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Pattern selection in oscillatory longwave Marangoni convection
with nonlinear temperature dependence of surface tension
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Three-dimensional (3D) longwave oscillatory Marangoni convection in a heated thin
layer with weak heat flux from the free surface is considered. Numerous experiments show
that the surface tension is a nonlinear function of temperature. Here we modify the system
of nonlinear longwave evolution equations expanding the temperature coefficient of the
surface tension into the Taylor series about the surface temperature. Using the weakly
nonlinear analysis we explore the patterns formed near the critical value of Marangoni
number. Stability of the 3D patterns on square, rhombic, and hexagonal lattices are
considered. The nonlinearity of the surface tension’s temperature dependence can be a
stabilizing factor as well as destabilizing one.

DOI: 10.1103/PhysRevFluids.6.014002

I. INTRODUCTION

Pattern formation is a topical subject of investigation in various dissipative systems outside
the thermodynamic equilibrium [1]. In fluid dynamics the competition between disturbances may
generate different spatial structures and lead to their interesting evolution dynamics, especially in
the rich problem for the oscillatory instability mode. Pattern formation and selection are in a focus in
exploration of Rayleigh-Bénard convection [2], magnetohydrodynamics [3], ferrofluids [4], binary
fluids [5], granular flows [6], and biological systems [7].

One of the most important hydrodynamic phenomena generating patterns is Marangoni convec-
tion. This surface-tension-driven convection is a subject of intensive research over the past decades,
because of technological progress. Investigation of Marangoni patterns was started by Scanlon
and Segel [8]. They considered the patterns generated by a short-wave monotonic instability in a
horizontal layer heated from below. There exist also two kinds of longwave monotonic instabilities,
(i) in the case of poorly conducting boundaries (the mode of Pearson) [9] and (ii) in the case of a
thin film (the mode of Scriven and Sternling [10]). The development of a longwave instability is
characterized by the existence of slowly evolving “active” variables that determine the nonlinear
dynamics; other variables are “enslaved” to them. The investigation of pattern formation in the case
of the Pearson’s mode, where the active variable is the temperature, was started by Sivashinsky
[11] and Knobloch [12]. The nonlinear development of the mode of Scriven and Sternling, where
the active variable is the free-surface deformation, was studied by Davis [13]. Golovin et al. [14]
considered the joint action of both instability modes. Recently, Shklyaev et al. [15] found that the

*Corresponding author: amik@shsu.edu
†nepom@technion.ac.il

2469-990X/2021/6(1)/014002(14) 014002-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7280-2262
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.014002&domain=pdf&date_stamp=2021-01-19
https://doi.org/10.1103/PhysRevFluids.6.014002


MIKISHEV AND NEPOMNYASHCHY

interaction of the temperature disturbance and the surface deformation can create an oscillatory
instability.

A majority of the theoretical works devoted to the Marangoni pattern formation are based on the
assumption of linear dependence of the surface tension function on temperature. However, a lot of
experimental data indicate more complicated dependence [16–21]. Our previous paper [22] shows
that nonlinearity of the surface tension’s temperature dependence can be a stabilizing factor as well
as destabilizing one, depending on the kind of patterns.

In the present work, we study how the nonlinear dependence of the surface tension on temper-
ature influences the bifurcation and stability of spatially periodic wave patterns generated by the
longwave oscillatory Marangoni instability with a wave number k ∼ Bi1/2 (Bi is the Biot number)
in a thin layer of liquid with deformable poorly conducting interface. The analysis of bifurcations is
performed on square, rhombic, and hexagonal lattices in Fourier space.

II. FORMULATION OF THE PROBLEM (LONG-WAVE APPROACH)

Let us consider a three-dimensional (3D) liquid layer of the mean thickness d0 heated from below
with deformable free surface z = H (x, y, t ). We assume that the heat flux at the bottom Q > 0 is
fixed, and in the absence of convection a vertical temperature gradient −a = −Q/λ < 0 is created,
where λ is the heat conductivity of the liquid. Here we use the fact that, if the heat conductivity of the
substrate is low compared to the heat conductivity of the liquid, the heat flux on the bottom is nearly
constant, and its distribances due to the convection in the liquid are negligible [23]. The z axis is
directed vertically upward, and the (x, y) plane is perpendicular to z axis. The liquid is characterized
by the kinematic viscosity ν, the thermal diffusivity χ , the density ρ, the dynamic viscosity η = νρ,
and the heat transfer coefficient at the free surface q. The surface tension σ = σ (T ) is a function of
temperature specified later.

To formulate the problem in nondimensional variables, we use the following scales: length
d0, time d2

0 /χ , velocity χ/d0, temperature ad0, and pressure ρνχ/d2
0 and the following parame-

ters: G = gd3
0 /νχ is the modified Galileo number, S = σd0/χη is the inverse capillary number,

Bi = qd0/λ is the Biot number, and M = −σT Qd2
0 /(ληχ ) is the Marangoni number, where σT =

dσ (T )/dT is a function of the surface temperature T |z=H .
The equations governing the large-scale Marangoni convection are derived from the basic

equations of viscous fluid dynamics and heat transfer by rescaling of coordinates

X = εx, Y = εy, Z = z

and the time

τ = ε2t .

Here parameter ε � 1 can be defined as a ratio between the layer mean thickness d0 and typical
horizontal scale of the problem. The appropriate scaling of the inverse capillary parameter for
our problem is S = ε−2
 and the Biot number is Bi = ε2β. The applied scaling corresponds to
the consideration of disturbances with the wave number k ∼ ε, i.e., k ∼ Bi1/2. By means of the
asymptotic expansions [15], the problem is reduced to a system of coupled equations governing
the evolution of active variables, the local film thickness H (X,Y, τ ), and the bottom temperature
deviation F (X,Y, τ ):

∂τ H = ∇ ·
(

H3

3
∇R + M(
)H2

2
∇


)
≡ ∇ · Q1, (1)

H∂τ F = ∇ ·
(

H4

8
∇R + M(
)H3

6
∇
 + H∇F

)
+ Q1 · ∇
 − 1

2
(∇H )2 − β
, (2)
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where R = GH − 
∇2H is a pressure disturbance, 
 = F − H is the surface temperature de-
viation, ∇ = (∂/∂X, ∂/∂Y ). The vector −Q1 has a meaning of the longitudinal flux of a liquid
integrated across the layer.

The Marangoni number depends on the temperature coefficient of the surface tension σT that is
a function of the temperature at the interface.

Equations (1) and (2) have a base solution, H (b) = 1, F (b) = 1, hence 
(b) = 0.
In this work we consider the nonlinear evolution of large-scale perturbations near the critical

Marangoni number of the oscillatory instability mode, which corresponds to the minimum m0 of
the oscillatory neutral curve

M (b)
o (K ) = 3 + 3β/K2 + G + 
K2, (3)

obtained by solving the linear instability problem in Ref. [15]. Here K = k/ε ∼ O(1) is the rescaled
wave number. The minimum value of Marangoni number is reached at Ko

c = (3β/
)1/4.
We expand the Marangoni number into Taylor series around the undisturbed temperature value

of the free surface, i.e.,

M(
) = m∗
0 + m1
 + m2


2 + . . . , (4)

where m∗
0 is the Marangoni number in the motionless state, m1 = dM/d
, m2 = (1/2)d2M/d
2,

etc.
The nonlinear evolution is considered near the instability threshold, therefore, we suppose |m∗

0 −
m0| � 1, where m∗

0 is the actual Marangoni number and m0 is the critical Marangoni number for
oscillatory instability. For the variables H and F we introduce the expansion in powers of small
parameter δ:

H = 1 + δh1 + δ2h2 + . . . , (5)

F = 1 + δ f1 + δ2 f2 + . . . . (6)

Taking these expansions into account, for the Marangoni number we obtain the following expansion:

M = m∗
0 + δm1( f1 − h1) + δ2[m1( f2 − h2) + m2( f1 − h1)2] + . . . . (7)

Also, we separate the fast oscillations depending on time τ0 = τ and the slow nonlinear evolution
of the amplitudes of perturbations characterized by the time scale τ2 = δ2τ . The time derivative is
presented as

∂τ = ∂τ0 + δ2∂τ2 + . . . .

As shown in Ref. [15], the formation of the wave patterns is a result of a Hopf bifurcation, so we
introduce m∗

0 = m0 + δ2m02 in Eq. (7).

A. Square and Roll Patterns

Substituting Eqs. (5)–(7) into Eqs. (1) and (2) and collecting terms of the same order we obtain
the following at the leading order:

h1,τ0 = 1

3
∇2R1 + m0

2
∇2( f1 − h1), (8)

f1,τ0 = ∇2

[
1

8
R1 + m0

6
( f1 − h1) + f1

]
− β( f1 − h1), (9)

where R1 = Gh1 − 
∇2h1.
We present the solution of Eqs. (8) and (9) for the square lattice in the form

h1 = A1eiKX+iω0τ0 + A2e−iKX+iω0τ0 + B1eiKY +iω0τ0 + B2e−iKY +iω0τ0 + c.c. (10)

f1 = α(A1eiKX+iω0τ0 + A2e−iKX+iω0τ0 + B1eiKY +iω0τ0 + B2e−iKY +iω0τ0 ) + c.c. (11)

Here α = 1 − 2(G + k2
)/3m0 − 2iω0/m0K2.
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At the second order we obtain

h2,τ0 − ∇2

[
1

3
R2 + m0

2
( f2 − h2)

]
= ∇ ·

[
h1∇R1 + m0h1∇( f1 − h1) + m1

2
( f1 − h1)∇( f1 − h1)

]
,

(12)

f2,τ0 − ∇2

[
f2 + 1

8
R2 + m0

6
( f2 − h2)

]
+ β( f2 − h2)

= −h1 f1,τ0 + ∇(h1∇ f1) − 1

2
(∇h1)2 + 1

2
∇(h1∇R1) + 1

3
∇( f1 − h1)∇R1

+m0

2
[∇ f1∇( f1 − h1) + h1∇2( f1 − h1)] + m1

6
∇[( f1 − h1)∇( f1 − h1)]. (13)

Here R2 = Gh2 − 
∇2h2. We search the solution at the second order in the form

h2 = C1e2iKX + C2e2iKY + C3e2iKX+2iω0τ0 + C4e−2iKX+2iω0τ0 + C5eiKX+iKY +2iω0τ0

+C6e2iKY +2iω0τ0 + C7e−iKX+iKY +2iω0τ0 + C8eiKX−iKY +2iω0τ0 + C9e−iKX−iKY +2iω0τ0

+C10e−2iKY +2iω0τ0 + C11eiKX+iKY + C12e−iKX+iKY + c.c., (14)

f2 = F0 + F1e2iω0τ0 + D1e2iKX + D2e2iKY + D3e2iKX+2iω0τ0 + D4e−2iKX+2iω0τ0

+ D5eiKX+iKY +2iω0τ0 + D6e2iKY +2iω0τ0 + D7e−iKX+iKY +2iω0τ0 + D8eiKX−iKY +2iω0τ0

+ D9e−iKX−iKY +2iω0τ0 + D10e−2iKY +2iω0τ0 + D11eiKX+iKY + D12e−iKX+iKY + c.c. (15)

Using the solvability conditions for the system at the third order we obtain the following system of
the Landau equations for amplitudes Aj and Bj ( j = 1, 2):

dA1

dτ2
= (κ0 + κ1|A1|2 + κ2|A2|2)A1 + κ3(|B1|2 + |B2|2)A1 + κ4A∗

2B1B2, (16)

dA2

dτ2
= (κ0 + κ1|A2|2 + κ2|A1|2)A2 + κ3(|B1|2 + |B2|2)A2 + κ4A∗

1B1B2, (17)

dB1

dτ2
= (κ0 + κ1|B1|2 + κ2|B2|2)B1 + κ3(|A1|2 + |A2|2)B1 + κ4B∗

2A1A2, (18)

dB2

dτ2
= (κ0 + κ1|B2|2 + κ2|B1|2)B2 + κ3(|A1|2 + |A2|2)B2 + κ4B∗

1A1A2. (19)

The coefficients κ j ( j = 0, . . . , 4) are complex, and they can be presented as κ j = κ j,r + iκ j,i. For
example,

κ0 =
(

K2

6
− i

K4(G + 
K2 + 72)

288ω0

)
m0,2. (20)

Other coefficients are cumbersome to be given here. They are given in the Supplemental
Material [24].

The nonlinear forms of amplitude Eqs. (16)–(19) are determined by the invariance of the
equations under X translation, Y translation, τ translation, X reflection, Y reflection, and rotation
through π/2. The system of Eqs. (16)–(19) was considered in detail by Silber and Knobloch in
Ref. [25], where the authors found, beside the trivial solution with all amplitudes equal to zero, the
symmetric solutions; see Table I.

The patterns on the square lattice can be stable if they emerge through the direct Hopf bifurcation
(κ0,r > 0). Other stability conditions are obtained in Ref. [25]. The stability conditions for these
solutions are the following:

(i) TR: κ1,r < 0, κ2,r − κ1,r < 0, κ3,r − κ1,r < 0;
(ii) SR: κ1,r + κ2,r < 0, κ1,r − κ2,r < 0, 2κ3,r − κ1,r − κ2,r < 0, |κ4|2 − |2κ3 − (κ1 + κ2)|2 < 0;
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TABLE I. The symmetric solutions of Eqs. (16)–(19) found in Ref. [25].

(i) Traveling rolls (TR) |A1|2 = −κ0,r/κ1,r, A2 = B1 = B2 = 0
(ii) Standing rolls (SR) A1 = A2 �= 0, |A1|2 = −κ0,r/(κ1,r + κ2,r ), B1 = B2 = 0
(iii) Traveling squares (TS) A1 = B1 �= 0, |A1|2 = −κ0,r/(κ1,r + κ3,r ), A2 = B2 = 0
(iv) Standing squares (SS) A1 = A2 = B1 = B2 �= 0,

|A1|2 = −κ0,r/(κ1,r + κ2,r + 2κ3,r + κ4,r )
(v) Alternating rolls (AR) A1 = A2 = iB1 = iB2 �= 0,

|A1|2 = −κ0,r/(κ1,r + κ2,r + 2κ3,r − κ4,r )
(vi) Standing cross rolls (SCR) A1 = A2 �= 0, B1 = B2 �= 0, |A1| �= |B1|

(iii) TS: κ1,r + κ3,r < 0, κ1,r − κ3,r < 0, κ2,r − κ1,r + κ4,r < 0, κ2,r − κ1.r − κ4,r < 0;
(iv) SS: κ1,r + κ2,r + 2κ3,r + κ4,r < 0, κ1,r − κ2,r − κ4,r < 0,
κ1,r + κ2,r − 2κ3,r − 3κ4,r < 0, Re[κ4,i(κ1 + κ2 − 2κ3)] − |κ4|2 < 0;
(v) AR: κ1,r + κ2,r + 2κ3,r − κ4,r < 0, κ1,r + κ2,r − 2κ3,r + 3κ4,r < 0,
κ1,r − κ2,r + κ4,r < 0, −|κ4,r |2 − Re[κ∗

4,r (κ1,r + κ2,r − 2κ3,r )] < 0.

The SCR-solution is out of our scope, because as shown in Ref. [25] this pattern is always
unstable.

We did not find numerically stability domains for SR-, TS-, and SS-solution for the oscillatory
Marangoni convection. The regions of stable TR solution were found and described in our previous
work [22]. Here we in details consider the AR-solution for different surface tension functions. The
calculations are performed with 
 = 1. Note that obtained results can be used for arbitrary values
of 
 with an appropriate rescaling of β.

The results of calculation are shown in Fig. 1. Here together with domains of stable AR solution
the regions of stable TR solution are drawn. When the surface tension function is a linear function
of temperature (m1 = 0, m2 = 0), Fig. 1(a), the AR solution is stable in a small region to the left of
the red dashed line (these are results of Shklyaev et al., see Ref. [15]). In the case of the nonlinear
surface tension the region of the stable AR expands or shrinks depending on the values of the
coefficients m1 and m2. The “blue sector” in Fig. 1(b) is for m1 = 0.6m0 and m2 = 0, the “brown
sector” [Fig. 1(c)] is for m1 = −0.5m0 and m2 = 0, and the “purple sector” [Fig. 1(d)] is for m1 =
0.8m0 and m2 = −0.3m0. Here m0 = mosc(K0

c ) and its values are positive, however, values of m1 and
m2 can be both positive and negative. Parameters m1 and m2 are taken mainly from experimental
data [17,18,21]. The data were obtained investigating the properties of diluted aqueous solutions
of h-heptanol (6 × 10−2 molal) and of n-hexanol (4 × 10−2 molal), or long chain alcohol solutions
with six and nine carbon atoms. The graphs in the papers were digitilized and fitted by empirical
law as a surface tension function of temperature.

The calculation shows that in the cases (a) and (b) the AR and TR domains overlap forming a
small region of bistability denoted in the figure as “AR & TR,” Fig. 1(e). In this region both solutions
are stable. The existence of the “AR & TR” region depends on the nonlinearity of the surface tension
function.

B. Rhombic patterns

Now we consider the pattern selection on rhombic lattice. Here we construct solutions at the
leading order system Eqs. (8) and (9) in the following form:

h1 = [A1eiKX + A2e−iKX + B1eiKX cos(θ )+iKY sin(θ ) + B2e−iKX cos(θ )−iKY sin(θ )]eiω0τ0 + c.c.,

(21)

f1 = α[A1eiKX + A2e−iKX + B1eiKX cos(θ )+iKY sin(θ ) + B2e−iKX cos(θ )−iKY sin(θ )]eiω0τ0 + c.c.

(22)
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FIG. 1. Pattern selection of oscillatory mode on square lattice. Domains of stability for TR (solid lines) and
AR (dashed lines), regions noted as “AR & TR” are regions of bistability. Panels: (a) linear surface tension,
results of Shklyaev et al. [15]; (b) m1 = 0.6m0, m2 = 0 (blue color); (c) m1 = −0.5m0, m2 = 0 (brown color);
(d) m1 = 0.8m0, m2 = −0.3m0 (purple color). Panel (e) shows zoomed-in bistability domain for linear surface
tension function.

The solution is a result of interaction of the waves propagating along the x axis and the waves with
wave vectors ±K (cos θ, sin θ ). The angle θ here plays the role of additional parameter.

Removing singularity on the third order of the solution expansions we obtain the amplitude
equations in the form of Landau-Ginzburg equations:

dA1

dτ2
= (κ0 + κ1|A1|2 + κ2|A2|2)A1 + κ5(θ )|B1|2A1 + κ ′

5(θ )|B2|2A1 + κ6(θ )A∗
2B1B2, (23)

dA2

dτ2
= (κ0 + κ1|A2|2 + κ2|A1|2)A2 + κ5(θ )|B2|2A2 + κ ′

5(θ )|B1|2A2 + κ6(θ )A∗
1B1B2. (24)
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By a permutation of Aj and Bj ( j = 1, 2) we obtain an additional pair of the equations for
amplitudes Bj . Here κ ′

5(θ ) = κ5(π − θ ). Note that the coefficients κ5(θ ) and κ ′
5(θ ) are equal for

many convection problems with nondeformable interface, but it is not our case. Note also that the
case of θ = π/2 is a case of square lattice.

Using the polar notation for the amplitudes in the system for the amplitude equation, A1 =
R1(τ2)eiφ1(τ2 ), A2 = R2(τ2)eiφ2(τ2 ), B1 = R3(τ2)eiφ3(τ2 ), and B2 = R4(τ2)eiφ4(τ2 ), we obtain the follow-
ing set of equations:

dR1

dτ2
+ iR1

dφ1

dτ2
= (

κ0 + κ1R2
1 + κ2R2

2 + κ5R2
3 + κ ′

5R2
4

)
R1 + κ6R2R3R4ei�, (25)

dR2

dτ2
+ iR2

dφ2

dτ2
= (

κ0 + κ1R2
2 + κ2R2

1 + κ5R2
3 + κ ′

5R2
4

)
R2 + κ6R1R3R4ei�, (26)

dR3

dτ2
+ iR3

dφ3

dτ2
= (

κ0 + κ1R2
3 + κ4R2

4 + κ5R2
1 + κ ′

5R2
2

)
R3 + κ6R4R1R2e−i�, (27)

dR4

dτ2
+ iR4

dφ4

dτ2
= (

κ0 + κ1R2
4 + κ2R2

3 + κ5R2
1 + κ ′

5R2
2

)
R4 + κ6R3R1R2e−i�, (28)

where

� = φ3 + φ4 − φ1 − φ2. (29)

Solutions of the system Eqs. (25)–(28) are invariant to arbitrary shifts of the phases φ j ( j =
1, . . . , 4), such that the combination Eq. (29) is not changed.

Taking into account the symmetries of the system Eqs. (25)–(28) here as in the case of square
lattice we obtain six types of solutions: (i) traveling rolls (TR), (ii) standing rolls (SR), (iii) traveling
rectangles (TRa), (iv) standing rectangles (SRa), (v) alternating rolls (rectangular) (AR-R), and (vi)
standing cross-rolls (rectangular) (SCR-R).

The “standard” patterns as rolls and squares are more widespread than the rectangular ones,
but without the latter ones the picture of the pattern selection is not complete. We have found the
stability region of AR-R, applying the following criteria (see the Appendix):

(i) κ1,r + κ2,r + κ5,r + κ ′
5,r − κ6,r < 0,

(ii) κ1,r − κ2,r + κ5,r − κ ′
5,r + κ6,r < 0,

(iii) κ1,r − κ2,r − κ5,r + κ ′
5,r + κ6,r < 0,

(iv) κ1,r + κ2,r − κ5,r − κ5,r + 3κ6,r < 0,

(v) −Re[(κ1 + κ2 − κ5 − κ ′
5)κ6,i] − |κ6|2 < 0.

The results presented in Fig. 2 show how the domain of stability of AR-R depends on the angle
θ as well as on parameters characterizing the nonlinear behavior of the surface tension function
on temperature (m1 and m2).The dotted lines on each panel of Fig. 2 show the previous results for
the square lattice (θ = π/2). Here the stable region is to the left from the lines. When the angle θ

of the rhombic planform decreases then the region of AR-R stability shrinks (the solid line is for
θ = 0.47π , the dashed line is for θ = 0.45π , and the dot-dashed line is for θ = 0.42π ). At θ = 0.4π

all AR-R patterns become unstable. Figure 2(a) presents the linear surface tension (m1 = m2 = 0),
Fig. 2(b) illustrates the case of m1 = 0.6m0 and m2 = 0, Fig. 2(c) is for m1 = −0.5m0 and m2 = 0,
Fig. 2(d) is for m1 = 0.8m0 and m2 = −0.3. The results show that the regime of ARs is preferred
for the square lattice and very sensitive to the dependence of the surface tension on the temperature.

The domain of stability AR-R is not the only one at the rhombic lattice. At the angle θ close to
2π/3 we can find stable traveling rectangles TRa2. Figure 3 shows the domains of stability of TRa2
at a rhombic lattice for different angles θ . As expected, the stable TRa2 domains depend on values
of m1 and m2 and on the rhombic angle θ .

Figure 3(a) represents the case of linear surface tension (coefficients m1 = m2 = 0). Here the
stable TRa2 structure appears at θ = 0.6π (green dot-dashed region), it grows with approaching of
the θ to 2π/3 (region depicted by dotted lines). Figure 3(b) is for m1 = 0.6m0 and m2 = 0. Here the
narrowed region of TRa2 appears at θ = 0.62π . The negative value of coefficient m1 on Fig. 3(c)
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FIG. 2. Domains of stability for AR-R (left of the lines). The dotted line on each panel is for θ = π/2
(square lattice), the solid line is for θ = 0.47π , the dashed line is for θ = 0.45π , and the dot-dashed green line
4 is for θ = 0.42π . Here panel (a) m1 = 0., m2 = 0; panel (b) m1 = 0.6m0, m2 = 0; panel (c) m1 = −0.5m0,
m2 = 0, and panel (d) m1 = 0.8m0 and m2 = −0.3m0.

enlarges the region of the stable TRa2 structures (here m1 = −5m0). Figure 4(d) illustrates how the
TRa2 domain shrinks at combination of the coefficients (m1 = 0.8m0 and m2 = −0.3m0).

C. Hexagonal patterns

The first order solution of the system of Eqs. (8) and (9) for the hexagonal lattice can be presented
in the form:

h1 = (A1eiKX + A2e−iKX + B1e(iK/2)(−X+√
3Y ) + B2e(iK/2)(X−√

3Y )

+C1e(iK/2)(−X−√
3Y ) + C2e(iK/2)(X+√

3Y )eiω0τ0 + c.c. (30)

f1 = α(A1eiKX + A2e−iKX + B1e(iK/2)(−X+√
3Y ) + B2e(iK/2)(X−√

3Y )

+C1e(iK/2)(−X−√
3Y ) + C2e(iK/2)(X+√

3Y ) )eiω0τ0 + c.c. (31)

Here α = 1 − 2(G + k2
)/3m0 − 2iω0/m0K2 and the wave vectors K1 = (K, 0) and K2,3 =
(−K/2,±√

3K/2) form the basis of the hexagonal lattice, c.c. denotes complex conjugate terms.
Removing the resonant singularity of the nonlinear interaction at the third order we obtain the

amplitude equations for the complex amplitudes A1,2, B1,2, and C1,2:

dA1

dτ2
= (κ0 + κ1|A1|2 + κ2|A2|2)A1 + κ7(|B1|2 + |C1|2)A1 + κ8(|B2|2 + |C2|2)A1

+ κ9A∗
2(B1B2 + C1C2), (32)
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FIG. 3. Domains of stability for TRa2 at the rhombic lattice. Here the dotted lines shows the TRa2 domain
at hexagonal lattice (θ = 2π/3), blue dashed lines corresponds to θ = 0.64π , the red solid region is for θ =
0.62π , and green dot-dashed regions is for θ = 0.6π . Panels: (a) linear surface tension, results of Shklyaev
et al. [15]; (b) m1 = 0.6m0, m2 = 0; (c) m1 = −0.5m0, m2 = 0; (d) m1 = 0.8m0, m2 = −0.3m0. Above the
gray dashed line on each panel TR bifurcates subcritically.

dA2

dτ2
= (κ0 + κ1|A2|2 + κ2|A1|2)A2 + κ8(|B1|2 + |C1|2)A2 + κ7(|B2|2 + |C2|2)A2

+ κ9A∗
1(B1B2 + C1C2). (33)

Other two pairs of amplitude equations for B1, B2,C1, and C2 can be obtained by cyclic permutations
of Aj , Bj , and Cj ( j = 1, 2). Here κ7, κ8, and κ9 are complex coefficients and can be found as
κ7 = κ5(2π/3), κ8 = κ ′

5(2π/3), and κ9 = κ6(π/3).
Roberts, Swift, and Wagner [26] found 11 qualitatively different classes of bifurcating solutions;

see Table II. A brief review of Ref. [26] and illustrations of these 11 limit cycles can be found in
Ref. [3]. Other solutions can be obtained from these by symmetry transformations.

To determine whether solutions are subcritical or supercritical and whether supercritical are
stable we have to evaluate some combinations of the coefficients of the system of Eqs. (32) and
(33). Before carrying out the numerical stability analysis of the bifurcating solutions, we note that
the traveling rectangles-1 (TRa1) are always unstable and stability properties of pairs (SH and SRT)
and (TwR and WR2) cannot be distinguished in the framework of the cubic truncation Eqs. (32) and
(33), the quintic order terms are needed; see Ref. [3]. Also we note that if TR solution is stable, then
SR, OT, and TRa2 must be unstable.

To determine the stability of the patterns we use the following criteria:
(i) TR: κ1,r < 0; κ2,r − κ1,r < 0; κ7,r − κ1,r < 0; κ8,r − κ1,r < 0;
(ii) SR: κ1,r + κ2,r < 0; κ1,r − κ2,r < 0; −κ1,r − κ2,r + κ7,r + κ8,r < 0; and −| − κ1 − κ2 +

κ7 + κ8|2 + |κ9|2 < 0;
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FIG. 4. Pattern selection of oscillatory mode on hexagonal lattice. Domains of stability for TR (below solid
line and to the right of the dotted line) and TRa2 (below solid line and to the left to the dotted line). Panels:
(a) linear surface tension, results of Shklyaev et al. [15]; (b) m1 = 0.6m0, m2 = 0; (c) m1 = −0.5m0, m2 = 0;
(d) m1 = 0.8m0, m2 = −0.3m0.

(iii) OT: κ1,r + 2κ7,r < 0; κ1,r − κ7,r < 0; −κ1,r + κ2,r − 2κ7,r + 2κ8,r + 2κ9,r < 0; −κ1,r +
κ2,r − 2κ7,r + 2κ8,r − κ9,r < 0;

(iv) WR1:κ1,r + κ2,r + κ7,r + κ8,r − κ9,r < 0; κ1,r − κ2,r + κ7,r − κ8,r + κ9,r < 0; −κ1,r −
κ2,r + κ7,r + κ8,r + κ9,r < 0; κ1,r − κ2,r − κ7,r + κ8,r + κ9,r < 0; κ1,r + κ2,r − κ7,r − κ8,r +
3κ9,r < 0; −|κ1 + κ2 − κ7 − κ8 + 3κ9|2 + |κ1 + κ2 − κ7 − κ8 − κ9|2 < 0;

TABLE II. The bifurcating solutions of Eqs. (32) and (33) found in Ref. [26].

(i) Standing rolls (SR) A1 = A2 �= 0, B1 = B2 = C1 + C2 = 0
(ii) Standing hexagons (SH) A1 = A2 = B1 = B2 = C1 = C2

(iii) Standing regular triangles (SRT) A1 = B1 = C1 = −A2 = −B2 = −C2

(iv) Standing triangles (ST) A1 = B1 = A2 = B2, C1 = C2 = 0,
(v) Traveling rolls (TR) A1 �= 0, A2 = B1 = B2 = C1 = C2 = 0
(vi) Traveling rectangles-1 (TRa1) A1 = C1, A2 = B1 = B2 = C2 = 0
(vii) Traveling rectangles-2 (TRa2) A1 = C2, A2 = B1 = B2 = C1 = 0
(viii) Oscillating triangles (OT) A1 = B1 = C1 �= 0, A2 = B2 = C2 = 0
(ix) Wavy rolls-1 (WR1) A1 = C1 = A2 = −C2, B1 = B2 = 0
(x) Twisted rectangles (TwR) A1 = A2, B1 = B2 = e2π i/3A1,

C1 = C2 = e4π i/3A1

(xi) Wavy rolls-2 (WR2) A1 = −A2, B1 = −B2 = e2π i/3A1,
C1 = e4π i/3A1 = −C2
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(v) SH, SRT: κ1,r + κ2,r + 2κ7,r + 2κ8,r + 2κ9,r < 0; κ1,r − κ2,r + 2κ7,r − 2κ8,r − 2κ9,r < 0;
κ1,r − κ2,r − κ7,r + κ8,r − 2κ9,r < 0; κ1,r + κ2,r − κ7,r − κ8,r − 4κ9,r < 0; −|κ1 + κ2 − κ7 − κ8 −
4κ9|2 + |κ1 + κ2 − κ7 − κ8 + κ9|2 < 0;

(vi) ST: κ1,r + κ2,r + κ7,r + κ8,r + κ9,r < 0; κ1,r − κ2,r − κ7,r + κ8,r − κ9,r < 0; κ1,r − κ2,r +
κ7,r − κ8,r − κ9,r < 0; −κ1,r − κ2,r + κ7,r + κ8,r − κ9,r < 0; κ1,r + κ2,r − κ7,r − κ8,r − 3κ9,r < 0;
| − κ1 − κ2 + κ7 + κ8 − κ9|2 − 4|κ9|2 < 0; −|κ1 + κ2 − κ7 − κ8 − 3κ9|2 + |κ1 + κ2 − κ7 − κ8 +
κ9|2 < 0;

(vii) TRa2: κ1,r + κ8,r < 0; κ1,r − κ8,r < 0; κ7,r − κ1,r < 0; −κ1,r + κ2,r + κ7,r − κ8,r + κ9,r <

0; −κ1,r + κ2,r + κ7,r − κ8,r − κ9,r < 0;
(viii) TwR, WR2: κ1,r + κ2,r + 2κ7,r + 2κ8,r − κ9,r < 0; κ1,r − κ2,r − κ7,r + κ8,r + κ9,r < 0;

κ1,r − κ2,r + 2κ7,r − 2κ8,r + κ9,r < 0; Re[T1 ±
√

T 2
1 − T2] < 0; T1 = κ1,r + κ2,r − κ7,r − κ8,r −

κ9,r + 3κ∗
9 , T2 = 6κ∗

9 (κ1 + κ2 − κ7 − κ8 − κ9).
Here we consider the influence of the nonlinearity of surface tension function on the stability of

the bifurcating solutions.
One of the results of work [15] was the existence of stable oscillatory traveling rectangles-2

(TRa2) on the hexagonal lattice. Figure 4(a) shows the selection of the oscillatory patterns on
hexagonal lattice for case of linear surface tension function. The results are identical to those of
Shklyaev et al. [15]. The dashed line is obtained using the condition κ1,r = 0 and it is a boundary
between subcritical and supercritical TR solutions. The subcritical one is above this line and the
supercritical solution is below. The stable TR domain on the hexagonal lattice is smaller than that
on the square lattice (below the dashed line and to the right of the dotted one), because of the
existence of TRa2 stability domain. TRa2 solution also can be subcritical (to the left of the solid
red line) or supercritical (to the right of the solid red line), as well as stable (between the solid
red line and the dotted line). In the case of nonlinearity at the positive values of coefficient m1 and
n2 = 0, see Fig. 4(b), the region of the stable TR grows and the region of stable TRa2 shrinks. When
the coefficient m1 reverses its sign to the negative one we see the growth of the TRa2 region and
decrease of the stable TR region; see Fig. 4(c). Figure 4(d) shows that by changing values of the
coefficients m1 and m2 the region of the stable traveling rectangles-2 can disappear. Other patterns
are unstable in a cubic truncation of nonlinearity and not considered in the frame of this work.

The same domains of stable TRa2 structures can be obtained at the rhombic lattice, in the case
where θ = 2π/3 (see dotted lines in Fig. 3).

III. SUMMARY

The present work investigates a pattern selection in oscillatory longwave Marangoni convection
in a heated thin layer of fluid with weak heat flux from the free surface. The novelty of our research is
that the nonlinear dependence of the surface tension on the temperature is taken into consideration.
A lot of experiments (for example, Refs. [16–21]) reveal this nonlinearity. The weakly nonlinear
analysis of the set of amplitude equations describing a 3D Marangoni convection near stability
threshold was carried out. The pattern selection was analyzed on square, rhombic and hexagonal
lattices. Their domains of stability have been determined.

The selection that has been carried out on a square lattice demonstrates the possible existence
of stable domains for the alternating (AR) and traveling (TR) rolls. The region of stability of TR
exists for all considered cases of surface tension nonlinearity. The AR stability region shrinks or
expands depending on the type of this nonlinearity. A small zone of bistability when both AR and
TR patterns are stable is found. The pattern on the rhombic lattice is formed by interaction of two
waves propagating under the angle θ on to another. This angle is additional parameter that influences
the selection of patterns. The stability regions of AR-R depend on the angle θ . They exist only in the
range between θ = π/2 and 0.4π . The stability criteria of AR on the rhombic lattice are obtained.
They are different comparing with the similar criteria on the square lattice. When θ is close to 2π/3
the stable TRa2 region appears at the rhombic lattice. The appearance of TRa2 region strongly
depends on the angle θ .
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On the hexagonal lattice, together with the TR stability region, the stability of TRa2 appears. The
stability regions of the traveling rectangles on the hexagonal lattice equals to regions of stable TRa2
at the rhombic lattice despite the additional stability criteria. When TR stable region increases, the
TRa2 stable region decreases.

The subject of this paper was investigation of the pattern selection in the oscillatory Marangoni
convection in the layer heated from below, discovered by Shklyaev et al. [15]. This oscillatory
instability has not yet been observed in experiments. Here we try to present the experimental
conditions for its possible observation. Assuming we have layer of aqueous long chain alcohol
solution, like in Ref. [19], with thickness of 0.01 cm, surface tension 40 dyn/cm, kinetic viscosity
0.1 cm2/s, thermal diffusivity χ = 0.005 cm2/s, and density 0.8 g/cm3. This results in the Galileo
number G ∼ 2 and the inverse capillary number S ∼ 1000; assuming q = 5 W/m2K we have
Bi ∼ 0.004. The characteristic wavelength of the convective structure is d0/

√
Bi ∼ 1.6 mm and the

critical temperature difference is 20 K. Similar estimations for the thickness of the layer 0.05 mm in
Ref. [15] give the attained critical Marangoni number at temperature difference 0.5 K. In Ref. [27]
authors considered two-layer system with 1 mm air layer over the 0.1 mm film of silicon. For this
configuration the critical Marangoni number is attained at temperature difference 4 K.
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APPENDIX: STABILITY CRITERIA OF ALTERNATING ROLLS

The alternating rolls (AR-R) are described by the solution of Eqs. (25)–(29),

R1 = R2 = R3 = R4 = a, � = π, a2 = − κ0,r

κ1,r + κ2,r + κ5,r + κ ′
5,r − κ6,r

. (A1)

Linearizing Eqs. (25)–(29) around AR-R solution and taking into account Eq. (A1) we obtain the
eigenvalue problem for the eigenvector (R̃1, R̃2, R̃3, R̃4, �̃) and eigenvalue r (growth rate):

[−r + (2κ1,r + κ6,r )a2]R̃1 + (2κ2,r − κ6,r )a2R̃2 + (2κ5,r − κ6,r )a2R̃3 + . . .

+(2κ ′
5,r − κ6,r )a2R̃4 + κ6,ia

3�̃ = 0, (A2)

(2κ2,r − κ6,r )a2R̃2 + [−r + (2κ1,r + κ6,r )a2]R̃2 + (2κ ′
5,r − κ6,r )a2R̃3 + . . .

+ (2κ5,r − κ6,r )a2R̃4 + κ6,ia
3�̃ = 0, (A3)

(2κ5,r − κ6,r )a2R̃1 + (2κ ′
5,r − κ6,r )a2R̃2 + [−r + (2κ1,r + κ6,r )a2]R̃3 + . . .

+ (2κ2,r − κ6,r )a2R̃4 − κ6,ia
3�̃ = 0, (A4)

(2κ ′
5,r − κ6,r )a2R̃1 + (2κ5,r − κ6,r )a2R̃2 + (2κ2,r − κ6,r )a2R̃3 + . . .

+[−r + (2κ1,r + κ6,r )a2]R̃4 − κ6,ia
3�̃ = 0, (A5)

2(κ1,i + κ2,i − κ5,i − κ ′
5,i + κ6,i )a(R̃1 + R̃2 − R̃3 − R̃4) + (r − 4κ6,ra2)�̃ = 0. (A6)

Due to the symmetry of the system, all the eigenvectors belong to the following four classes: (i)
R̃1 = R̃2 = R̃3 = R̃4; (ii) R̃1 = R̃2 = −R̃3 = −R̃4; (iii) R̃1 = −R̃2 = R̃3 = −R̃4; (iv) R̃1 = −R̃2 =
−R̃3 = R̃4.

In case (i), we obtain the stability condition

κ1,r + κ2,r + κ5,r + κ ′
5,r − κ6,r < 0, (A7)

which is condition of the supercritical bifurcation, κ0,r > 0.
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In case (ii), we get two stability conditions:

κ1,r + κ2,r − κ5,r − κ ′
5,r + 3κ6,r < 0, (A8)

−|κ6|2 − Re[κ3,i(κ1,r + κ2,r − κ5,r − κ ′
5,r )] < 0, (A9)

which determine the boundaries of the oscillatory and monotonic instability, respectively.
Case (iii) leads the following stability condition:

κ1,r − κ2,r + κ5,r − κ ′
5,r + κ6,r < 0, (A10)

and case (iv) gives us the condition

κ1,r − κ2,r − κ5,r + κ ′
5,r + κ6,r < 0. (A11)

If κ5,r = κ ′
5,r , then the conditions obtained by Silber and Knobloch [25] are reproduced (condition

Eqs. (A10) and (A11) coincide in that case).
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