scaling is not so clear, as the maximum value of Sα is
not as prominent as for data with A = 11. Also, �c is likely a function of the aspect ratio.

D. Contact interactions

Since contact forces drive the alignment of fibers, significant changes in the contact interactions
must occur as the order parameter Sα increases to its maximum value at γ0φ ≈ �c. Extracting
information on the contacts from the experiments is not directly possible, but simulation results on
the contacts are given in Fig. 14(a). The average number of contact interactions (ν (c), evaluated at
the completion of each oscillation) is shown as a function of the oscillation number. The contacts
include those between fibers and between fibers and the bounding walls, and the number of contacts
is generally larger at higher concentrations and at higher aspect ratios.

The number of contacts remains nearly constant as a function of N for many of the conditions
shown in Fig. 14(a), though other cases show a general decline or increase in the number of contacts.
For strain amplitudes and concentrations below �c, Franceschini et al. [16] asserted that fibers
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organize into a reversible state where every particle returns to its position and orientation after each
oscillation. In a reversible state, there would be no contacts. However, simulations indicate that the
number of contacts do not decay to zero for any of the conditions studied here, and the positions
and orientations of individual fibers were not reversible even for γ0φ < �c.

Despite the lack of a transition between a reversible and irreversible state at �c, there is a
qualitative change in the orientation distribution [see Fig. 13(b)]. This change in Sα is accompanied
by a change in the number of contacts, as shown in Fig. 14(b) which compares the number of
contacts at N = 4000. The number of contacts are relatively low and constant up until the product
γ0φ ≈ �c, indicating that the jump in the number of contacts coincides with maximum vorticity
alignment and transition between viscous and elastic responses for the oscillatory rheology [16].

The inset of Fig. 14(b) shows the number of contacts versus distance from the bounding wall
(h/L) for A = 11, φ = 0.2, and a range of strain amplitudes. Data at h/L = 0 represent the number
of particle contacts with the walls, whereas data for h/L > 0 indicate the local number of contacts
between particles. The wall contacts are nonzero even when the particles are highly aligned in
the vorticity direction. For all but the lowest strain amplitude of γ0 = 0.5, the number of contacts
between particles is smaller in the center than near the bounding walls where vorticity alignment
is stronger. Intuitively, higher alignment of fibers in the vorticity direction is expected to generate
fewer contacts, at least for fibers suspended at a fixed concentration. This is because fibers aligned in
the vorticity direction can simply rotate around their major axis without tumbling in the shear flow.
However, the stronger vorticity alignment near the wall enables more particles to crowd into this
space (see Fig. 7, for example). This higher concentration of particles explains the larger number of
collisions between particles in the vicinity of the walls.

V. CONCLUSIONS

Results demonstrating the vorticity alignment of rods having an aspect ratio of 11 by Franceschini
et al. [15,16] and Snook et al. [17] have been expanded to a wider set of conditions than previously
studied. Here, both the aspect ratio of the fibers and their confinement were varied, and the effects
on the orientation distribution have provided some insights into the vorticity alignment of the fibers.

The gap size in our experiments and simulations ranged from H/L = 1.5 to 3.0, whereas Snook
et al. [17] simulated two levels of confinement (H/L = 1.5 and fully periodic boundary conditions).
In addition to affirming that bulk measurements of vorticity alignment increase as confinement is
increased, the orientation was found to be a strong function of distance from the wall. Indeed,
demonstrating that the experimental measurements reported here match those of Franceschini
et al. [15,16] required consideration of the spatial dependence of the orientation distribution, since
previous measurements sampled across the channel width and the measurements performed here
sampled only the plane centered between the bounding walls. In particular for those conditions that
maximized the bulk order parameter (φ = 0.2 and γ0 = 2.5), the wall-adjacent fibers aligned nearly
perfectly with the vorticity direction regardless of the confinement. Also fibers concentrated near
the wall as they self-organized, and the order parameter decayed toward Sα = 0 with distance from
the wall, indicating a randomized orientation in the flow-vorticity plane. The higher concentration
near the wall results in a larger number of contacts between particles than far from the wall, despite
the stronger alignment of the particles in the vorticity direction.

The present work confirms that collisions between fibers suspended at high concentration drive
their alignment in the vorticity direction, as suggested originally by Snook et al. [17]; the simulations
correctly predict the measured orientations while only considering contributions to the motion of
the fibers from collisions and self-mobilities. However, despite the simple contact origin of the
phenomenon, vorticity alignment is a complex function of the confinement, fiber concentration and
aspect ratio, and strain amplitude. The higher aspect ratio rods (A = 23) were found to only weakly
align in the vorticity direction, and maximum alignment was observed at H = 1.5L, A = 11, φ =
0.20, and γ0 = 2.5. Maxima in the bulk Sα over a range of conditions were found to occur at roughly
the same values of γ0φ. Furthermore, the position of the maximum was found to be approximately
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equal to the critical volume fraction (�c = γcφ ≈ 0.4) at which the oscillatory rheology indicates
the onset of an elastic response [16]. The number of contacts was found to suddenly increase when
comparing results for γ0φ � �c to those for γ0φ < �c, but the number of contacts remained finite
even at the smallest values of γ0φ that were studied. Hence, the particle positions were irreversible
over all conditions examined.

More certainty regarding this scaling, as well as the development of additional scaling principles,
would require results spanning a larger set of concentrations and aspect ratios, but the range over
which any scalings can be made or would be applicable are limited. Vorticity alignment occurs only
over a narrow set of conditions which correspond to concentrated suspensions (nL2d � 1) having
an isotropic orientation distribution in the bulk. For these conditions, results given in Sec. IV A
demonstrate that fibers adjacent to the confining walls are initially organized, at least loosely, and
that oscillating can drive additional fiber organization and alignment with the vorticity direction.
Creating suspensions with nL2d � 1 requires a nematic orientation distribution, where the specific
value of nL2d at which the transition to nematic ordering occurs is a decreasing function of the
aspect ratio [31]. For these conditions, the fibers would be initially organized throughout the gap
in addition to near the wall, and the dynamic changes caused by oscillating the suspension would
likely differ significantly from the cases studied here.
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