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The effect of surface roughness on the steady laminar flow induced by a rotating disk
submerged by fluid otherwise at rest is investigated here theoretically and numerically. A
theory is proposed where a triple-deck analysis is applied leading to a fast evaluation of the
steady-flow modification due to the rough surface. The theory assumes that the roughness
is much smaller than the boundary-layer height and is characterized by a significantly
longer length scale (slender roughness). Only the leading-order correction is developed
here, corresponding to a velocity-field correction that is linear with the roughness height.
The proposed theory neglects some curvature terms (here partially accounted by means of
a stretching of the radial coordinate and of a scaling of the dependent variables). Numer-
ical simulations performed with different roughness geometries (axisymmetric roughness,
radial grooves, and localized bumps) have been used to validate the theory. Results indicate
that the proposed theory leads to a good quantification of the flow modifications due to sur-
face roughness at a very low computational cost. A demonstration of the capabilities of the
theory is finally proposed where the statistical effects on the flow due to a random (but sta-
tistically known) roughness distributed on the surface of a rotating disk are characterized.

DOI: 10.1103/PhysRevFluids.6.014103

I. INTRODUCTION

The flow over a rotating disk submerged by an otherwise still fluid is a canonical flow case
where an exact solution of the Navier-Stokes equations exists: von Kármán [1] demonstrated that
the flow has a self-similar solution and identified the viscous length scale l∗ = (ν∗/�∗)1/2 as the
characteristic thickness of the boundary layer over the disk, where ν∗ and �∗ indicate the kinematic
viscosity and angular velocity of the disk, respectively. The boundary layer has indeed a constant
thickness and the wall-parallel velocity components (the radial, U , and the azimuthal, V ) scale lin-
early with the local radius, r, while the small wall-normal component, W , is constant along the radial
direction and scales with the Reynolds number. A set of ordinary nonlinear differential equations
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was proposed by von Kármán providing the wall-normal variation of the three-dimensional (3D)
velocity profile. The fact that the flow is three-dimensional and allows for an analytical solution
has attracted much attention from the research community [2] with several studies about the linear
stability of this canonical flow [3–5] that exhibits even an absolute instability [6,7].

While the steady laminar flow is well assessed, the steady flow with surface roughness has been
much less analyzed despite its fundamental importance. To the authors’ knowledge, two models
have been proposed in the last 15 years. The first was developed by Miklavčič and Wang [8] where
a slip velocity was introduced in the self-similar von Kármán solution by means of a Robin boundary
condition at the surface in the form U (0) = λ dU (0)/dη (and similarly for the azimuthal component
with a coefficient ζ instead of λ), where η is the wall-normal coordinate and λ is a coefficient
related to the roughness type. The approach is very convenient numerically since the same solver
can be used to compute the base flow with and without roughness, with a slightly changed boundary
condition. Furthermore, by assuming that the roughness characteristics do not change over the disk
surface, a self-similar solution is again possible. The drawback of this model is that it is unclear
how to relate λ with the surface roughness characteristics and, even more fundamentally, whether
such a model is sufficient to provide realistic results. Three years later Yoon et al. [9] proposed
a numerical approach to characterize axisymmetric sinusoidal-shaped roughness. The numerical
approach is nonlinear and parabolic so it necessitates a dedicated solver that, given the restrictions
in the roughness choice, did not spread widely in the research community. Furthermore, the latter
method does not provide a self-similar solution and some authors [10] have actually averaged the
velocity field to reobtain a radial-independent self-similar base flow.

The detailed knowledge of the steady base flow is of paramount importance to study the effect of
surface roughness on the rotating-disk flow, especially in terms of linear stability analysis. By using
both models [8,9] several stability analyses have been performed [10–12] but some questions remain
open about the accuracy of the estimated base flow: the values of λ and ζ associated to any roughness
distribution remain unknown, while the flow modification due to a sinusoidal distribution does not
provide information for azimuthally varying roughness distributions, especially when considering
the impact of the pressure gradient imposed in the azimuthal direction. Corrections to canonical
boundary-layer formulations have been recently proposed by Segalini and Garrett [13] for the
rotating sphere and by Segalini and Camarri [14] for the cone. All those corrections were related
to the effect of viscosity and outer motions away from the surface. The presence of roughness,
however, introduces a new length scale and phenomenology inside the boundary layer that is worth
investigating due to the current research interest.

The objective of the present paper is to propose a theory based on a triple-deck theory (TDT)
approximation valid at a sufficiently large distance from the disk center. The proposed theory works
for any type of roughness that is sufficiently slender and is developed only at leading-order providing
an analytic solution equivalent to the one of boundary layers over rough surfaces without Coriolis
and curvature effects. Due to its characteristics, the proposed method takes into account the effects
of roughness on the flow at a very fast computational speed.

The proposed asymptotic theory is first validated against dedicated direct numerical simulations
(DNSs). To this purpose, a set of deterministic roughness distributions has been considered thus
identifying a sequence of test cases of increasing complexity. The test cases presented provide a
wide range of comparison between TDT and DNS, but are still not representative of a realistic
roughness distribution. Indeed, roughness is represented by a complex pattern of ridges and valleys
and it is often characterized only in a statistical sense in practical applications. Thus, a comparison
between TDT and DNS in a stochastic framework is presented to identify some general features of
the flow perturbed by a random roughness distribution.

This paper is structured as follows. Section II reports the notation, the equations, and the relevant
scalings of the problem analysed by means of the triple-deck framework in Sec. III. Details of the
simulations are reported in Sec. IV, while the comparison for the various analysed geometries is
reported in Sec. V. Section VI elaborates on the application of a stochastic approach in order to
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characterize the mean value and standard deviation of the perturbed field for a realistic random
roughness distribution. Finally, Sec. VII reports a discussion of the results and some final remarks.

II. PROBLEM FORMULATION

Let us consider the flow over a rotating disk with roughness distributed at the disk surface.
The distribution of roughness height, h∗(r∗, θ ) = h∗

maxF (r∗, θ ), is characterized by a characteristic
maximum height, h∗

max, and a characteristic length scale, �∗ = h∗
max/|∇h∗| where |∇h∗| indicates

the characteristic slope of the wall surface. Here and in the following dimensional quantities will
be denoted with an asterisk. The length �∗ can be conveniently used as characteristic length scale
of the problem: it is expected that �∗ � √

ν∗/�∗ = l∗, namely that the roughness length is much
longer than the viscous scale of the near-wall region. The dimensionless steady-state equations in
the rotating cylindrical reference frame (with radial distance measured from the disk center) are

∇ · U = 0, (1)

U · ∇U +
⎛
⎝−V 2/r − 2V − r

UV/r + 2U
0

⎞
⎠ = −∇P + 1

Re�

⎡
⎣∇2U − 1

r2

⎛
⎝U + 2∂V/∂θ

V − 2∂U/∂θ

0

⎞
⎠

⎤
⎦, (2)

where the coordinates and velocities are scaled with �∗ and �∗�∗, respectively, and Re� =
�∗�∗2/ν∗ � 1 is the Reynolds number based on �∗. For the sake of notation, length scales nor-
malized with the viscous length scale, l∗, will be denoted with the + superscript: for instance �+ =
�∗/l∗ = Re1/2

� . Consistently with the adopted normalization, the pressure is scaled with ρ∗(�∗�∗)2.
The symbols U , V , and W will indicate the velocity components in the radial, azimuthal, and
wall-normal directions, respectively. The differential operators in cylindrical coordinates are as
usual

∇φ =
(

∂φ

∂r
,

1

r

∂φ

∂θ
,

∂φ

∂z

)
, ∇2φ = ∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2
+ ∂2φ

∂z2
. (3)

If no roughness is present at the wall, i.e., the wall is smooth, the steady-state self-similar solution
of von Kármán [1] is obtained, where the pressure is neglected in the horizontal momentum balances
since it is of order O(Re−1

� ). The von Kármán flow is given as

UV K (r, η) =
[

rU0(η), rV0(η),
1

Re1/2
�

W0(η)

]
, PV K (η) = 1

Re�

P0(η), (4)

with η = z∗/l∗ = z�+ as the boundary-layer coordinate. The self-similar functions are determined
by solving the ordinary differential equations [1]

2U0 + W ′
0 = 0, (5)

U 2
0 − (V0 + 1)2 + U ′

0W0 − U ′′
0 = 0, (6)

2U0(V0 + 1) + V ′
0W0 − V ′′

0 = 0, (7)

P′
0 + W0W

′
0 − W ′′

0 = 0, (8)

where the primes indicate differentiation in the scaled vertical coordinate, η. The boundary con-
ditions are U0 = V0 = W0 = 0 at η = 0 and U0 = V0 + 1 = W ′

0 = 0 as η → ∞. The solution to
Eqs. (5)–(8) is depicted in Fig. 1 along with a schematic three-dimensional representation of the
resulting flow field.

When surface roughness is present, the self-similar von Kármán flow is not expected to be
valid anymore. However, it is expected that the steady flow could be reasonably described by the
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FIG. 1. Self-similar solution of von Kármán flow in the inertial reference frame (left) and three-dimensional
representation of the resulting velocity field (right).

asymptotic approximation U = UV K + h+
maxu, where u indicates the perturbation velocity due to

a unitary maximum roughness height, h+
max. The boundary condition of no-slip velocity at the top

of the rough surface implies U[r, η = h+
maxF (r, θ )] = 0 that can be simplified by translating the

boundary condition to the surface as

U(r, η = h+
maxF ) = U(η = 0) + h+

maxF
∂U
∂η

∣∣∣∣
η=0

+ O(h+
max)2 = 0. (9)

By using now the proposed asymptotic approximation, Eq. (9) provides a wall-boundary condition
for the perturbation velocity of the form

u(r, η = 0, θ ) = −F (r, θ )
∂UV K

∂η

∣∣∣∣
η=0

= −F (r, θ )[rU ′
0(0), rV ′

0 (0), 0 ]. (10)

It is clear that, in order to ensure the validity of Eq. (10), the roughness height must be h+
max 	 1,

therefore ruling out tall roughness elements. It is also worth noting that, since � is defined by the
gradient of the roughness height, the derivatives of the scaled roughness height, F , with respect to r
or θ are of O(1).

III. TRIPLE-DECK MODEL

We consider a bump whose length is equal to �∗, i.e., longer than the viscous scale l∗, and
we also assume that the bump is located far away from the disk center at a radial position R∗ �
�∗. This suggests the use of the small parameter ε = �∗/R∗ 	 1. These assumptions are not too
limiting since stability studies are focused on the transition region [10], R+ is expected to be quite
large anyhow for many analyses of interest, and the roughness is generally much shorter. It is thus
convenient to introduce the nondimensional scaled radius ρ as

ρ = r∗ − R∗

�∗ −→ r = 1

ε
+ ρ. (11)

Now, since �∗ is used as reference scale, R = R∗/�∗ = 1/ε is the reference location of the
roughness and it is expected to be a large number by hypothesis. The symbol ρ identifies a local
radial coordinate that departs from the radial location r = R, enabling the local analysis proposed
in this section. Furthermore, since r is dominated by the term 1/ε, curvature effects are expected
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to be negligible at leading order, so that the roughness element can be considered subjected to a
three-dimensional flow rather than to a rotating flow.

By assuming that the bump is localized, it is also convenient to introduce a scaled azimuthal
coordinate γ = θ/ε and a vertical stretched coordinate ζ = z/δ, where the stretching parameter δ

is unspecified at this point to facilitate the deck analysis later on.
The von Kármán base flow (4) can now be expressed in the new coordinates as

UV K =
[

1 + ερ

ε
U0(�+δζ ),

1 + ερ

ε
V0(�+δζ ),

1

�+W0(�+δζ )

]
. (12)

As before, it is assumed that an asymptotic approximation U = UV K + h+
maxu applies to the steady

flow with roughness together with the boundary condition (10). The continuity equation of the
perturbation field can be written as

∂u

∂ρ
+ εu

1 + ερ
+ 1

1 + ερ

∂v

∂γ
+ ∂w̃

∂ζ
= 0 with w̃ = w

δ
, (13)

while the linearized momentum equation is

(1 + ερ)U0
∂u
∂ρ

+ V0
∂u
∂γ

+ εW0

δ�+
∂u
∂ζ

+ δ�+w̃

⎛
⎜⎝

(1 + ερ)U ′
0

(1 + ερ)V ′
0

ε/�+W ′
0

⎞
⎟⎠ + ε

⎛
⎜⎝

U0u − 2(V0 + 1)v

2(V0 + 1)u + U0v

0

⎞
⎟⎠

= −εωp

ω

⎛
⎝ ∂ p/∂ρ

(1 + ερ)−1∂ p/∂γ

δ−1 ∂ p/∂ζ

⎞
⎠ + ε

(δ�+)2

∂2u
∂ζ 2

, (14)

where ωp indicates the magnitude of the pressure correction (independent of δ) and ω the magnitude
of the velocity correction (function of δ). It is worth mentioning that some viscous terms are omitted
in the Laplacian since they are negligible at leading order. At this point it is already possible to
consider the limit of ε → 0 obtaining the perturbation equations at leading order. However, by
looking at the boundary condition (10), it is clear that the perturbation components in the wall-
parallel directions should be proportional to the radius 1 + ερ. Therefore, the transformations

u = (1 + ερ)u1, v = (1 + ερ)v1, w̃ = w̃1, p = (1 + ερ)p1, (15)

together with the map

ξ = 1

ε
ln (1 + ερ) −→ ∂

∂ρ
= 1

1 + ερ

∂

∂ξ
, (16)

are proposed to account for the radial dependence of the velocity perturbation and to reduce the
equations to the form one would have for a boundary-layer flow over bump without curvature terms.
Finally, the continuity and momentum conservation equations at leading order can be written as

∂u1

∂ξ
+ ∂v1

∂γ
+ ∂w̃1

∂ζ
= 0, (17)

U0
∂u1

∂ξ
+ V0

∂u1

∂γ
+ δ�+w̃1

⎛
⎝U ′

0
V ′

0
0

⎞
⎠ = −εωp

ω

⎛
⎝ ∂ p1/∂ξ

∂ p1/∂γ

δ−1∂ p1/∂ζ

⎞
⎠ + ε

(δ�+)2

∂2u1

∂ζ 2
. (18)

Equations (17) and (18) could have been obtained directly from (13) and (14) in the limit of
ε → 0, providing the analogy between an isolated bump over a rotating disk and an isolated bump
over a three-dimensional planar boundary layer. Nevertheless, the scalings (15) and (16) lead to the
same equations but accounting definitely better for the boundary conditions and partially for the
curvature terms as well (even though no Coriolis terms are accounted at the leading order). It is,
however, required that ερ 	 1 in order to limit the importance of some neglected curvature terms,
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FIG. 2. Schematic description of the triple-deck structure. The thick arrows refer to matching boundary
conditions between the various layers.

so that this theory is limited to roughness that does not extend excessively in the radial direction.
This is expected to be true for isolated bumps, but it will be shown that the approximation remains
good even for roughness distributions extending over several hundreds of viscous units.

One can note that by choosing different δ values it is possible to magnify different near-wall
regions, enabling the development of an analytical solution of the linearized problem by following a
triple-deck analysis [15–17]. Here and in the remainder of the section, the triple-deck approach
for the three-dimensional boundary layer will be discussed and solved. For the sake of clarity,
we provide a schematic description of the proposed triple-deck structure in Fig. 2, which will be
addressed to in the following discussion.

It is noteworthy to mention that the triple-deck analysis provides the leading-order solution of
Eqs. (17) and (18), and a correction of order ε1/3 is expected, which does not involve Coriolis or
other curvature terms. Nevertheless, this solution is already sufficient to characterize the effect of
roughness, as will be discussed in Sec. VI C. Equation (17) is independent of δ and it is common to
all layers, therefore will not be repeated.

A. Upper layer analysis

The upper layer is characterized by a unitary aspect ratio in the radial and vertical directions,
implying that δupper = 1. Here the pressure gradient balances the advective terms and no viscous
effect is present. The von Kármán flow approaches to a constant (0,−1,W∞/�+) so that several
terms of the advective part vanish. The velocity perturbation is of order ωupper and balances the
pressure-magnitude term, εωp. The leading-order equation is indeed

∂u1

∂γ
=

⎛
⎝∂ p1/∂ξ

∂ p1/∂γ

∂ p1/∂ζ

⎞
⎠, (19)

together with the continuity equation (17). By taking the divergence of the momentum equation (19)
one obtains ∇2 p1 = 0 that can be solved by means of the Fourier transform here defined as

p̂1(kξ , kγ ) =
∫ +∞

−∞

∫ +∞

−∞
p1(ξ, γ ) exp (ikξ ξ + ikγ γ )dkξ dkγ , (20)

so that the solution of the Laplace equations is

p̂1 = �̂(kξ , kγ ) exp
(−√

k2
ξ + k2

γ ζ
)
, (21)
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where �̂(kξ , kγ ) is a constant determined by the wall condition. The Fourier-transformed wall-
normal velocity in this layer is computed as

ŵ1 = 1

ikγ

d p̂1

dζ
−→ ŵ1(0) = −

√
k2
ξ + k2

γ

ikγ

�̂. (22)

This vertical blowing velocity cannot be obtained from the boundary condition at the wall [since
Eq. (10) prescribes that w1 = 0], so that it needs to be determined from what happens within a new
layer closer to the wall.

B. Main layer analysis

While the upper layer is characterized by the far-wall values of the base flow (therefore irrota-
tional), in the main layer the boundary-layer scale is used so that δmain = 1/�+. By considering
that the matching of the vertical velocity at the top of the main layer requires that δmainωmain =
δupperωupper, it follows that the magnitude of the velocity perturbation between the two layers is
different and that ωmain = �+ωupper, implying that pressure gradient effects are of smaller order of
magnitude in this layer. Consequently, the leading-order momentum equations in this layer are

U0
∂u1

∂ξ
+ V0

∂u1

∂γ
+ w̃1U

′
0 = 0, U0

∂v1

∂ξ
+ V0

∂v1

∂γ
+ w̃1V

′
0 = 0, (23)

while the pressure gradient ∂ p1/∂ζ = 0 throughout the main layer.
By taking now the wall-parallel divergence of the main layer momentum equations (23), it is

possible to get

U0
∂2w̃1

∂ζ∂ξ
+ V0

∂2w̃1

∂ζ∂γ
= U ′

0
∂w̃1

∂ξ
+ V ′

0
∂w̃1

∂γ
, (24)

that, after the Fourier transform, becomes

(kξU0 + kγV0)
dŵ

dζ
= (kξU ′

0 + kγV ′
0 )ŵ, (25)

with solution given by ŵ = −i(kξU0 + kγV0)Â(kξ , kγ ), while the wall-parallel momentum equa-
tions provide a direct coupling û = U ′

0Â and v̂ = V ′
0 Â. The coupling between the constants Â(kξ , kγ )

and �̂(kξ , kγ ) can be determined from the matching of the vertical velocity between the main and
the upper layer leading to

Â =
√

k2
ξ + k2

γ

k2
γ

�̂. (26)

To determine the value of them, the wall boundary condition (10) needs to be applied. The velocity
at the bottom of the main layer approaches [AU ′

0, AV ′
0, 0 ], suggesting that A(ρ, γ ) = −F (ρ, γ ).

However, since V ′′
0 (0) = 0, no shear stress would be imposed at the bottom of the main layer in the

azimuthal direction due to the roughness presence, which is quite odd. At the wall the boundary
conditions are imposed on the velocity components but that region is expected to be dominated by
viscous effects, neglected in the rotational inviscid main-layer analysis performed here: this suggests
the presence of an inner layer under the main layer where viscous effects should become important.

C. Inner layer analysis

The inner region is characterized by the wall-boundary condition and it is of thickness smaller
than the viscous scale. That means that the von Kármán velocity distribution can be approximated
by a Taylor expansion where the linear terms are the dominant ones. Here it is also required that the
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advective term balances the viscous term, leading to the size of the inner layer as δinner = ε1/3/�+,
while the requirement that pressure gradient is of the same order of magnitude provides the
relationship between the various layers

εωp = ωupper = ωmain/�
+ = ε1/3ωinner. (27)

Now, since at the top of the inner layer the wall-parallel velocity components match the ones at the
bottom of the main layer (see Fig. 2), it follows that ωmain = ωinner leading to

ωinner = ωmain = ε−1/3ωupper = ε2/3ωp ε = Re�
−3/2 −→ �∗ = (

l3
∗R∗)1/4

. (28)

It is worth to note that the last relationship is consistent with classical triple-deck theory by
introducing a Reynolds number based on R∗ such as Re = (�∗R∗)R∗/ν∗ = (R∗/l∗)2, leading to
�∗ = l∗Re1/8 [15].

The momentum-conservation equations of the inner layer can be written as

αζ
∂u1

∂ξ
+ βζ

∂u1

∂γ
+ αw̃1 = −∂ p1

∂ξ
+ ∂2u1

∂ζ 2
, (29)

αζ
∂v1

∂ξ
+ βζ

∂v1

∂γ
+ βw̃1 = −∂ p1

∂γ
+ ∂2v1

∂ζ 2
(30)

together with ∂ p1/∂ζ = 0 throughout the inner layer. The constants α = U ′
0(0) = 0.5102 and

β = V ′
0 (0) = −0.6159 are the derivatives of the von Kármán velocity profile at the wall. The wall

boundary condition is obtained from Eq. (10) at leading order so that u1(0) = −F (ρ, γ )[α, β, 0 ]
and ωinner = h+

max/ε.
One can construct an equation for the vertical velocity only by taking the horizontal divergence

of the momentum equations and using the continuity equation as

∂3w̃1

∂ζ 3
= αζ

∂2w̃1

∂ζ∂ξ
+ βζ

∂2w̃1

∂ζ∂γ
− α

∂w̃1

∂ξ
− β

∂w̃1

∂γ
−

(
∂2 p1

∂ξ 2
+ ∂2 p1

∂γ 2

)
. (31)

By taking the Fourier transform of (31), one obtains

d3ŵ1

dζ 3
− aζ

dŵ1

dζ
+ aŵ1 = (

k2
ξ + k2

γ

)
�̂, (32)

with a = i(αkξ + βkγ ). By introducing now the coordinate transformation x = a1/3ζ , one obtains

d3ŵ1

dx3
− x

dŵ1

dx
+ ŵ1 = k2

ξ + k2
γ

a
�̂. (33)

Equation (33) can be further differentiated in x leading to

d4ŵ1

dx4
− x

d2ŵ1

dx2
= 0, (34)

which is an Airy equation with solution

d2ŵ1

dx2
= ĉ1Ai(x), (35)

since the second Airy function, Bi(x), goes to infinity for large values of the argument. The Fourier
transform of the vertical velocity is finally obtained as

ŵ1 = ĉ1[xM(x) − Ai′(x) + Ai′(0)] + ĉ2x (36)

with ĉ2 = a2/3F̂ according to the continuity equation and the boundary conditions of the wall-
parallel velocity components, while the function M(x) is given by

M(x) =
∫ x

0
Ai(ξ )dξ = 1

3
+ π [Ai′(x)Gi(x) − Ai(x)Gi′(x)], (37)
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where Gi indicates the Scorer function [18]. By substituting now Eqs. (36) into (33) one gets a
relationship between the constants ĉ1 and �̂ as

ĉ1 = k2
ξ + k2

γ

aAi′(0)
�̂. (38)

The radial and azimuthal velocity components can now be obtained by solving the inhomoge-
neous Airy equations

d2û1

dx2
− xû1 = ikξ

a2/3
�̂ + α

a2/3
ŵ1(x) = Q1(x),

d2v̂1

dx2
− xv̂1 = ikγ

a2/3
�̂ + β

a2/3
ŵ1(x) = Q2(x).

(39)

The solution of equations is found by means of the method of variation of the constants leading
to

û1 = π

[
d̂1 −

∫ x

0
Bi(ξ )Q1(ξ )dξ

]
Ai(x) − πBi(x)

∫ ∞

x
Ai(ξ )Q1(ξ )dξ, (40)

with

d̂1 = Bi(0)

Ai(0)

[
ikξ

3a2/3
�̂ + α

a2/3

(
ĉ1

3
Ai′(0) − ĉ2Ai′(0) + ĉ1Ai2(0)

)]
− α

πAi(0)
F̂ , (41)

providing the final expression

û1 = −πGi(x)
ikξ �̂ + αĉ1Ai′(0)

a2/3
− αĉ1

a2/3
[M(x) + πAi(0)Bi(0)Ai(x)]

− αĉ2

a2/3
[1 − πBi′(0)Ai(x)] + π d̂1Ai(x). (42)

Similarly, one could write the expression for the azimuthal velocity as

v̂ = π

[
d̂2 −

∫ x

0
Bi(ξ )Q2(ξ )dξ

]
Ai(x) − πBi(x)

∫ ∞

x
Ai(ξ )Q2(ξ )dξ, (43)

with constant

d̂2 = Bi(0)

Ai(0)

[
ikγ

3a2/3
�̂ + β

a2/3

(
ĉ1

3
Ai′(0) − ĉ2Ai′(0) + ĉ1Ai2(0)

)]
− β

πAi(0)
F̂ . (44)

In the limit of large ζ , the radial and azimuthal velocity perturbations become

û∞ = − 1

aζ
[ikξ �̂ + αĉ1Ai′(0)] − α

a2/3

(
ĉ1

3
+ ĉ2

)
, (45)

v̂∞ = − 1

aζ
[ikγ �̂ + β ĉ1Ai′(0)] − β

a2/3

(
ĉ1

3
+ ĉ2

)
, (46)

ŵ∞ = a1/3ζ

(
ĉ1

3
+ ĉ2

)
+ ĉ1Ai′(0), (47)

from which it follows that the constant Â is given by

Â = − 1

a2/3

(
ĉ1

3
+ ĉ2

)
= − ĉ1

3a2/3
− F̂ , (48)

providing the final relationship between the pressure gradient and the bump shape as

�̂ = −F̂

⎡
⎣

√
k2
ξ + k2

γ

k2
γ

+ k2
ξ + k2

γ

3a5/3Ai′(0)

⎤
⎦

−1

. (49)
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FIG. 3. Computational domain on FREEFEM++ for the considered axisymmetric groove. The dashed line
represents the symmetry axis. Capital letters indicate the applied boundary conditions: (V) von Kármán self-
similar solution, (O) stress-free condition, (W) no-slip condition. In the lower part of the figure a closeup of
the roughness distribution is shown.

Given the bump shape, the determination of the pressure gradient (and of the constants Â, ĉ1, and
ĉ2) can be performed analytically in the Fourier space. It is worth noting that when kγ = 0 (an
axisymmetric bump), no effect can be imposed on the external pressure gradient and �̂ = 0 from
which it follows that ĉ1 = 0 and that A = −F , as would have followed from an analysis without the
inner layer, where the boundary condition should have been imposed directly at the bottom of the
main layer.

IV. NUMERICAL SETUP

In this section the numerical setup employed for evaluating the DNS reference data is presented.
Simulations were carried out by considering two different roughness types, namely bumps and
grooves, both in axisymmetric and not axisymmetric configurations. Comparison against reference
results obtained by DNS also allows for an appraisal of the performance of the method. Tests cases
proposed to this purpose are simple enough to highlight the performance and characteristics of the
methods, but still representative of the basic elements constituting real rough surfaces. The surface
roughness is characterized by an analytical expression in parametric form, specific for each type of
studied roughness.

For the axisymmetric configurations, a dedicated Navier-Stokes solver in an inertial reference
frame was implemented in FREEFEM++, an open-source finite element solver based on the Galerkin
variational formulation [19]. The weak form of axisymmetric Navier-Stokes equations was dis-
cretized using classic P2-P1 triangular finite elements, to avoid spurious pressure modes. The
physical coordinates of the simulation are scaled with the viscous length scale, l∗, and will just
be denoted with a + superscript consistently with the previous section. Furthermore, using the fixed
length scale l∗ rather than �∗ facilitates the setup and description of the simulation.

The dimensions of the computational domain are fixed for all tested cases. With reference to
Fig. 3, the radius r varies between 100 and 450: this range is chosen so as to avoid local instability
at r+ = 507 [6]. In the wall-normal direction, the domain height is 30 viscous units, which allows
the solution to be practically independent from the domain height, as demonstrated in dedicated
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FIG. 4. Computational domain projected on the r-z (top) and θ -z plane. Capital letters indicate the applied
boundary conditions: (V) von Kármán velocity solution, (O) stress-free condition, (W) no-slip condition, and
(P) periodic (cyclic) condition. The roughness is represented on the (r, z) and (θ, z) plane for the Gaussian
bump (a) and groove (b), respectively.

tests not shown here for the sake of brevity. The von Kármán self-similar solution [1] is imposed
at the upstream surface, while the no-slip condition is applied at the wall and stress-free condition
on the remaining boundaries, as shown in Fig. 3. The steady solution of the discretized nonlinear
system was evaluated by means of a Newton-Raphson method by using the von Kármán self-similar
solution as starting point for the iterative solver. In order to have grid-independent results, an
adaptive mesh refinement based on intermediate solutions was adopted until the velocity field
converged.

As indicated in Fig. 3, the axisymmetric groove starts from r+ = 170 and has a fixed total length
in the radial direction equal to 160; this particular value has been chosen in order to minimize the
effect of outflow boundary conditions on the solution near the grooves. Different wave numbers
were considered, providing different length scales, �+. The grooves distribution is characterized by

h+(r+) = 1

2
h+

max

[
1 + sin

(
2πr+

λ+

)]
, (50)

where λ+ is the groove wavelength, and is varied in the simulations between 2 and 80, while h+
max =

0.1 for all the cases.
The simulations for the nonaxisymmetric cases were carried out with NEK5000, an open-source

spectral element code to solve the Navier-Stokes equations [20]. The solution was evaluated in the
rotating reference frame, thus taking into account the centrifugal and Coriolis contributions, by
using a PN − PN−2 formulation for avoiding spurious pressure modes. The computational domain
is an annulus sector and its dimensions are fixed for all cases. With reference to Fig. 4, the
annulus radius r+ varies between 50 and 500, the azimuthal angle θ varies between 0 and π/4 and
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TABLE I. Summary of the mesh final parameters for two nonaxisymmetric geometries in the periodic
domain simulations. Nr , Nθ , and Nz indicate number of elements in the radial, azimuthal, and wall-normal
direction, respectively, while N is the Legendre polynomial degree.

Case Nr Nθ Nz Elements N

bump 90 40 19 68400 7
groove 100 40 19 83600 7

the wall-normal coordinate, z+, ranges between 0–30. The von Kármán velocity distribution was
imposed at the inner radial boundary, no-slip condition at the wall and a von Neumann condition
at the outer radial boundary and at z+ = 30. Cyclic boundary conditions were imposed in the
azimuthal direction. The grid was locally refined near the bump both in the azimuthal and in the
radial directions in order to accurately describe the geometry and the local effect of the bump. The
grid convergence of the results was checked using both h refinement and p refinement: the final mesh
parameters are reported in Table I. The simulation was initialized with the von Kármán self-similar
solution and advanced in time with a Courant-Friedrichs-Lewy (CFL) number not larger than 0.3
for iterative stability until the steady state was reached.

The 3D bump is defined, using the previous notation, as a combination of two Gaussian curves,
centered at r+

c = 250 and θ = π/8 with a fixed maximum height of h+
max = 0.1. The shape of the

bump is given by

h+(r+, θ ) = h+
max exp

[
− (r+ − r+

c )2

2σ 2
r

]
exp

[
− (θ − π/8)2

2σ 2
θ

]
, (51)

where σθ defines the width in the azimuthal direction. In order to have a circular bump, σθ = σr/r+
c .

Several values of the bump width have been tested ranging between 2 � σr � 8 to investigate
several values of �+.

The radial groove extends for 100 viscous units in the radial direction (between 125 � r+ � 225)
and has a constant height equal to h+

max = 0.1, whereas its shape in the azimuthal direction is defined
by a Gaussian curve. Both endings are provided with fillets in order to have a continuous derivative
along the radial direction. The final expression is given by

h(r+, θ ) = h+
max exp

[
− (θ − π/8)2

2σ 2
θ

]
K

(
r+ − 100

25

)
K

(
250 − r+

25

)
, (52)

where K (x) represents the analytical function

K (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x � 0[
1 + exp

(
1

x−1 + 1
x

)]−1
0 < x < 1

1 x � 1

. (53)

V. VALIDATION RESULTS FOR AN ASSIGNED GEOMETRY

The theory proposed in Sec. III can now be validated with the numerical data described in
Sec. IV. For the sake of clarity, the reference data are presented by subtracting the von Kármán
solution from the total flow field, in order to highlight just the variation of the velocity field with
respect to a smooth disk due to the presence of surface roughness. The difference between the
simulated field with roughness and the von Kármán flow has been computed at the same height in
the absolute coordinate frame relative to the smooth surface. The comparisons between triple-deck
theory (TDT) and direct numerical simulations (DNSs) are carried out both for the axisymmetric
and nonaxisymmetric cases, in order to show strengths and weaknesses of the proposed theory.
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FIG. 5. Maximum azimuthal (filled symbols) and radial (empty symbols) velocity variation due to a bump
with different values h+

max and σr from the available numerical simulations. (∗) σr = 0.5, (◦) σr = 1, (+) σr = 2,
and (�) σr = 4. The dotted line indicates a general linear relationship.

Even though the triple-deck decomposition is developed specifically for localized disturbances, in
the following it is also applied for extended ones (such as the axisymmetric or the radial grooves),
in order to show the accuracy provided in such cases. Since the cost of the axisymmetric reference
simulations is quite low, a preliminary test was carried out to assess the range of roughness heights
where the linearized theory is still able to provide reasonable estimations. The details of the tested
geometry are reported in Appendix A. A comparison between the maximum absolute variation (with
respect to the von Kármán flow) for the radial and azimuthal velocity components with respect to
different bump heights is shown in Fig. 5. It is interesting to see that, for relatively small heights, a
linear relationship is valid between h+

max and the induced velocity, thus confirming that a model that
is linear with respect to the height is an excellent approximation of the true behavior. By increasing
h+

max, the velocity perturbation follows reasonably well the linear behavior, even for the extreme
case of h+

max = 0.8, namely with a bump as thick as the boundary layer, showing that the theory
would provide reliable results even beyond the validity limits assumed for its derivation or the case
at issue. This is confirmed in Appendix A, where additional comparisons between the predictions
of the TDT against reference DNS are reported. However, since it is not expected that the theory
should work in general for too large roughness heights, the focus of the following discussion will
be kept on roughness elements with small h+

max, a case that is more relevant for surface roughness.
The results for the axisymmetric sinusoidal groove are shown in Fig. 6 for two different

wavelengths, i.e., λ = 4 and λ = 10, respectively, and h+
max = 0.1. The comparison indicates that

the TDT approach provides a reasonable approximation of the simulation results as for the case of
the axisymmetric bump in Appendix A. It is worth to mention that without the variable normalisation
proposed in Eqs. (15) and (16), the streamwise evolution of the perturbation velocity in the triple-
deck result would be absent, providing a much poorer agreement away from the reference point,
r+

c = R+ = 250. Even if not important from an applicative viewpoint, it is also interesting to note
that the numerical solution shows a merging between the different wave crests at large distance from
the surface, while this goes against the linear approximation of the theory, that shows distinct waves
throughout the wall-normal direction.

A final remark can be highlighted from this idealized case with sinusoidal roughness. The TDT
predicts the velocity distribution over the roughness element but the correction vanishes when the
velocity field is averaged over a period since the correction is proportional to the roughness height
in the two-dimensional case, as discussed in Sec. III. The numerical simulations instead account for
higher-order effects and do not average to zero but to a slight modification of the von Kármán
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FIG. 6. Azimuthal velocity variation due to an axisymmetric groove with h+
max = 0.1 and λ = 4 (top) or

λ = 10 (bottom) from the DNS and the TDT.

flow similar to what proposed by Miklavčič and Wang [8]. Interestingly, the average becomes
independent of the wavelength for λ > 4 and the resulting steady flow can be associated to a Robin
condition of the form U0(0) ≈ −0.01dU0(0)/dη and V0(0) = 0. No further tests were performed
here to investigate/assess the constants used in the Miklavčič and Wang [8] model for other values
of h+

max or other roughness configurations.
The two-dimensional cases were characterized by the absence of an azimuthal pressure gradient

due to the displacement imparted by the roughness elements. However, the TDT can account for
a pressure gradient but only if a three-dimensional roughness element is present. Therefore, it is
worthwhile to analyze the theory in the three-dimensional case to assess the importance of pressure
gradients effects.

Figure 7 shows the radial and azimuthal components for the center plane of a 3D isolated bump
with σr = 4 and h+

max = 0.1. In this case, the TDT results are generally in good agreement with
the numerical simulations, even if the weak speed-up above the roughness element (for instance
at z+ ≈ 2) is not properly predicted. This trend is evident by comparing the variation of velocity
profiles along the azimuthal direction at a fixed value of r+. In Fig. 8 it can be seen that the azimuthal
component evaluated with TDT agrees with the one obtained from DNS, while the radial one is
slightly below the DNS results, particularly on top of the bump. This could be accounted for in the
TDT with a higher-order correction of the main region in light of the weak slip provided by the upper
layer on the main one, but this has not been investigated in the present work. It is also noteworthy
to point out that, even for a roughness element with h+

max = 0.1, the wall-normal component of
the perturbation spans up to z+ = 20, while the radial and azimuthal components tend to zero for
z+ > 6. The discrepancy between DNS and TDT for this component is nevertheless small when
compared to the magnitude of the wall-parallel components.

By looking at the r − θ plane shown in Fig. 9 at z+ = 0.2, it can be seen that the comparison
of the theory against the numerical results reveals a good agreement with localized disturbances,
and the reader is reminded that in this case the TDT accounts also for the pressure gradient, as
highlighted by the shape of the perturbation field.

The resulting pressure correction is depicted in Fig. 10 for the horizontal plane at z+ = 0.2. Even
though the proposed theory is developed only at the leading order, the pressure correction evaluated
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FIG. 7. Radial (top) and azimuthal (bottom) components of the perturbation for the vertical plane along the
isolated bump with σr = 4 from the DNS and the TDT.

with the TDT shows the same trend as for the DNS, while a slight difference arises with respect to
the magnitude.

The velocity variation for the radial groove is shown in Figs. 11 and 12 for the center and
horizontal planes (z+ = 0.2), respectively. Similarly to the axisymmetric sinusoidal groove, the
proposed theory is able to predict the overall trend of the velocity variation, but looses reliability
when moving away from the reference radial location. Despite the fact that the solution appears
less accurate for z+ = 1, it has to be considered that the correction becomes less significant if
compared to the boundary-layer velocity while moving along the wall-normal direction, so that
it is progressively less important as z+ is increased. Moreover, by focusing on Figs. 11 and 12, it is
possible to conclude that, for roughness elements elongated in the radial direction as grooves, the
TDT model shows an evolution due to the local normalization, as explained in Sec. III.

As final remark, it has to be considered that the proposed theory allows for a significant decrease
of the computational time while the results are still reliable. For instance, the reference data for
the three-dimensional axisymmetric bump required almost 3000 hours of cpu time, while the
theoretical calculations ran within a minute. Moreover, the TDT does not depend on the complexity
of geometry, while for the DNS the necessity of local refinement for complex surface roughness
implies a rapid increment of the computational cost and numerical complexity, especially in the
case of structured grids.

VI. STOCHASTIC ANALYSIS FOR RANDOM ROUGHNESS

The results of previous section showed an overall view of the TDT capabilities and highlighted
the fast evaluation of the perturbation field with a good agreement with the reference DNSs.
However, surface roughness is usually formed by a complex pattern of ridges and valleys that
varies according to different causes, as for instance the manufacturing process. From a practical
point of view, it is usually unnecessary or even impossible to characterize the roughness in a
deterministic way, thus a statistical description is generally adopted. Many different parameters
can be used to describe the surface finish of a workpiece, but one of the most used among them is
the arithmetic mean deviation from the mean line (Ra), which can be combined with the root mean
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FIG. 8. Comparison of velocity perturbation evaluated by TDT and DNS: radial (top), azimuthal (mid-
dle), and wall-normal (bottom) component at five different positions (r+ = 250, θ ). From left to right θ =
[44.1, 45, 45.7, 46.4, 46.9]◦. The axis values are fixed for each component, thus they are reported only for the
first column. The gray vertical line highlights the zero value on the x axis for each position.

square (Rq) of the deviation. Due to the aleatory nature of roughness in real world applications, it
seems natural to follow a stochastic procedure in order to consider the height distribution, h(x), not
as a given function but as a random variable with assigned mean value and standard deviation. In
the following, the analytical relation between the statistics of the perturbation u1(x) and those of the
height distribution, h(x), for the TDT is derived. The setup for the polynomial chaos in order to test
the resulting relation against the statistics obtained for the DNS will be further discussed. Hereafter,
μQ and σQ will refer to the mean value and the standard deviation of a generic quantity Q, while
p(Q) indicates the probability density function of Q.

A. Implications of the TDT

As reported in Sec. III, in the Fourier space û1 = K̂e(k; z)F̂ (k), where F̂ is the Fourier transform
of the normalized h(x) and k = [kξ , kγ ] is the wave-number vector. According to the convolution
theorem, the former relation in the Fourier space can be rewritten in the physical space as a
convolution integral and, since one is interested in the statistics of the perturbed velocity, the
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FIG. 9. Radial (top) and azimuthal (bottom) components of the perturbation for the horizontal plane at
z+ = 0.2 for the isolated 3D bump with σr = 4 from the DNS and the TDT.

expected value of u1 can be derived in the form

E [u1(x; z)] = E

[∫ +∞

−∞
Ke(x − x′; z)h(x′)dx′

]
=

∫ +∞

−∞
Ke(x − x′; z)E [h(x′)]dx′. (54)

Under the hypothesis that E [h(x)] is independent from the position x and is equal to μh, one obtains

E [u1(x; z)] = μh

∫ +∞

−∞
Ke(x − x′; z)dx′, (55)

i.e., the mean value of velocity perturbation is proportional to the mean value of the assigned height
distribution.

Similarly, the variance of the perturbed field can be related to the variance of h(x) by considering
that the variation of height for two different points along the disk surface are uncorrelated and
homogeneous. For the sake of brevity, the proof is reported in Appendix B. Thus, according to
the TDT presented herein, the statistics of the velocity perturbation are proportional to the height
distribution ones. This relation is particularly useful because it implies that the solution obtained for
μh and σh can be rescaled for different statistics of h(x) by separately rescaling μu and σu.

FIG. 10. Pressure correction for the horizontal plane at z+ = 0.2 for the isolated 3D bump with σr = 4
from the DNS and the TDT.
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FIG. 11. Radial (top) and azimuthal (bottom) components of the perturbation for the vertical plane along
the radial groove from the DNS and the TDT.

B. DNSs

A proof of concept about the use of a stochastic TDT can be provided by means of DNSs. While a
Monte Carlo algorithm can be easily employed for the triple-deck model due to its fast computation,
a similar approach would be prohibitively time consuming for DNSs, even for an axisymmetric
roughness. Therefore, it was employed a generalized polynomial chaos (gPC) approach in order to
evaluate the statistics of the perturbed field with a limited number of DNSs.

FIG. 12. Radial (top) and azimuthal (bottom) components of the perturbation for the horizontal plane at
z+ = 0.2 for the radial groove from the DNS and the TDT.
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The basics of gPC [21] that will be used in the following are briefly recalled here. For every point
x of the computational domain, the gPC approach is used to evaluate a continuous response surface
in the parameter space. If one defines Q as a quantity of interest and ζ as the vector of independent
random variables, Q can be expressed as a truncated Galerkin expansion of the form

Q(ζ; x) =
T∑

j=0

α j (x)� j (ζ), (56)

where α j (x) and � j (ζ) are the jth coefficients of expansion and basis function, respectively, and
T is the truncation order. The basis functions � j (ζ) are multidimensional polynomials evaluated as
tensor product of one-dimensional polynomials ψ (ζ ), which are suitable orthogonal polynomials
chosen according to the probability density function (PDF) of each input parameter, ζi [21]. By
using the orthogonality of basis functions, the coefficients αi are computed as follows:

α j (x) = 〈Q(ζ; x), � j (ζ)〉ρ
〈� j (ζ), � j (ζ)〉ρ �

Nq∑
k=1

1

γk
Q(ζk; x)� j (ζk )ωk, (57)

where 〈 , 〉ρ refers to the weighted L2 scalar product [evaluated through the Gaussian quadrature
rules associated with each one of the one-dimensional polynomials ψ (ζi )] with weighting function
ρ depending of the assumed basis function. This is shown in the second part of Eq. (57), where ζk
and ωk are the Nq quadrature points and weights, respectively, while γk is the normalization factor.
Thus, the model coefficients α j (x) can be estimated by Nq deterministic evaluations of Q carried out
on the quadrature points ζk as highlighted in Eq. (57). Once calculated the coefficients of the basis
functions, the mean value μQ(x) and the variance σ 2

Q(x) are given by

μQ(x) = α0(x) σ 2
Q(x) =

T∑
j=1

α2
j (x). (58)

The truncation term T depends on the maximum polynomial degree pi for the ith random parameter
ζi and the number of stochastic parameters n.

With reference to Fig. 13, which summarizes the procedure for the stochastic validation, the
roughness is represented as a sinusoidal wave in the axisymmetric domain, in the form:

h(r+) = h+
max

2

[
1 − cos

(
2π

λ
r+ + φ

)]
. (59)

The chosen random parameters, ζ, are the sinusoidal wavelength (λ) and the phase angle, φ,
which works as a random shift value along radial direction does. The wavelength λ is assumed to
vary in the range �λ = [10, 40] with a uniform probability density function, p(λ). The waviness
contribution is generally associated to one or two peaks at low frequencies in the Fourier spectrum
of surface pattern, but it actually depends on many factors, as for instance the machining process
and the chosen cutoff frequency, λc. Therefore, in order to be as general as possible, the choice of
p(λ) is conservative. The phase angle has a uniform distribution in the range �φ = [0, 2π ]. This
choice is justified by the fact that peaks and valleys can equally arise on every radial position.

Due to the linearity with respect to h+
max in the range of interest, the effect of an assigned h+

max can
be computed a posteriori. Therefore, the maximum height h+

max is set equal to 0.1 without limiting
the generality of results. This choice simplifies the problem and reduces the computational cost,
because the number of deterministic simulations required rapidly increases with the dimension of ζ.

Due to the fact that the length of roughness varies as an integer multiple of λ, the reference
window for the results is limited to 200 � r � 300 in order to discard waviness edges. The choice of
uniform probability density functions implies the use of Legendre polynomials for both parameters
in order to construct the basis functions of the expansion, �(ζ ) [21]. The truncation order T is
assessed to 24, with a polynomial of maximum degree 4 with respect to each variable ζi; thus,
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FIG. 13. Summary of numerical setup for gPC procedure. (Top) Definition of stochastic parameters.
(Bottom) Tensor product grid and probability density function of parameters.

the number of required simulations Nq is equal to 25, as depicted with the tensor product grid in
Fig. 13. The axisymmetric solver for the DNS and the setup implemented are the same as reported in
Sec. IV. The resulting mean value and standard deviation of h(r+) are independent from the radial
position.

FIG. 14. Mean value of radial (top) and azimuthal (bottom) velocity components evaluated with gPC
approach for sinusoidal roughness with fixed height h+

max = 0.1 from the DNS and the TDT. The black dashed
lines indicate the corresponding mean value of the perturbation velocity at r+ = 250.
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FIG. 15. Standard deviation of radial (top) and azimuthal (bottom) velocity components evaluated with
gPC approach for sinusoidal roughness with fixed height h+

max = 0.1 from the DNS the TDT. The black dashed
lines indicate the corresponding standard deviation of perturbation velocity at r+ = 250.

C. Results

The first comparison concerns the mean value of the overall perturbation field obtained with each
model, as depicted in Fig. 14. As it is clear, there is a general good agreement between TDT and
DNS perturbation field for both radial and azimuthal velocity.

The same level of accuracy is found for the standard deviation associated to the radial and
azimuthal components, as depicted in Fig. 15. The main difference between TDT and DNS concerns
the standard deviation of the wall-normal velocity component (not shown here): the field of σw

evaluated with the TDT model is constant along the radius, while the DNS shows a slightly
increasing variability with r+. This discrepancy is due to the fact that the TDT presented here
is developed at the leading order and a more accurate representation of the wall-normal velocity
requires a higher-order correction.

It is noteworthy that the mean value and the standard deviation of the perturbation field are
self-similar functions that scale with the radius r+. Thus, the resulting velocity field is a function
only of z coordinate. In order to provide a clearer comparison between TDT and DNS results, the
black dashed lines depicted in Figs. 14 and 15 show the profile of the corresponding perturbation
components for r+ = 250.

Even though the case discussed may seem to be a simple representation of roughness, a similar
approach can be extended to more complex patterns, because the values obtained for μu and σu
depend just on the statistics of the height distribution. Thus, the same results would be obtained
for a more complex roughness characterized by the same mean value and standard deviation.
As discussed above, the statistics of the velocity correction are proportional to the height ones.
Therefore, once μu and σu are evaluated for a pattern with mean value and standard deviation
independent from the radial position [i.e., μh(x) = μh and σh(x) = σh], the resulting field can be
rescaled to a roughness distribution with different statistics by separately rescaling μu and σu. Due
to its fast computation, the theory proposed here can be easily applied to roughness distribution with
mean value and standard deviation, which are functions of the position x. Indeed, it is possible to
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employ a Monte Carlo approach to evaluate the resulting mean value and standard deviation of the
field.

The last feature to be discussed concerns the three-dimensional case, for which the TDT allows
to evaluate also the perturbation pressure. If the statistics of the three-dimensional pattern are
homogeneous along the disk surface, one finds again the same mean value and standard deviation
field as for the axisymmetric domain, while the pressure gradient effect, which can be evaluated
in a three-dimensional case, is null on average. Thus, in the case of homogeneous roughness with
an assigned mean value and standard deviation independent from the position x, it is possible to
evaluate just the field for the axisymmetric case.

VII. CONCLUSIONS

In this work a theory is proposed allowing us to take into account the surface roughness in the
prediction of the steady laminar flow induced by a rotating disk in still fluid. The proposed theory
relies on a triple-deck decomposition and leads to an analytic result, and for this reason is definitely
cheap from a computational viewpoint. The theory applies to roughness elements that are much
smaller than the boundary-layer height and characterized by a much longer length scale in the wall
plane.

The proposed theory is validated here against the results obtained by dedicated numerical
simulations in order to assess its accuracy. As reference test cases, two classes of roughness
types have been considered, i.e., axisymmetric and nonaxisymmetric configurations. As concerns
the axisymmetric configurations, both localized bumps and radially sinusoidal grooves have been
considered. In the nonaxisymmetric case, isolated 3D bumps and localized radial grooves have
been considered. Comparison between the predictions by the theory and the reference numerical
simulations has been carried out on the basis of the perturbation velocity field induced by the
considered roughness elements. A stochastic validation is also carried out in which the effect of
a random (statistically defined) 2D roughness on the flow is quantified from a statistical view point.
The analysis shows that the proposed theory generally provides results that are in good agreement
with the reference simulations. In the case of elongated roughness elements, the prediction of the
flow in the elongated direction is recovered in the TDT by a proposed local scaling of the predicted
quantities. Finally, the TDT at the considered order predicts the effect of the pressure gradient for
3D roughness elements, thus providing a realistic estimation of the velocity perturbation induced
upstream by the roughness elements.

The proposed theory is aimed at estimating the flow resulting from a rough rotating disk at
low computational cost or even analytically, so that it can be employed in an analysis involving
a wide range of roughness parameters. This is also the case for instance when the effects of a
random realistic roughness is investigated, which implies a considerable number of simulations for
the probabilistic characterization of the effects.

From the TDT point of view, the mean value and the standard deviation of the velocity perturba-
tion field are proportional to the statistics of the height distribution. Hence, it is possible to exploit
the linearity of the proposed model with respect to h(x) for easily rescaling the mean value and
the standard deviation of the perturbation for any homogenous height distribution. The hypotheses
made do not limit the applicability of the model but rather apply to many practical cases.
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FIG. 16. Azimuthal velocity variation due to an axisymmetric bump with h+
max = 0.1 and σr = 2 (top) or

σr = 4 (middle) from the DNS and the TDT. (Bottom) azimuthal field for h+
max = 0.8 and σr = 4.

APPENDIX A: AXISYMMETRIC BUMP

In order to assess the validity of the proposed model with respect to the maximum height of the
roughness hmax, a preliminary test in the axisymmetric domain was carried out. The tested geometry
is an axisymmetric bump defined by a Gaussian function of the form

h+(r+) = h+
max exp

[
− (r+ − r+

c )2

2σ 2
r

]
, (A1)

where h+
max is the maximum height, r+

c is the Gaussian center position in the radial direction and
σr characterizes the bump width. For all the axisymmetric bump simulations, r+

c was fixed to 250,
while several different widths in the range 0.5 � σr � 4 and heights in the range 0.01 � h+

max � 0.8
were tested. The numerical setup is the same as the axisymmetric groove, as discussed in Sec. IV.
For the sake of brevity, only the results of the DNSs and the TDT for three different combination
of height hmax and width σr are reported. Figure 16 shows the comparison between the azimuthal
component of velocity variation obtained numerically and with the proposed model for two different
values of width σr . The results of the TDT model are in good agreement with the numerical solution.
Near the bump, the solution is well described, while small discrepancies can be found when moving
along the wall-normal direction. An increase in the bump width, σr , provides a better comparison
with the numerical data, as highlighted in Fig. 16. The reason for this is due to the fact that slender
bumps fulfill better the hypotheses of the theory. As a final remark, the results computed in the case
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of h+
max = 0.8 are reported at the bottom of Fig. 16: despite the fact that this condition is beyond the

validity limits of the proposed model, the TDT is still able to provide a good approximation of the
perturbation velocity with respect to DNS.

APPENDIX B: STANDARD DEVIATION

In this section, the proof of the proportionality relationship between σu1 and σh is reported. As
showed for the mean value in Sec. VI, we consider the relation û1(k; z) = K̂e(k; z)F̂ (k) in the
Fourier space and the convolution theorem in order to rewrite the relation in the physical space. By
applying the definition of variance for a random variable, one can write

σ 2
u1

(x; z) = E

[∫ +∞

−∞
Ke(x − x′; z)[h − E (h)](x′)dx′

]2

, (B1)

and by expanding the square of the convolution integral, one obtains the expression

σ 2
u1

(x; z) = E

{∫ +∞

−∞
Ke(x − x′; z)[h − E (h)](x′)dx′

∫ +∞

−∞
Ke(y − y′; z)[h − E (h)](y′)dy′

}
. (B2)

One can rearrange the expression (B2) by changing the integration order under the hypotheses of
Fubini’s theorem obtaining

σ 2
u1

(x; z) = E

{∫ +∞

−∞
Ke(x − x′; z)

∫ +∞

−∞
Ke(y − y′; z)[h − E (h)](x′)[h − E (h)](y′)dy′dx′

}
. (B3)

The integral of Eq. (B3) takes into account different variables, but one can simplify the calculus
under the hypothesis that

E{[h − E (h)](x′)[h − E (h)](y′)} = σ 2
h (x)δ(x′ − y′), (B4)

i.e., the statistics of h(x) evaluated in two different points are uncorrelated. The function δ(x′ − y′)
is the Kronecker delta and is equal to 1 if x′ = y′ and 0 otherwise. By substituting the expression
(B4) in (B3), one can relate σu1 with the standard deviation of the height distribution as

σ 2
u1

(x; z) = E

{∫ +∞

−∞
Ke(x − x′; z)

∫ +∞

−∞
Ke(y − y′; z)σ 2

h (x)dy′dx′
}
. (B5)

Under the hypothesis that the standard deviation of h(x) is independent from the position x, i.e.,
the roughness is homogeneous, one finally obtains a formulation that shows that the standard
deviation of the velocity correction u1 is directly proportional to the standard deviation of the height
distribution, σh as

σ 2
u1

(x; z) = σ 2
h

∫ +∞

−∞
Ke(x − x′; z)

∫ +∞

−∞
Ke(y − y′; z)dx′dy′. (B6)

Again, we underline the fact that the hypotheses made do not limit the validity of the model in prac-
tical cases. Indeed, the complete characterization of the statistics of h(x) is generally unnecessary or
even impossible, thus only μh and σh are provided in accordance with the surface finish tolerance.

[1] T. von Kármán, Über laminare und turbulente Reibung, Z. Angew. Math. Mech. 1, 233 (1921).
[2] N. Gregory, J. T. Stuart, and W. S. Walker, On the stability of three dimensional boundary layers with

application to the flow due to a rotating disk, Philos. Trans. R. Soc. London 248, 155 (1955).
[3] M. R. Malik, The neutral curve for stationary disturbances in rotating-disk flow, J. Fluid Mech. 164, 275

(1986).

014103-24

https://doi.org/10.1098/rsta.1955.0013
https://doi.org/10.1017/S0022112086002550


TRIPLE-DECK ANALYSIS OF THE STEADY FLOW OVER …

[4] T. C. Corke and K. F. Knasiak, Stationary traveling crossflow mode interactions on a rotating disk, J. Fluid
Mech. 355, 285 (1998).

[5] E. Appelquist, S. Imayama, P. H. Alfredsson, P. Schlatter, and R. J. Lingwood, Linear disturbances in
the rotating-disk flow: A comparison between results from simulations, experiments and theory, Eur. J.
Mech. B/Fluids 55, 170 (2016).

[6] R. J. Lingwood, Absolute instability of the boundary layer on a rotating disk, J. Fluid Mech. 299, 17
(1995).

[7] T. Corke, E. H. Matlis, and H. Othman, Transition to turbulence in rotating-disk boundary layers-
convective and absolute instabilities, J. Eng. Math. 57, 253 (2007).
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