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Numerical study of the interaction between a pulsating coated microbubble
and a rigid wall. I. Translational motion
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The dynamic response of an encapsulated bubble to an acoustic disturbance in a wall
restricted flow is investigated in the context of axial symmetry, when the viscous forces
of the surrounding liquid are accounted for. The Galerkin finite element methodology is
employed and the elliptic mesh generation technique is used for updating the mesh. The
bubble is accelerated towards the wall as a result of the secondary Bjerknes forces and
consequently the translational velocity gradually increases in a nearly quadratic fashion as
the bubble approaches the wall. Proximity to the wall affects the resonance frequency that
is seen to be reduced as the initial distance between the bubble and the wall decreases, as
long as the sound amplitude remains below a threshold value that is determined by the onset
of parametric shape mode excitation. While the microbubble remains far from the wall an
overpressure develops in the upstream region that causes flattening and bending of the
shell. However, shell elasticity coupled with viscous shell stresses prevents jet formation.
Thus the bubble remains spherical during the expansion phase of the pulsation and deforms
mainly in the compressive phase, during which most of the translation takes place due
to the reduced added mass effect. As it approaches the wall the maximum overpressure
is moved to the downstream pole region and this generates an excess of viscous shell
stresses during compression that balance compressive elastic stresses. As a result the latter
are attenuated in the downstream region of the shell, in comparison with the bulk of the
shell where they are balanced solely by the cross membrane pressure drop, leading to a
gradually more pronounced prolate bubble shape. Viscous drag due to the surrounding
liquid develops mainly in the bulk of the shell where it is balanced by viscous shell
stresses in the tangential stress balance. Over a period of the pulsation it counteracts the
Bjerknes force that accelerates the bubble, via a force balance that is almost instantaneously
established due to the relatively large shell viscosity. This is in marked difference with the
case of rising gas bubbles that acquire oblate shapes as a result of the balance between
buoyancy and pressure drag. In the case of coated microbubbles the drag coefficient is
seen to obey a law previously obtained for no-slip interfaces for large radial and relatively
small translational Reynolds numbers.

DOI: 10.1103/PhysRevFluids.6.013601

I. INTRODUCTION

The dynamic behavior of encapsulated microbubbles, also known as contrast agents, plays a
key role in novel biomedical applications involving ultrasound, among which the most important
are medical imaging of vital organs and targeted drug delivery. In the former case, gas-filled
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microbubbles are used which are able to enhance the ultrasound backscatter and contrast, in
comparison with the acoustic signal from nearby tissue, thus producing high quality images [1] as
a result of their nonlinear nature as sound scatterers [2]. Targeted molecular imaging has also been
developed [3], whereby specific ligands are attached to the membrane to facilitate the adhesion of
the microbubble to a specific diseased area in order to provide better contrast enhancement. In a
similar fashion, in targeted drug delivery encapsulated microbubbles that carry drugs are attached
to the affected site using an appropriate acoustic disturbance and then ruptured via sonication.
Alternatively, low amplitude oscillations of coated microbubbles are employed for the transport of
large macromolecules towards the cell cytoplasm via generation of transient micropores in nearby
cells [4] or via the acoustic microstreaming process [5,6]. In both situations it is essential to resolve
the dynamics of the bubble motion as it approaches the wall and the details of the flow that develops
in the region between the wall and the bubble shell.

For such flow arrangements experimental studies report that the presence of a nearby boundary
accelerates growth of interfacial instabilities and instigates phenomena such as jet formation and,
finally, collapse of the bubble [7,8]. The latter experimental studies examine the situation with the
coated microbubble pulsating in response to an acoustic disturbance in the vicinity of a boundary.
In this fashion microbubble shapes that are asymmetrically deformed in the direction perpendicular
to the boundary surface were captured [7,8] while jet formation was observed in the compression
[8] and expansion phase of the pulsation [9], respectively. Furthermore, the microbubble was seen
to acquire prolate and oblate shapes on an alternating basis during the pulsation in the vicinity of a
wall [7].

In order to assess the effect of bubble-wall interaction on the potential for wall adhesion and the
onset of trapped pulsations, the translational part of the motion and its impact on bubble velocity,
shape, and resonance frequency needs to be investigated. The latter is also essential in distinguishing
between freely circulating and trapped microbubbles. The translating motion of two pulsating free
bubbles, i.e., without coating, was studied experimentally by Crum [10] as they translate along the
axis connecting their centers of mass due to the scattered pressure field from each other. It was
thus seen that they accelerate towards each other with a speed that varies with the inverse square
of their distance, as a result of an instantaneous balance between secondary Bjerknes force and
Stokes drag obtained for a free surface [11]. The accelerating motion of two interacting bubbles due
to the secondary Bjerknes forces was studied numerically by Pelekasis and Tsamopoulos [12,13]
in the context of potential theory where the validity of the inverse square law was verified as well
as the dependence of the bubble speed on the square of the sound amplitude. The emerging shape
of accelerating free surface bubbles was seen in the latter studies to resemble a spherical cap with
a significantly deformed upstream region. However, simulations could not proceed for very long
times due to the onset of parametric shape mode instabilities which, in the absence of any damping
mechanism, emerged for relatively small sound amplitudes. Ryskin and Leal [14,15] developed a
finite difference method on an orthogonal adaptive mesh in order to solve the Navier-Stokes equation
for the motion of a free bubble of radius R0 inside a Newtonian liquid of density ρ and dynamic
viscosity μ under the action of gravity. They were thus able to capture steadily rising bubbles of
velocity U with increasingly oblate axisymmetric shapes as the translational Reynolds number,
ReT = ρU2R0/μ, increases and more pronounced spherical-cap shapes as the Weber number,
We = 2ρU 2R0/σ with σ denoting the surface tension, increases, especially for not very large Reτ .
Furthermore, the validity of Moore’s prediction for large ReT and small We∼1, i.e., not severely
deformed bubbles, was corroborated. When a particle with a nonslip surface is considered Levich’s
theory and Moore’s correction are no longer valid, Eqs. (1a) and (1b), respectively,

cD ≡ dragforce
1
2ρU 2πR2

0

, cD = 48

ReT
, (1a)

cD = 48

ReT

(
1 − 2.2

ReT
1/2

)
+ O(ReT

−3/2), (1b)
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and experimental [16] as well as theoretical [17] predictions propose an alternative law for the drag
coefficient on a pulsating and translating spherical particle:

cD = 24

ReT

[
1 + 0.15Re0.687

T

]
. (1c)

Equation (1c) constitutes a correction to Stokes’ law that is valid when ReT ∼ O(1) or larger [17]. It
is of interest to examine the dominant components of the force balance as the coated microbubble,
which constitutes a nonslip yet deformable interface, accelerates towards the wall.

Extensive numerical simulations of the dynamic response of coated microbubbles are not
available in the literature, owing largely to uncertainties regarding proper modeling of the shell,
especially in the case of phospholipid shells. Qin and Ferrara [18] developed a lumped parameter
model as a means to incorporate elastic effects, mainly in the surrounding vessel, in order to study
the acoustic response of a coated microbubble that pulsates in a compliant microvessel. They
were thus able to calculate the stresses that develop on the microvessel wall as a result of the
pulsating motion, which was also seen to increase the permeability of the vessel. More recently,
numerical studies were conducted to address the above issues via the boundary integral [19] and the
finite volume [20] method with boundary fitted coordinates, as a means to obtain a more detailed
description of the velocity field in the surrounding fluid but also to calculate the elastic stresses
on the coating. In particular, Liu et al. [20] explored numerically the shape oscillations in an
unbounded flow of an encapsulated microbubble that obeys the Mooney-Rivlin constitutive law
by solving the continuity and the Navier-Stokes equations with the finite volume method using a
boundary fitted coordinate system. They mainly observed subharmonic shape mode excitation when
the forcing frequency was twice the natural frequency of the shape mode, in agreement with previous
predictions based on linear stability analysis [21]. Tsiglifis and Pelekasis [19] performed boundary
integral simulations of pulsating contrast agents, while ignoring viscous effects on the liquid side
in view of the relatively large shell viscosity and the typical small size of encapsulated bubbles.
They captured harmonic and subharmonic shape mode excitation during the compression phase of
the pulsation, for the parameter range predicted by linear stability [21]. This led to saturated shape
oscillations and breakup beyond a certain amplitude threshold. The latter response pattern conforms
with “dynamic buckling,” corresponding to an effect that was identified in [21] as the equivalent of
the Rayleigh-Taylor or collapse instability of free bubbles that arises due to the accelerating motion
of the interface during the rebound of the compressive phase of the microbubble pulsation. The
effect of constitutive law was also examined and it was seen that polymeric bubbles conform well
with neo-Hookean behavior whereas phospholipid shells conform with the strain-softening behavior
except for the phenomenon of “compression only pulsation.” Surface destabilization may also occur
before the minimum bubble radius is attained, for large enough negative velocities during collapse
as was seen in control volume calculations of laser induced cavitation bubbles [22]. In the latter case
interfacial viscosity is not present and very large radial velocities are generated, thus destabilizing
the interface during collapse.

Nevertheless, the degree to which potential flow considerations can sufficiently capture the
dynamic behavior of deforming contrast agents is not fully understood [19]. Hence, in the present
study we investigate numerically the dynamic response of a contrast agent to an acoustic disturbance
in a wall restricted flow when the viscous forces of the surrounding liquid are accounted for.
We focus on capturing the accelerating motion of the microbubble towards the wall in order to
identify the forces that play a key role and control the response. The numerical method that is
used is based on a previous work [23] that studied the response of a coated microbubble to a
step change disturbance in an unbounded flow and is extended in order to take into account wall
presence. Following the latter study, the Galerkin finite element methodology is used and the grid is
constructed via the elliptic mesh generation technique since its superiority was clearly demonstrated
for large interfacial deformations.

This paper is organized as follows: The problem formulation is discussed in Sec. II A, where
the governing equations for the liquid flow are presented along with the ones describing the
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encapsulated bubble. The translational motion of the bubble as it approaches the wall is examined
and the force balance that determines the bubble speed is identified in Sec. II B. In this context
the nature of the so-called secondary Bjerknes forces is analyzed. Next, in Sec. III the numerical
method that has been developed for discretizing the governing equations is outlined and the grid
construction procedure is described via benchmark simulations, when the microbubble is initially
located far from the wall and when it is placed inside a wall restricted flow. In Sec. IV the results of
our simulations are presented and the translational motion of the bubble as it performs volume
pulsations is investigated, focusing on the evolution of the bubble speed and shape as well as
the variation of resonance frequency with decreasing bubble-wall distance. Moreover, the effect
of the wall presence in the energy dissipated due to the liquid and shell viscosity is investigated in
Appendix. Finally, in Sec. V the main conclusions are summarized and directions for future research
are outlined.

II. PROBLEM FORMULATION

A. Governing equations

We are interested in examining the dynamic response to acoustic disturbances of an encapsulated
microbubble in a wall restricted flow and to eventually identify conditions that enhance trapped
pulsations. The microbubble initial radius is R0 and is submerged in a Newtonian liquid of density
ρ and dynamic viscosity μ. We consider a wall restricted flow, we place the bubble at a certain
distance from the wall and investigate the bubble’s response to an acoustic disturbance imposed on
the far pressure field:

P′
∞ = P′

st + P′
dist = P′

st + P′
stε cos (ω f t

′), (2)

with P′
st, P′

dist denoting the dimensional undisturbed and disturbed pressure in the far field, respec-
tively; ε the magnitude; and ω f the frequency of the acoustic disturbance. The initial radius R0

of the bubble is taken as the characteristic length scale of the problem, the external frequency
determines the appropriate timescale as 1/ω f , and the characteristic velocity and pressure scales
are set to ω f R0 and ρω2

f R2
0, respectively. Throughout this paper primed letters signify dimensional

variables.
The problem formulation of a contrast agent microbubble in a wall restricted flow is described via

a cylindrical coordinate system. In order to obtain the governing equations we assume axisymmetric
variations of the bubble shape as well as the liquid velocity and pressure; i.e., no variations are
considered in the azimuthal direction for either the liquid or the bubble. In Fig. 1 a schematic
representation of the flow under consideration is provided with f1 denoting the r coordinate of
the thin shell that coats the bubble.

The flow in the surrounding liquid is governed by the mass conservation and momentum
equations. The liquid is taken to be incompressible in which case the continuity equation and
momentum balance, via the Navier-Stokes equations, read in dimensionless form

∇ · u = 0, (3)

∂u
∂t

+ (u · ∇)u = −∇P + 1

Re
∇ · τ, σ = −PI + 1

Re
τ, τ = ∇u + ∇uT , (4)

where u = (ur, uz, 0) for the cylindrical coordinate system, Re = (ρω f R2
0)/μ is the Reynolds num-

ber of the surrounding liquid flow that compares inertia with viscous forces, σ, τ are the full and
deviatoric stress tensors in the surrounding fluid, and I is the unit tensor. In the above formulation
buoyancy has been neglected owing to the small size of the bubbles and the flow is treated as
incompressible. In order to obtain the deformation of the bubble we use a Lagrangian representation
of the interface by introducing a Lagrangian coordinate ξ (0 � ξ � 1) which identifies the particles
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FIG. 1. A contrast agent in a wall restricted flow.

on the interface. In this manner, every interfacial particle is assigned to a different value of ξ with
ξ = 0 and ξ = 1 corresponding to the south and north poles of the bubble, respectively.

The force balance on the gas-liquid interface reads in dimensionless form(
−PI + 1

Re
τ

)
· n + PGn + ∇s ·

[
τ + qn + 1

We

(
I − nn

)] = 0

constant−−−−−−→
surf tension

(
−PI + 1

Re
τ

)
· n + PGn = −∇s · (

τ + qn
) + 2km

We
n = �F + 2km

We
n, (5)

where n denotes the unit normal vector pointing towards the surrounding fluid and PG is the
pressure of the gas inside the bubble; I, ∇s, km denotes the identity tensor, the surface gradient, and

mean curvature of the bubble’s interface, respectively, whereas We = ρω2
f R3

0

σ
is the Weber number

comparing inertia with capillary forces. Despite its viscoelastic nature a certain amount of surface
tension, σ , is typically assumed for the shell [24–27] as a measure of the isotropic tension that
signifies the degree of exposure of the enclosed gas to the liquid environment. Finally, �F is the
resultant force due to the viscoelastic properties of the membrane that is derived by the surface
divergence of the viscoelastic tension tensor on the membrane surface:

�F =
[

ksτs + kφτφ − 1

r

∂

∂S
(rq)

]
n −

[
∂τs

∂S
+ 1

r

∂r

∂S
(τs − τφ ) + ksq

]
es, (6)

with S denoting the arc length of the interface; τs, τφ the principal elastic tensions; ks, kφ the two
principal curvatures; r, z the cylindrical polar and axial coordinates; and es the tangential unit vector.
q is the transverse shear tension that is obtained from a torque balance on the shell [28,29]:

q = KB

r

∂r

∂S

[
∂

∂r
(rms) − mφ

]
, (7a)

where ms, mφ are the principal bending moments and KB ≡ kB/(ρω2
f R5

0) signifies the relative
importance of bending with respect to inertia. The membrane and bending stresses are defined via
the shell constitutive laws. In particular, the transverse shear q points along the normal vector n in
a surface that is perpendicular to the tangent vector es. Finally, the membrane tensions consist of an
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elastic and a viscous component, i.e.,

τs = τs,el + τs,v, τMR
s = G

3λsλϕ

[
λ2

s − 1

(λsλϕ )2

][
1 + b

(
λ2

ϕ − 1
)] + 2

Res

1

λs

∂λs

∂t
, (7b)

λs = Sξ (t )

Sξ (0)
, λφ = r(t )

r(0)
, (7c)

with λs, λϕ denoting the principal extension ratios and G ≡ χ/(ρω2
f R3

0) and Res ≡ ρω f R3
0/μs

signifying the relative importance of shell dilatation and viscosity with respect to inertia. In contrast
to the previous study by Vlachomitrou and Pelekasis [23] where the 3 d shell viscosity was signified
by μs, SI units in Pa s, in the present study μs denotes the surface shell viscosity, SI units in kg/s,
with μs = 3δμs,3d where δ is the shell thickness. We adopt the Mooney-Rivlin model for the elastic
part with b denoting the degree of shell softness [30] and a linear model for shell viscosity μs

treating the dilatational and shear viscosity of the shell as equal. A more detailed description of
the modeling that is used for the viscoelastic shell of the bubble is given in Tsiglifis and Pelekasis
[19,21,31] and Vlachomitrou and Pelekasis [23].

Besides the force balance, continuity of the liquid and shell velocities on the interface reads as

u = Drs

Dt
, (8)

with rs = rer + zez denoting the position vector of a particle at the interface. At equilibrium a stress-
free state is assumed on the interface of radius R0, where the dimensionless pressure PG inside
the bubble is related to the dimensionless pressure Pst in the far field through the Young-Laplace
equation:

PG(t = 0) = Pst + 2

We
. (9)

The pressure inside the bubble is taken to be uniform due to negligible density and kinematic
viscosity of the enclosed gas. Moreover, heat transfer between the bubble and the surrounding
liquid is assumed to take place quite fast in comparison with the timescale of the phenomena
under consideration. In this context, bubble oscillations are characterized as nearly isothermal and
therefore the bubble pressure is given by

PG(t = 0)V γ
G (t = 0) = PG(t )V γ

G (t ), (10)

with VG denoting the dimensionless instantaneous volume of the bubble, VG(t = 0) = 4π
3 the initial

volume of the bubble, and γ the polytropic constant set to 1.07 for an almost isothermal variation.
The latter value is also close to the ratio between the specific heats of certain ideal gases that are
carried by known contrast agents and undergo adiabatic pulsations during insonation [26,27,31].

B. Radial and translational motion far from the wall

We examine the radial and translational motion of a microbubble that is pulsating in a fluid
subject to an acoustic pressure disturbance. In the early stages of the bubble motion and before it
reaches the wall it performs radial pulsations with Re = ρω f R2

0/μ. Assuming radial symmetry and
invoking linear potential theory for the oscillating bubble, as long as the bubble remains far from
resonance, it soon reaches saturation performing a steady pulsation that is described as follows in
dimensionless form (see also [31]),

P∞ = Pst[1 + ε cos (t )], R(t ) = 1 + RD(t ), RD(t ) � 1, (11)

R̈D +
(

4

Re
+ 4

Res

)
ṘD +

[
3γ

(
2

We
+ Pst

)
− 2

We
+ 4G

]
RD = −εPst cos t, (12)
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where RD is the linear variation of the bubble radius. The above equation admits a particular solution
of the form

RD(t ) = εPst

{
1 − [

3γ
(

2
We + Pst

) − 2
We + 4G

]}
cos t − (

4
Re + 4

Res

)
sin t(

4
Re + 4

Res

)2 + {
1 − [

3γ
(

2
We + Pst

) − 2
We + 4G

]}2

⇒ R′
D(t )

R0
= ε

P′
st

ρR2
0

cos(ω f t ′)
{
ω2

f −
[ 3γ

ρR2
0

(
2σ
R0

+P′
st

) − 2σ

ρR3
0
+4 χ

ρR3
0

]}− sin(ω f t ′)ω f
( 4μ

ρR2
0
+ 4μs

ρR3
0

)
ω2

f

( 4μ

ρR2
0
+ 4μs

ρR3
0

)2 + {
ω2

f − [ 3γ

ρR2
0

(
2σ
R0

+ P′
st

) − 2σ

ρR3
0
+ 4 χ

ρR3
0

]}2
.

(13)

It constitutes the final state of steady pulsation corresponding to the complete linear solution that
reads as

R′
D(t ′) = A′eωr t ′

cos (ωit
′) + B′eωr t ′

sin (ωit
′) + C′ cos (ω f t

′) + D′ sin (ω f t
′), (14)

and emerges after the initial transient has elapsed. C′ and D′ are the dimensional equivalents of the
coefficients of the sinusoidal functions that arise in Eq. (13); they are related to the actual amplitude
of the radial excursion of the microbubble, and strongly depend on the shell properties and the
characteristics of the acoustic disturbance. It can be seen that the amplitude of the radial oscillation
is much smaller than the nominal value of ε corresponding to the pressure disturbance, especially
when the bubble is not excited close to its primary resonance, owing to the shell stiffness and
viscosity; an indicative value for the dimensionless amplitude of RD(t ) is ∼0.15 for the range of
shell parameters employed and a sound amplitude as large as ε = 2. Finally,

ω = ωr + iωi, ωr = −
(

2μ

ρR2
0

+ 2μs

ρR3
0

)
,

ωi =
√[

3γ

ρR2
0

(
2σ

R0
+ P′

st

)
− 2σ

ρR3
0

+ 4
χ

ρR3
0

]
− 4

(
μ

ρR2
0

+ μs

ρR3
0

)2

(15)

signify the damping rate and eigenfrequency for volume pulsations. It can be easily verified that the
type of microbubbles examined in the present study are characterized by a resonance frequency on
the order of 1 MHz and a significant damping rate; hence they achieve saturation quite fast, i.e.,
after a few periods of the radial pulsation.

The force that accelerates the bubble towards the wall is due to the scattered pressure that is emit-
ted by the wall in response to the original pressure wave from the pulsating bubble [6,10,12,13,32],
in the range of validity of potential flow as is the case in the present study. As long as the bubble
center of mass remains relatively far from the wall, dimensional distance z′

c � 2R0, the scattered
pressure from the wall can be approximated by potential theory via the scattered pressure field due
to an image bubble that is located at twice the distance from the original bubble, z′

c, and pulsates in
phase with it [10,32]:

P′ = ρ

r′
d

dt ′ (Ṙ′R′2),
∂P′

∂r′ = − ρ

r′2
d

dt ′ (Ṙ′R′2), r′ = 2z′
c. (16)

Upon ignoring viscous effects, Re 	 1, the force on the original bubble is provided by the integral
of the scattered pressure (nB points towards the bubble interior and er is the radial unit vector
originated at the image bubble and directed towards the bubble that approaches the wall):

F =
∫∫

A′
P′nBdA′ = −

∫∫
A′

P′ndA′ = −
∫∫∫

V ′
∇P′dV ′ r′	R0−−−→

r′=2z′
c

F ≈ ∇P′V ′ = −V ′ ∂P′

∂r′

∣∣∣∣
r′=2z′

c

er = ρ

4π (2z′
c)2 V ′ d

2V ′

dt ′2 er, (17)
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with V ′ denoting the instantaneous bubble volume. Averaging over a period T = 2π/ω f of the
volume pulsation we recover the secondary Bjerknes force:

FB = 〈F〉 = − ρ

4π (2z′
c)2

∫
T V̇

′2dt ′

T
er, V ′ = 4

3
πR′3(t ′), (18)

which is responsible for the bubble motion towards the wall. When the bubble is excited by a small
amplitude acoustic disturbance in the manner shown in Eq. (11), it eventually settles to the above
described saturated pulsation, Eq. (13), with amplitude δoR0 provided by the maximum excursion
from equilibrium. The latter is quite small even for large pressure disturbances, and, consequently,
by linearizing and taking averages over one period of the steady pulsation we recover the classic
expression for the secondary Bjerknes force:

R′ = R0 + R′
D(t ′) → R′

D

R0
≈ 1 + δo cos t, V ′ = 4πR3

0

3
(1 + 3δo cos t ),

FB = −2πρδo
2ω2

f R4
0

(
R0

2z′
c

)2

er, (19)

with the minus sign indicating attraction towards the mirror bubble or the wall. Clearly this is a
second order effect in terms of the sound amplitude and its impact on the bubble motion becomes
evident on a long timescale with respect to the period of the forcing 2π/ω f .

III. NUMERICAL METHODOLOGIES

A. Numerical method

A detailed description of the numerical methodology that is used to simulate the dynamic
behavior of a contrast agent in an unbounded flow when the viscous forces of the surrounding
liquid are accounted for is provided in Vlachomitrou and Pelekasis [23]. In the present study we use
the same numerical approach and we extend it in order to take into account wall presence.

As in the case of the unbounded flow, numerical solution is performed via the Galerkin finite
element methodology with a hybrid scheme that uses two-dimensional (2D) Lagrangian functions
to discretize the surrounding flow field, in conjunction with one-dimensional (1D) cubic splines
for the bubble shape. In the case of an encapsulated bubble the introduction of cubic splines is
necessary because a fourth order derivative arises in the force balance equation through the bending
resistance of the membrane. More specifically, biquadratic and bilinear Lagrangian basis functions
are used for the velocity and the pressure of the liquid, respectively, while cubic spline functions are
employed to discretize the interface. The fully implicit Euler time integration scheme is introduced
in order to make optimal use of its numerical dissipation properties against the growth of short wave
instabilities. In this context, the discretized forms of continuity and Navier-Stokes equations are∫∫∫

Ni∇ · udV = 0, (20)∫∫∫
Mi

∂u
∂t

· ekdV +
∫∫∫

Mi(u · ∇)u · ekdV +
∫∫∫

Mi∇P · ekdV − 1

Re

∫∫∫
Mi∇ · τ · ekdV

= 0, (21)

where Mi, Ni are the biquadratic and bilinear Lagrangian functions, respectively; dV = rdrdzdθ

is the differential volume of integration; and vector ek refers to one of the unit vectors er, ez

corresponding to the components of the differential momentum balance. Upon integrating by parts,
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Eq. (21), the r and z components of the weak formulation of the momentum equation are derived:∫∫
A

[
Mi

[
∂u
∂t

+ (u · ∇)u
]

· ek − P∇ · (Miek) + τ : ∇(Miek)

]
rdrdz

+
∮

�

Mi(−n) ·
(

PI · ek − 1

Re
τ · ek

)
rdS = 0. (22)

The azimuthal angle θ has been integrated out of the above equations due to axisymmetry, essen-
tially generating a two-dimensional geometry to be discretized with a line integral at its boundary.

The continuity of the radial and axial velocity components is imposed as an essential boundary
condition on the interface. Furthermore, since we employ a Lagrangian representation for the shape
of the bubble we need two equations for each particle, ξ , to determine the two coordinates r(ξ ,t)
and z(ξ ,t). For this reason the normal and tangential force balances are employed and are discretized
using the one-dimensional cubic splines Bi as basis functions:∫

Bi

(
−PI + 1

Re
τ

l

)
· ndS +

∫
BiPGndS −

∫
1

We
Bi2kmndS +

∫
Bi�FdS = 0, (23)

where the integration length is defined as dS =
√

r2
ξ + z2

ξ dξ in terms of the Lagrangian variable
ξ . Finally, on the far field the imposed pressure disturbance is prescribed, while the velocity
components are set to zero. In all simulations presented in this paper the far field was considered
to be 10 rest radii away from the bubble centroid. In order to ensure the validity of the velocity
boundary condition on the outer edge we also performed simulations for larger distances as well
that led to the same results.

The nonlinearity of the problem is treated with the Newton-Raphson method and the following
linear system of equations is solved during each iteration:

J · dC = R, (24)

with R denoting the residual vector, dC the vector of the incremental variation of the unknowns
during each iteration, and J the Jacobian matrix of the system. Vector dC includes the two
components of the velocity and the liquid pressure, the gas pressure and the shape of the bubble.
The Jacobian matrix J contains the finite element discretization of the momentum and continuity,
Eqs. (19,21), where the fully implicit Euler time integration scheme is implemented, along with
the tangential and normal force balances at the interface, Eqs. (23), and the isothermal law for the
pressure variation in the bubble, Eq. (10). In this fashion, the Jacobian matrix assumes the form of
an arrow with the gas pressure and the bubble shape occupying the arrow columns.

In order to reduce computational time we have chosen to solve the problem iteratively with
the GMRES (generalized minimum residual) with right or left preconditioning [33] rather than a
direct method. The preconditioning is performed using incomplete lower upper (ILU) factorization.
The implementation of ILU and GMRES is performed using SPARSKIT software [34]. It is the
experience of the authors that the use of GMRES reduces computational time dramatically and
indeed that was seen to be the case in the present study as well. As an extra effort to further reduce
computational time we avoid construction and incomplete LU factorization of the Jacobian matrix
for every time step. The number of time steps over which the Jacobian matrix can remain unaltered
without compromising the efficiency of the algorithm depends strongly on the intensity of the shape
deformation of the bubble and was seen to vary considerably between 1 and 500 time steps.

As an overall numerical procedure, at each time step the numerical solution is performed in
two stages. In the first stage a Newton-Raphson method is applied in order to solve simultaneously
for the velocity and pressure fields along with the shape of the interface. In the second stage, a
separate Newton-Raphson iterative procedure follows the above time integration process for the
implementation of the elliptic mesh generation scheme and the construction of the updated grid. In
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FIG. 2. Schematic representation of the physical and the computational domain for the case of a bubble in
wall restricted flow.

the latter stage the shape of the bubble is already known and is imposed as an essential condition
for the solution of the elliptic equations that provide the grid coordinates.

B. Grid construction

The elliptic mesh generation technique is employed for the grid construction. In Vlachomitrou
and Pelekasis [23] the elliptic transformation was employed, with the boundary conditions that
Dimakopoulos and Tsamopoulos [35] proposed, based on the previous work of Christodoulou
and Scriven [36] and Tsiveriotis and Brown [37], and appropriate changes were made in order
to make it suitable for the simulation of contrast agents in an unbounded flow. More specifically,
in the latter studies Lagrangian basis functions are used for the flow as well as for the shape of
the interface. The force balance equation is inserted as a natural condition in the flow equations
and upon solution of the flow problem the kinematic condition is solved together with the elliptic
equations to obtain the shape of the interface and the mesh. However, when coated microbubbles
are simulated we introduce a superparametric scheme for the mesh construction that combines the
2D Lagrangian basis functions for the flow field with the 1D cubic splines for the location of the
interface [23]. In this fashion discretization of the interfacial force balance equations is facilitated
as they contain fourth order derivatives in the form of the bending stresses, with the spline functions
interpolating the radial and azimuthal coordinates of the microbubble. At the same time continuity
of the radial and azimuthal velocity components is imposed as an essential boundary condition. With
this methodology we are able to simultaneously solve for the velocity and pressure fields along with
the shape of the interface. Subsequently, the resulting shape is used as an essential condition to
construct the mesh. The above procedure offers a significant advantage in that it allows for accurate
discretization of the bending stresses and use of greater time steps compared to the original method.

Pertaining to mesh generation in the present study we use the method that was developed in
Vlachomitrou and Pelekasis [23], extended in order to take into account wall presence. To this end,
we divide the physical domain into three regions: region I is defined as the area between the rigid
wall and the lower pole of the bubble, region II includes the area that is defined by the two poles
of the bubble, and region III occupies the area between the upper pole and the far field. In this
manner we can control the number of elements that is used in each of the three subdomains in the z
direction. Thus, in regions I, II, and III we use N1 × M, N2 × M, and N3 × M elements, respectively,
with N1, N2, N3, and M denoting the number of Lagrangian elements used in each one of the above
defined subdomains and in the radial direction, respectively. In Fig. 2 a schematic representation of
the physical and computational domain that is generated in this fashion is shown.

In this context, we introduce in each region the transformation (r, z, t )
J−→ (η, ξ, t ) with J =

rηzξ − zηrξ signifying the Jacobian of the mapping (0 � η � 1 and −1 � ξ � 0, 0 � ξ � 1, and
1 � ξ � 2 in regions I, II, and III, respectively). Thus, every particle occupying position (r, z) in

013601-10



NUMERICAL STUDY OF THE INTERACTION BETWEEN A …

a particular time instant is mapped onto a grid point with coordinates (η, ξ ). Subsequently, the
coordinates of the grid points in the physical domain are defined by solving the following set of
partial differential equations [35,37]:

∇ ·
(

ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ = 0, (25)

∇ · ∇η = 0. (26)

The first equation produces the η curves which must be nearly perpendicular to the interface,
whereas the second equation generates the ξ curves which are nearly parallel to the interface and

are prescribed so that they follow its deformation. Introduction of the term

√
r2
ξ +z2

ξ

r2
η+z2

η
allows the η

curves to intersect the interface almost orthogonally, while ε1 is an empirical parameter that ranges
between 0 and 1 and controls the extent of mesh smoothness vs its orthogonality. Its value in each
problem is defined by trial and error and in our case is set to 0.1. Upon application of the finite
element methodology Eqs. (25) and (26) assume the form

∫∫ (
ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ · ∇Midrdz = 0, (27)∫∫

∇η ·∇Midrdz = 0, (28)

where Mi are the biquadratic Lagrangian basis functions. In the above equations the integral terms
that the divergence theorem produces are omitted in order to weakly impose orthogonality of the
grid lines in the boundaries.

Apart from the elliptic transformation, the appropriate boundary conditions must be introduced.
In any boundary where the coordinate is known, the corresponding equation for the grid is not
written. Instead, the value of the coordinate is imposed as an essential boundary condition. In the
boundaries where we need to control the node distribution the penalty method is applied, as it is
necessary to use this condition on the n-grid lines that start from the two poles of the bubble and
evolve parallel to the wall; see also Chatzidai et al. [38]. In order to apply the penalty method
Eq. (27) becomes

∫∫ (
ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ ·∇Midrdz + L

∫
∂Mi

∂ξ

√
w1r2

ξ + w2z2
ξ ds = 0, (29)

where L is a penalty parameter of order L = O(103 − 105) and w1,w2 weights that are normally
chosen with trial and error. The two weights must satisfy the equality w1 + w2 = 2 while in the case
that w1 = w2 = 1 the boundary nodes are equally distributed.

A problem that arises when the bubble reaches close to the wall pertains to the fact that the n lines
that are parallel to the wall tend to pull away from it, Fig. 3(a). In order to overcome this problem
we need to split the entire domain into two different subdomains in the manner shown in Fig. 3(b).
In this case, we first construct the grid for the domain between z = 0 and z = 4 by considering three
different regions in this area with the above described procedure. Then we construct the grid in
the domain between z = 4 and z = 8—the latter axial position is treated as the far field—using the
values that were calculated from the construction of the first subdomain in line z = 4 as essential
boundary conditions.
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FIG. 3. (a) Construction of the grid in one domain and (b) construction of the grid in two separate
subdomains.

C. Benchmark simulations and code validation

In order to validate our methodology, we first consider the case of an encapsulated bubble that
is initially placed at a relatively large distance between the initial center of mass of the bubble and
the wall, zc0 → ∞, see also Fig. 2(a), and thus the response pattern is expected to exhibit mild
deviations from the unbounded flow arrangement. The microbubble is coated by a phospholipid
shell that is subjected to an acoustic disturbance in the far field. Indicative values pertaining to
soft phospholipid shells are employed, that have previously been used for performing dynamic
simulations with the boundary element method [19], and have been cross-checked against relevant
studies from the literature of contrast agents [26,39]. The bubble is initially of spherical shape
with a radius of R0 = 3.6 μm, and the shell is stress free with viscosity μs = 60 × 10−9 kg/s, area
dilatation modulus χ = 0.24 N/m, and bending modulus kB = 3 × 10−14 N m, while obeying the
Mooney-Rivlin constitutive law with the degree of softness b set to zero [26,31]. The surface tension
σ is set to 0.051 N/m, the polytropic ideal gas constant to γ = 1.07, the surrounding liquid is
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FIG. 4. Phase diagram for a contrast agent with μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 ×
10−14 N m subject to an acoustic disturbance with forcing frequency f = 1.7 MHz.

assumed to have the properties of water, and the far field static pressure is taken to be the standard
ambient pressure of 1 atm. Tsiglifis and Pelekasis [19] assumed inviscid flow in the surrounding
liquid and performed simulations covering a wide parameter range for this particular bubble, using
the boundary element method. They used an acoustic disturbance of frequency 1.7 MHz and two
different amplitudes, namely, ε = 2 and ε = 4. For both amplitudes they reported shape modes.
In particular, for the case with amplitude ε = 2—which, according to stability analysis [21] as
illustrated in the phase diagram of Fig. 4, is slightly greater than the critical value εcr , for the onset of
parametric instability—they observed steady shape oscillations in harmonic resonance. It was thus
seen that shape modes obtain their maximum amplitude when the volume of the bubble becomes
minimum and that they oscillate at approximately the same period with the volume pulsation which
is determined by the external forcing. The fourth Legendre mode (P4) is indicated as the dominant
shape mode in the dynamic response of the microbubble, as the sound amplitude increases (Fig. 4);
Legendre polynomials arise as the shape eigenfunctions along the azimuthal θ direction for a freely
pulsating conventional or coated microbubble [12,21]. In this context, Table I provides the amplitude
thresholds for shape mode excitation for the parameter range investigated in the present study.
When the sound amplitude was further increased (ε = 4) dynamic buckling was reported [21],
also in accordance with the phase diagram provided in Fig. 4. The latter effect takes place in an
explosive manner at quite large amplitudes, when the surface acceleration increases significantly
during the rebound phase of the volume pulsation, in a manner that is similar to the Rayleigh-Taylor

TABLE I. Amplitude thresholds, εcr , for parametric mode excitation as a function of the shell viscoelastic
properties and sound amplitude. The microbubble stress free radius is set to R0 = 3.6 μm, the bending
resistance to kB = 3 × 10−14 N m, and the Poisson ratio to 0.5. Bold ε’s indicate critical thresholds.

χ (N/m) kB (N m) μs (kg/s) f (MHz) εcr (P2) εcr (P3) εcr (P4) εcr (P5) εcr (P6) εcr (P7) εcr (P8)

0.12 3 × 10−14 120 × 10−9 1.7 6.6 5 4.5 3.5 2.95 2.6 2.55
0.24 3 × 10−14 60 × 10−9 1.7 2.2 3.4 1.75 2.05 2.25 2.2 2.45
0.24 3 × 10−14 120 × 10−9 1.7 5.45 4.75 4.3 3.45 2.85 2.5 2.5
0.48 3 × 10−14 120 × 10−9 1.7 4.65 4.1 3.85 3.15 3.3 2.25 2.25
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instability of free surfaces. With the present methodology that fully accounts for liquid viscosity and
incorporates the interaction with a nearby rigid wall the above effects are recovered and enriched
due to the interaction. For very large initial dimensionless distance between the microbubble and
the wall, zc0 = z′

c0
R0

= z′
c (t ′=0)

R0
, its response as it pulsates in free space is recovered with a mild

modification owing to the impact of liquid viscosity. In particular, harmonic mode excitation is
captured albeit after a longer time period which highlights the stabilizing role of liquid viscosity
in delaying the onset of shape deformation. In fact, shape pulsations of appreciable magnitude
were observed after an inception phase on the order of 40 periods, at sound amplitude as large
as ε∼2.5. Harmonic shape excitation occurs at smaller amplitudes as well; however, it takes much
longer to evolve to a significant level. Figure 5 provides the numerical results obtained with the
present methodology, in terms of the shape and mode evolution, for a coated microbubble with the
above properties that freely pulsates away from boundaries, subject to an acoustic disturbance. The
interfacial shape is illustrated in terms of the Cartesian coordinates zB = rsph cos θ and x = rsph sin θ

where rsph, θ , ϕ, signify spherical coordinates with θ , ϕ denoting the azimuthal and polar angles. In
this context the (x, zB) plane is obtained by joining the ϕ = 0 and π coordinate surfaces, while the
zB coordinate is aligned with the axis of symmetry with its origin located at the geometric center of
the bubble. Axial coordinate z, used in the graphs illustrating the bubble shape as it interacts with
the wall, is translated so that its origin lies at the wall. For an axisymmetric shape the interface has
to be symmetric in the (x, zB) plane with respect to the zB axis. We have used 200 elements on the
membrane and 80 elements for the flow, in the manner described by Vlachomitrou and Pelekasis
[23] whereas the time step was set to 0.01.

As is clearly illustrated in Figs. 5(a) and 5(c) obtained when ε = 2.5, as time evolves steady
shape oscillations are established in harmonic resonance with the forcing, that are dominated by the
fourth Legendre mode P4, in accordance with stability analysis, followed in intensity by P6 and P8.
Consequently, the bubble eventually exhibits steady pulsations with a shape that is characterized
by four lobes during compression, whereas it eventually becomes almost spherical during the
expansion phase, Fig. 5(a). When the sound amplitude is raised to 3, steady pulsations are not
observed. Rather the microbubble is destabilized in a similar fashion with the simulations performed
by Tsiglifis and Pelekasis [19]. As illustrated in Figs. 5(b) and 5(d) rapid growth of higher shape
modes, predominantly P8, is obtained in the rebound phase of the pulsation following the onset
of minimum bubble volume. This takes place after a longer time period in comparison with the
boundary element simulations by Tsiglifis and Pelekasis, due to the impact of liquid viscosity, but
is overall characterized by the same dynamic pattern identified as dynamic buckling [19,21].

In order to stress the effect of the wall on the microbubble response, as well as to verify that
the results are grid independent, the simulations were repeated with the microbubble center of mass
initially located at a dimensionless distance zc0 = 6 from the wall. It should be stressed that even
at this relatively large distance the wall effect is evident. In fact repeating the simulation shown in
Fig. 5 with zc0 set to the above value, while keeping the rest of the problem parameters the same,
accelerates the onset of dynamic buckling instability by halving the time required for significant
shell deformation to take place without, however, altering the dominant shape modes. Thus, the
microbubble soon loses coherence before reaching the wall. Consequently, the simulation was
repeated with a lower sound amplitude and Fig. 6 presents the dynamic response of the microbubble
that was interrogated in Fig. 5 for an initial distance from the wall of zc0 = 6 and a sound amplitude
of ε = 2. The shape of the interface in Fig. 6 is illustrated in terms of the axial cylindrical coordinate
z that practically expresses the distance of each interfacial particle from the wall and the Cartesian
coordinate x = rsphsinθ . Two different mesh sizes were employed and compared. In the first grid,
G1, [Figs. 6(a) and 6(b)] we used 50, 100, and 50 elements in regions I, II, and III of the z
direction, respectively, and 60 elements in the r direction [see Fig. 2(a)]. A denser grid, G2, was
also employed [Figs. 6(c) and 6(d)] with 100, 200, and 100 elements in the three regions of the
z direction, respectively, and 80 elements along the r direction. Although the discussion and the
interpretation of the results presented in Fig. 6 are left for the next section, it is obvious that there
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FIG. 5. Temporal evolution of (a), (b) bubble shape and (c), (d) breathing, P0, and shape mode, P4, P6,
P8, decomposition for a contrast agent with R0 = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB =
3 × 10−14 N m that freely pulsates away from nearby surfaces, subject to an acoustic disturbance with forcing
frequency f = 1.7 MHz and sound amplitude ε = 2.5 and 3, respectively.

is sufficient numerical convergence and both meshes are able to capture successfully the motion of
the microbubble towards the wall, as well as the interfacial distortions. The superiority of the denser
grid is mostly illustrated in the snapshot of t = 52.6, Fig. 6(c), since the sparse grid, Fig. 6(a), is
unable to capture bending in the area near the north pole.

Even though the numerical results presented in Fig. 6 have already achieved convergence, we
chose to use dense grids in all simulations of this study to ensure higher accuracy despite the
increase in computational cost. Thus, in all simulations of Sec. IV we used 80–100, 200, and
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FIG. 6. Temporal evolution of (a), (c) bubble shape and (b), (d) breathing, P0, translational P1 modes, and
shape mode decomposition for grids G1 and G2, respectively; the initial bubble radius is R0 = 3.6 μm; shell
properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 × 10−14 N m; the initial distance from the wall
is set to zc0 = 6; an acoustic disturbance of frequency f = 1.7 MHz and sound amplitude ε = 2 are imposed.
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80–100 elements in regions I, II, and III of the z direction, respectively, whereas 80–120 elements
were employed in the r direction. At this point it is important to mention that an advantage of the
employed method is that the number of elements occupied in each subregion of the domain remains
constant throughout the simulation. This means that as the bubble moves closer to the wall the grid
becomes denser in the area between the bubble and the wall where higher accuracy is most needed.
Finally, the time step was set to 0.01 in all simulations, although smaller time steps (up to 0.001)
were also tested to ensure sufficient accuracy. As the timescale of the problem is dictated by the
external frequency, the nondimensional period of the oscillations is equal to 2π , and consequently
t /(2π ) is a measure of the number of periods that have elapsed during the dimensionless time interval
t . In this context, the selected time step is quite small since 628 time steps are employed during one
bubble oscillation when a time step of 0.01 is used.

IV. RESULTS AND DISCUSSION

Regarding the motion of the microbbuble, the secondary Bjerknes force accelerates the mi-
crobubble towards the wall with a simultaneous radial, Re ≡ ρω f R2

0/μ ≈ 140, in the simulations
shown in Fig. 6, and translational pulsation. Due to the large shell viscosity transients are soon
damped and a saturated pulsation is achieved at the forcing frequency. Since the forcing frequency
ω f is used as the characteristic timescale t /(2π ) represents the number of imposed sound field
periods. Furthermore, due to the incompressibility of the surrounding liquid the time delay between
the radial and translational motion is negligible, at least for relatively small amplitudes, as illustrated
by the time evolution of P0 and P1 shown in Fig. 6(d). Consequently, the latter mode evolves in an
oscillatory fashion in phase with volume pulsations and its amplitude is related to the instantaneous
center of mass via aP1 (t ) = zc0 − zc(t ). In this fashion, the speed of approach is gradually increased
with time and, provided the acceleration due to the added mass effect is subdominant, it is
determined by the instantaneous balance between the Bjerknes force and the viscous drag from the
surrounding liquid [10,32]. To test this hypothesis we perform various simulations and we calculate
the evolution of the average velocity U of the center of mass during a period of the radial pulsation
until the bubble has reached a distance from the wall that is on the order of z′

c = 2R0. Thus, we
also evaluate the evolution of the translational Reynolds, ReT ≡ ρU2R0

μ
, as the bubble approaches

the wall for a parameter range pertaining to the shell and acoustic disturbance properties employed
in the present study. In particular, we have used the shell parameters shown in Table I and we have
considered various liquid viscosities that range between 0.0005 and 0.005 Pa s.

A. Mechanical equilibrium far from the wall

The case shown in Fig. 6 exhibits the parametric mode excitation with P4 being initially dominant
as its excitation threshold is below ε = 2, Fig. 4. It should be stressed, however, that the rigid wall,
for a dimensionless initial distance zc0 < 10, facilitates growth of shape modes within a shorter
time interval, in comparison with the freely pulsating bubble simulated in Fig. 5 which had to
be perturbed with an amplitude of ε � 2.5 in order to exhibit a significant deformation from the
initial spherical shape on a timescale that is not prohibitively large in terms of CPU time. Thus—
and parallel to the pattern of parametric destabilization, i.e., the onset of P4–P7 due to parametric
excitation—wall proximity instigates bubble deformation represented by the gradual growth of P2

and P3 as the distance from the wall decreases, due to the Bjerknes bubble-wall interaction. The
concurrent growth of shape modes allows for energy transfer between them and this can be inferred
by the envelope in the pulsation of the shape modes in Fig. 6(d). P2 is the major recipient of this
interaction and this is registered in the increasingly prolate shape of the bubble, Fig. 6(c), before the
bubble reaches the wall. This behavior is better illustrated in Fig. 7(a) which focuses on the phase of
acceleration far from the wall and provides a zoom-in on the evolution of the different shape modes.
In particular, when the microbubble pulsates relatively far from the wall higher shape modes, P4, P5

etc., appear first during the compression phase of the volume pulsation due to parametric instability,
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FIG. 7. (a) Zoom-in on the shape mode evolution during the acceleration phase of the pulsation; distribution
of (b,d) pressure and (c,e) viscoelastic stresses, at maximum compression during the acceleration phase when
t = 52.6 and 410.8, respectively; (f) tangential ut and normal un velocities of the liquid when t = 410.8;
the initial bubble radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB =
3 × 10−14 N m; the initial distance from the wall is set to zc0 = 6; an acoustic disturbance of frequency f =
1.7 MHz and sound amplitude ε = 2 are imposed.
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FIG. 8. Comparison of the evolution of the dimensionless translational bubble velocity as a function of
distance from the wall calculated numerically and theoretically; the initial bubble radius is R0 = 3.6 μm; shell
properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 × 10−14 N m; the initial distance from the
wall is set to zc0 = 6; an acoustic disturbance of forcing frequency f = 1.7 MHz and sound amplitude ε = 2
are imposed.

whereas the bubble remains mostly spherical during expansion. P2 and P3 also grow during the
compression phase, since this is when translation of the bubble center of mass mostly takes place
due to the reduced added mass of the bubble and, consequently, wall interaction is intensified. The
above response pattern is halted as the bubble reaches the wall, in the sense that the translational
motion is intensely decelerated until the bubble performs trapped pulsations while the shape of its
interface reverts from prolate to oblate shapes, Fig. 6(c).

During the acceleration phase the shape is dominated by P2, with positive amplitude correspond-
ing to a prolate shape, and P4, and this is manifested in the shapes that are exhibited, Fig. 6(c), as
well as in the mode decomposition Figs. 6(d) and 7(a), of the bubble shape as it evolves during
its motion towards the wall. During compression the microbubble shell is subject to a larger liquid
overpressure, Fig. 7(b), in the region around the pole that faces away from the wall, which results in
local compression; see snapshots of the shape for t = 52.6 in Fig. 6(c). Furthermore, as illustrated
in Fig. 7(c), which shows the distribution of elastic stresses along the bubble interface at t = 52.6,
the onset of compressive viscous elastic stresses near the north pole (ξ = 1) where the maximum
overpressure occurs, Fig. 7(b), mitigates the intensity of elastic strain and bending required to
establish mechanical equilibrium in that region and prevents jet formation.

As the microbubble accelerates towards the wall the region of maximum overpressure during
volume compression is displaced towards the south pole region (ξ = 0), Fig. 7(d), and, as will
be seen in the following discussion, a balance between radiation pressure and viscous drag is
established that is manifested in the evolution of the translational velocity, Fig. 8, as a function of the
position of the center of mass with respect to the wall, both averaged over a period of the pulsation
〈U 〉, 〈zc〉 in the manner used in Eq. (18) for the definition of Bjerknes force. Consequently, the
normal force balance imposes the onset of viscous compressive stresses, mainly in the south pole
region where deceleration is more intense, as a means to attenuate compressive elastic stresses that
naturally develop as a result of the liquid overpressure. Figures 7(d)–7(f) illustrate this tendency at
the instant of maximum compression for which the microbubble clearly acquires a prolate shape, as
indicated by the shape obtained at dimensionless time t = 410.6 in Fig. 6(c) and by the evolution
of the second Legendre mode P2 which remains positive during this phase of the oscillation; see
also Figs. 6(d) and 7(a). In the two pole regions where the normal velocity is higher, Fig. 7(f), this is
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sufficient to establish the local normal force balance in the absence of significant bending. However,
at the equator where the tangential shell velocity is maximized, Fig. 7(f), and the viscous shell
stresses decrease, Fig. 7(e), intense elastic strain develops in order to balance liquid overpressure
in the normal force balance while viscous shear from the surrounding fluid balances shell viscous
stresses via the tangential stress balance. This pattern dominates shell equilibrium during maximum
compression and favors the onset of prolate shapes.

The progressively more intense prolate shape during maximum compression as the bubble
approaches the wall, and therefore as the translational velocity increases, is better illustrated in
Fig. 9. The three snapshots, Fig. 9(a), belong to the simulation shown in Fig. 6 but are captured at
different time instants corresponding to maximum compression and smaller distances from the wall.
Clearly as the bubble accelerates towards the wall and ReT increases tangential viscous stresses from
the surrounding liquid become more intense, Fig. 9(d), and establish a balance with shell viscous
stresses in the bulk of the shell, in the manner prescribed by the tangential force balance in the
absence of significant bending stresses. On the other hand elastic strain is progressively maximized
in the equatorial portion of the shell, Figs. 9(b) and 9(c), in order to balance liquid overpressure
via the normal force balance. In fact, it was seen that viscous shear from the surrounding liquid
balances tangential viscous shell stresses except for the region in the vicinity of the south pole
where the development of normal viscous shell stresses, Figs. 9(b) and 9(c), relaxes the intensity
of elastic strain required to counteract liquid overpressure. This results in lower compression in
comparison with the equator region and consequently enhances the onset of more prolate shapes.

An important aspect of the translational motion of the microbubble towards the wall pertains
to the instantaneous balance that is established between the secondary Bjerknes force, FB, and the
viscous drag, FD, as illustrated in Fig. 9(e) where their time evolution is presented averaged over
a period of the volume pulsation. The time evolution of the absolute value, |FB|, is portrayed in
Fig. 9(e), of the otherwise negative Bjerknes force since it acts on the opposite direction with
respect to viscous drag, along with the integral of the viscous drag on the shell-liquid interface. In the
simulation depicted in Fig. 6 the fact that these two opposing forces balance each other is manifested
in the form of a nearly constant average acceleration that results in a quadratic dependence of
the average distance of its center of mass from the wall as time evolves. To further illustrate this
balance, Fig. 8 provides a plot of the variation of the bubble translational velocity as a function
of the instantaneous distance from the wall, both averaged over a period of the volume pulsation,
obtained numerically through the variation of the center of mass with time shown in Fig. 6(d), and
theoretically by implementing the time averaged force balance between Bjerknes force equation
(18), and the viscous drag on the bubble via the drag coefficient cD:

FB = 2πρδo
2ω2

f R4
0

(
R0

2〈z′
c〉

)2

= FD = cD

2
ρ〈U ′〉2

πR2
0. (30)

In this fashion we juxtapose in the 〈U 〉 vs 〈zc〉 plane, as illustrated in Fig. 8, the numerically obtained
cloud of points and the theoretical curve produced by introducing correlation Eq. 1(c) in the force
balance equation (30). Equation 1(c) constitutes a correction to the Stokes law for a translating and
pulsating solid sphere. The amplitude δo ≈ 0.18 of radial pulsation used in Eq. (30) is obtained from
the amplitude of P0 shown in Fig. 6(d). It is in agreement with the value obtained from the linearized
Eq. (13) that provides a zoom-in on the mode decomposition in the time period before the bubble
reaches the wall. It should be stressed that the balance in Eq. (30) holds provided the translational
Reynolds, ReT , remains an order 1 or larger quantity, in which case the history force is negligible
and Eq. 1(c) is valid [17]. It will be seen that this is indeed the case in the present study, hence
we adopt the above approach for the estimation of the average bubble translational velocity. The
combined theoretical force balance

FB = 2πρδo
2ω2

f R4
0

(
R0

2〈z′
c〉

)2

= FD = cD

2
ρ〈U ′〉2

πR2
0 = 24

ReT

(
1 + 0.15Re0.687

T

)ρ〈U ′〉2
πR2

0

2
,

ReT = ρ〈U ′〉2R0

μ
, (31)
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FIG. 9. (a) Prolate shapes during maximum compression for different ReT ; (b), (c) viscoelastic stresses
when ReT = 3.06 and ReT = 8.18, respectively; (d) liquid tangential stresses when ReT = 3.06 and ReT =
8.18, respectively; (e) temporal evolution of the viscous drag force and the absolute value of the secondary
Bjerknes force, both obtained numerically; and (f) interfacial distribution of pressure during trapped pulsations:
the initial bubble radius is R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB =
3 × 10−14 N m; the initial distance from the wall is set to zc0 = 6; an acoustic disturbance of frequency f =
1.7 MHz and sound amplitude ε = 2 are imposed.
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incorporates the inverse square dependence with wall distance of the Bjerknes force as the bubble
approaches the wall. The two curves agree very well until the dimensionless wall distance zc ≈ 2,
whereas strong deviations are observed for the late stages of the motion during which the bubble
has approached the wall within a distance z′

c = R0, in which case trapped pulsations take place.
It should also be stressed that, as illustrated by Fig. 8, as ReT increases the Re0.687

T correction
to the Stokes law in Eq. (31) increases and tends to produce an inverse linear response pattern,
〈U ′〉 ∼ 1/〈zc

′〉, from the early stages of the motion. Furthermore, for the parameter range examined
in the present study, the initial distance from the wall does not affect the Bjerknes force as the
bubble approaches the wall since the bubble achieves almost instantaneously a balance between
Bjerknes force and the viscous drag. Consequently, as the process of bubble trapping commences the
secondary Bjerknes force at a certain distance zc does not depend significantly on the initial distance
zc0.

The above described response pattern with the acceleration of the center of mass conforming
with the findings of potential flow analysis and Bjerknes theory [6,10,12,21,32] does not persist as
the microbubble approaches the wall significantly, z′

c ∼ R0, in which case lubrication forces emerge
in the pole region that faces the wall and significant deviations from sphericity arise in the bubble
shape. Growth of lubrication pressure in the south pole region takes the place of viscous shear in
counteracting the secondary Bjerknes forces during the late stages of its motion, when trapping by
the wall and the onset of steady pulsations take place along with significant shape deformation; see
also Fig. 6(c) portraying the evolution of the bubble shape as it performs steady pulsations. Pressure
drag, Fig. 9(f), takes the place of viscous drag in counteracting Bjerknes forces and decelerating the
bubble motion and this generates oblate shapes instead of the prolate shapes obtained in the bubble
acceleration phase.

B. Parametric study

The simulation depicted in Figs. 6–9 is next repeated for an even smaller initial distance from
the wall and the same properties of the acoustic excitation, i.e., ε = 2ω f = 2π1.7 MHz and zc0 = 4.
Figures 10(a) and 10(b) depict the results of the simulations in terms of the evolution of the bubble
shape and its mode decomposition. The microbubble exhibits the same pattern of initial acceleration
due to the secondary Bjerknes forces until it reaches the rigid boundary in which case it performs
trapped pulsations. It should be stressed, however, that in this case growth of higher modes has been
suppressed during bubble acceleration, due to simultaneous growth of P2 and P3 in the compressive
phase of the pulsation that controls bubble translation and deformation as well. This also bears
an effect on the microbubble prolate shape that is more pronounced for a smaller initial distance
from the wall as can be gleaned by the evolution of bubble shapes, Fig. 10(a) vs Fig. 6(c), and
the larger positive P2 amplitude in the mode decomposition graph, Fig. 10(b) vs Fig. 6(d), due to
energy transfer between the parametrically excited shape modes and P2, P3 that emerge due to wall
interaction. On the other hand, the overall bubble shape and speed during trapping, Figs. 10(a) and
10(c), are very similar to the ones obtained for a larger initial distance zc0 from the wall, Figs. 6(c)
and 8, signifying the same order of magnitude of the secondary Bjerknes force and the resulting
deformation for the same instantaneous distance from the wall. This is in accord with Fig. 8 where
the velocity of the center of mass is seen to depend on the inverse distance from the wall as a result
of the balance between viscous drag and Bjerknes force for the same instantaneous distance, zc(t ) �
14, between the center of mass and the wall. The 1/〈z′

c〉 dependence is not evident in Fig. 10(c) since
the simulation covers a relatively narrow range of distances while starting at a smaller distance from
the wall. Overall, the bubble speed and force at the onset of trapping do not depend on the initial
distance, for fixed shell and sound properties, as it was expected based on the analysis presented
earlier in this section. It should also be stressed that in both cases, zc0 = 6 and zc0 = 4, the bubble is
finally trapped on the same distance from the wall and exhibits the same contact length in the near
wall region. This is also manifested in the evolution and magnitude of the primary shape modes in
Fig. 10(b), P0, P1, P2, and P3, that exhibit the same pattern as in Fig. 6(d) with the exception that the
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FIG. 10. Temporal evolution of (a) bubble shape; (b) breathing, P0; translational P1 modes; and shape mode
decomposition; (c) comparison of the evolution of the dimensionless translational bubble velocity as a function
of distance from the wall calculated numerically and theoretically: the initial bubble radius is R0 = 3.6 μm;
shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 × 10−14 N m; the initial distance from
the wall is set to zc0 = 4; an acoustic disturbance of frequency f = 1.7 MHz and sound amplitude ε = 2 are
imposed.

bubble reaches the wall, i.e., reaches within one bubble radius from the wall, within a time frame
t ∼ z2

c0.
In this context, the effect that the wall proximity has on the resonance frequency of the mi-

crobubble was further examined. Setting the sound amplitude to a relatively low value, well below
the threshold for harmonic mode excitation, e.g., ε = 0.5, and the initial distance to zc0 = 6 while
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varying the forcing frequency, the resonance frequency is recovered by registering the maximal
radial excursion during expansion over a timescale that is much shorter than the one required for the
bubble to reach the wall and trapping to take place. In this fashion a small reduction in the resonance
frequency is recovered, f0 ≈ 0.9 MHz, with respect to the free pulsation value, f0 ≈ 1.1 MHz
predicted by linear analysis [21]; see also Eq. (15) for an analytical prediction. Repeating the
frequency sweep for a lower initial distance, zc0 = 2, while fixing the sound amplitude to the same
low value, i.e., ε = 0.5, so that shape pulsations affect only marginally the dynamic response, a
further reduction was registered, f0 ≈ 0.8 MHz. This trend of decreasing resonance frequency as the
distance from the wall decreases is in agreement with previous linear analysis for bubbles without
elastic coating that interact with another bubble of similar size or a nearby rigid wall [12,13] as well
as experimental findings [40].

In order to assess the effect of sound amplitude on the motion of the microbubble in the vicinity of
a rigid wall we repeat the simulations for smaller sound amplitudes, i.e., ε = 1 and 1.7, and a shorter
initial distance zc0 = 2 in order to minimize computational cost. The dynamic response pattern that
is obtained in this fashion is illustrated in Fig. 11 indicating a similar trend as in Figs. 6 and 10,
especially regarding the time evolution of the shape mode decomposition which is dominated by P2

and P3 in the manner previously described. Furthermore, the average speed of the bubble center of
mass tends to increase for increasing sound amplitude. More specifically, the Bjerknes force depends
quadratically on the sound amplitude; see also Eq. (30). In addition—and provided the translational
Reynolds remains relatively small, ReT ∼ 1—the viscous drag force that balances Bjerknes forces
varies linearly with the translational velocity, Eq. (31), which in its turn increases quadratically with
the sound amplitude, ε or δo in terms of the radial pulsation. This is corroborated by numerical
evaluation of the translational speed slightly before trapping is achieved or by inspection of the
time evolution of the average amplitude of P1 shown in Figs. 10(b), 11(b), and 11(d). Regarding the
evolution of the bubble shape in both cases it is seen to behave in the same manner as in the cases
for larger amplitude and initial distance. In particular, the bubble exhibits two almost distinct phases
where its center of mass is accelerated and decelerated while exhibiting prolate and oblate shapes,
respectively. In the acceleration phase the dominant force balance is provided by Eqs. (30) and (31)
denoting the equilibrium between the Bjerknes force and viscous drag, hence the prolate shape as
a result of excess compression in the equator region where viscous shell stresses are negligible in
comparison with elastic compressive stresses, as was already discussed in the previous subsection.
As the microbubble reaches within a distance from the wall that is on the order of its radius the speed
of its center of mass is decelerated due to the action of elastic lubrication pressure that develops at
the axis of symmetry in the wall vicinity, in response to which the bubble deforms and flattens. As a
result pressure drag replaces viscous drag in counteracting Bjerknes force thus facilitating the onset
of oblate shapes that become progressively more pronounced as the magnitude of the Bjerknes force
increases. This pattern is clearly registered in the panels of Figs. 6–11 illustrating the bubble shape
during the phase of the bubble motion that can be described as trapped pulsation. Nevertheless, the
pattern of trapped pulsation is not analyzed here and a thorough treatment of it is left for a separate
study.

Focusing on the accelerating phase of the microbubble and based on a number of simulations that
were performed for a wide parameter range we collect the shapes obtained as a result of the balance
between Bjerknes forces and viscous drag at the time instant of maximum compression and plot
them in order to assess the shape evolution as the speed of approach or elastic shell properties
increases, Fig. 12. Ryskin and Leal [15] have constructed a collective graph on the ReT , WeT

plane for the case of a steadily rising bubble with ReT ≡ ρU2R0

μ
� 10, WeT = 2R0U 2ρ

σ
< 1, and thus

showed that the shape changes from spherical to an oblate ellipsoid as WeT increases for fixed ReT .
Our simulations show a different trend with the bubble shape changing from spherical to prolate,
mostly during compression, since the force balance that determines the bubble shape is different.
This behavior was recovered as the average translational velocity U increases for a range of not very
large translational Reynolds ReT � 10 and modified WeT ≡ 2R0U 2ρ

χ
number, based on the shell area
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FIG. 11. Temporal evolution of (a,c) bubble shape; (b,d) breathing, P0; translational P1 modes; and shape
mode decomposition, when the sound amplitude ε is set to 1.and 1.7, respectively: the initial bubble radius is
R0 = 3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 × 10−14 N m; the initial
distance from the wall is set to zc0 = 2; an acoustic disturbance of forcing frequency f = 1.7 MHz is imposed.
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FIG. 12. Prolate shapes during compression for gradually increasing ReT and WeT numbers of the trans-
lating microbubble.

dilatation modulus, as long as the microbubble remains relatively far from the wall, e.g., zc � 2, in
terms of the dimensionless distance between the bubble center of mass and the wall. In fact as WeT

increases the amplitude of mode P2 in the final shape also increases and the prolate shape obtained in
the simulation becomes more pronounced; Fig. 12 provides a comprehensive view of these trends in
a manner that is similar to the tendency shown in Fig. 9(a). However, the WeT numbers in our case
are relatively small compared to the ones in [15] and thus the shapes are not as highly deformed.
Nevertheless, the pattern of increased viscous drag with increasing translational velocity captured
in Fig. 9 persists. In addition, intensification of viscous shell stresses is registered, as the pole region
that faces the wall is approached from the bulk from the shell, as a manifestation of the tangential
stress balance on the shell. The normal force balance is also affected in the south pole region, with
the onset of viscous shell stresses partly accommodating the liquid overpressure while attenuating
the elastic strain, thus leading to a gradual intensification of the prolate structure of the microbubble
shapes.

It should, also, be stressed that the microbubble that is studied here is coated with an elastic
shell and consequently has a nonslip interface with the surrounding liquid. As a result its dynamic
response is closer to that of an oscillating solid sphere than to that of a pulsating bubble. In the
former case simulations show that the drag coefficient cD is not in accord with Levich’s prediction
for a translating bubble with a free surface [11], i.e., cD ≈ 48/Re, as was recovered numerically
by Ryskin and Leal [15] and in the earlier experimental study by Crum [10]; both studies treated
bubbles with a free surface. Rather, it agrees with predictions for an oscillating rigid sphere proposed
elsewhere [16,17], as illustrated in Fig. 13 for the relevant range of ReT . Points on the latter graph
were obtained by numerical evaluation of the drag coefficient via Eq. (30) over a wide range of
shell and acoustic disturbance parameters, on the assumption that the equilibrium shape is produced
as a result of the instantaneous balance between Bjerknes force and viscous drag. In order to
minimize computational time numerical calculation of cD was performed for an initial position
of the center of mass z′

c0 set to 2R0, subsequent numerical evaluation of radial amplitude δ0, and
average translational velocity 〈U ′〉 for a wide range of shell and sound parameters and substitution
in Eq. (30). The correlation shown in Eq. 1(c) provides the continuous curve in Fig. 13 and it is
seen that it captures the numerically obtained dependence of cD on ReT for the entire parameter
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FIG. 13. Comparison between the drag coefficient for the microbubble translational motion as a function
of the translational Reynolds number, ReT , based on the average translational velocity of its center of mass,
as obtained via application of Eq. (30) on the numerically obtained bubble average radial and translational
velocity, and via the correlation in Eq. (31) provided in [17].

range employed in the present study, provided the bubble has not reached the vicinity of the wall,
zc > 1. In other words, the force balance described by Eqs. (30) and (31) remains valid, as long as
the shape of the pulsating and translating bubble microbubble does not exhibit significant variations
from sphericity and this is true for the biggest part of the simulation, as illustrated by Figs. 6–12
in panels illustrating the shape evolution and shape mode decomposition, and discussed in the
context of Fig. 8. This assumption loses validity as the bubble performs trapped pulsations near
the wall, in which case proximity with the rigid wall and the resulting pressure drag unavoidably
cause flattening of the protective shell [Figs. 6(c), 9(a), 10(a), and 11(a)] and the onset of oblate
shapes. Furthermore, the onset of parametric shape mode excitation produces bending stresses that
result in large curvature variation. The latter effect emerges irrespective of the presence of the wall
provided a certain threshold in amplitude of the acoustic excitation is exceeded, for given shell
parameters and forcing frequency [21], but the onset of shape modes is accelerated due to the wall
presence.

V. CONCLUSIONS

In the present study we numerically investigate the dynamic response of an encapsulated mi-
crobubble in a wall restricted flow due to an acoustic disturbance in the far field pressure, when
viscous and inertia forces in the surrounding fluid and viscoelastic stresses in the protective shell
are accounted for. Coupling a superparametric finite element methodology with an elliptic mesh
generation scheme allowed us to capture the dynamic response of coated microbubbles as they
accelerate towards the wall, until trapping is achieved in the form of a steady pulsation at a very low
average distance from the wall.

In the presence of the wall the bubble is seen to perform volume pulsations while translating
in its vicinity due to the secondary Bjerknes force. As the distance from the wall decreases the
resonance frequency of the microbubble pertaining to volume pulsation also decreases, as is the
case with conventional bubbles without elastic coating. Furthermore, the microbubble gradually
accelerates towards the wall with a velocity that is produced by the almost instantaneous equilibrium
between Bjerknes forces and viscous drag from the surrounding liquid. This is a result of the
fast damping of the volume pulsations effected by shell viscosity that reduces the streaming and
translational Reynolds numbers and therefore minimizes the importance of the history force in
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the bubble translation. The calculated drag coefficient conforms with experimental measurements
and relevant correlations for nonslip surfaces [16,17], cD = 24

ReT
[1 + 0.15Re0.687

T ], and the velocity
depends nearly quadratically on the sound amplitude and the distance from the wall, in agreement
with relevant experimental and theoretical studies with conventional bubbles [10,13]; see also
Eqs. (30) and (31).

Translation towards the wall takes place mostly during volume compression, due to the reduced
added mass of the bubble. During this phase of the pulsation large viscous stresses are generated
from the surrounding liquid in the region around the equator, where the tangential velocity of the
interface acquires a maximum that resists the translation of the bubble. As a result, the tangential
force balance produces compressive viscous shell stresses that gradually increase as the pole region
that faces towards the wall is approached. The onset of the viscous shell stresses attenuate the
elastic strain that is required to balance liquid overpressure in the same pole region, and this results
in the prolate shape exhibited by the microbubble in the simulations during the acceleration phase
of its motion, in agreement with experimental observations [7,8]. This is in contrast to the behavior
exhibited by free bubbles that exhibit oblate shapes when they rise due to buoyancy [15], and is a
result of the fact that it is viscous drag rather than pressure drag that balances the driving force of
the motion, i.e., Bjerknes force and buoyancy in the situation examined in the present study and in
the case of rising bubbles, respectively.

At the same time parametric shape mode excitation was captured beyond a sound amplitude
threshold that was determined by previous stability analysis in the absence of wall interaction and
ignoring viscous dissipation in the surrounding liquid, assuming that the bubble shape remains
spherical [21]. The presence of the wall tends to modify this pattern but the above threshold remains
a reliable marker of stability. Once the sound amplitude was raised beyond this threshold the bubble
surface was seen to be rapidly destabilized, mostly when it achieved maximum compression. Jet
formation was not captured through the bubble interface as the sound amplitude increased since
bending resistance and viscosity of the shell prevented excessive bending in the region around
the north pole that faces away from the wall, in agreement with previous findings for coated
microbubbles [23]. Rather, the bubble loses coherence via growth of shape modes throughout its
interface with the surrounding liquid. Provided we remain below the above threshold for severe
shape mode excitation to take place, the microbubble accelerates and eventually reaches the wall
where its motion is halted due to the onset of elastolubrication pressure. During this phase of its
motion it acquires an oblate shape and performs steady pulsations trapped by the wall which will be
examined in detail in an ensuing article.

Finally, the relative contribution to energy dissipation due to bulk liquid and shell viscosity was
examined and it was shown that even though shell damping always dominates over dissipation
due to liquid viscosity, the assumption of potential flow starts losing validity as the microbubble
approaches a nearby boundary.
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APPENDIX: ENERGY DISSIPATION

An interesting issue that needs to be addressed in the present study pertains to the validity of the
potential flow assumption when studying the dynamic response of contrast agents in the vicinity of
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FIG. 14. (a), (b) Temporal evolution of energy dissipation due to liquid viscosity, Eliq, and shell damping,
Eshell, in an unbounded flow and in the vicinity of a wall, respectively; (c), (d) comparison of the evolution of
Eliq and Eshell, respectively, in an unbounded flow and in the vicinity of a wall; the initial bubble radius is R0 =
3.6 μm; shell properties are μs = 60 × 10−9 kg/s, χ = 0.24 N/m, and kB = 3 × 10−14 N m; the initial distance
from the wall in wall bounded simulations is set to zc0 = 4; an acoustic disturbance of forcing frequency
f = 1.7 MHz and sound amplitude ε = 2 are imposed.

a wall. By taking the scalar product of the velocity field u with the Navier-Stokes equation (4), the
differential and dimensionless form of the mechanical energy balance is obtained [23]:

D(u2/2)

Dt
= ∇ · (σ · u) + p∇ · u − 1

Re
τ : ∇u = ∇ · (σ · u) − φ, (A1)

where φ denotes the energy dissipation due to the liquid viscosity, i.e., the amount of irreversible
conversion of mechanical energy into heat as a result of the fluid motion. Upon integration over the
entire flow domain, application of the Gauss divergence theorem, and introduction of the interfacial
force balance Eq. (5), the mechanical energy conservation equation is recovered in integral form:

D

Dt

∫∫∫
V

u2

2
dV =

∫∫
A

u · σndA −
∫∫∫

V
φdV =

∫∫
AB

u ·
[(

P∞ − PG + 2km

We

)
nB − �F

]
dA − �,

(A2)

where � = ∫∫∫
V φdV signifies the total amount of irreversible transform of mechanical energy into

heat within the control volume, σn = n · σ the stress vector at the bubble-liquid, AB, and far field,
A∞, surfaces that enclose the control volume and nB = −n with n pointing towards the flow interior.
The integral on the right-hand side of Eq. (A2) provides the rate of change of the compression,
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surface, strain, and bending energy [12,13,19]:

D

Dt

{∫∫∫
V

u2

2
dV + 1

We

∫∫
AB

dA + V

(
P∞ + Pg

γ − 1

)
+

∫∫
AB0

WSdA0 +
∫∫

AB0

WBdA0

}

=−� −
∫∫

AB

u · �FvdA →
{∫∫∫

V

u2

2
dV + 1

We

∫∫
AB

dA + V

(
P∞ + Pg

γ − 1

)

+
∫∫

AB0

WSdA0 +
∫∫

AB0

WBdA0

}∣∣∣∣
t

= 1

We

∫∫
AB0

dA+V0

(
P∞ + Pg0

γ − 1

)
−

∫ t

0
�dt −

∫ t

0

(∫∫
AB

u · �FvdA

)
dt − εPst

∫ t

0
sin tV dt,

(A3)

with AB0, V0, and PG0 signifying the undeformed interfacial area, the volume, and initial pressure of
the microbubble; Ws and WB the strain and bending energy of the shell per unit undeformed bubble
area; and �FV the part of the interfacial forces that arise as a result of shell viscosity.

Therefore, by calculating the integrals Eliq = ∫ t
0 �dt and Eshell = ∫ t

0 (
∫∫

AB
u · �FvdA)dt of

Eq. (A3) as time evolves, we follow the temporal evolution of the dissipation in the bulk of the flow
and due to shell damping, respectively. In Fig. 14(a) the case of the contrast agent employed in Fig. 6
is shown as it pulsates in an unbounded flow under an acoustic disturbance of frequency 1.7 MHz
and an amplitude ε = 2. Clearly, throughout the simulation shell damping is more significant than
liquid dissipation, which justifies the assumption of potential flow in studies focusing in contrast
agents located away from boundaries. When the same simulation is repeated for a wall bounded
flow, Fig. 14(b), the same pattern is reported with shell damping dominating over viscous dissipation
in the bulk of the liquid. In fact, as the bubble reaches closer to the wall, an increase in bulk viscous
dissipation is recorded that becomes more significant compared to the unbounded flow [Fig. 14(c)],
whereas shell damping is reduced, Fig. 14(d). Therefore, the assumption of potential flow starts to
lose validity when the bubble interacts with a nearby wall and extra attention is needed to determine
conditions for which viscous forces of the surrounding liquid may be neglected.
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