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Numerical study of the interaction between a pulsating coated microbubble
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The dynamic response of an encapsulated bubble subject to an acoustic disturbance in
a wall restricted flow is investigated, when the viscous forces of the surrounding liquid
are accounted for. The Galerkin finite element methodology is employed and the elliptic
mesh generation technique is used for updating the mesh. As the bubble accelerates
towards the wall, the dominant force balance is between Bjerknes forces and the viscous
drag that develops. In this process a prolate shape is acquired by the bubble, due to
excessive compression at the equator region. When the bubble reaches the wall lubrication
pressure develops in the near wall region that resists further approach. As long as the
sound amplitude remains below a threshold value determined by the onset of parametric
shape mode excitation saturated, or “trapped,” pulsations are performed around a certain
small distance from the wall. The balance between Bjerknes attraction and the lubrication
pressure that arises due to shell bending along the flattened shell portion that faces the wall
generates an oblate shape. Elongation is now observed along the equatorial plane where a
local liquid overpressure is established generating large tensile strain. The time-averaged
deflection of the microbubble at the pole that lies close to the wall is determined by the
bending and stretching resistances of the shell in the manner described by Reissner’s linear
law for a static compressive load on an elastic shell, corrected for the effect of surface
tension. The oscillatory part of the bubble motion in that same region, the contact region,
follows the forcing frequency and consists of a pressure driven and a shear flow in the form
of a Stokes layer where a significant amount of instantaneous wall shear is generated. The
thickness of the film that occupies the Stokes layer is on the order of a few tenths of nm
and is determined by the balance between liquid and shell tangential viscous stresses. The
steady streaming effect on the wall shear is absent owing to the negligible phase difference
between the volume and center of mass pulsations.
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I. INTRODUCTION

The dynamic behavior of encapsulated microbubbles, also known as contrast agents, plays a
key role in novel biomedical applications involving ultrasound among which the most important
are medical imaging of vital organs and targeted drug delivery. In the former case, gas-filled
microbubbles are used which are able to enhance the ultrasound backscatter and contrast, in
comparison with the acoustic signal from nearby tissue, thus producing high quality images [1] as
a result of their nonlinear nature as sound scatterers [2]. Targeted molecular imaging has also been
developed [3], whereby specific ligands are attached to the membrane to facilitate the adhesion of
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the microbubble to a specific diseased area in order to provide better contrast enhancement. In a
similar fashion, in targeted drug delivery encapsulated microbubbles that carry drugs are attached
to the affected site using an appropriate acoustic disturbance and then ruptured via sonication.
Alternatively, low amplitude oscillations of coated microbubbles are employed for the transport
of large macromolecules towards the cell cytoplasm via generation of transient micropores in
nearby cells [4,5] or via the acoustic microstreaming process [6,7]. In both situations it is essential
to resolve the details of the flow that develops in the region between the wall and the bubble
shell.

For such flow arrangements experimental studies report that the presence of a nearby boundary
accelerates growth of interfacial instabilities and instigates phenomena like jet formation and,
finally, collapse of the bubble [8,9]. The latter experimental studies examine the situation with the
coated microbubble pulsating in response to an acoustic disturbance in the vicinity of a boundary.
In this fashion microbubble shapes that are asymmetrically deformed in the direction perpendicular
to the boundary surface, alternating between the prolate and oblate configuration, were captured [8]
while jet formation was observed in the compression [10] and expansion phase of the pulsation [9],
respectively. In a different context, Garbin et al. [11] studied the effect of the secondary acoustic
radiation force to the translational dynamics of contrast agents that are in contact with or adhered
to a semirigid membrane. They found that there is a critical threshold beyond which secondary
acoustic radiation force can cause the detachment of adherent bubbles. In an ensuing study [12] it
was observed that targeted microbubbles that are attached to an underlying surface and subject to
secondary Bjerknes forces due to a neighboring trapped microbubble tend towards a prolate shape
along the line connecting the two bubbles, whereas for higher acoustic pressures secondary Bjerknes
forces disrupt the molecular adhesion of the bubble to the surface. It was thus proposed that acoustic
radiation forces may be employed as a means to measure the strength of adhesion forces between
coated microbubbles and various substrates.

Furthermore, in applications of targeted drug delivery and sonoporation, trapping of the mi-
crobubble on the nearby tissue and the ensuing pulsations it performs are crucial factors of the
efficiency of the overall process and are expected to be significantly affected by the interplay
between Bjerknes, lubrication, and adhesion forces. In particular, they are of central importance
in identifying the acoustic signature of freely circulating and trapped microbubbles and assessing
the potential for sonoporation to take place. In fact, Marmottant and Hilgenfeldt [6], based on
a previous study by Longuet-Higgins [13] for small streaming Reynolds, showed that when the
amplitude of the radial motion of the bubble is taken to be smaller than the dimensionless boundary
layer thickness around the bubble, a strong streaming motion away from the wall develops, provided
the radial and translational pulsations appear with a significant phase lag. Doinikov and Bouakaz
[7] identified interaction between the rotational and irrotational part of the motion as the controlling
step for the onset of acoustic microstreaming, and the wall presence was seen to strongly influence
the intensity of acoustic streaming near the wall due to a pulsating bubble that remains at a large
distance from it, in comparison with the bubble radius. In a more recent study Mobadersany and
Sarkar [14] extended the previous study by Doinikov and Bouakaz [7] to capture acoustic streaming
for the case of a contrast agent that pulsates next to a rigid wall. It is of interest to place our results
and examine their validity in the context of the above theoretical studies.

It should be stressed that extensive numerical simulations of the dynamic response of contrast
agents are not available in the literature, owing largely to uncertainties regarding proper modeling
of the shell, especially in the case of phospholipid shells. Furthermore, the degree to which potential
flow considerations can sufficiently capture the dynamic behavior of deforming contrast agents is
not fully understood [15]. Qin and Ferrara [16] developed a lumped parameter model as a means to
incorporate elastic effects, mainly in the surrounding vessel, in order to study the acoustic response
of a coated microbubble that pulsates in a compliant microvessel. They were thus able to calculate
the stresses that develop on the microvessel wall as result of the pulsating motion, which was also
seen to increase the permeability of the vessel. More recently, numerical studies were conducted
to address the above issues via the finite volume [17] and boundary integral method [15] as a
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means to obtain a more detailed description of the velocity field in the surrounding fluid. In this
fashion, harmonic and subharmonic shape mode excitation was obtained in agreement with previous
predictions based on linear stability analysis [18]. Furthermore, boundary integral simulations of
pulsating contrast agents [15], ignoring viscous effects on the liquid side in view of the relatively
large shell viscosity and the typical small size of encapsulated bubbles, recovered harmonic and
subharmonic shape mode excitation that led to saturated shape oscillations or breakup beyond a
certain amplitude threshold. In the present study we numerically investigate the dynamic response
of a contrast agent to an acoustic disturbance in a wall restricted flow when the viscous forces of the
surrounding liquid are accounted for, and we focus on identifying the mechanism that facilitates
and controls the trapping procedure. Emphasis is placed on illustrating the interplay between
secondary Bjerknes forces, lubrication pressure, and viscoelastic shell stresses in establishing a
steady pulsation of a trapped microbubble and obtaining conditions for such a dynamic state to be
achieved. The effect of adhesion on the substrate in the form of an interaction potential, attractive
or repulsive, is left for a future study due to the additional numerical challenge it poses as a result
of the different length scales involved in modeling such flow arrangements.

The material presented in this paper is organized as follows: The problem formulation is
discussed in Sec. II, where the governing equations for the liquid flow are presented along with
the ones describing the encapsulated bubble. Next, in Sec. III the numerical method that has been
developed for discretizing the governing equations, as well as the grid construction procedure, are
briefly outlined as they are presented in full detail in [19,20]. The latter reference, i.e., [20], that
treats the initial stages of the motion of the microbubble towards the wall before the dynamic
state of saturated pulsations is established, will be referred to as paper I hereinafter. In Sec. IV the
results of our simulations are presented as the bubble performs trapped pulsations and the potential
for the onset of acoustic streaming is examined and discussed in the context of previous studies.
Finally, in Sec. V the main conclusions are summarized and directions for future research are
outlined.

II. PROBLEM FORMULATION

We are interested in examining the dynamic response to acoustic disturbances of an encapsulated
microbubble in a wall restricted flow. In particular we want to focus on the late stages of its motion
towards the wall during which the microbubble performs saturated pulsations, trapped pulsations, in
the vicinity of the wall and wish to define conditions that lead to this dynamic state. To this end we
follow the dynamics of a microbubble with initial radius R0 that is submerged in a Newtonian liquid
of density ρ and dynamic viscosity μ. We consider a wall-restricted flow by placing the bubble
at a certain initial distance from the wall and we investigate the bubble’s response to an acoustic
disturbance imposed on the far field pressure:

P′
∞ = P′

st + P′
dist = P′

st + P′
stε cos(ω f t

′) (1)

with P′
st, P′

dist denoting the dimensional undisturbed and disturbed pressure in the far field, respec-
tively, ε the magnitude, and ω f the angular velocity of the imposed disturbance. The initial radius
R0 of the bubble is taken as the characteristic length scale of the problem, whereas the external
frequency determines the appropriate time scale as 1/ω f . Therefore, the characteristic velocity and
pressure scales are ω f R0 and ρω2

f R2
0, respectively. Throughout this paper primed letters signify

dimensional variables, in the manner presented in paper I.
In order to obtain the governing equations we consider a cylindrical coordinate system and

assume axisymmetric variations of the bubble shape as well as the liquid velocity and pressure.
In Fig. 1 a schematic representation of the flow under consideration is provided with f1 denoting
the r coordinate of the thin shell that coats the bubble.

013602-3



M. VLACHOMITROU AND N. PELEKASIS

FIG. 1. A contrast agent in a wall-restricted flow.

The flow in the surrounding liquid is governed by the mass conservation and momentum
equations. The liquid is taken to be incompressible in which case the continuity equation and
momentum balance, via the Navier-Stokes equations, read in dimensionless form:

∇ · u = 0, (2)

∂u
∂t

+ (u · ∇)u = −∇P + 1

Re
∇ · τ, σ = −PI + 1

Re
τ, τ = ∇u + ∇uT , (3)

where u = (ur, uz, 0) for the cylindrical coordinate system, Re = (ρω f R2
0)/μ is the Reynolds

number pertaining to the radial component of the surrounding liquid flow that compares inertia
with viscous forces, σ, τ are the full and deviatoric stress tensors in the surrounding fluid, and I
is the unit tensor. In the above formulation buoyancy has been neglected owing to the small size
of the bubbles and the flow is treated as incompressible. In order to obtain the deformation of the
bubble we use a Lagrangian representation of the interface by introducing a Lagrangian coordinate
ξ (0 � ξ � 1) which identifies the particles on the interface with ξ = 0 and ξ = 1 corresponding to
the south and north pole of the bubble respectively.

The force balance on the gas-liquid interface reads in dimensionless form(
−PI + 1

Re
τ

)
· n + PGn = (∇s · n)n

We
+ �F = 2km

We
n + �F, (4)

where n denotes the unit normal vector pointing towards the surrounding fluid, PG is the pressure of
the gas inside the bubble, ∇s, km denote the surface gradient and mean curvature of the bubble’s

interface, respectively, and We = ρω2
f R3

0

σ
is the Weber number comparing inertia with capillary

forces. Despite its viscoelastic nature a certain amount of surface tension σ is typically assumed
for the shell [20–24], as a measure of the isotropic surface tension that signifies the macroscopic
effect of regions on the shell where direct contact between the enclosed gas and the surrounding
liquid exists. Finally, �F is the resultant force due to the viscoelastic properties of the membrane.
Based on the theory of elastic shells [25,26] the resultant force �F in the case of a contrast agent is
derived by the surface divergence of the viscoelastic tension tensor on the membrane surface and is
equal to

�F =
[

ksτs + kφτφ − 1

r

∂

∂S
(rq)

]
n −

[
∂τs

∂S
+ 1

r

∂r

∂S
(τs − τφ ) + ksq

]
es (5)
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with S denoting the arclength of the interface, τs, τφ the principal elastic tensions, ks, kφ the two
principal curvatures, r, z the cylindrical polar and axial coordinates, and es the tangential unit vector;
q denotes the transverse shear tension that is obtained from a torque balance on the shell [25,26]:

q = KB

r

∂r

∂S

[
∂

∂r
(rms) − mφ

]
, (6a)

where ms, mφ are the principal bending moments and KB ≡ kB/(ρω2
f R5

0) signifies the relative
importance of bending with respect to inertia. The membrane and bending stresses are defined via
the shell constitutive laws. In particular, the transverse shear q points along the normal vector n of
a surface that is perpendicular to the tangent vector es. Finally, the membrane tensions consist of an
elastic and a viscous component, i.e.,

τs = τs,el + τs,v, τMR
s = G

3λsλϕ

(
λ2

s − 1

(λsλϕ )2

)[
1 + b

(
λ2

ϕ − 1
)] + 2

Res

1

λs

∂λs

∂t
, (6b)

λs = Sξ (t )

Sξ (0)
, λφ = r(t )

r(0)
(6c)

with λs, λϕ denoting the principal extension ratios and G ≡ χ/ρω2
f R3

0 and Res ≡ ρω f R3
0/μs signi-

fying the relative importance of shell dilatation and viscosity with respect to inertia. We adopt the
Mooney Rivlin model for the elastic part with b denoting the degree of shell softness [27] and a
linear model for shell viscosity μs treating the dilatational and shear viscosity of the shell as equal.

A more detailed description of the modeling that is used for the force balance on the viscoelastic
shell that coats the bubble is given in Tsiglifis and Pelekasis [15,18,21] and Vlachomitrou and
Pelekasis [19,20] as well as in paper I, based on previous theoretical treatments in [25,26].

Besides the force balance, the continuity of the liquid and shell velocities on the interface reads
as

u = Drs

Dt
(7)

with rs = rer + zez denoting the position vector of a particle at the interface. At equilibrium a stress
free state is assumed on the interface of radius R0, where the dimensionless pressure PG inside
the bubble is related to the dimensionless pressure Pst on the far field through the Young-Laplace
equation:

PG(t = 0) = Pst + 2

We
. (8)

The pressure inside the bubble is taken to be uniform due to negligible density and kinematic
viscosity of the enclosed gas. Moreover, heat transfer between the bubble and the surrounding
liquid is assumed to take place quite fast, in comparison with the time scale of the phenomena
under consideration. In this context, bubble oscillations are characterized as nearly isothermal and
therefore the bubble pressure is given by

PG(t = 0)V γ

G (t = 0) = PG(t )V γ

G (t ) (9)

with VG denoting the dimensionless instantaneous volume of the bubble, VG(t = 0) = 4π
3 the initial

volume of the bubble, and γ the polytropic constant set to 1.07 for an almost isothermal variation.
The latter value is also close to the ratio between the specific heats of certain ideal gases that are
carried by known contrast agents and undergo adiabatic pulsations during insonation [21,23,24].

III. NUMERICAL METHODOLOGY

A detailed description of the numerical methodology that is used to simulate the dynamic
behavior of a contrast agent when the viscous forces of the surrounding liquid are accounted for
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FIG. 2. Schematic representation of the physical and the computational domain for the case of a bubble in
wall restricted flow.

is provided in Vlachomitrou and Pelekasis [19] for an unbounded flow and in paper I where the
numerical methodology is extended in order to take into account wall presence. The numerical
solution is performed via a superparametric Galerkin finite element methodology with a hybrid
scheme that uses two-dimensional (2D) Lagrangian functions to discretize the surrounding flow
field, in conjunction with 1D cubic splines for the bubble shape. In the case of an encapsulated
bubble the introduction of cubic splines is necessary because a fourth order derivative arises in
the force balance equation through the bending resistance of the membrane. More specifically,
biquadratic and bilinear Lagrangian basis functions are used for the velocity and the pressure of
the liquid, respectively, while cubic spline functions are employed to discretize the interface. The
continuity of the radial and axial velocity components is imposed as an essential boundary condition
on the interface. Furthermore, since we employ a Lagrangian representation for the shape of the
bubble we need two equations for each particle ξ to determine the two coordinates r(ξ ,t) and z(ξ ,t).
For this reason the normal and tangential force balances are employed and are discretized using
the one dimensional cubic splines as bases functions [19,20]. In this fashion, discretization of the
interfacial force balance equations is facilitated as they contain fourth order derivatives in the form
of the bending stresses, with the spline functions interpolating the radial and azimuthal coordinates
of the microbubble. With this methodology we are able to simultaneously solve for the velocity and
pressure fields along with the shape of the interface. Subsequently, the resulting shape is used as an
essential condition to construct the mesh.

Finally, on the far field the imposed pressure disturbance is prescribed, while the velocity
components are set to zero. In all simulations presented in this paper the far field was considered
to be ten rest radii away from the bubble centroid. In order to ensure the validity of the velocity
boundary condition on the outer edge we also performed simulations for larger distances as well
that led to the same results.

The nonlinearity of the problem is treated with the Newton-Raphson method, while the fully
implicit Euler time integration scheme is introduced in order to make optimal use of its numerical
dissipation properties against growth of short wave instabilities. As an overall numerical procedure,
at each time step the numerical solution is performed in two stages. In the first stage a Newton-
Raphson method is applied in order to solve simultaneously for the velocity and pressure fields
along with the shape of the interface. In the second stage, a separate Newton-Raphson iterative
procedure complements the above time integration process for the implementation of the elliptic
mesh generation scheme [28,29] and the construction of the updated grid. In the latter stage the
shape of the bubble is already known and is imposed as an essential condition for the solution of
the elliptic equations that provide the grid coordinates. The above procedure offers a significant
advantage in that it allows for accurate discretization of the bending stresses and use of greater time
steps in comparison with the original method. In Fig. 2 a schematic representation of the physical
and the computational domain is given.
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According to the employed method the coordinates of the grid points in the physical domain are
defined by solving the following set of partial differential equations [29,30]:

∇ ·
(

ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ = 0, (10)

∇ · ∇η = 0, (11)

which upon application of the finite element methodology assume the form

∫∫ (
ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ · ∇Midrdz = 0, (12)∫∫

∇η · ∇Midrdz = 0, (13)

where Mi are the biquadratic Lagrangian basis functions. In the above equations the integral terms
that the divergence theorem produces are omitted in order to weakly impose orthogonality of the grid
lines in the boundaries. The first equation produces the η curves which must be nearly perpendicular
to the interface, whereas the second equation generates the ξ curves which are nearly parallel to the

interface and are prescribed so that they follow its deformation. Introduction of the term

√
r2
ξ +z2

ξ

r2
η+z2

η

allows the η curves to intersect the interface almost orthogonally, while ε1 is an empirical parameter
that ranges between 0 and 1 and controls the extent of mesh smoothness versus its orthogonality. Its
value in each problem is defined by trial and error and in our case is set to 0.1.

Apart from the elliptic transformation, the appropriate boundary conditions must be introduced.
In any boundary where the coordinate is known, the corresponding equation for the grid is not
written. Instead, the value of the coordinate is imposed as an essential boundary condition. In the
boundaries where we need to control the node distribution the penalty method is applied.

The full details regarding the numerical method and the mesh generation procedure as well as
the performed benchmark tests and the grid size independency of the results can be found in paper
I. In all simulations presented in Sec. IV the time step was set to 0.01, although smaller time steps
(up to 0.001) were also tested to ensure the accuracy of the results. As far as the grid is concerned,
we used 80–100, 200, and 80–100 elements in regions I–III of z direction respectively, whereas
80–120 elements were employed in the r direction [see Fig. 2(a)]. Regions I–III are defined along
the z direction in order to enforce parallelism of the η lines with respect to the wall in the physical
domain [20].

IV. RESULTS AND DISCUSSION

In this section we focus on identifying the mechanism that facilitates and controls the trapping
procedure of contrast agents. In this context, we investigate the manner in which their response
pattern is influenced by the proximity of a rigid wall, the properties of the protective shell, and
the acoustic excitation. Regarding shell properties we focus on the response on lipid shells that
are characterized by relatively large resistances to bending and volume compression, kB/(χR2

0) ≈
0.1, PstR0/χ = O(1), based on shell characterization studies via static interrogation [31]. Pertain-
ing to the properties of the acoustic disturbance they are selected so that we operate in the high
radial, Re = ρω f R2

0/μ � 1, and O(1) translational, ReT = ρU2R0/μ, Reynolds numbers while
remaining below the threshold for shape mode excitation in order to avoid shell destablilization and
breakup. In Table I the parameter range investigated in the present study is provided as well as the
amplitude thresholds for shape mode excitation for each case, according to stability analysis [18].
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TABLE I. Amplitude thresholds for parametric mode excitation as a function of the shell viscoelastic
properties and sound amplitude. The microbubble stress free radius is set to R0 = 3.6 μm, the bending
resistance to kB = 3 × 10−14 N m, the interfacial tension σ to 0.051 N/m, and the Poisson ratio to 0.5. Bold
ε’s indicate critical amplitude thresholds for given set of shell parameters.

χ (N/m) kB (N m) μs (kg/s) f (MHz) εcr (P2) εcr (P3) εcr (P4) εcr (P5) εcr (P6) εcr (P7) εcr (P8)

0.12 3 × 10−14 120 × 10−9 1.7 6.6 5 4.5 3.5 2.95 2.6 2.55
0.24 3 × 10−14 60 × 10−9 1.7 2.2 3.4 1.75 2.05 2.25 2.2 2.45
0.24 3 × 10−14 120 × 10−9 1.7 5.45 4.75 4.3 3.45 2.85 2.5 2.5
0.24 3 × 10−14 120 × 10−9 3.4 13.5 6.35 9.6 5.6 6.95 7.3 5.95
0.24 3 × 10−14 300 × 10−9 1.7 – 19.5 12.55 10.7 4.1 3.45 3.15
0.48 3 × 10−14 120 × 10−9 1.7 4.65 4.1 3.85 3.15 3.3 2.25 2.25
0.24 6 × 10−14 60 × 10−9 1.7 2.3 3 3.4 2.5 3.6 3.4 3.7
0.24 12 × 10−14 60 × 10−9 1.7 2.5 2.6 3.3 4.5 5 5.9 6.9

A. Effect of sound properties and initial distance

We consider a typical coated microbubble that is initially spherical with a radius of R0 =
3.6 μm, coated with a shell that is stress free at static equilibrium with area dilatation modulus
χ = 0.24 N/m, bending modulus kB = 3 × 10−14 N m, and shell viscosity μs = 60 × 10−9 kg/s.
The protective shell is assumed to obey the Mooney-Rivlin constitutive law with the degree of
softness b set to zero [21,27]. The surface tension σ is set to 0.051 N/m, the polytropic ideal gas
constant to γ = 1.07, the surrounding liquid is assumed to have the properties of water, and the
far field static pressure is taken to be the standard ambient pressure of 1 atm. Figure 3 presents

FIG. 3. Temporal evolution of (a) bubble shape and (b) breathing P0, translational P1 modes, and shape
mode decomposition; the initial bubble radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ =
0.24 N/m, and kB = 3 × 10−14 N m; the initial distance from the wall is set to zc0 = 6; an acoustic disturbance
of forcing frequency f = 1.7 MHz and sound amplitude ε = 2 is imposed.
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simulations of the dynamic response of this particular microbubble for an initial distance from the
wall of zc0 = 6 and a sound amplitude of ε = 2. It essentially reproduces Fig. 6 from paper I where
the dynamic response of the same microbubble was examined before it reaches the wall. In the
latter study it was found that, before the bubble is trapped on the wall, it is accelerated towards it
as a result of the secondary Bjerknes forces, mainly during compression. In the same time frame
the secondary Bjerknes force FB is balanced by viscous drag from the surrounding fluid FD, and
the average speed of the center of mass is initially proportional to the inverse of the square of the
distance from the wall, as shown in paper I of the present study, with the dependence shifting to the
inverse distance from the wall as the latter is approached by the bubble:

FB = 2πρδ2
oω

2
f R4

0

(
R0

2〈z′
c〉

)2

= FD = cD

2
ρ〈U ′〉2

πR2
0 (14)

with the drag coefficient, cD, obeying a law pertaining to a no-slip interface [32,33] for Re � 1
when the translational Reynolds ReT � 1:

cD = 24

ReT

[
1 + 0.15Re0.687

T

]
, ReT ≡ ρU2R0

μ
. (15)

In the above formulas δo denotes the maximum dimensionless radius excursion from equilibrium,
ReT is the translational Reynolds number, 〈z′

c〉 is the dimensional distance from the wall, and 〈U ′〉
is the translational velocity of the bubble center of mass, both averaged over a period of the volume
pulsation. Due to the nature of the Bjerknes force 〈U ′〉 exhibits a quadratic variation with time as
can be gleaned from Fig. 3 where the time evolution of P0 and P1 is shown, Fig. 3(b). Since the
forcing frequency ω f is used as the characteristic time scale, t /(2π ) provides a rough estimate of the
number of periods that have elapsed in terms of the imposed sound field, especially as t increases.
Wall proximity instigates bubble deformation that is primarily represented by the gradual growth
of P2 and P3 as the distance from the wall decreases, due to the Bjerknes bubble/wall interaction.
Furthermore, the translating microbubble acquires a prolate shape due to excessive compression at
the equator region in response to the viscous drag, which becomes more intense as the distance from
the wall decreases, that causes a buildup of the shell viscous stress in the vicinity of the south pole
thus relaxing the compressive elastic strain that develops in the latter region in response to the liquid
overpressure.

The above response pattern is halted as the bubble reaches the wall in the sense that the
translational motion is decelerated while the bubble interface reverts from prolate to oblate, as
illustrated by the shapes in Fig. 3(a) and the time evolution of the amplitudes of shape modes shown
in Fig. 3(b). The shape of the interface in Fig. 3(a) is illustrated in terms of the axial cylindrical
coordinate z and the Cartesian coordinate x = rsph cos θ ; rsph, θ, ϕ denote spherical coordinates
with ϕ set to 0 in Fig. 3(a). In the present study we focus on the behavior of the microbubble
during the phase of its motion in which the bubble performs trapped pulsations in the immediate
vicinity of the wall. Figure 4 illustrates the latter response pattern. In fact, as can be gleaned from the
mode decomposition in Fig. 4(a) the radial and translational pulsations of the bubble are in phase,
with the microbubble exhibiting minimum distance from the wall, i.e., maximum P1 amplitude,
when it achieves maximum compression, i.e., maximum absolute P0 amplitude. Furthermore, in
this phase of the pulsation a lubrication pressure is established in the region between the bubble
south pole and the wall where a maximum overpressure on the part of the liquid gradually develops,
Figs. 4(b) and 4(d). It is this lubrication pressure that now balances the Bjerknes force, rather than
the viscous drag as was the case during acceleration towards the wall [20], thus resisting further
advancement of the microbubble towards the wall. This is also illustrated in Figs. 4(b) and 4(c) and
Figs. 4(d) and 4(e) obtained at the time instants pertaining to maximum compression and expansion
respectively, during which the liquid overpressure along the axis of symmetry is reversed in favor
of the pole region adjacent to the wall rather than away from it, especially in the expansion phase
of the pulsation. Eventually, after a few cycles of oscillation an equilibrium is established between
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FIG. 4. (a) Zoom-in on the shape mode evolution during trapped oscillations; interfacial distribution of
(b), (d) pressure, and (c),(e) viscoelastic stresses, at maximum compression and expansion respectively during
trapped pulsations; the initial bubble radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ =
0.24 N/m and kB = 3 × 10−14 N m; the initial distance from the wall is set to zc0 = 6; an acoustic disturbance
of frequency f = 1.7 MHz and sound amplitude ε = 2 is imposed.

Bjerknes attraction and the lubrication pressure that is generated. At the same time interval the shell
interface is flattened in the region near the wall signifying the onset of significant shell compression
and bending, in response to the point force exerted on it by the lubrication pressure.

The bubble is thus trapped on the wall where it performs pulsations with an average distance from
it that is less than 100 nm. This behavior is evident from Figs. 3(b) and 4(a) where a steady pulsation
is registered of modes P0 and P1 as well as of the shape modes during this phase of the bubble
response. When trapped oscillations of the microbubble take place, growth of shape modes, e.g.,
P2, P3, P4, P5, P6, P7, occurs in a subharmonic fashion during both the expansion and compression
phases of the pulsation, Fig. 4(a), since the bubble remains in the vicinity of the wall and exhibits
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deformation throughout its pulsation. The maximum overpressure in favor of the surrounding liquid
that occurs in the south pole region near the wall, Figs. 4(b) and 4(d), signifies the lubrication effect
that arises in the near wall region which, averaged over a period of the pulsation, is responsible for
balancing the Bjerknes force and halting the bubble translation while determining the extent of the
flattened shell region, as will be seen in more detail in the following. The lubrication pressure is
locally balanced by the transverse shear stress resultant q, Figs. 4(c) and 4(e), that arises due to shell
bending and leads to a flattened shape; hence a more appropriate terminology for this effect would
be elastolubrication. The compressive elastic stresses that develop in the south pole region due to
liquid overpressure are attenuated due to the onset of shell viscous stresses, Figs. 4(c) and 4(e).
Furthermore, at maximum expansion and away from the wall region the bubble interface exhibits a
positive overpressure in favor of the enclosed gas that causes expansion of the shell which acquires
maximum elongation near the equator, Figs. 4(d) and 4(e). This is expected during the expansion
phase because liquid is forced to leave the two poles and move towards the equator where a local
minimum in the liquid pressure is established. As a result the elastic stresses acquire a maximum
in the equator region, in order to balance the overpressure in the interior of the bubble, where
elongation takes place, Fig. 4(e), hence the oblate shapes registered in the simulation, Fig. 3(a),
and the negative sign of the amplitude of P2, Fig. 4(a), during trapped pulsations. Overall, during
trapped pulsations and at maximum expansion and compression, bending and elastic stresses form
the dominant balance with overpressure in the wall vicinity and far from the wall, respectively, and
this determines the degree of shell deformation.

Next, the above simulation is repeated for a smaller initial distance from the wall and the same
properties of the acoustic excitation, i.e., ε = 2, ω f = 2π1.7 MHz, and zc0 = 4. Figures 5(a) and
5(b) depict the results of the simulations in terms of the evolution of the bubble shape and its
mode decomposition. The microbubble exhibits the same pattern of initial acceleration due to the
secondary Bjerknes forces until it reaches the rigid boundary in which case it performs trapped
pulsations with the lubrication pressure balancing Bjerknes forces. Once the bubble reaches the
vicinity of the wall the onset of oblate shapes is captured that are dominated by P2 and P3, mainly in
the expansion phase of the pulsation during which the lubrication effect is maximized, as opposed
to prolate shapes that prevailed at larger distances from the wall, mostly in the compression phase
during which bubble deformation is more intense. Growth of higher shape modes takes place in
the phase of trapped pulsations in this case as well, albeit in a subharmonic manner as opposed to
harmonic resonance that was the case far from the wall, Fig. 10 in paper I, due to the decrease of
the breathing mode frequency with decreasing wall distance. The same distinction in the dynamic
pattern is exhibited in the case with zc0 = 6, Fig. 7 in paper I vs Fig. 4 in the present paper.
Nevertheless, parametric shape mode excitation always remains subdominant to growth of P2 and P3

due to wall interaction; see also the zoom in on the growth of shape modes during trapping provided
in Fig. 5(c). The shape of the bubble during trapping, Fig. 5(a), is hardly distinguished from the one
obtained for a larger initial distance from the wall, Fig. 3(a), signifying the same order of magnitude
of the secondary Bjerknes force and the resulting deformation at trapping. Consequently, the bubble
speed and force at the onset of trapping do not depend significantly on the initial distance, for fixed
shell and sound properties, and it will be sufficient to evaluate them by starting the simulation with
the bubble initially located at a relatively small dimensionless distance, e.g., zc0 ≈ 2, in order to
minimize the time required to simulate the entire process. It should also be stressed that in both
cases, zc0 = 6 and zc0 = 4, the bubble is finally trapped on roughly the same distance from the wall,
zc ≈ 0.75, and exhibits the same order of magnitude of flatness in the near wall region. This is also
manifested in the evolution and magnitude of the shape modes, Figs. 5(b) and 5(c), that exhibit the
same pattern as in Figs. 3(b) and 4(a) despite the fact that the bubble reaches the wall, i.e., within
less than one bubble radius from the wall, within a different time frame that is on the order zc0

2. This
signifies the inverse distance dependence of the center of mass average speed as the microbubble
approaches the wall predicted by the balance between secondary Bjerknes force and viscous drag
provided in Eqs. (14) and (15) during the phase of accelerating motion of the microbubble towards
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FIG. 5. Temporal evolution of (a) bubble shape, (b) breathing P0, translational P1 modes, and shape mode
decomposition, and (c) zoom-in on the shape mode evolution during trapped oscillations; the initial bubble
radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m and kB = 3 × 10−14 N m;
the initial distance from the wall is set to zc0 = 4; an acoustic disturbance of frequency f = 1.7 MHz and
sound amplitude ε = 2 is imposed.
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FIG. 6. Interfacial distribution of (a),(b) pressure, (c),(d) shell viscoelastic stresses, and (e),(f) liquid
viscous tangential stresses when the volume pulsation crosses from compression to expansion and vice
versa, respectively, during trapped pulsations; the initial bubble radius is R0 = 3.6 μm; shell properties
μs = 60 × 10−9 kg/s, χ = 0.24 N/m and kB = 3 × 10−14 N m; the initial distance from the wall is set to
zc0 = 4; an acoustic disturbance of frequency f = 1.7 MHz and sound amplitude ε = 2 is imposed.

the wall. Based on the latter balance we can write 〈U 〉 ∼ �〈zc〉
�t ∼ 1

�〈zc〉 → �t ∼ �〈zc〉2 ∼ z2
c0 for a

large enough initial distance; see also Fig. 8 in paper I that is obtained for a relatively large initial
distance from the wall, zc0 = 6.

The stress distribution along the shell at maximum compression and expansion during trapped
pulsations is also in agreement with the prediction obtained for a larger initial distance in
Figs. 4(b)–4(e), with shell bending and elastic strain forming the dominant balance with liquid
lubrication pressure in the south pole region and gas-liquid overpressure in the bulk of the shell,
respectively. Overall, the lubrication pressure resists Bjerknes attraction during this phase of the
bubble pulsation. In addition, Figs. 6(a)–6(d) illustrate the distribution of internal and liquid pressure
at the interface as well as of the elastic stresses at the time instants for which the volume pulsation
crosses from compression to expansion and vice versa, respectively; corresponding shapes are
provided in Fig. 5(a). It should be stressed that Fig. 5(a) only contains a snapshot corresponding
to the passing from compression to expansion (t = 293), as the shape of the interface is almost
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FIG. 7. (a),(b) Interfacial distribution of tangential and normal velocities when the volume pulsation
crosses from compression to expansion and vice versa, respectively, (c)–(f) velocity profile during maximum
expansion, maximum compression, and when the volume pulsation crosses from compression to expansion and
vice versa, respectively, during trapped pulsations; the initial bubble radius is R0 = 3.6 μm; shell properties
are μs = 60 × 10−9 kg/s, χ = 0.24 N/m and kB = 3 × 10−14 N m; the initial distance from the wall is set to
zc0 = 4; an acoustic disturbance of frequency f = 1.7 MHz and sound amplitude ε = 2 is imposed.

identical when the opposite motion takes place. In these two time instants pertaining to Figs. 6(a)
and 6(c) [Figs. 6(b) and 6(d)], the breathing mode pulsation acquires maximum positive (negative
speed). This can also be gleaned by the distribution of the tangential and normal velocity along the
shell-liquid interface shown in Figs. 7(a) and 7(b). Both velocity components are positive (negative)
in Fig. 7(a) [Fig. 7(b)], signifying the tendency of the bubble to expand (contract) and translate away
from (towards) the wall and this can be verified by simple inspection of the mode decomposition in
the zoom-in provided in Fig. 5(c) that exhibits the same pattern. As can be gleaned from these plots,
the shape of the bubble remains mostly spherical away from the wall, where viscous shell stresses
along with surface tension and gas or liquid overpressure dominate the normal force balance of
shell equilibrium. Elongational (compressive) viscous shell stresses develop, Fig. 6(c) [Fig. 6(d)],
in order to balance the positive (negative) overpressure of the bubble interior, Fig. 6(a) [Fig. 6(b)],
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FIG. 8. Temporal evolution of (a),(c) bubble shape and (b),(d) breathing P0, translational P1 modes, and
shape mode decomposition, when the sound amplitude ε is set to 1.and 1.7, respectively; the initial bubble
radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m and kB = 3 × 10−14 N m;
the initial distance from the wall is set to zc0 = 2 and the acoustic disturbance is at a forcing frequency of
f = 1.7 MHz.

corresponding to the situation with positive (negative) shell velocity, Fig. 7(a) [Fig. 7(b)]. In the
vicinity of the wall, bending stresses develop in conformity with the pressure distribution in order
to counteract Bjerknes attraction to the wall. The purely elastic strain remains subdominant in
these time instants with bending and viscous shell stresses forming the dominant balance with
overpressure, near the south pole facing the wall and the bulk of the shell, respectively, based on
the normal force balance. On the other hand, according to the tangential force balance viscous
stresses develop in the liquid that surrounds the shell and follow variations of shell viscous stresses
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TABLE II. Translational velocity at a distance 1.2 from the wall for different
sound amplitudes; shell parameters are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, kB =
3 × 10−14 N m; the acoustic disturbance is at a forcing frequency of f = 1.7 MHz.

ε δ0 U

1 0.087 0.0054
1.7 0.147 0.0159
2 0.205 0.0196

in the bulk of the shell and as the contact region is approached, whereas they follow variations in
the transverse shear q in the contact region. Figure 6(e) [6(f)] provides indicative profiles of liquid
shear stress along the shell interface, illustrating a shear force that pushes (pulls) liquid out of (into)
the gap; in order to compare against the shell viscous stresses the shear due to liquid viscosity is
multiplied by 1/Re. The gap region is formed in the region below the flattened part of the interface
when the microbubble performs trapped pulsations.

An important aspect of the bubble pulsation during trapping is the state of motion in the fluid
which is characterized by a weak pressure driven flow, Figs. 7(c) and 7(d) during maximum
compression and expansion while developing an oscillatory Stokes shear layer with zero mean
velocity in the wall vicinity, Figs. 7(e) and 7(f), when the shell velocity becomes maximum, positive,
or negative; see also Figs. 7(a) and 7(b). The distribution of tangential and normal velocity along
the shell-liquid interface for the time instants pertaining to maximum expansion or compression is
not provided as it is much weaker and results in a weak Poiseuille type flow arrangement, Figs. 7(c)
and 7(d). The situation with maximum positive or negative shell velocity is provided in Figs. 7(a)
and 7(b), which illustrate a region of zero normal velocity near the axis of symmetry in the region
next to the wall. It is the same region where shell flattening takes place and the oscillatory pressure
driven and shear flow patterns appear, Figs. 7(c)–7(f), with an alternating direction that is dictated
by the frequency of the volume pulsation. The oscillatory part of the motion averages out to zero
over the forcing period and there is no indication of a streaming motion or the appearance of any
kind of vortex formation. The same is true for the fluid region away from the wall that exhibits the
same kind of oscillatory behavior following the volume pulsation with the fluid moving away from
or towards the contact region with the wall during transition from compression to expansion and
expansion to compression, respectively.

In order to assess the effect of sound amplitude on the process of microbubble acoustic trapping
in the vicinity of the rigid wall we repeat the above simulation for smaller sound amplitudes, i.e.,
ε = 1.7 and 1, and a shorter initial distance zc0 = 2 to minimize computational cost. The dynamic
response pattern that is obtained in this fashion is illustrated in Fig. 8 indicating a similar trend
as in Figs. 3 and 5, especially regarding the time evolution of the shape mode decomposition
which is dominated by P2 and P3 in the manner previously described. The shape that is acquired
by the microbubble while performing trapped pulsations varies with the sound amplitude, in the
sense that it becomes progressively more flattened in the region around the south pole as the sound
amplitude increases; see also the last two shapes in Figs. 3(a), 8(a), and 8(c) corresponding to the
time instants of maximum expansion and compression, respectively. Furthermore, the average speed
of the bubble center of mass tends to increase for increasing sound amplitude. More specifically, the
Bjerknes force depends quadratically on the sound amplitude; see also Eq. (14). In addition, and
as ReT increases, the viscous drag force may vary linearly or quadratically with the translational
velocity, see also Eq. (15), which in its turn increases quadratically or linearly with respect to the
sound amplitude ε, or δo in terms of the radial pulsation, in order to maintain the balance with
Bjerknes force. This is corroborated by numerical evaluation of the translational speed slightly
before trapping is achieved, as shown in Table II where the translational velocity that corresponds to
the simulations of Figs. 5(b), 8(b), and 8(d) is reported. For small ε values the average translational
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TABLE III. Dimensionless time t1 required for the bubble to reach the wall as a function of sound
amplitude; shell parameters for the case of acoustic frequency 1.7 MHz are μs = 60 × 10−9 kg/s, χ =
0.24 N/m, kB = 3 × 10−14 N m, and for the case of 3.4 MHz χ = 0.24 N/m, μs = 120 × 10−9 kg/s, and
kB = 3 × 10−14 N m; the initial bubble radius is R0 = 3.6 μm and the initial distance from the wall is set
to zc0 = 2.

f = 1.7 MHz f = 3.4 MHz

ε δ0 t1 ε δ0 t1

1 0.087 172 3 0.045 259.6
1.7 0.147 64.75 4 0.06 152.7

velocity is relatively small and this favors a nearly quadratic dependence with ε or δ0, whereas as
the sound amplitude increases ReT increases as well and a quadratic dependence of drag force with
respect to the translational velocity emerges which reflects in an almost linear dependence of 〈U 〉
with ε or δ0. A similar result was obtained in paper I regarding the dependence of translational
velocity 〈U 〉 on the average distance from the wall 〈zc〉, where an inverse distance dependence was
registered for ε set to 2; see also Fig. 8 of paper I.

It should also be stressed that the wall suppresses parametric mode excitation and allows for
trapped oscillations adjacent to the wall up to a threshold amplitude ε ≈ 2, which is slightly larger
than the threshold ε ≈ 1.7 for parametric mode excitation obtained by stability analysis for a freely
pulsating contrast agent ignoring viscous effects in the surrounding liquid.

An important relevant issue is raised as to what can be done in order to facilitate the trapping
procedure for greater disturbances. In an effort to investigate this possibility we repeat the above
simulations, but for twice as large an external frequency which is now set to 3.4 MHz and a
larger shell viscosity μs = 120 × 10−9 kg/s. Figure 9 presents the response pattern captured by the
simulations for this case with increased sound amplitude ε that is set to 3 and 4. Linear stability
analysis predicts an amplitude threshold for parametric mode excitation on the order of 4, see
also Table I, for this parameter range and this trend is corroborated by the simulations shown in
Fig. 9, where trapping of the bubble is now captured for a disturbance with an amplitude as large
as ε = 4. In fact, by increasing the external frequency and shell viscosity the volume and shape
pulsations become less intense due to the increased combined effect of shell viscosity. As a result,
the secondary Bjerknes force is decreased and translation of the center of mass takes place at a lower
speed as predicted by the dominant force balance in Eq. (14). Thus, ReT is relatively small and the
drag force depends linearly on the average bubble translational velocity which in its turn depends

quadratically on the sound amplitude, i.e., U ≡
�

〈zc〉 ∼ δ2
o with δo denoting the amplitude of radial

motion. Consequently the dimensionless time required to reach the wall, for fixed forcing frequency
and initial distance from the wall, is inversely proportional to δ2

o as can be gleaned by examining
the time evolution of P1 in Figs. 8(b) and 8(d) and Figs. 9(b) and 9(d); see also Table III where t1
denotes the time needed for the bubble center of mass to become 〈zc〉 ≈ 1.

In both Figs. 8 and 9 the pattern of trapped pulsation characterized by in phase volume and
center of mass pulsations is recovered. Furthermore, the motion is purely oscillatory without an
acoustic streaming component, as expected due to the in phase radial and lateral pulsation of the
microbubble [13]. Throughout the present study no parameter range was identified for which a
significant phase lag was observed. This response pattern is partly due to the shell material that
can sustain a significant amount of shear, as opposed to a conventional bubble that obeys a zero
shear interfacial condition, but also due to the manner in which the translation of the center of
mass is triggered by the wall presence, and finally due to the fact that the sound amplitude was
not raised high enough to generate significant inertia effects that might detune the volume and
center of mass pulsations. The sound amplitude was maintained at a relatively small level in order
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FIG. 9. Temporal evolution of (a),(c) bubble shape and (b),(d) breathing P0, translational P1 modes, and
shape mode decomposition, when the sound amplitude ε is set to 3 and 4, respectively; the initial bubble
radius is R0 = 3.6 μm; shell properties are χ = 0.24 N/m, μs = 120 × 10−9 kg/s, and kB = 3 × 10−14 N m;
the initial distance from the wall is set to zc0 = 2 and the acoustic disturbance is at a forcing frequency of
f = 3.4 MHz.

to exclude the possibility for parametric shape mode excitation that would lead to bubble breakup
and compromise the accuracy of the simulations. Therefore, we operate at a small steady streaming
Reynolds, Rest = δ2

oRe1/2 � 1 in which case the analysis in [13] is valid and, in the absence of a
significant phase difference, no steady streaming component was captured in the flow domain.

B. Time average force balance and the effect of shell properties

The evolution of the time average force balance over a period of the pulsation is also of
interest in order to assess the mechanism that determines the shell configuration leading to the
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FIG. 10. (a) Schematic diagram of the time averaged force balance in the near wall region of the microbub-
ble, (b) values obtained for FB√

χkB
numerically and comparison with the function 16�/R0, and (c) numerical

obtained static calculations and fitting of the results [31].

onset of steady pulsations. Since a steady pulsation is indeed eventually achieved the force that
counteracts the secondary Bjerknes force has to be identified. In the nearly flat part of the
shell (contact region) that lies in the vicinity of the wall the dominant balance is between the
lubrication pressure and the variation of transverse shear stress resultant, ∂q/∂s, that arises as
the shell bends in order to withstand the lubrication pressure that develops in the surrounding
liquid in order to counteract the secondary Bjerknes force that pushes the bubble towards the
wall.

As was seen in the previous subsection, during maximum expansion in the shell region away
from the wall a combination of capillary pressure and elastic strain balance gas overpressure across
the shell giving rise to an oblate shape, while bending and viscoelastic strain balance lubrication
pressure in the contact region. On the other hand, during the phase of maximum interfacial speed,
corresponding to the volume pulsation crossing from expansion to compression and vice versa, away
from the contact region it is viscous elastic stress that balances overpressure relegating elastic strain
and bending stresses to a subdominant effect. The flow arrangement in that region is oscillatory
and does not contribute to the time-averaged force balance. Tangential viscous stresses from the
surrounding liquid acquire a local maximum, Figs. 6(e) and 6(f), as they have to balance viscous
elastic stresses generated on the shell, Figs. 6(c) and 6(d), according to the tangential force balance.
This balance holds until the transition region that joins the bulk of the shell with the contact region,
Fig. 10(a). In fact, it is the extent of viscous tangential shear from the surrounding liquid that is
required to balance viscous elastic stresses that determines the film thickness in the contact region,
as will be seen in the next subsection, Sec. IV C. In the contact region lubrication pressure and
bending and elastic strain dominate the normal force balance. In particular, it is the extent of bending
that is required to balance lubrication pressure that determines the average contact length during a
period of the forcing, whereas variations in the bending strain q determine viscous shear in the liquid
occupying the gap between the shell and the wall.

Consequently, the flow around the bulk of the shell is nearly ideal with viscous stresses in the
liquid passively following the viscous stresses on the shell whereas in the gap region liquid shear
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generates a Stokes layer type flow parallel to the wall. Therefore, the total force acting on the
microbubble in the direction of the axis of symmetry is provided by the integral of the pressure on
its interface:

FT ez =
∫∫

A1

Pez · ndA1 +
∫∫

A2

Pez · ndA2

=
∫∫

A1

Pez · ndA1 +
∫∫

A2

Pez · ndA2 +
∫∫

A2

PId ez · ndA2 −
∫∫

A2

PId ez · ndA2

→ FT ez =
∫∫

A1

Pez · ndA1 +
∫∫

A2

PId ez · ndA2 +
∫∫

A2

(P − PId )ez · ndA2

= FB(t )ez +
∫∫

A2

(P − PId )ez · ndA2, (16a)

PId = Pst + PAc(r, z; t ), (16b)

with FT denoting the total force and A1, A2 the bulk of the shell and the contact region, respectively;
see also Fig. 10(a). In Eq. (16a) the integral of the pressure around the microbubble interface
obtained for ideal flow conditions is taken to provide the Bjerknes force, see also the analysis in
Sec. II B in paper I, while the ideal pressure PId in the gap region between the shell and wall is
decomposed into the static Pst and acoustic pressure PAc components. Upon averaging Eq. (16a)
over a period of the pulsation during the phase of trapped pulsations the total force averages to
zero as well as the average of the acoustic component of the pressure in the gap region where an
oscillatory flow pattern is established. Therefore, the Bjerknes force is balanced by the integral of
the liquid overpressure with respect to the static pressure along the contact region of the shell, i.e.,
the lubrication pressure:

−〈FB(t )〉ez = −FBez ≈
〈∫∫

A2

(P − Pst )ez · ndA2

〉
= −〈FL(t )〉ez → FB = FL (16c)

FLdenotes the lubrication force averaged over a period of the forcing. As was discussed in the
previous section, abrupt changes occur in the shell curvature due to wall proximity and lubrication
pressure is determined by variations in transverse shear q; see also the normal force balance in
Eqs. (4) and (5). Assuming that bending takes place within the narrow contact region where the
radial and axial length scales are such that the shell curvature matches that in the bulk of the shell,
the dominant normal force balance in that region reads in dimensionless form

P − PG ∼ 1

r

∂ (rq)

∂S
∼ kB

ρω2
f R5

0

∂4h

∂r4
, z = h(r; t ) (17)

with h denoting the thickness of the layer between the wall and the bubble. As a result, the time
average force balance reflects the shell equilibrium and flow arrangement in the gap region at the
time instants for which the volume pulsation crosses from expansion to compression and vice versa;
see also Figs. 6 and 7. This is a similar situation to the case of static interrogation of a spherical
elastic shell that is being squeezed by a rigid plate [31]. When the bubble reaches the wall the shell
bends and forms a nearly flat contact region in order to develop the shear stress resultant q that is
necessary to counteract the lubrication pressure that halts the motion of the center of mass. The total
force that results in this fashion is the integral of the lubrication pressure that develops in the contact
region which is counteracted by variations in the transverse shear q (elastolubrication pressure), the
internal gas pressure, and the surface tension from the bulk of the shell. Upon introducing Eq. (17)
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in Eq. (16c) and integrating we obtain

FL = 2π

∫
S

PrdS − 2π�
1

We
sin θ ∼ 2π

∫
S

(
1

r

∂ (rq)

∂S
+ PG − Pst

)
rdS − 2π�

1

We
sin θ

≈ 2π�q + (PG − Pst )π�2 − 2π�
1

We
sin θ (18)

with S, �, θ , denoting the arc length, the length, and angle that matches the contact region with
the bulk of the shell, respectively; see also the schematic in Fig. 10(a). For not very large values
of the exerted force and for shells whose elastic properties are such that parameter kB/(χR0

2) is
not very small, buckling does not take place and the static shell reaction is mainly exerted at the
edge of the flat contact region, as demonstrated by Reissner [34] for a shallow shell. The second
term in the integrand of Eq. (18) represents the contribution to the force from the region underneath
the contact area while the third term represents the contribution from the bulk of the shell onto the
contact region due to its surface tension. In this context, upon balancing bending and stretching in
the part of the shell that is in “contact” with the wall, the transverse shear q is calculated at the edge
of the contact region and the shell deformation � is seen to vary almost linearly with the applied
force. To illustrate this force balance we plot in Fig. 10(b) the secondary Bjerknes force evaluated
via Eq. (14) setting the distance from the wall to twice the bubble radius, i.e., zc = 2, for all the
cases discussed in this section for which trapped pulsations were obtained, against the numerically
calculated dimensionless deformation � of the south pole of the shell averaged over a period of
the forcing. � is defined as the difference in the distance of the south pole location from the center
of mass, measured at stress free conditions and during trapped pulsations in the manner typically
employed in shell compression experiments. As can be gleaned from Fig. 10(b) the cloud of points
collapses in the line that is closely fitted by Eq. (19a) below:

FB√
χkB

≈ 16
�

R0
, (19a)

FB√
χkB

≈ 8
�

R0
+ 2.5π

σR0√
χkB

(
�

R0

)3/2

, (19b)

PG − P′
st ≈ 2σ

R0
. (19c)

The factor 16 is different from the factor 8 obtained by Reissner because in our case there
is an additional stiffness of the shell, apart from the area dilatation and bending moduli χ , kB,
due to surface tension σ = 0.051 N/m that represents the resistance of the shell against volume
compression. In fact, upon calculating the static response of a microbubble with the size and elastic
properties of the ones examined in the present study, squeezed between two rigid planes, we obtain
the same result in the force deformation curve [31], as illustrated in Fig. 10(c). In particular, in the
range of small deformations a nearly linear response is recovered with the slope modified due to
surface tension, Eq. (19a). For larger deformations a slightly nonlinear static response pattern is
recovered, O(�/R0)1.5, in the manner described by Eq. (19b). The 3/2 type dependence results by
adding to the Reissner response that of a conventional bubble that is statically interrogated in the
same fashion [31]. It represents the force required to overcome the resistance to compression due to
interfacial tension, as the oblateness of the deformed microbubble increases.

Furthermore, the extent of the contact region � scales like �/R0 = (�/R0)1/2 so that the transition
region, where bending and membrane stresses balance each other, forms an O(1) curvature to
match the bulk of the shell that remains nearly spherical. Upon introducing the Bjerknes force
from Eq. (14) in the above linear force deformation law and grouping terms so that dimensionless
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variables appear we obtain
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ρω2
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0

χ
, (20)

with coefficient C depending on the relative importance of the different shell stiffnesses,
σ 2R2

0/(χkB), and the extent of deformation. In particular, when �/R0 ∼ 0.1, σ = 0.051 N/m,
kB = 3 × 10−14 N m and χ varies between 0.12, 0.24, and 0.48 N/m, then C(σ 2R2

0/(χkB)) varies
between 19, 16, and 14. Hence the cloud of points obtained by the simulations illustrated in Fig. 10,
pertaining to the average deformation during trapped pulsations, conform well with the linear
dependence described by Eq. (19a). The progressive increase in the contact length with increasing
sound amplitude can also be gleaned by simple inspection of the bubble shape during the phase of
trapped pulsations as illustrated in Figs. 5(a), 8(a), and 8(c).

Based on the above analysis we next consider shells with different area dilatation modulus
in order to determine how shell elasticity directly contributes to the trapping procedure. In this
case also parametric stability controls the dynamic response in terms of the amplitude threshold
for steady trapped pulsations to be achieved. As can be gleaned from Table I the phase diagram
pertaining to parametric mode excitation is not significantly affected by varying the area dilatation
modulus, with the exception of the case with area dilatation χ set to 0.48 N/m for which case the
amplitude range for trapped pulsations is reduced, in agreement with stability analysis. Furthermore,
as was stressed in the previous subsection, the ratio between stretching and bending resistance,
kB/(χR2

0), is such that buckling does not take place. Hence, gradually increasing the area dilatation
from χ = 0.12 N/m to 0.24 and 0.48 N/m while maintaining the rest of the shell parameters, as
well as the forcing frequency the same, produces a very similar dynamic response with essentially
the same amplitude window for trapped pulsations, ε < 2.5.

Upon comparing the equivalent graphs shown in Figs. 11(b), 11(d), and 11(f) the time duration
required for the bubble to reach the wall, in terms of the dimensionless time t/(2π ) that essentially
measures the number of volume pulsations, scales with the square of the amplitude δo of radial
pulsations during saturation. Shell properties affect the Bjerknes force in Eq. (14) through the am-
plitude δo of the radial pulsation, whereas forcing frequency ω f is used to make time dimensionless.
Nevertheless, when ε = 2 the time required for trapping to be achieved is significantly lower for
the largest χ value, χ = 0.48 N/m, reflecting a larger speed of approach when a harder shell is
interrogated, as can be gleaned by numerically evaluating the speed of the center of mass from the
time evolution of P1 in Figs. 11(b), 11(d), and 11(f). This is contrary to the expected reduction
in the amplitude of the radial pulsation for a more rigid shell. The reason for this behavior is
illustrated by the volume pulsations depicted in Fig. 11 which are seen to be more intense as the area
dilatation increases. Upon calculating the eigenfrequency for volume pulsations of this shell type it
turns out that ω0/(2π ) ≈ 0.55, 0.75, and 1.05 MHz when χ = 0.12, 0.24, and 0.48, respectively.
Consequently the latter shell is closer to resonance and this entails larger radial oscillations, i.e.,
larger amplitude δo, and therefore larger translational velocity. As a result, in the latter case the
parameter range is close to the threshold for parametric mode excitation and trapping could not be
very clearly captured.

Shell deformation and the prolate and oblate shapes obtained during the acceleration and trapped
phases of the pulsation are similar in all three cases examined in Fig. 11. During trapped pulsations
the bubble shape becomes flattened in the vicinity of the wall with the softer shell, χ = 0.12 N/m,
exhibiting a similar flat region with the case for χ = 0.24 N/m despite its smaller resistance to
elongation and compression, Figs. 11(a), Fig. 11(c). This is a result of the similar amplitude of
volume pulsations in the two cases illustrated in Figs. 11(b) and 11(d). The large amplitude of radial
pulsation coupled with the shell properties entering the force deformation relation in Eqs. (19) and
(20) also explain the tendency for the harder shell, χ = 0.48 N/m, to develop a larger flattened area
as it approaches the wall, Fig. 11(e), despite its larger resistance to elongation and compression.
The varying intensity of radial pulsations at saturation δo is directly associated with the variation of
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FIG. 11. Temporal evolution of (a),(c),(e) bubble shape and (b),(d),(f) breathing P0, translational P1

modes, and shape mode decomposition when the area dilatation modulus χ is set to 0.12, 0.24, and 0.48
N/m, respectively; the initial bubble radius is R0 = 3.6 μm; shell properties are μs = 120 × 10−9 kg/s and
kB = 3 × 10−14 N m; the initial distance from the wall is set to zc0 = 2; an acoustic disturbance of frequency
f = 1.7 MHz and amplitude ε = 2 is imposed.
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respective resonance frequencies. The one pertaining to χ = 0.48 N/m lies closer to the forcing,
as discussed in the previous paragraph, and this reflects in the amplitude δo of its radial pulsation
and is also evident in the shape of the microbubble as it pulsates in the wall vicinity, that exhibits a
longer contact area in the manner described by Eq. (20).

The effect of shell bending resistance on the trapping procedure and its final shape is examined
next. To this end, we consider the contrast agent that was acoustically interrogated in Figs. 5 and 7,
and we repeat the simulation for two cases with increased bending resistance, kB = 6 × 10−14 N m
and kB = 12 × 10−14 N m. The numerical results for both cases are presented in Fig. 12 and it is
obvious that no significant impact on the translational velocity of the bubble, and therefore on the
time needed for the bubble to reach the wall, is observed. This is expected since the amplitude of
the radial pulsation as well as the resonance frequency do not depend on the bending resistance
of the shell. The evolution of the shape modes is also similar and very close to the pattern that
is registered for the bubble with the smaller bending resistance (kB = 3 × 10−14 N m) shown in
Fig. 5. Finally, based on the critical threshold for the onset of parametric mode excitation presented
in Table I, the shells that are characterized by higher bending resistance are more stable in that
respect and consequently can be trapped for larger sound amplitudes. Indicative profiles of the
radial velocity are also shown for the case corresponding to Fig. 12(b), kB = 12 × 10−14 N m, at
maximum translational velocity of the microbubble towards (away from) the wall captured at the
time instants of transition from expansion to compression and vice versa, Fig. 12(e) [Fig. 12(f)]. The
pattern of mixed shear and pressure driven flow out of and into the gap formed between the shell
and wall is recovered in the manner described in the context of Figs. 6 and 7. The pressure driven
aspect of the flow is enhanced as the axis of symmetry is approached in comparison with Figs. 7(e)
and 7(f), since the gradients in the bending strain are more important, see also Eq. (17), due to the
larger bending resistance. At all cases, however, the periodic nature of the oscillating Stokes layer
persists in the gap region and no indication of steady streaming was captured in the simulations as
expected based on the in phase pulsation of the microbubble volume and center of mass.

Pertaining to the degree of flattening during trapped oscillations as a function of shell properties,
Fig. 10(b) is enriched with the relevant points on the [�/R0, FB/(χkB)1/2] plane as calculated via
the above simulations with varying area dilatation and bending modulus (shown in Figs. 11 and
12) and it is seen that they conform with the Reissner type time-averaged response discussed in
the previous subsection. In particular, the degree of flattening and shell deformation agree with the
prediction of Eqs. (19), with the length of the contact region decreasing with the square root of area
dilatation and bending resistance.

C. Effect of shell viscosity

In order to assess the effect of shell viscosity on the dynamics of bubble motion towards the
wall we consider the same contrast agent as in Figs. 4 and 5 while setting shell viscosity to
120 × 10−9 kg/s, i.e., the viscosity used in the simulations depicted in Fig. 11. In this case stability
analysis regarding parametric mode excitation predicts P7 and P8 as the dominant eigenmodes with
an amplitude threshold ∼2.5; see also Table I for the amplitude threshold of the major unstable
modes. In this context, simulations recover the pattern of trapped pulsations depicted in Figs. 3–9,
for the forcing frequency set to 1.7 MHz and the above amplitude range predicted for stability
against parametric mode excitation, thus extending the range obtained for a lower shell viscosity.
Figures 13(a)–13(d) clearly illustrate this pattern when ε = 2 and 2.2 for the initial distance from
the wall set to zc0 = 2. The same final state of trapped pulsations is obtained for a larger initial
distance, e.g., zc0 = 4, with the time required for the bubble to reach the wall being quadrupled
since the speed of the bubble center of mass nearly varies with the inverse distance from the wall,
see also Eqs. (14) and (15) and Fig. 8 from paper I, for a relatively small ReT . In the same context,
for fixed initial distance zc0, the force required for trapping the bubble increases with the square
of the sound amplitude and so does the speed by which the bubble approaches the wall as the
amplitude ε increases. This also reflects in the shape of the microbubble during trapped pulsations,
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FIG. 12. Temporal evolution of (a),(b) breathing P0, translational P1 modes, and shape mode decomposition
when the bending resistance is set to kB = 6 × 10−14 N m and kB = 12 × 10−14 N m, respectively, (c) bubble
shape at maximum compression t = 285.2 for the different kB values, (d) zoom-in of the shape close to
the wall at t = 285.2, (e),(f) indicative radial velocity profiles below the contact region at the time instants
corresponding to transition from expansion to compression and vice versa when kB = 12 × 10−14 N m; the
initial bubble radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s and χ = 0.24 N/m; the initial
distance from the wall is set to zc0 = 4; an acoustic disturbance of frequency f = 1.7 MHz and amplitude
ε = 2 is imposed.

see Figs. 13(a) and 13(c), that exhibits a gradual elongation around the south pole facing the
wall.

Upon averaging during one period of the pulsation we recover the balance between secondary
Bjerknes force FB and lubrication pressure that develops in the contact region of the shell around
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FIG. 13. Temporal evolution of (a),(c),(e) bubble shape and (b),(d),(f) breathing P0, translational P1 modes,
and shape mode decomposition when μs = 120 × 10−9 kg/s and ε = 2, 2.2, and 3.0, respectively. Temporal
evolution of (g) bubble shape and (h) breathing P0, translational P1 modes, and shape mode decomposition
when μs = 300 × 10−9 kg/s and ε = 3; the initial bubble radius is R0 = 3.6 μm; shell properties are χ =
0.24 N/m and kB = 3 × 10−14 N m; the initial distance from the wall is set to zc0 = 2; an acoustic disturbance
of frequency f = 1.7 MHz is imposed.
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its south pole due to variations of the transverse shear q, expressed by Eqs. (19) and (20), once the
appropriate amplitude δo for the radial pulsation is employed for the calculation of FB via Eq. (14).
In fact, the corresponding points in the (FB/

√
kbχ,�/R0) plane obtained by the above described

simulations with increased shell viscosity, shown in Figs. 13(a)–13(d), 13(g), and 13(h), fall along
the curve shown in Fig. 10(b).

On increasing the amplitude of the external disturbance to ε = 3 for the same forcing frequency
f = 1.7 MHz we recover the process of dynamic buckling. When the initial bubble distance from the
wall is set to zc0 = 4 the bubble shapes remain almost spherical for the most part of its translation
towards the wall and this facilitates growth of the unstable modes P6, P7, and P8 as predicted by
stability analysis; see also Table I. At the same time and as the bubble approaches the wall the
pattern of energy transfer between the above modes and P2 and P3 is also present. However, this
process is not sufficient to sustain the integrity of the bubble and simulations have to eventually
stop due to growth of high modes. Reducing the initial distance to zc0 = 2 enhances the process of
energy transfer from the higher shape modes to P2 as the bubble approaches the wall, Fig. 13(f).
However, as the bubble starts pulsating in the vicinity of the wall, buckling of the interface takes
place that is signified by dimple formation, in order to alleviate elastic stresses that develop on
the shell; see also Fig. 13(e). This further destabilizes the shell and the simulations have to stop at
the point of maximum volume compression. Increasing shell viscosity to 300 × 10−9 kg/s, for the
same initial distance zc0 = 2, allows for trapped pulsations to be captured for an acoustic disturbance
with amplitude ε = 3, as illustrated in Figs. 13(g) and 13(h). This is also in agreement with stability
analysis that predicts a similar threshold, ε ≈ 3.1, for parametric mode excitation for the set of
shell parameters employed in Figs. 13(g) and 13(h); see also Table I. It should be stressed that
it is strictly a dynamic divergence effect, or “dynamic buckling,” that instigates the onset of shape
modes and destabilizes the process of trapping and this is corroborated by the findings of parametric
stability analysis that validate the amplitude threshold for such an effect to arise. In fact, simulations
of the static response of a coated microbubble with the same elastic properties as the one that is
acoustically interrogated in the present study, subject to a similar static pressure distribution, reveal
that buckling does not take place. In particular, as the force increases, static calculations reveal
that volume compression instead of bending absorbs the extra energy added to the shell [31] thus
allowing formation of a longer flat contact region.

In order to illustrate the effect of shell viscosity on the flow arrangement in the region right
below the microbubble, Figs. 14 and 15 contain plots of the elastic stresses and interfacial velocity
along the shell-liquid interface, as well as indicative radial velocity profiles for the case depicted
in Figs. 13(a) and 13(b). Three time instants during a period of trapped pulsations are selected
corresponding to maximum volume expansion, Fig. 14, and the time instants at which volume
pulsation acquires maximum speed as the bubble moves from compression to expansion and vice
versa, Fig. 15. The latter two time instants are characterized by large positive (negative) normal
and tangential velocities, Fig. 15(a) [Fig. 15(b)], that signify departure (approach) of the bubble
center of mass with respect to the wall. The tangential and normal velocities along the interface are
very small during maximum expansion and compression of the radial motion, hence they are not
shown. Nevertheless, the pattern of pressure driven flow moving in and out of the gap between the
shell and wall during maximum expansion and compression, illustrated by Fig. 7 for lower shell
viscosity, is recovered in this case, e.g., Figs. 14(a)–14(c) pertaining to maximum expansion. In
particular, liquid overpressure across the shell interface balances variations in transverse shear q
in the flattened contact region, see also Eq. (17) and Figs. 14(a) and 14(b), which, in the absence
of significant viscous shell stresses, generate a quadratic velocity profile signifying pressure driven
flow out of the gap, Fig. 14(c). The case with maximum compression exhibits a similar behavior as
in Fig. 7(d) with the pressure driven flow directed towards the gap, hence it is not shown here in the
interest of brevity.

The relative strength of the pressure driven flow as a result of variations in the shear stress
resultant on the shell, in comparison with the shear driven flow due to viscous shell stresses, is
a key feature of the flow arrangement in the gap region underneath the contact region of the shell. A
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FIG. 14. Interfacial distribution of (a) pressure, (b) viscoelastic stresses, and (c) radial velocity profile dur-
ing maximum expansion during trapped pulsations; shell properties are μs = 120 × 10−9 kg/s, χ = 0.24 N/m
and kB = 3 × 10−14 N m; the initial bubble radius is R0 = 3.6 μm; the initial distance from the wall is set to
zc0 = 2; an acoustic disturbance of frequency f = 1.7 MHz and sound amplitude ε = 2 is imposed.

nearly shear driven flow pattern was captured by the simulations in the transition region between the
bulk and contact region of the shell, Figs. 15(c) and 15(d). In fact, at the time instants of transition
from compression to expansion and vice versa, pressure drop across the shell-liquid interface is
balanced by oscillating viscous stresses in the bulk of the shell which, given the large pressure drop
in the equator region, generates a maximum in the oscillating tangential and normal velocities as
well, Figs. 15(a) and 15(b). The pressure drop and viscoelastic stress distribution along the interface
provided in Figs. 15(e) and 15(f) and Figs. 15(g) and 15(h) illustrate this pattern, also obtained in
Figs. 6, 7, and 12. As the flow enters the contact region pressure drop develops due to variations in
the shear stress resultant q and this results in a mixed shear and pressure driven flow pattern out of
and in the gap during expansion and compression of the microbubble, respectively.

In particular, the flow pattern in the transition region between the flattened region and the bulk
of the shell is determined by the balance between viscoelastic shell stresses and viscous shear in the
film; see also Figs. 15(g) and 15(h) and Figs. 15(i) and 15(j) showing the stress distribution along
the interface due to shell viscoelasticity and liquid viscosity. Viscous shear is maximized in that
region as can also be inferred by the tangential velocity distribution, Figs. 15(a) and 15(b). Thus the
terms in the tangential force balance scale as

∂τs

∂ ŝ
+ ksq ≈ 1

Re

∂ û

∂ ẑ
, ẑ ≡ z′

�
, ŝ ≡ S′

�
, r̂ ≡ r′

�
, û, ûs ≡ u′, u′

s

ω f �
, ẑ = ĥ(r̂, t ) ≡ h′

�
(21)

with û signifying the scaled radial velocity in this region. Since on average during a period of the
pulsation transverse shear and purely elastic strain balance each other, on balancing viscous stresses
in the shell and the liquid we obtain an estimate for the film thickness in the contact and transition
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FIG. 15. Interfacial distribution during trapped pulsations of (a),(b) normal and tangential interfacial ve-
locity, (c),(d) radial velocity profiles, (e),(f) interfacial distribution of pressure, (g),(h) interfacial distribution of
viscoelastic stresses, and (i),(j) interfacial distribution of liquid tangential stresses, when the volume pulsation
crosses from compression to expansion and from expansion to compression, respectively; the initial bubble
radius is R0 = 3.6 μm; shell properties μs = 120 × 10−9 kg/s, χ = 0.24 N/m and kB = 3 × 10−14 N m; the
initial distance from the wall is set to zc0 = 2; an acoustic disturbance of frequency f = 1.7 MHz and sound
amplitude ε = 2 is imposed.
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∂ z̄
= O(1),

z̄ = ẑ
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in the above relation ûs denotes the tangential velocity of the shell along the interface with constant
C bearing the significance ascribed to it in Eq. (20). Upon introducing indicative values of the natural
and geometric parameters involved in the above scaling we obtain an estimate for the length scale of
the film thickness that is on the order of 20–50 nm, which conforms with the calculated gap between
the shell and rigid wall underneath the south pole, averaged over a period of trapped oscillation. In
the context of the situations presented herein the above pattern is manifested in the increased viscous
shell stresses and smaller film thickness as shell viscosity increases. When the shell viscosity is
smaller, Figs. 5 and 7, the amplitude of the radial motion δo is larger, and consequently the tangential
velocity of the shell-fluid interface is larger and this is manifested in the oscillatory, yet more intense,
shear driven type flow that is exhibited in the gap region beneath the south pole. This can also be
verified by inspection and comparison of the radial velocity profiles obtained in the flattened region
of the shell shown in Figs. 7(e) and 7(f), Figs. 12(e) and 12(f), and Figs. 15(c) and 15(d).

Clearly the above trends will also be affected by the relative importance of the three shell
stiffnesses, i.e., between area dilatation, bending resistance, and shell viscosity, χ/(μsω f ),
kB/(μsω f R2

0). In fact, for relatively small kB, kB/(μω f R3
0) � 1, the strength of the Poiseuille flow

is weak and the flow in the contact region is essentially that of an oscillating Stokes layer with zero
average velocity, Fig. 7. As shell viscosity decreases or bending resistance increases the pressure
driven flow due to variations in the transverse shear q becomes more important and is captured in
the radial velocity profile, as in Figs. 12(e) and 12(f). However, a more accurate asymptotic analysis
is required to corroborate the above findings and is left for a future study. Nevertheless, no average
acoustic streaming component was observed in the simulations performed in the present study since
the streaming Reynolds was small and the radial and translational oscillations remained in phase
[13].

The above flow arrangement is similar to the response pattern obtained for liquid drops that
approach each other at constant speed when they are dispersed in another viscous liquid [35,36],
where interfacial mobility plays an important role in film drainage and stability. In particular, when
a surfactant laden drop is investigated [36], the effective elasticity of the interface that results due
to the variation of surface tension prevents dimple formation thus favoring elongation. The drop
interface forms a dimple pointing towards the drop interior when the lubrication overpressure in the
region between the two colliding drops exceeds a certain threshold. In the present study it is shell
viscosity and area dilatation that control the extent of interfacial mobility and the resulting contact
length during trapped pulsation, whereas bending resistance allows for bending and compression
in the presence of external overpressures thus preventing buckling and breakup at relatively large
pressure amplitudes.

V. CONCLUSIONS

In the present study we numerically investigate the dynamic response of an encapsulated mi-
crobubble in a wall restricted flow due to an acoustic disturbance in the far pressure field, when
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viscous and inertia forces in the surrounding fluid and viscoelastic stresses in the protective shell
are accounted for. Coupling a superparametric finite element methodology with an elliptic mesh
generation scheme [19,20] allowed us to capture the dynamic response of coated microbubbles
until trapping is achieved in the form of a steady pulsation at a very low average distance from the
wall.

The bubble is seen to perform volume pulsations while translating towards the wall due to the
secondary Bjerknes force with a velocity that is produced by the almost instantaneous equilibrium
between Bjerknes forces and viscous drag from the surrounding liquid [20,33]. Provided we remain
below the threshold for parametric shape mode excitation to take place, the microbubble accelerates
and eventually reaches the wall where its motion is halted due to the onset of elastolubrication
pressure that provides the reaction to the Bjerknes force. It arises in the nearly flat contact region
beneath the south pole of the bubble and forces the shell to compress and bend. The integral of
the lubrication pressure along the contact region is counteracted by the local reaction forces due
to the internal gas pressure in the contact region, the transverse shear stress resultant at the edge
of the contact region, and surface tension due to the bulk of the shell; see also the schematic
provided in Fig. 10(a) and the balance in Eq. (18). On averaging over a period of the forcing
the force that counteracts the secondary Bjerknes force and produces trapped pulsations at a very
small distance from the wall is obtained. It is a Reissner [34] type force balance, complemented
with the additional shell stiffness due to gas compressibility and surface tension, that produces
deformation and a contact length in the nearly flat region around the south pole, as a function of
shell bending, area dilatation modulus, and interfacial tension. In the limit of small deformations,
� � R0, the expression FB/

√
χkB ∼ 8(�/R0) + 2.5π

√
σ 2R2

0/(χkB)(�/R0)3/2 describes the force
balance that is satisfied by the numerically obtained force vs deformation curve, Fig. 10, as the shell
and acoustic disturbance parameters vary. The reduction in contact length with increasing bending
and area dilatation moduli is captured by Eq. (20) that is obtained by introducing the expression for
Bjerknes force, Eq. (14), in the above force deformation law.

During trapped pulsations away from the wall pressure drop across the shell is balanced by
surface tension along with elongational (compressive) elastic stresses when the bubble achieves
maximum (minimum) volume, and by elongational (compressive) viscous elastic stresses during
the expansion (contraction) phase of the pulsation at which the shell velocity is maximized. In
particular, when it achieves maximum expansion a local pressure minimum arises in the liquid in
the equator region, towards which fluid leaving the two poles is directed. Consequently maximum
tensile stresses are achieved at the equator region that are manifested in the oblate shape acquired by
the microbubble as it pulsates in the vicinity of the wall. This type of asymmetric pulsation occurring
perpendicular to the wall between prolate and oblate shapes has also been reported experimentally
[8], indicating a major wall effect that is robustly reproduced by the present simulation.

The fluid motion during trapped pulsations is oscillatory and no acoustic streaming component
was captured during the simulations since the translational and volume pulsations are in phase
[13]. In fact, immediately after the shell volume pulsation acquires maximum positive (negative)
speed the center of mass translates away (towards) the rigid wall. In the thin film that occupies the
region between the flattened shell and rigid wall the flow pattern is a combination of an oscillatory
pressure driven flow, due to pressure variations that arise as a result of variations in the transverse
shear stress resultant on the shell, and an oscillatory Stokes layer due to the tangential velocity of the
mobile shell-liquid interface. They are both averaged to zero over the period of the forcing with the
pressure driven flow being present in the contact region throughout the pulsation, and the shear flow
mainly in the transition region that joins the bulk of the shell with the contact region. The tangential
force balance in the latter region provides an estimate for the film thickness, Eqs. (22a) and (22b),
where the parameter μs/(μR0) that controls the balance between viscous shell and liquid stresses is
introduced in the estimate. In this fashion film thicknesses that are on the order of tens of nm’s are
predicted, in agreement with the simulations, and very large instantaneous values of wall shear that
are on the order of 104 and 105 N/m2.
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A parametric study was also conducted in order to examine the influence of the shell viscoelastic
properties and acoustic excitation characteristics on the above described dynamic response pattern.
It was thus demonstrated that increasing shell viscosity and forcing frequency has a beneficial effect
in the trapping procedure as it extends the acceptable range in sound amplitude for stable pulsations
without excessive growth of shape modes, by reducing the amplitude of volume pulsation. At the
same time, however, it is of great importance to accurately calculate the strength of instantaneous
wall shear and to assess the possibility, and relevant parameter range, for the onset of acoustic
microstreaming [6,7,13,14], depending also on the shell viscoelastic behavior. Proper choice of the
latter shell properties, the configuration of the flow domain, and the resulting length and degree of
flatness of the contact region, will lead to optimal conditions pertaining to the intensity and duration
of the emerging wall shear and play an important role in the design and optimization of novel
biomedical processes such as sonoporation and contrast assisted drug delivery.
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