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The breakup of a jet of a viscous fluid with viscosity μ1 immersed into another viscous
fluid with viscosity μ2 is considered in the limit when the viscosity ratio λ = μ1/μ2 is close
to zero. We show that, in this limit, a transition from ordinary continuous self-similarity to
discrete self-similarity takes place as λ decreases. It follows that instead of a single point
breakup, the rupture of the inner jet occurs through the appearance of an infinite sequence
of filaments of decreasing size that will eventually produce infinite sequences of bubbles
of the inner fluid inside the outer fluid. The transition can be understood as the result of a
Hopf bifurcation in the system of equations modeling the physical problem.
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I. INTRODUCTION

The breakup of fluid filaments into drops is one of the most relevant and widely studied problems
in fluid mechanics. It is both a fundamental problem since the times of Savart, Plateau, and Rayleigh
[1–3] and an issue of paramount importance for technological aplications based on inkjet printing
technology, micro and nanoencapsulation, production of filaments by electrospinning, etc. (see [4]
for a general review). The complementary problem, i.e., the closure of an axisymmetric cavity and
the formation of bubbles, has also been widely studied due to its important role as a mechanism for
air entrainment into the ocean [5] and also connected to technical applications [6]. When a viscous
thread or a cavity breaks up into drops, it is frequently the case that the result is a sequence of drops
or bubbles of similar size surrounded by droplets or bubbles of much smaller size called satellite
drops or bubbles [7,8]. The origin and possible control of such satellites remains a puzzle and an
obstacle for many practical applications where precise knowledge of the size of the drops or bubbles
produced is needed. Remarkably, the pinch-off of a liquid thread is a singularity [9] governed by
simple similarity laws and occurs according to self-similar functions as first described in [10]. In
this article we describe and explain the formation of generations of satellites in the breakup of a
very low viscosity fluid jet inside a viscous environment as the result of a discretely self-similar
(DSS) process. This is in contrast with continuous self-similarity that explains the disconnection of
a single drop from a jet: DSS is a periodic process in similarity variables, i.e., a process that repeats
itself in a logarithmic timescale (as one approaches a singular time) and decreasing spatial windows,
with the result of infinite sequences of structures of decreasing size [11].

II. BOUNDARY INTEGRAL EQUATIONS AND SINGULARITY FORMATION

We consider a viscous jet, with viscosity μ1, inside a viscous surrounding media with viscosity
μ2, and define the viscosity contrast parameter λ = μ1

μ2
. The fluid variables velocity v and pressure

p for both fluids satisfy Stokes equations with the condition that the difference of viscous stresses at
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FIG. 1. Evolution of a liquid jet and disconnection of a drop. Dotted line: initial data. Continuous line: finite
time breakup through the formation of conical singularities for λ = 0.08 and the formation of a sequence of
satellites for λ = 0.0075. The right panels are the zoom-in versions of the left panels, at breakup time t̃ ≈ 6.065
and t̃ ≈ 2.025, respectively. Here t̃ is the dimensionless time variable in boundary integral simulation, before
rescaling to long wave variable.

the interface balance surface tension (proportional to the interface’s mean curvature κ , with surface
tension coefficient γ and along the normal direction n):

(σ2 − σ1) · n = γ κn,

where σi is the viscous stress exerted by the fluid i on the interface. The fluid interface, described
by the distance h(z, t ) to the axis of symmetry, evolves following the velocity field. The interfa-
cial velocities are solved via boundary-integral equations in axisymmetric geometry. The fore-aft
symmetry is imposed so that only half of the drop shape needs to be determined. The interface
velocities are assumed to vary linearly along each boundary element and integral is computed
by using standard four- or six-point Gauss-Legendre formula. The weakly singular integral is
solved by using Gauss-log quadrature. After obtaining velocities, the interface is updated by the
first-order Euler time scheme (details can also be found in [12,13]). When the drop is close to
pinching, the local grid points are redistributed to maintain a smoothly varying spacing proportional

to arctan[
√

(z − zmin)2 + h2
min] [14]. The simulation is stopped when the drop radius is about 10−4

or smaller (when drop interface oscillation occurs, the simulation may stop earlier). Validations of
the code are presented as Supplemental Material [15].

Direct scaling yields a linear flow for the filament radius vs time near pinch-off and also a linear
axial scale vs time: h(z, t ) = (t0 − t )ϕ[(z − z0)/(t0 − t )] where t0, z0 are the pinch-off time and
point, respectively, and ϕ(ξ ) is a function behaving linearly at infinity so that the geometry at pinch-
off is that of two cones touching at their vertex (see Fig. 1). This is the classical result reported in
the literature [16–18]. Nevertheless, as we can appreciate in Figs. 1 and 2, for sufficiently small λ,
corresponding to an inner fluid of very low viscosity, the geometry near pinch-off is not as simple
as two cones. The evolution of hmin, the minimum jet radius, clearly deviates to the simple linear
law and presents a complex oscillatory behavior instead. This oscillatory behavior translates into
both the interface and velocity profiles, as seen in Fig. 3, and results in the formation of sequences
of satellites. This is a fact reported in recent experiments [19] in connection with the healing of an
annular viscous film.

III. ASYMPTOTIC MODEL AND DISCRETE SELF-SIMILARITY

In what follows we study an asymptotic model for the limit of very low viscosity inner fluid
inside an outer viscous fluid. More precisely, by considering the viscosity ratio λ = ε2λ0 where
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FIG. 2. Evolution of dhmin
dt , the velocity of the thinning filament radius vs the minimum radius. According

to simple scaling dhmin
dt should converge to a constant and hmin tends to zero. This is clear for λ = 0.08, but

unclear for λ = 0.0075. In the latter case, oscillations near pinch-off are observed.

λ0 = O(1) and ε is the slenderness ratio between typical transversal and longitudinal length scales.
One can then obtain the system (see [13,16,20]; see also [21]):

∂h

∂t
= 1

16λ0

1

h

∂

∂z

(
h4 ∂ p

∂z

)
, (1)

p = 1

h
+ 2

h

∂h

∂t
. (2)

Note that the change of variables t → 2t , z → z/
√

8λ0 allows one to remove the constants 1
16λ0

and
2 from the equations and, after writing from (2)

∂h

∂t
= (ph − 1) (3)

FIG. 3. Profiles and axial velocities of the liquid jet for various times close to the breakup time and showing
oscillations in the case λ = 0.0075. The profiles for λ = 0.08 correspond to t̃ = 6.005, 6.062, 6.065, while for
λ = 0.0075, t̃ = 1.973, 1.992, 2.00, 2.007, 2.013, 2.018, 2.023.
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FIG. 4. Evolution of a liquid jet. Dotted line: initial data. Continuous line: finite time breakup through the
formation of conical singularities.

and inserting into (1) we obtain the equation

− 1

h2

∂

∂z

(
h4 ∂ p

∂z

)
+ p = 1

h
. (4)

The system (3), (4) consists then of an ordinary differential equation for h coupled with a linear
elliptic partial differential equation for p. We can, in principle, solve the linear problem (4) for the
pressure p and write

p = Kh

[
1

h

]

for some nonlinear integral operator Kh, and insert into (3) to obtain

∂h

∂t
=

(
Kh

[
1

h

]
h − 1

)
, (5)

which is an integrodifferential equation for h(z, t ). We will see that, despite its simplicity (a single
first-order integrodifferential partial differential equation), the solutions to Eq. (5) display a very
interesting dynamics directly related to discretely self-similar features (see [11]) leading, in this
case, to the formation of cascades of satellite bubbles of the inner fluid inside the outer fluid.

We have solved (3), (4) numerically for an initial data h(z, 0) = 1 + 0.1 cos(2πz/L) with L = 4
and obtained the profile in Fig. 4 where finite time breakup develops in the apparent form of two
conical shapes touching at the breakup point. This fact can also be observed in Fig. 7 where we
represent the evolution profiles for several times close to the breakup time. The appearance of a
seemingly conical breakup is reinforced by the existence of a self-similar solution to (3), (4) in the
form

h(z, t ) = (t0 − t )H[z/(t0 − t )],

p(z, t ) = (t0 − t )−1P[z/(t0 − t )],
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FIG. 5. Comparison between self-similar neck profiles for various values of λ, suitably rescaled, and the
self-similar solution to the long wave model. Denoting z̃ and h̃ the dimensionless variables in the full problem,
they are connected to the long wave variables as follows: ξ = 2(z̃ − z̃0)[(t̃0 − t̃ )

√
8λ]−1 − b ln(t̃0 − t̃ ) and H =

2h̃(t̃0 − t̃ )−1, where z̃0 and t̃0 are pinch-off location and time, respectively, in boundary integral simulation. The
constant b is fitted from simulation.

where t0 is the breakup time and H (ξ ), P(ξ ) satisfy the system

−H + ξH ′ = HP − 1, (6)

− 1

H2

(
H4P′)′ + P = 1

H
, (7)

together with the boundary conditions H ∼ ν±ξ and P ∼ μ±ξ−1 as ξ → ±∞. Note that the linear
asymptotic behavior of H implies that the local shape near the breakup point is in the form of two
cones with semiangles θ± = arctan ν±. By means of a Newton iteration scheme we have solved
(6),(7) subject to boundary conditions implying a linear asymptotic behavior of H (ξ ) and found the
profile represented in dotted lines in Fig. 6. In particular, we can compute θ+ � 44◦ and θ− � 9◦. It
is worth noting the remarkable good agreement between the self-similar solution to the long wave
model and the self-similar profiles obtained from the full boundary integral calculation (Fig. 5). In
order to compare them we rescale time by a factor of 2 and z by a factor

√
8λ = √

8λ0ε (also see
caption in Fig. 5), in agreement with the rescaling that led to (3),(4). We can observe in Fig. 5 that,
very interestingly, the resulting profiles seem to converge towards a universal profile as λ decreases
and that profile is very close to the self-similar solution to the long wave model. Nevertheless,
as we mentioned above, the comparison cannot hold for arbitrarily small values of λ due to the
development of instabilities around the pinch-off point. Below we will present a detailed study of
these instabilities in the context of the long wave model.

In Fig. 7 we plot the same profiles as in Fig. 6 rescaled by the factor (t0 − t )−1 and compared
to the self-similar solution. As we can see, the numerical profiles evolve around the self-similar
solution but do not seem to converge to it. In fact, as we approach the singularity, instabilities
develop in the form of oscillations whose length scale decreases as we approach the singularity
point (see the undulations in Fig. 7). This is the signature of DSS, i.e., τ -periodic solutions of
Eqs. (3) and (4) in similarity variables τ = − log(t0 − t ) and ξ = z/(t0 − t ):

Hτ − H + ξH ′ = HP − 1, (8)

− 1

H2

(
H4P′)′ + P = 1

H
. (9)
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FIG. 6. Numerical profiles for five different times as we approach the singularity. The singularity time is
t0 = 3.970 and the profiles correspond to t = 3.940, 3.945, 3.950, 3.955, 3.960.

As we showed in [11], discretely self-similar solutions may appear as the result of a Hopf bifurcation
around a continuously self-similar solution where the later solution becomes unstable giving rise to a
periodic orbit around it (the DSS solution). In the present case, our numerical results show evidence
of periodicity in the self-similar variables and the result is an infinite sequence of iterated filaments
of decreasing length scale that develop as we approach the singularity (see Fig. 8). The breakup of
these filaments can give rise to and infinite sequence of satellite bubbles of the inner fluid inside
the outer fluid. The presence of periodic structures is also visible in Fig. 9, where we represent hp
which, according to the scaling laws for h and p near the singularity, should converge to a universal
function HP that tends to constant ν±μ± as |ξ | → ∞. As we can see in the figure, the behavior
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FIG. 7. The profiles of Fig.6 rescaled according to the similarity laws together with the selfsimilar profile.
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FIG. 8. Two profiles close to the singularity time. The one closer to t0 has developed a sequence of
undulations in the form of iterated structures approaching the point of breakup.

is not that of convergence to a constant (dotted line) but oscillatory around that constant instead.
Secondary instabilities, visible in Fig. 9, will develop into secondary cascades of iterated filaments
and hence may give rise to new cascades of subsatellite bubbles.

In order to obtain a better understanding of the origin of DSS solutions in this problem, we
consider now higher order viscous effects for the pressure in (2), in the form (cf. [13])

p = 1

h
+ 2

h

∂h

∂t
+ ε2|log ε|

h2

∂

∂z

(
h4 ∂

∂z

1

h

)

(see the deduction in the Supplemental Material [21]). This leads, after the same rescaling in z and
t leading to (3), (4), to the system formed by (4) and

∂h

∂t
= (ph − 1) + g

h

∂

∂z
(h2hz ),
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FIG. 9. The function hp for various times close to t0 where the presence of a sequence of oscillations
is visible. Also, indicated with arrows, the development of secondary oscillations that will give rise to the
appearance of cascades of secondary structures.
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FIG. 10. Geometry of a jet near breakup for g = 0. A sequence of bubbles can be be seen together with the
detail near breakup in the neighborhood of a satellite.

where g � 4λ0ε
2| log ε|. Numerically we found a transition between damped oscillations and peri-

odic solutions (a Hopf bifurcation, as shown in the stability analysis provided in the Supplemental
Material [22]) when the parameter g � 3 × 10−4. A periodic orbit in self-similar coordinates implies
that the breakup of the jet occurs in such a way that self-similarity holds at discrete times t1, t2, . . . ,
approaching the breakup time t0; if T is the period of the orbit in self-similar coordinates, then
tN+1/tN = e−T . Then, the sequence of bubbles that appear are located at distances d1, d2, . . . , dN

from z0 (with dN → 0 as N → ∞) and will have a radius r1, r2, . . . , rN , . . . . Using h = e−τ H and
z − z0 = e−τ ξ we deduce

rN+1

rN
= e−T ,

dN+1

dN
= e−T .

Away from the Hopf bifurcations (at g = 0, for instance) secondary instabilities may create new
cascades of bubbles between consecutive bubbles which may again contain new cascades, etc.,
creating a fractal set. In Fig. 10 we represent the result, near breakup, of the evolution for initial
data h(z, 0) = 1 + 3

4 cos ( πz
2 ) and for g = 0. A sequence of bubbles can be appreciated and breakup

will occur near a satellite bubble. The region around the breakup point presents the characteristic
two-cone geometry plus instabilities, as in Fig. 8, which will give rise to new cascades of bubbles,
and the process will repeat infinite times.

To summarize, we have shown the mechanism for the appearance of satellites for a viscous jet
immersed into another viscous fluid with a much higher viscosity. The study of similar mechanisms
for the appearance of cascade of structures (filaments) produced in very viscous jets [23] and the
iterated stretching of viscoelastic filaments [24] is under way.
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