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Turbulence at the edge of continuum
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In typical turbulent flows, noncontinuum effects are extremely small and hence can
be ignored. However, for some high-Mach-number flows, the Kolmogorov length scale
is of the same order as the molecular mean free path, which could introduce noncon-
tinuum molecular-level effects into the turbulent energy cascade. To investigate this, the
compressible Taylor-Green vortex flow is simulated for near-continuum conditions using
both noncontinuum molecular gas dynamics (direct simulation Monte Carlo method) and
continuum computational fluid dynamics (direct numerical simulation of the Navier-Stokes
equations). Although the energy-decay histories are basically the same, molecular-level
fluctuations are observed to break the symmetries of the initial conditions and thereby
produce different but statistically similar routes (based on velocity spectra) from the initial
nonturbulent flow to the long-time turbulent flow.

DOI: 10.1103/PhysRevFluids.6.013401

I. INTRODUCTION

The concept of the turbulent energy cascade asserts that, in a statistical sense, kinetic energy
generated at large length scales is transferred to progressively smaller length scales and ultimately
dissipated at very small length scales [1]. In his pioneering research, Kolmogorov postulated that the
behavior of turbulence at these small length scales is universal and that the Kolmogorov length, time,
and velocity scales characterizing this behavior are determined solely by the energy-dissipation rate
and the kinematic viscosity [1]. Subsequently, the behavior of turbulence at small length scales has
been studied extensively [2–5]. In these studies, the flow is assumed to be continuum at all length
scales, including the Kolmogorov length scale. The continuum assumption is reasonable when the
molecular length scales and timescales are much smaller than the smallest hydrodynamic length
scales and timescales. However, situations of practical interest exist for which the Kolmogorov
length scales and timescales (the smallest hydrodynamic scales) are comparable to the gas molecular
mean free path and mean collision time (the molecular scales).

As pointed out by Stefanov et al. [6], hypersonic flow over a body falls into this category. Over
half a century ago, Van Driest developed theories for the turbulent shear stress on a flat plate in
hypersonic flow [7] and for a sharp cone with an attached shock wave in hypersonic flow [8]. The
smallest turbulent length scale in his theory is lw = νw/

√
τw/ρw, where τw, ρw, and νw are the

viscous shear stress, the density, and the kinematic viscosity at the wall conditions, and the gas
molecular mean free path is λ = (μ/p)

√
πkBθ/2m, where μ is the dynamic viscosity, p is the

pressure, θ is the temperature, kB is the Boltzmann constant, and m is the gas molecular mass.
The Van Driest theories for flow over a flat plate or a sharp cone can be used to estimate the ratio
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lw/λ for hypersonic conditions. For typical values of the skin friction coefficient at hypersonic flow
conditions (Ma � 4), the ratio lw/λ is only ∼5–10 (this ratio can be even smaller if the surface is
cooled below the adiabatic temperature) [7,8]. Moreover, the thickness ls of a shock wave is often
about five to ten mean free paths. Hence, the smallest length scales generated by hypersonic flow
over a body can be comparable to the mean free path.

When the turbulent scales become comparable to the molecular-level scales, Tennekes and
Lumley [9] and Frisch [10] state that noncontinuum molecular phenomena might be non-negligible
and that the continuum assumption might need to be modified. In other words, noncontinuum
effects, especially molecular-level fluctuations, which are insignificant under ordinary conditions,
might become important when the Kolmogorov length scale is on the order a few mean free paths.
More specifically, the turbulent energy cascade might no longer be fully described by the overall
energy-dissipation rate and the kinematic viscosity (i.e., by continuum transport), which control
the small-scale motions according to Kolmogorov’s first similarity hypothesis [1]. (Although Kol-
mogorov’s first similarity hypothesis [1] has been debated [2–4], its stipulation that the small-scale
motions depend on the overall energy-dissipation rate and the kinematic viscosity is generally
accepted.) This dependence of turbulent energy decay on the small-scale motions motivates an
investigation into how noncontinuum turbulent flow might differ from continuum turbulent flow.

To investigate this issue, compressible Taylor-Green (TG) vortex flow [11,12] is simulated using
both noncontinuum molecular gas dynamics (MGD) and continuum computational fluid dynamics
(CFD). For conditions ranging from continuum to near-continuum, TG flow is simulated using
the direct simulation Monte Carlo (DSMC) method (the noncontinuum MGD method) and direct
numerical simulation (DNS) of the Navier-Stokes equations (the continuum CFD method). Kinetic-
energy and energy-dissipation histories and spectra and flow fields at selected times from the DSMC
and DNS simulations are compared so that the importance of noncontinuum effects on the turbulent
energy cascade can be ascertained.

II. TAYLOR-GREEN VORTEX FLOW

TG vortex flow is a canonical turbulent flow in which the generation of eddies and the corre-
sponding cascade of energy from small to large wave numbers can be observed numerically. For a
gas flow that has a (turbulent) Mach number Ma and a (turbulent) Reynolds number Re, the ratio
η/λ of the Kolmogorov length scale η to the mean free path λ scales as Re1/4/Ma [9]. Thus, within
the context of TG flow, even at a small fixed Knudsen number, the ratio η/λ can be modest (instead
of large) when the Mach and Reynolds numbers jointly become large.

Compressible TG flow is initialized in a triply periodic domain −πL � {x, y, z} � πL using
fields having only a single length scale L and a single velocity scale V0:

u = V0 sin (x/L) cos (y/L) cos (z/L),

v = −V0 cos (x/L) sin (y/L) cos (z/L),

w = 0,

p = p0 + (
ρ0V

2
0

/
16

)
[cos (2x/L) + cos (2y/L)][cos (2z/L) + 2],

θ = θ0,

ρ = mp/kBθ. (1)

Here, u = (u, v,w) is velocity, p is pressure, θ is temperature, ρ is density, x = (x, y, z) is posi-
tion, and T = V0t/L is nondimensional time. Thus, all of the kinetic energy is initially resident in the
single wave number corresponding to L. The gas has molecular mass m and pressure, temperature,
and density reference values p0, θ0, and ρ0, respectively, where ρ0 = mp0/kBθ0. Additionally, the
gas is taken to have specific heat ratio γ and thus a sound speed a0 = √

γ kBθ0/m at temperature θ0.
Similarly, the gas is taken to have a dynamic viscosity μ0 at temperature θ0. These quantities yield
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TABLE I. Parameters for Taylor-Green vortex flow simulations.

Case Description Re Ma Kn λ/δ η/λ η/δ

1 Incompressible 500 0.3 0.001 27.8 15.8 437
2 Subsonic 1000 0.6 0.001 27.8 9.4 260
3 Transonic 1500 0.9 0.001 27.8 6.9 192
4 Supersonic 2000 1.2 0.001 27.8 5.6 155

the Mach number Ma = V0/a0 and the Reynolds number Re = ρ0V0L/μ0, as well as the Knudsen
number Kn = λ/L = √

πγ /2(Ma/Re).
Four cases, given in Table I, are examined using both DSMC and DNS. In all these cases, the

mean density and the initial temperature are kept fixed, so the Knudsen number Kn is also kept
fixed. Hence, the Reynolds number Re is proportional to the Mach number Ma. The low Knudsen
number places all cases in the near-continuum regime. However, the ratio of the Kolmogorov length
scale to the mean free path, η/λ, indicates that noncontinuum effects such as molecular fluctuations
become more important as the Reynolds and Mach numbers are increased at fixed Knudsen number.
Although desirable, smaller η/λ values cannot be investigated: Smaller Knudsen-number values are
not computationally feasible, the Mach number is constrained by Ma < 4/

√
6γ to yield positive

pressure and density fields, and the Reynolds and Mach numbers are proportional (Re ∝ Ma at fixed
Kn). In all cases, the Kolmogorov length scale η and the molecular mean free path λ are much larger
than the mean molecular separation δ = (ρ/m)−1/3, so the numbers of molecules within volumes
corresponding to these length scales are large.

Noncontinuum effects from molecular-level processes at the mean-free-path scale, especially
molecular fluctuations, are not typically included in continuum CFD simulations of the Navier-
Stokes equations. However, these phenomena are inherently present in MGD methods. Thus,
simulations using a noncontinuum MGD method and a continuum CFD method are compared to
investigate the role of noncontinuum effects on turbulence.

III. NUMERICAL METHODS

A. Direct simulation Monte Carlo

Herein, Bird’s direct simulation Monte Carlo (DSMC) method [13] of molecular gas dynamics
(MGD) is used to simulate compressible turbulent TG vortex flow. DSMC uses “particles” (compu-
tational molecules) to represent a gas flow. Each particle represents a large number of real molecules.
These particles move ballistically, reflect from solid boundaries, and collide stochastically in a
pairwise fashion to reproduce the statistical behavior of real molecules. Particle-particle collisions
are performed using the variable-soft-sphere (VSS) interaction [13]. Sampling the properties of
the particles within each cell yields flow properties for each cell. Typically, the cell size and the
time step are smaller than the mean free path and the mean collision time, respectively. Like most
molecular methods, DSMC simulations are “noisy”: Flow quantities associated with a cell fluctuate
as particles move into and out of the cell. However, DSMC fluctuations have the same characteristics
as real molecular fluctuations in a gas [14]. Although traditionally DSMC has been used to simulate
rarefied laminar hypersonic flows, rarefied turbulent hypersonic flows have recently begun to come
within computational reach [15].

Sandia’s open-source massively parallel DSMC code SPARTA [16,17] is used to perform these
simulations. SPARTA has been extensively validated for flows in the near-continuum regime [15,16].
The gas has molecular mass m = 66.3×10−27 kg; specific heat ratio γ = 5/3; and pressure, temper-
ature, and density reference values of p0 = 88 414.7 Pa, θ0 = 273.15 K, and ρ0 = 1.5544 kg/m3,
which yield a sound speed of a0 = 307.9 m/s. VSS molecular collisions are performed with
ω = 0.81 and α = 1.4 [13]. The time step is t = 2.5 ps. The domain length scale is L = 100 μm.

013401-3



M. A. GALLIS et al.

The domain is subdivided into 8 billion cubical cells (20003) with a side length of π/10 μm. An
average of 45 particles per cell is used, for a total of 0.36 trillion particles, where each individual
particle represents approximately 16 000 real molecules. These simulations are performed on
Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory and
use slightly more than half a million cores with four threads per core for 250 h.

Although the gas parameters above represent argon [13], the gas is only argonlike because
the finite discretization increases the transport properties in DSMC [18]. For these simulations,
the effective viscosity is found by comparing a thin-slab DSMC simulation (one layer of cells in the z
direction) of the two-dimensional TG flow to the analytical expression for its kinetic-energy decay in
the incompressible limit. This comparison indicates that the discretization used for these simulations
leads to a dynamic viscosity of μ0 = 2.8709×10−5 Pa s at θ0 = 273.15 K, which yields the effective
Reynolds numbers in Table I. At other temperatures, the viscosity behaves like μ = μ0(θ/θ0)ω

because VSS collisions are used [13]. The thermal conductivity is determined from the viscosity
and the ideal-gas specific heat using a Prandtl number of 0.669.

B. Direct numerical simulation

Direct numerical simulation (DNS) of the Navier-Stokes equations is also used to simulate
compressible turbulent TG vortex flow. The gas properties are identical to those given above for
the DSMC simulations. The Sandia Parallel Aerodynamics and Reentry Code (SPARC) [19,20] is
used to perform these simulations. Additionally, the code US3D [21], developed at the University of
Minnesota, is used to simulate some cases to confirm that the DNS results are well resolved.

Both codes use shock-capturing finite-volume methods to achieve stability in the presence of
strong shock waves and reasonably high accuracy in smooth regions of the flow. This is achieved
by blending two numerical methods. The first is the modified Steger-Warming method [22], which
offers good numerical stability but generates appreciable numerical dissipation. The second is the
kinetic-energy-consistent central-difference scheme of Subbareddy and Candler [23], which delivers
high-order spatial accuracy and lower numerical dissipation at the expense of reduced numerical
stability. The method switches between these two schemes using gradients in the Mach number to
detect shocks and apply the stabilizing modified Steger-Warming fluxes in those regions. The result
is an overall scheme that has good accuracy in smooth parts of the flow and is robust to shock
waves. Time advancement is accomplished using a third-order explicit Runge-Kutta method with a
Courant-Friedrichs-Lewy number of 0.5 to determine the time step.

SPARC DNS results on 5123 and 10243 meshes are compared with US3D DNS results on 4003 and
6003 meshes. The corresponding dissipation rates are almost indistinguishable for Ma = 0.3−0.9,
and only slight differences are observed for Ma = 1.2. Thus, the SPARC results on the 5123 mesh
are deemed to be sufficiently converged for the purposes herein.

IV. RESULTS

A. Energy decay

Figures 1 and 2 present results for the kinetic energy and its corresponding dissipation rate from
the DSMC and DNS simulations of all four cases as functions of time. The energy histories from
both methods are in good agreement for all four cases, exhibiting the same plateaus from T = 0 to
T = 4 followed by rapid decays at longer times. The dissipation histories show the fine details of the
energy decay more clearly. The DSMC and DNS results are in good agreement over the entire time
during which energy dissipation is significant. For all four cases, both methods have the same rapid
increases from T = 0 to T = 8, the same plateaus from T = 8 to T = 12, the same maxima in this
interval, the same rapid decreases from T = 12 to T = 17, the same slow decreases from T = 17
to T = 20, and the same oscillations throughout the duration. Cases 1–3 show good agreement over
the entire duration of 0 � T � 20, but case 4 shows some slight differences after T = 10. However,
even at these later times, the DSMC and DNS results agree fairly closely.
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FIG. 1. Energy versus time from DSMC and DNS.

Figure 3 presents the normalized three-dimensional spectra from the DSMC and DNS simula-
tions at selected times for all four cases. The raw spectra are divided by the square of the Mach
number so that all cases can be displayed using the same range. Early on, energy is transferred from
the initial low wave number to high wave numbers, so the energy resident in the high-wave-number
region of the spectrum increases during this period. Significant energy first appears in the high-
wave-number region around T = 6. By T = 10 (the maximum dissipation time), the spectra have
achieved shapes that change little during the remainder of the simulations although their magnitudes
decrease. This situation corresponds to the establishment of the energy cascade. The DSMC and
DNS spectra for all four cases are observed to agree closely at all times, even at intermediate and
high wave numbers, where the energy cascade is occurring.

Overall, the energy and dissipation histories agree well over the entire duration of the energy
decay. The DSMC and DNS spectra also agree closely. Thus, the two simulation methods (non-
continuum DSMC and continuum DNS) produce basically the same evolution from the initial
conditions to the turbulent state. Some slight differences are observed, but this is not surprising
when simulating chaotic flows with two different methods. Hence, noncontinuum molecular-level

013401-5



M. A. GALLIS et al.

FIG. 2. Dissipation versus time from DSMC and DNS.

processes, especially molecular-level fluctuations, are not having a significant effect on the overall
energy decay for these near-continuum conditions although they may be affecting the fine details of
how the flow evolves from its initial conditions to the turbulent state.

B. Velocity fields

Figures 4–11 present plots of the u velocity component on the bounding faces of the domain
from DSMC and DNS at two times: near the maximum dissipation time and much later. The top
face (the y−z plane x = πL) is plotted below each perspective image using an expanded scaling to
allow easier comparison of the flow fields on this face. The u velocity component on the top face
is singled out for special attention because this quantity should remain equal to zero as long as the
symmetries of the initial conditions are preserved as the flow evolves in time [11,12].

Except for being slightly noisy, the DSMC molecular results for all four cases are virtually
identical to the corresponding DNS Navier-Stokes results before the maximum dissipation time. At
that time, large-scale structures that are the remnants of the initial conditions are clearly discernible,
but smaller-scale structures are also present. In particular, the large-scale and small-scale features of
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FIG. 3. Spectra at selected times from DSMC and DNS.

the DSMC and DNS flow fields preserve the symmetry and antisymmetry features that are present
in the initial conditions. At later times, this statement still applies roughly for case 1 but no longer
applies for cases 2–4. More specifically, although the DNS flow fields preserve these features, the
DSMC flow fields do not. This is seen most clearly on the top face: The DSMC flow fields exhibit
large velocity fluctuations, but the corresponding DNS flow fields have negligibly small velocity
fluctuations.

The velocity fluctuations observed in the flow fields shown in Figs. 4–11 are quantified in the
following manner. The rms value of the u velocity component on the top face is computed at several
times before and after the maximum dissipation time for both methods and all four cases. Figure 12
presents the resulting values as functions of Reynolds number (see Table I) and time. The DSMC and
DNS results exhibit different trends. Although the DSMC molecular fluctuations are basically the
same for all cases and times, the DSMC velocity fluctuations grow significantly in amplitude with
increasing Reynolds number and with time near the maximum dissipation time. In contradistinction,
the DNS velocity fluctuations are small for all Reynolds numbers and do not grow significantly in
amplitude near the maximum dissipation time.
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FIG. 4. Case 1: u velocity at T = 8.7. Squares are top plane (x = πL).

FIG. 5. Case 1: u velocity at T = 12.1. Squares are top plane (x = πL).
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FIG. 6. Case 2: u velocity at T = 8.45. Squares are top plane (x = πL).

FIG. 7. Case 2: u velocity at T = 18.47. Squares are top plane (x = πL).
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FIG. 8. Case 3: u velocity at T = 7.63. Squares are top plane (x = πL).

FIG. 9. Case 3: u velocity at T = 14.77. Squares are top plane (x = πL).
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FIG. 10. Case 4: u velocity at T = 6.87. Squares are top plane (x = πL).

FIG. 11. Case 4: u velocity at T = 18.56. Squares are top plane (x = πL).
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FIG. 12. Rms u velocity on the top face versus Reynolds number (left) and time (right).

Although extreme velocity fluctuations at Kolmogorov and sub-Kolmogorov length scales have
been observed in some high-resolution DNS simulations [4,5], the magnitude of the velocity
fluctuations observed in the present DSMC simulations suggests that they have a different origin.
The following scenario is suggested to explain the above results. Molecular fluctuations break
symmetries and take the flow field down a different but basically similar trajectory through phase
space from the initial flow conditions to the turbulent flow field. This suggestion is motivated by
the fact that molecular fluctuations are inherently present in the DSMC (MGD) simulations but
are absent from the DNS (CFD) simulations. The fact that these velocity fluctuations grow with
time supports this assertion. Moreover, symmetry breaking induced by molecular fluctuations is
significant for the Richtmyer-Meshkov and the Rayleigh-Taylor instabilities [24,25].

Before the maximum dissipation time, the DSMC and DNS flow fields are almost identical.
This is probably because the smallest length scales are larger than the Kolmogorov length scale,
so the flow fields are continuum even at the smallest length scales that are present at these times.
Hence, molecular fluctuations are of minimal importance, so symmetry and antisymmetry features
are preserved. For case 1, this situation applies at all times, but, for cases 2–4 at late times (well
past the maximum dissipation time), the DSMC and DNS flow fields exhibit differences (e.g., the
u velocity component on the top face). This is probably because the smallest length scales are
comparable to the Kolmogorov length scale, so the flow fields are noncontinuum at the smallest
length scales present at these times. Hence, molecular fluctuations that exist at these small scales
are no longer negligible, and, as a result, symmetry and antisymmetry features are broken.

V. PHYSICAL OR NUMERICAL?

Since each DSMC particle actually represents a large number of real gas molecules rather than a
single real gas molecule, the level of molecular fluctuations in a DSMC simulation is much higher
than in a real gas. If a one-to-one correspondence between DSMC particles and real gas molecules
could be achieved, the level of molecular fluctuations would be physically realistic, but this situation
is typically not possible to achieve in practice. However, if the sample size could be increased
substantially, then the level of molecular fluctuations could be reduced. Since every time that a
molecule moves or collides it represents a different point in six-dimensional phase space, the sample
size can be increased by averaging over times that are long compared to the time step but are
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FIG. 13. DSMC u velocity fields for case 4 at T = 18.56 with two different values of the simulation ratio:
nominal F = F0 (left) and twice nominal F = 2F0 (right).

short compared to the shortest flow timescales (here, the Kolmogorov timescale). If the sample
size is close to the simulation ratio F (the number of real gas molecules represented by one DSMC
particle), the level of real molecular fluctuations in the real gas can be realized [14].

Thus, it is important to investigate the effect of the simulation ratio on the DSMC results. As
the simulation ratio F is decreased, a DSMC simulation represents the real gas more closely. The
simulations previously presented are performed with a simulation ratio of F = F0 = 16 000. Here,
additional simulations are performed with a simulation ratio of F = 2F0 = 32 000 (i.e., twice the
original value). Figure 13 shows results from these two simulations for case 4 at T = 18.56. The two
flow fields are quite similar (except for noise). Although the u velocity fields on the top face differ
in detail (as expected for different paths through the phase space of a chaotic system), they have
similar rms values: 38 m/s for F = F0 and 36 m/s for F = 2F0, which are two orders of magnitude
larger than their corresponding means. At this late time, both flow fields lack the symmetry and
antisymmetry features that characterize their initial conditions and their flow fields well before the
time of maximum dissipation. These observations suggest that the role of molecular fluctuations is
not affected significantly by the simulation ratio.

Recent DSMC simulations of the Richtmyer-Meshkov instability (RMI) [24] and the Rayleigh-
Taylor instability (RTI) [25] provide additional support for this assertion. In the RMI, molecular
fluctuations in the DSMC simulations are observed to trigger secondary instabilities that break
symmetries which are preserved in the corresponding DNS simulations but which are broken
in corresponding experiments. In the RTI, molecular fluctuations in the DSMC simulations are
observed to trigger both the instability itself and secondary instabilities without an artificially
imposed initial perturbation and thereby produce values for the most unstable wavelength and the
growth rate that agree closely with experiments and that are independent of the initial conditions.
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VI. CONCLUSIONS

The molecular-gas-dynamics simulations presented here provide the first investigation of
molecular-level effects on the energy decay of turbulent flows in the near-continuum regime.
The direct simulation Monte Carlo (DSMC) method (noncontinuum molecular gas dynamics) and
direct numerical simulation (DNS) of the Navier-Stokes equations (continuum computational fluid
dynamics) are used to simulate compressible Taylor-Green vortex flow at near-continuum flow
conditions. For the Mach and Reynolds numbers examined, both methods produce basically the
same energy decay. However, the molecular fluctuations in DSMC (and in experiments) can break
symmetries, which in turn can cause the flows to evolve along trajectories in phase space that are
different from but basically similar to those of DNS, which lacks molecular fluctuations. This
appears to be the main difference between continuum and near-continuum turbulent flow. The
present investigation is focused on the energy history in a freely decaying turbulent flow. Future
investigations could focus on similar issues in sustained turbulence for wall-bounded flows, for
which slip at the wall might introduce additional effects.
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