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Propulsion performance of tandem flapping foils with chordwise prescribed
deflection from linear potential theory
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The effect of prescribed flexural deflection on the propulsive performance of tandem-
arranged flapping foils is analyzed by using the vortex impulse formulation in the limit
of two-dimensional, linear potential flow theory. Analytical expressions are given for a
general configuration of tandem foils undergoing a quadratic flexural deflection coupled
with heaving and pitching motions about arbitrary pitching and deflection axes, although
quantitative results are focused to the cases pivoting about their leading edges. Flexural
deflection may augment not only the thrust and the propulsive efficiency of the individual
foils in relation to an otherwise identical rigid-foil configuration, it also modifies the wake
behind the front foil, changing the wake interaction with the trailing foil and, consequently,
modifying the tandem propulsive performance. The effect of the upstream wake on the
thrust force of the trailing foil is analyzed by using the vorticity distributions obtained an-
alytically. Patterns of propulsive performance enhancement in both the spacing-frequency
and the spacing-phase shift planes are analyzed and discussed in relation to previous
available experimental and numerical results. The present theoretical results provide some
new insights for the design of small aerial or aquatic vehicles using biomimetic tandem
propulsors.
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I. INTRODUCTION

It is well known that the wake-foil interactions between flapping foils in tandem arrangement
may produce propulsive benefits which have been exploited by animals to improve their locomotion
capabilities, especially by dragonflies, among other living and extinct insect species [1–3], but
also by fish, combining the dorsal-caudal fin configuration [4,5], by bird flocks and fish schools
[6,7], and even by extinct aquatic animals [8]. A large number of works have been published about
these unsteady aerodynamic interactions between adjacent flapping foils, both to try to understand
the physical mechanisms leading to the propulsion improvement and to characterize the optimal
kinematics and geometric configurations generating these propulsive benefits, some of them focused
on the application to the design of biomimetic aerial and aquatic vehicles. These investigations have
been based on complex two-dimensional, or three-dimensional, numerical simulations of tandem
flapping rigid foils in forward flight [9–17], or on sophisticated experimental techniques [3,4,12,18–
27], and just a few of them making use of some theoretical, simplified approach, especially based
on two-dimensional, linear potential flow theory [28–30].

Although the validity of the last mentioned theoretical approach is limited to high Reynolds
number flow and to small flapping amplitudes, so that the flow does not separate and the wakes
remain almost flat, it provides useful insight into the combined effect of the huge number of
geometric and kinematic parameters on the propulsive performance of the tandem flapping foils.
This insight is valuable in spite of the fact that some interesting configurations in terms of thrust and
propulsive efficiency are often found in the range of high amplitudes where the linearized theory
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fails. For instance, using two-dimensional, potential flow theory, Bosch [28] showed that a lifting
surface at rest located behind a pitching or a heaving foil considerably improves the propulsive
efficiency of the resulting tandem arrangement, almost independently of the reduced frequency and
the backward position of the trailing surface. This theory explained a previous experimental finding
by Schmidt [31] that a stationary wing placed in the oscillatory wake of a flapping wing could
generate additional thrust by recovering some of the energy released in the wake of the flapping
airfoil. Later numerical simulations at high Reynolds numbers, without considering viscous effects
[9], corroborated the theoretical results, finding that with appropriate selection of the frequency,
amplitude, and separation of the leading foil, the tandem propulsive efficiency could be augmented
more than 40% in relation to a single airfoil. However, later experiments and numerical simulations
at low to moderate Reynolds numbers [13,18], although in qualitative agreement with the inviscid
results, showed that this benefit was greatly outweighed by the effect of viscous drag.

Using potential flow theory for two heaving foils in tandem configuration, Lan [29] showed that
the maximum thrust can be generated with maximum power efficiency if the trailing foil flaps in
advance to the front one by 90◦ to 180◦, depending on the reduced frequency and the foil separation.
For two pitching foils this author found that, for a reduced frequency of 0.75 and a separation be-
tween half and one chord length, the best propulsive efficiency is obtained when pitch leads heave by
about 90◦, while the maximum thrust is obtained for 45◦. These results are again in qualitative agree-
ment with later experimental studies, where it was shown that aerodynamic power requirement can
be reduced up to 22% compared with a pair of isolated wings when the trailing wing leads the front
one by about 90◦ in hovering flight [20,32], while the maximum thrust and propulsive efficiency
in wind tunnel experiments were observed at phase angles from 0◦ to 50◦ [19], depending on the
reduced frequency and the foil spacing, in any case when the trailing foil leads the flapping motion.

More recently, a general analytical formulation of the aerodynamics performance of two heaving
and pitching rigid foils in tandem configuration, based on the linearized potential flow theory,
has been developed in Ref. [30], with the thrust forces computed following the vortex impulse
theory [33]. These theoretical results showed that the thrust and the propulsive efficiency are
greatly enhanced in relation to those of an isolated flapping foil when certain combinations of the
reduced frequency and the dimensionless separation between the foils are used, that depend on the
phasing between their oscillatory motions. For heaving foils, these combinations, or aerodynamic
amplification modes, correspond to specific values of the so-called schooling number, in very good
agreement with experimental results by Ramananarivo et al. [23] and by Newbolt et al. [26].

All these works are for rigid foils in a tandem arrangement. Flexibility of flapping wings and
fins is known to greatly enhance the propulsive performance of natural fliers and swimmers.
For single foils, its effect on the thrust force and the propulsive efficiency has been extensively
analyzed [34–40]. For tandem arrangements of flapping foils only a few recent works based on
two-dimensional flow simulations are available, either assuming potential flow [41], or by solving
the full Navier-Stokes equations coupled with the flexible foil dynamics [42–45]. As already men-
tioned, owing to the complexity of the numerical simulations, especially for the moderate Reynolds
numbers of interest in biomimetic aerial or aquatic vehicles, only very limited ranges of just a few
of the many parameters governing the problem can be realistically analyzed. For this reason it is
of interest to dispose of some analytical foresight from the two-dimensional, linear potential flow
theory, even if the results are limited to high Reynolds numbers without flow separation, i.e., for
small flapping amplitudes, which on many occasions of physical interest are far from the optimal
propulsion configurations. This is the aim of the present work: to extend the analytical results
of Ref. [30] to tandem flapping foils with prescribed chordwise deflection, so that the propulsive
benefits of flexibility in these tandem arrangements may be characterized over an ample range of
parameters. To that end we have at our disposal the recent analytical results for the propulsive
performance of a single flexible foil undergoing a wide class of prescribed undulating and flexural
motions, obtained from the impulse theory in the linear potential flow limit [46]. We shall consider
the case in which a prescribed quadratic deflection of small amplitude is added to the pitching
and heaving motions of each foil, so that the effect of a flexural motion of small amplitude on
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FIG. 1. Schematic of the oscillating airfoils for heaving and flexural motions (dimensionless).

the propulsive performance of the tandem arrangement is characterized with a lowest-order model.
Although we sometimes use the word “flexible” for short, we do not consider here the fluid-structure
interaction.

The structure of the paper is as follows: The problem is formulated in Sec. II, with the results for
the general expressions of the vorticity distributions, thrust, input power, and propulsive efficiency
given in Sec. III. To reduce the extent of this last section, we refer to Ref. [30] for some common
derivations and relegate some of the analytical expressions to Appendixes and the Supplemental
Material [47]. Section IV summarizes the validation of the model, while Sec. V analyzes the effect
of the upstream wake on the thrust of the trailing foil using the vorticity distributions derived
analytically in Sec. III. Section VI reports and discusses a selection of results for two cases where
the effect of flexibility on the propulsive performance of tandem flapping foils is more interesting
and for which the results of the present theory, but for rigid foils, compare favorably with previous
experimental results, so that one may see how flexural deflection improves further the propulsive
performance of the tandem arrangement. Finally, the main conclusions are summarized in Sec. VII.

II. FORMULATION OF THE PROBLEM

We consider the two-dimensional, incompressible and inviscid flow over two pitching and
heaving thin airfoils of chord length c that move with constant speed U along the negative x axis.
Superimposed on theses motions, each foil undergoes a quadratic flexural (or deflection) motion.
All these heaving, pitching, and deflection motions, which are prescribed oscillatory motions given
below, have very small amplitudes compared with c, so that the airfoils, and every point of each trail
of vortices that they leave behind, may be considered to be on a horizontal plane (z = 0) to a first
approximation.

We use dimensionless variables, with all the lengths scaled with the half-chord c/2 and the time
t scaled with c/(2U ). Thus, the front foil extends from x = −1 to x = 1 in a reference frame
translating with it at speed U along the x axis (see Fig. 1). The trailing foil is separated by a
horizontal dimensionless distance d from the trailing edge of the front foil, i.e., ε = d + 2 from
the leading edge of the front foil, so that it is located between x = −1 + ε and x = 1 + ε.

In this reference frame, the dimensionless vertical displacement of the mean-camber line of each
foil i, with i = 1 and 2 for the front and back foil, respectively, is given by

zsi(x, t ) = hi(t ) − (x − εi − ai )αi(t ) + (x − εi − pi )
2δi(t ), −1 + εi � x � 1 + εi, (1)

with ε1 = 0, ε2 = ε, and

hi(t ) = Re[H0ie
i(kt )], αi(t ) = Re[α0ie

i(kt )], δi(t ) = Re[δ0ie
i(kt )]. (2)

In these expressions Re means real part, k = ωc/(2U ) is the reduced frequency associated with the
frequency ω of the harmonic motion, with nondimensional period T = 2π/k, which consists of a
heaving displacement hi(t ), a pitching rotation αi(t ) pivoting at x = ai, and a quadratic deflection
motion δi(t ) pivoting at x = pi (note that ai = −1 and pi = −1 correspond to the leading edge of
each foil i, while ai = 1 and pi = 1 correspond to the trailing edge). The amplitudes H0i, α0i, and δ0i

are, in general, complex to allow for phase shifts between the different harmonic motions, satisfying
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|H0i| � 1, |α0i| � 1, and |δ0i| � 1. For simplicity we select H01 = h01 real and

H02 = h02eiϕ, α0i = a0ie
i(φi+ϕ), δ0i = dmi

(1 − pi )2 ei(ψi+ϕ), (3)

where ϕ is the phase shift between the heaving motions of each foil, φi is the phase shift between the
heaving and pitching motions of the foil i, ψi are the phase shift between the heaving and deflection
motions, a0i is the pitch amplitude of the foil i, and dmi is the amplitude of the flexure component of
the motion of foil i at its trailing edge. In what follows we shall work with the complex expressions
knowing that we have to take the real part of the results.

To facilitate the computations, the vertical displacement of each foil i is written as

zsi(x, t ) = Fi(t ) + Ei(t )(x − εi ) + Di(t )(x − εi )
2, (4)

where the functions Fi(t ), Ei(t ), and Di(t ) are

Fi(t ) = hi(t ) + aiαi(t ) + p2
i δi(t ), Ei(t ) = −αi(t ) − 2piδi(t ), Di(t ) = δi(t ). (5)

The corresponding dimensionless vertical velocity of the mean-camber line of each foil can be
written as

v0i(x, t ) = Ui(t ) + Vi(t )(x − εi ) + Ḋi(t )(x − εi )
2, (6)

with

Ui(t ) = Ḟi(t ) + Ei(t ), Vi(t ) = Ėi(t ) + 2Di(t ), (7)

where a dot denotes a time derivative.

III. GENERAL EXPRESSIONS FOR THE LIFT, THRUST, MOMENT, AND INPUT POWER

A. Vorticity distributions and time-dependent coefficients

The normal velocities (6) are used to compute the vorticity distributions on both airfoils and
along their wakes considering all the mutual interactions, as done in Ref. [30] for the case of two
rigid airfoils in tandem configuration, but now with the additional terms coming from the quadratic
flexural motions. We refer to this reference for the details of the computations, taking also into
account that most of the new integrals involving the quadratic deflection terms are reported [46]
for the case of a single airfoil (but now in the absence of undulatory motion, i.e., with b = 0).
The resulting vorticity distribution and the corresponding circulation around each airfoil are the
following:


0i(x, t ) =
√

1 − x + εi

1 + x − εi

{
�0i

π
− [1 + 2(x − εi )]Vi − 2(x − εi )[1 + (x − εi )]Ḋi

}
, (8)

�0i(t ) = −π [2Ui(t ) + Vi(t ) + Ḋi(t )]. (9)

The vorticity distribution along each wake, 
ei, i = 1, 2, can be written as


e1 =
{

Fa(k, ε)

a(k)
�01(t ) + Fb(k, ε)

a(k)
[�02(t ) + �12(t )]

}
e−ikξ , (10)


e2 =
{

Fc(k, ε)

a(k)
�01(t ) + Fa(k, ε)

a(k)
[�02(t ) + �12(t )]

}
e−ik(ξ−ε), (11)

where the functions Fa, Fb, Fc, and a are given in Appendix A. For the contribution of the vorticity
on each foil coming from the vorticity on the other one we use the same simplifying assumption
discussed in Ref. [30]. The resulting circulation �12(t ) associated with the contribution of the
forewing vorticity distribution on the hindwing vorticity distribution can be written as

�12(t ) � �01 f� (ε) − V1 f�α (ε) − Ḋ1 f�δ (ε), (12)
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where the first two terms are similar to those in the case of rigid foils, with α̇1 substituted now by
−V1 in the term multiplied by the function f�α (ε). The last additional new term is associated with
the front foil deflection motion D1, with the new function f�δ (ε) given in Appendix A, together with
the functions f� (ε) and f�α (ε), already given in Ref. [30], for completeness and easy reference.

The different vorticity distributions remain formally the same as those derived in Ref. [30], but
using the expressions (8)–(12). Of special relevance for understanding the propulsive enhancement
of the back foil owing to its aerodynamic interaction with the front foil (see Sec. V below) is the
vorticity distribution on the trailing foil associated with the front-foil wake, which can be written as


se12(x, t ) = 1

π

√
1 − x

1 + x

[∫ ∞

1+ε

√
ξ + 1 − ε

ξ − 1 − ε


e1(ξ, t )

ξ − x
dξ −

∫ −1+ε

1

√
ξ + 1 − ε

ξ − 1 − ε


e1(ξ, t )

ξ − x
dξ

]
,

(13)
where 
e1 is the vorticity distribution (10) along the front-foil wake.

Once the vorticity distributions and their respective circulations are known, the lift, moment, and
thrust on each airfoil can be computed by using the vortex impulse formulation [33,48,49], which
for the similar case of a tandem of rigid airfoils is detailed in Ref. [30]. The resulting lift coefficient
can be written as

C(i)
L ≡ L(i)

1
2ρU 2c

= L0(t ) + �01(t )L01 + [�02(t ) + �12(t )]L02, (14)

where L(i) is the lift force on foil i per unit span and ρ is the fluid density. The only term that changes
in relation to the tandem of rigid foils is L0(t ), which is given in Appendix B for each foil, along
with the expressions for L01 and L02 for easy reference.

In the case of the thrust force, being a quadratic expression of the different components of the
foils motion, the new deflection term modifies its general form in relation to the rigid foil version.
Thus, the thrust coefficient can be written as

C(i)
T ≡ T (i)

1
2ρU 2c

= EiC
(i)
L − DiC

(i)
T d + C(i)

T 1 + C(i)
T 2 + C(i)

Te , (15)

where T (i) is the thrust force on foil i per unit span. This expression mainly differs from that of a
tandem of rigid foils in the new term −DiC

(i)
T d , which is the projection in the flight direction of the

normal force and moment of plate i produced by the flexural motion. The different terms for the
front (i = 1) and trailing (i = 2) foils are the following:

C(1)
T d =

∫ ∞

1


e1√
ξ 2 − 1

dξ +
∫ ∞

1+ε


e2√
ξ 2 − 1

dξ + d

dt

∫ 1

−1

(
x2 − 1

2

)
(
01 + 
21)dx

+
[

1

2
+ (1 + ε)

√
ε(ε + 2) − (1 + ε)2

]

e2(1 + ε, t ), (16)

C(1)
T 1 = − Ė1

∫ 1

−1
x(
01 + 
21)dx − Ḋ1

∫ 1

−1

(
x2 − 1

2

)
(
01 + 
21)dx, (17)

C(1)
T 2 =

∫ ∞

1
[Ḟ1 + E1 − (Ė1 + 2D1 + ξḊ1)(

√
ξ 2 − 1 − ξ )]
e1dξ, (18)

C(1)
Te = −

∫ ∞

1+ε

[ Ḋ1

2
+ (

Ė1 + 2D1 + ξḊ1
)(√

ξ 2 − 1 − ξ
)]


e2dξ, (19)

C(2)
T d =

∫ ∞

−1+ε


e1 + 
e2√
(ξ − ε)2 − 1

dξ −
∫ −1+ε

1


e1√
(ξ − ε)2 − 1

dξ

+ d

dt

∫ 1+ε

−1+ε

[
(x − ε)2 − 1

2

]
(
02 + 
12)dx

013102-5



J. ALAMINOS-QUESADA AND R. FERNANDEZ-FERIA

+
[

1

2
− (1 − ε)

√
ε(ε − 2) − (1 − ε)2

]

e1(1, t ) + 
e1(−1 + ε, t ) − 
e1(1 + ε, t ), (20)

C(2)
T 1 = − Ė2

∫ 1+ε

−1+ε

(x − ε)(
02 + 
12)dx − Ḋ2

∫ 1+ε

−1+ε

[
(x − ε)2 − 1

2

]
(
02 + 
12)dx, (21)

C(2)
T 2 =

∫ ∞

1+ε

[Ḟ2 + E2 − (Ė2 + 2D2 + (ξ − ε)Ḋ2)(
√

(ξ − ε)2 − 1 − (ξ − ε))]
e2dξ, (22)

C(2)
Te = −

∫ ∞

1+ε

(Ė2 + 2D2 + (ξ − ε)Ḋ2)(
√

(ξ − ε)2 − 1 − (ξ − ε))
e1dξ

+
∫ −1+ε

1
(Ė2 + 2D2 + (ξ − ε)Ḋ2)(

√
(ξ − ε)2 − 1 + (ξ − ε))
e1dξ − Ḋ2

2

∫ ∞

1

e1dξ .

(23)

Solving the different integrals, the thrust coefficient can be written as

C(i)
T = EiC

(i)
L + ĖiT0 + DiTδ1 + ḊiTδ2 + �01T01 + [�02 + �12]T02, (24)

where all T functions are different from their rigid foil counterparts and given in Appendix B.
In the case of the moment coefficient, its general form remains the same as that of the tandem of

rigid foils, as it happens for the lift coefficient, since both are linear functions of the foil’s harmonic
motion. If M (i) is the moment that the fluid exerts on the foil i per unit span about the pivot point ai,
the corresponding moment coefficient is given by

C(i)
M ≡ M (i)

1
2ρU 2c2

= ai

2
C(i)

L + M0(t ) + �01(t )M01 + [�02(t ) + �12(t )]M02, (25)

where only the function M0(t ) changes when including the flexural motions, and it is given in
Appendix B, together with M01 and M02, already given in Ref. [30], for easy reference.

Finally, for the input power coefficient, a new term associated with the deflection appears in
relation to the tandem of rigid foils (already obtained for an isolated foil in Ref. [46]):

C(i)
P = −ḣiC

(i)
L − 2α̇C(i)

M − δ̇iC
(i)
F , (26)

where the flexural coefficient C(i)
F is given by

C(1)
F = p1

(
4C(1)

M p − p1C
(1)
L

) + C(1)
L2

2
+

∫ 1

−1
x2(
01 + 
21)dx − 1

3

d

dt

∫ 1

−1
x3(
01 + 
21)dx

+ 1

3

[
(1 + ε)3 −

(
(1 + ε)2 + 1

2

)√
ε(ε + 2)

]

e2(1 + ε, t ) (27)

for the front foil, and

C(2)
F = p2

(
4C(2)

M p − p2C
(2)
L

) + C(2)
L2

2
+ 1

2

∫ 1+ε

−1+ε


e1dξ +
∫ 1+ε

−1+ε

(x − ε)2(
02 + 
12)dx

− 1

3

d

dt

∫ 1+ε

−1+ε

(x − ε)3(
02 + 
12)dx + 1

3
[
e1(−1 + ε, t ) + 
e1(1 + ε, t )]

+ 1

3

[
(1 − ε)3 +

(
(1 − ε)2 + 1

2

)√
ε(ε − 2)

]

e1(1, t ) (28)

for the trailing foil. Solving theses expressions, they can be written as

C(i)
F = pi

[
4C(i)

M p − piC
(i)
L

] + F0(t ) + �01(t )F01 + [�02(t ) + �12(t )]F02, (29)

013102-6



PROPULSION PERFORMANCE OF TANDEM FLAPPING …

where C(i)
M p is the moment coefficient (25) replacing ai/2 by pi/2 in its first term, and the different

functions and coefficients F0(t ), F01, and F02 are summarized in Appendix B.

B. Time-averaged coefficients

For practical purposes, one is mostly interested in the time-averaged coefficients, defined as

C
(i) = k

2π

∫ t+2π/k

t
C(i)(t )dt, (30)

where C(i) is any of the above coefficients for the foil i. Thus, the time-averaged thrust and input
power coefficients can be decomposed into two terms,

C
(i)
T = C

(i)
Tr + C

(i)
T d , C

(i)
P = C

(i)
Pr + C

(i)
Pd , (31)

where C
(i)
Tr and C

(i)
Pr are the mean thrust and input power, respectively, of each foil as if they were rigid

foils, and C
(i)
T d and C

(i)
Pd are the contributions from the deflection motion. The rigid-foil contributions,

obtained in Ref. [30], can be formally written as

C
(i)
Tr = (kh0i )

2{th(k, ε, ϕ,�h) + tc(k, ε, ϕ, φi, φ j, ai, a j,�h,�a)θi + tp(k, ε, ϕ, ai, a j,�a)θ2
i },

(32)

C
(i)
Pr = (kh0i )

2{ph(k, ε, ϕ,�h) + pc(k, ε, ϕ, φi, φ j, ai, a j,�h,�a)θi + pp(k, ε, ϕ, ai, a j,�a)θ2
i },
(33)

while the new contributions from the flexural motion can be written in a similar fashion as

C
(i)
T d = (kh0i )

2{[thd (k, ε, ϕ, pi, p j, ψi, ψ j,�h,�d )

+ tpd (k, ε, ϕ, ai, a j, pi, p j, φi, φ j, ψi, ψ j,�a,�d )θi]θdi

+ td (k, ε, ϕ, pi, p j, ψi, ψ j,�d )θ2
di}, (34)

C
(i)
Pd = (kh0i )

2{[phd (k, ε, ϕ, pi, p j, ψi, ψ j,�h,�d )

+ ppd (k, ε, ϕ, ai, a j, pi, p j, φi, φ j, ψi, ψ j,�a,�d )θi]θdi

+ pd (k, ε, ϕ, pi, p j, ψi, ψ j,�d )θ2
di}, (35)

where

θi = a0i

kh0i
, θdi = dmi

kh0i
, (36)

are the feathering parameters of each foil and the equivalent ones for the flexural amplitudes, and

�h = h0 j

h0i
, �a = a0 j

a0i
, �d = dm j

dmi
, (37)

are amplitude ratios. All the new functions thd , td , phd , and pd for each airfoil are given in the
Supplemental Material [47], together with the rigid-foil ones th, tc, tp, ph, pc, and pp for easy
reference.

Finally, the propulsive efficiency of each foil is conveniently written in terms of these functions
and the feathering parameters:

ηi = C
(i)
T

C
(i)
P

= th + tphθi + tpθ
2
i + (thd + tpdθi )θdi + tdθ2

di

ph + pphθi + ppθ
2
i + (phd + ppdθi )θdi + pdθ

2
di

. (38)
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The global time-averaged thrust and efficiency of the tandem are defined as

CT = C
(1)
T + C

(2)
T , η = C

(1)
T + C

(2)
T

C
(1)
P + C

(2)
P

. (39)

IV. VALIDATION

The thrust force coefficient and the corresponding propulsive efficiency, resulting from the vortex
impulse theory in the linear potential flow limit which is used here, valid for sufficiently high
Reynolds numbers and small amplitudes, has been widely tested with experimental and numerical
data from different sources for pitching and heaving rigid foils. These tests have been reported in
Refs. [33,50–53] for isolated rigid foils, and in Ref. [30] for a tandem configuration of rigid heaving
foils, where experimental results by Ramananarivo et al. [23] and by Newbolt et al. [26] were
favorably compared with the results from the present linear potential theory (see also immediately
below). Another validation of the theory for two pitching rigid foils in tandem configuration is
provided in the present work by comparing with numerical simulations by Boschitsch et al. [21]
(see Sec. VI B and Fig. 7 below).

For the case of a single foil with prescribed quadratic flexural deflection like the one considered
in the present work, the results have been validated against numerical and experimental data in
Ref. [46].

For a tandem flapping flexible foils, the available numerical or experimental data for validation
is scarce, especially for high-enough Reynolds numbers and small amplitude, with the additional
difficulty that most of the published works do not provide information about the flexural deflection
amplitudes and phase, dmi and ψi, which are needed to evaluate the force expressions derived in this
work. However, like in the rigid-foil case, available results for the equilibrium separation distances
between two self-propelled plates in tandem arrangement can be used as an alternative. Thus, in
Ref. [30] we showed that the equilibrium separations between two self-propelled heaving rigid
plates in tandem arrangement found experimentally by Ramananarivo et al. [23] and by Newbolt
et al. [26] correspond to configurations with maximum amplification of the tandem propulsive
efficiency computed from the linear potential theory.

The recent work by Ryu et al. [45], with numerical simulations for two self-propelled heaving
flexible plates in a tandem arrangement, reports such kind of results in the separation-phase plane
(d̃/c-ϕ plane, where the tilde over d means dimensional quantity). Figure 2 shows that, similarly
to the results reported in Ref. [30] for rigid foils, the bands of maximum propulsive efficiency of
the tandem obtained with the present theory roughly correspond to equilibrium separation distances
between the self-propelled plates obtained numerically by Ryu et al. [45]. The results given by these
authors are for flexible plates with the conditions given in the caption of Fig. 2 but, since no data can
be extracted for dm or ψ from their reported results, they are compared in Fig. 2 with the efficiency
amplification obtained from the present theory for both a tandem of rigid foils and a tandem of
flexible foils with the same kinematics of the reported numerical results and selected values of the
flexural deflection amplitude and phase. The normalized efficiencies plotted in this figure are

η̂ = ηr

ηs
and η̃ = η

ηr
, (40)

for rigid foils and flexible foils, respectively, where η is the total efficiency defined in Eq. (39), the
subscript s stands for a single airfoil undergoing the same motion, and the subscript r, as in Sec. III B
above, means rigid foils, for which we use the same expression (39) but setting to zero the flexural
deflection amplitude dm. Although the contour values inside the bands of efficiency amplification
and reduction are obviously different in each case, the slope and location of the banded patterns are
practically the same and agree quite well with the numerical results by Ryu et al. [45]. It should
be noted that, although the amplitude h0 = 0.4 does not seem sufficiently small for a linear theory,
the present theory for pure heave of a single airfoil works remarkably well even for not too small
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FIG. 2. Contours of the normalized propulsive efficiency in the d̃/c-ϕ plane for tandem heaving foils with
k = 1.25 and p = −1. (a) η̂ for a pair of rigid foils. (b) η̃ for a pair of flexible foils with dm/h0 = 1/4 and
ψ = 90◦. The symbols correspond to equilibrium gap distances obtained by Ryu et al. [45] in their numerical
simulations for two self-propelled flexible plates in tandem for the same values of k and p, and h0 = 0.4 [i.e.,
their tandem flapping (TF) modes in Fig. 2(d) of Ref. [45]; note that their Gx is our d̃/c + 1, while their �φ is
our ϕ].

amplitudes, as shown in Ref. [33] comparing theoretical results for the thrust coefficient and the
efficiency with experimental data by Heathcote and Gursul [35] for h0 = 0.35.

As already mentioned, similar patterns for the maxima in the efficiency enhancement, but now in
the separation-frequency plane d̃/c-k, were found in Ref. [30] for a tandem arrangement of heaving
rigid foils in phase. As shown experimentally by Ramananarivo et al. [23], these aerodynamic
amplification modes correspond to equilibrium separation distances which are integer multiples
of the front-foil wake wavelength. This was characterized by these authors by defining the so-called
schooling number, or ratio between the separation d̃ and the wavelength λ = πc/k of the wake,

S = d̃

λ
= dk

2π
. (41)

These patterns are also found here for flexible flapping foils in tandem (see Sec. VI below), with
different propulsive amplifications depending on the flexural deflection amplitude and phase. But
before presenting these results, we explore in the following section the physics behind such regular
patterns of the maxima in the efficiency enhancement, according to the present theory, and how this
amplification is affected by the flexural motion.

V. ANALYSIS OF THE IMPACT OF THE UPSTREAM WAKE ON THE BACK-FOIL THRUST

The main contribution to the amplification (or reduction) in the propulsion capabilities of flapping
foils in tandem configuration, in relation to an isolated flapping foil, obviously comes from the
interaction of the front-foil wake with the back foil, which may enhance (or reduce) the thrust
generated by the trailing foil in relation to a single foil undergoing the same motion, and therefore
increase (or reduce) the propulsive efficiency of the tandem system. In the present linear potential
theory, where no leading- or trailing-edge vortices are intermittently shed by the flapping foils,
but vorticity is continuously shed in concentrated free (wake) vortex sheets, in addition to the
vorticity inside the thin bound vortex sheets on the flapping foils, this contribution is characterized
by Eq. (13), or contribution to the vorticity distribution along the back foil, 
s2, due to the vorticity
distribution 
e1 in the upstream wake.
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FIG. 3. Contour values of M/h2
0 in the schooling number-frequency plane for purely heaving (a) rigid and

(b) flexible foils with dm/h0 = 1/4, ψ = ϕ = 0, and p = −1.

In particular, it is well known that the intensity of the bound vorticity distribution 
s on a plate
at the leading edge is related, within the linear potential theory, to the suction force at the leading
edge [54]: 
s is singular at the leading edge, but generates a finite suction force. This was used,
for example, by Garrick [55] to quantify the suction component of the thrust force generated by
a pitching and heaving rigid plate within the linear potential theory. This suction thrust force is
given by TS = πρK2, where K = limx→−c/2

√
x + c/2 
s(x, t )/2, for an airfoil with leading edge

at x = −c/2. Thus, taking into account the above argument and using the present dimensionless
variables, the main contribution to the thrust force amplification in the back foil in relation to an
isolated foil can be obtained from Eq. (13) when the singularity at the leading edge x = −1 + ε is
removed; i.e., from the quantity

m(x, t ) :=
∫ ∞

1+ε

√
ξ + 1 − ε

ξ − 1 − ε


e1(ξ, t )

ξ − x
dξ −

∫ −1+ε

1

√
ξ + 1 − ε

ξ − 1 − ε


e1(ξ, t )

ξ − x
dξ, (42)

which, after substituting the upstream wake vorticity 
e1 from Eq. (10), results in

m(x, t ) =
[

Fa(k, ε)

a(k)
�01(t ) + Fb(k, ε)

a(k)
(�02(t ) + �12(t ))

]

×
[∫ ∞

1+ε

√
ξ + 1 − ε

ξ − 1 − ε

e−ikξ

ξ − x
dξ −

∫ −1+ε

1

√
ξ + 1 − ε

ξ − 1 − ε

e−ikξ

ξ − x
dξ

]
. (43)

We are interested in the time-averaged value of the square of the real part of this quantity at the
leading edge of the back foil, which as argued above characterizes (is proportional to) the main
contribution to the nondimensional amplification in the suction thrust of the trailing foil due to the
upstream wake:

M := k

2π

∫ t+2π/k

t
Re[m(x = −1 + ε, t )]Re[m(x = −1 + ε, t )]dt . (44)

The maxima in M as the geometrical and kinematic parameters are varied and will provide relevant
information about the optimal configurations of the tandem in terms of thrust and, most likely, in
terms of propulsive efficiency, since the main propulsive advantage of the tandem configuration is
the amplification in the thrust force of the trailing foil.

For purely heaving foils with the same amplitude h0, M/h2
0 depends only on k, d , and ϕ for rigid

foils and additionally on dm/h0, ψ , and p for flexible foils. This quantity is plotted in Fig. 3 as a
function of the schooling number (41) and the reduced frequency for rigid foils in phase (ϕ = 0),
and for flexible foils with p = −1 (deflection axis at the leading edge), dm/h0 = 1/4 and ψ = 0.
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FIG. 4. Contour values of M/h2
0 in the schooling number-phase shift plane for heaving plates with flexural

deflection amplitude dm/h0 = 1/4. ϕ = 0, p = −1, and k = 2.75.

It is noticeable that the thrust amplification pattern is the same in both cases, with a frequency
band containing peaks at selected values of the schooling number which are slightly larger than the
successive natural numbers, in good agreement with the experimental results by Ramananarivo et al.
[23]. (There exist similar bands at higher frequencies, but only the lowest-frequency one is shown in
Fig. 3.) On the other hand, the thrust amplification in the foil with flexural deflection is significantly
larger than that of a rigid foil for the selected values of the parameters. In fact, p = −1 is usually
the best deflexion axis location in terms of propulsion performance of a foil with quadratic flexural
deflection [30], and the thrust increases quadratically with dm in the present linear theory, so that
most the relevant parameter to quantify the effect of the flexural motion on the thrust enhancement
for given ϕ is the phase shift ψ between the heaving and flexural motions. Figure 4 shows the effect
of ψ on M/h2

0 for the optimal frequency in Fig. 3 (k � 2.75). It is observed that the optimal phase
shift for thrust enhancement of the trailing foil due to its interaction with the upstream wake is about
25◦, close to the case plotted in Fig. 3.

It must be remarked that this analysis considers only the (arguably) most relevant contribution to
the suction force at the leading edge of the trailing foil, not all contributions to the total thrust force.
But it serves to illustrate the physical origin of the thrust (and efficiency) enhancement in a tandem
configuration in comparison with an isolated foil, and how it can be further augmented by the foil’s
flexural deflection.

VI. RESULTS

Owing to the large number of geometric and kinematic parameters, only the cases of purely
heaving or pitching motions pivoting about the leading edges, combined with chordwise deflection,
will be considered here with some detail.

A. Purely heaving motion with chordwise deflection

In this case, the time-averaged coefficients reduce to

C
(i)
T d = (kh0i )

2
{
thd (k, ε, ϕ, pi, p j, ψi, ψ j,�h,�d )θdi + td (k, ε, ϕ, pi, p j, ψi, ψ j,�d )θ2

di

}
, (45)

C
(i)
Pd = (kh0i )

2
{

phd (k, ε, ϕ, pi, p j, ψi, ψ j,�h,�d )θdi + pd (k, ε, ϕ, pi, p j, ψi, ψ j,�d )θ2
di

}
. (46)
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FIG. 5. Contours of normalized thrust (left panels) and normalized propulsive efficiency (right panels) of
the tandem in the d̃/c-k plane for pure heave with ϕ = 0 and p = −1. Panels (a) and (b) are for a tandem of
rigid foils, with quantities normalized by those of an otherwise identical single foil. Panels (c) and (d) are for
a tandem of flexible foils with chordwise deflection when dm/h0 = 1/4 and ψ = 270◦, now normalized by the
corresponding values for the tandem of rigid foils.

To simplify further, we shall consider the same heaving and deflection amplitudes for both plates
(�h = �d = 1), with the same phase shifts (ψ1 = ψ2 = ψ) and pivoting about their leading edges
(p1 = p2 = p = −1).

First we compare in Fig. 5 the patterns of thrust and efficiency enhancement (or reduction) in the
schooling number-frequency plane for the rigid-foil case with the present results when chordwise
deflection is added. The normalized efficiencies are defined in Eq. (40), while the normalized time-
averaged thrust coefficients are similarly defined as

ĈT = CTr

CT s
and C̃T = CT

CTr
, (47)

for rigid foils and flexible foils, respectively, where CT is the total thrust coefficient defined in
Eq. (39), the subscript s stands for a single foil undergoing the same motion, and the subscript
r means rigid foils, for which we use the same expression (39) but setting to zero the flexural
deflection amplitude dm. All the normalized quantities are independent of the amplitude of the
oscillations, in this case of the heave amplitude h0. It must be noted that, although the magnitude of
the amplifications in Fig. 5 seems unrealistic in some cases, these amplifications are in relation to
the isolated rigid foil in Figs. 5(a) and 5(c), or to the tandem of rigid foils in Figs. 5(b) and 5(d), for
the same values of k and S, which obviously do not always coincide with their respective maxima.

For comparison’s sake, Figs. 5(a) and 5(b) reproduce results from Ref. [30] for a tandem of
rigid foils in phase (ϕ = 0), but now in the S-k plane, with S defined in Eq. (41), instead of
the d̃/c-k plane. As shown in Ref. [30], the maxima in the efficiency magnification shown in
Fig. 5(b) approximately follow the multiple arrangements that self-propelled foils undergoing a
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FIG. 6. Maxima in (a) C̃T and (b) η̃ within the first amplification modes (with lower frequencies) plotted in
Figs. 5(c) and 2(d), respectively, as a function of the phase shift ϕ and the corresponding optimal values of k,
d̃/c, and ψ .

heaving motion at high Reynolds numbers spontaneously assume due to flow interactions, roughly
corresponding to integer values of the schooling number [23].

Figures 5(c) and 5(d) show the corresponding normalized quantities for a tandem arrangement
of heaving foils with flexural deflection amplitude dm/h0 = 1/4 and phase shift ψ = 270◦. It is
observed that the amplification pattern remains, now in relation to the tandem rigid foils, but with a
slight shift in the S-k plane that partially overlaps the adjacent regions of reduction in the propulsive
performance of the tandem rigid foils. For given ϕ, this shift in the amplification pattern depends
on the flexural deflection phase ψ . For the case ψ = 270◦ plotted in Figs. 5(c) and 5(d), the net
effect is that a quadratic deflection may augment further the thrust and the propulsive efficiency
of the tandem arrangement in several banded regions of the S-k plane. Particularly relevant is
the first amplification mode (lower S), especially at the lowest frequencies, which are the most
interesting conditions from a physical point of view, and for that reason is explored with more detail
next.

Figure 6 plots the maximum values of the thrust and efficiency corresponding to the first ampli-
fication mode with the lowest frequencies shown in Figs. 5(c) and 5(d) as the phase shift ϕ is varied
from the value ϕ = 0 used in Fig. 5, maintaining the flexural deflection amplitude dm/h0 = 1/4 and
varying also the defection phase shift ψ . This figure also contains the corresponding optimal values
of k, d̃/c, and ψ for both thrust and efficiency enhancement by flexibility. Note that the deflection
amplitude is not varied because the thrust coefficient goes as d2

m and the efficiency is almost
independent of dm in the present linear theory. The maximum thrust enhancement by flexibility
is obtained for a heave phase shift ϕ ≈ 75◦, corresponding to k ≈ 1.5, ψ ≈ 300◦, and d̃/c ≈ 1.25.
For a similar value of ϕ there is a local peak of efficiency enhancement which, although it is not
the absolute maximum in Fig. 6(b), it is the most interesting one in view of the corresponding
optimal values of the parameters. It is obtained with practically the same values of ϕ, k, and ψ

of the maximum thrust, but for a slightly larger separation, about 1.5 chord lengths. The other
local maxima of thrust and efficiency enhancement are less interesting physically because they are
obtained for either too large or too low separations between the foils, for which the present inviscid
theory is less accurate. Thus, although there are other local maxima in the efficiency or in the
thrust force amplifications, this one appears within the range of physically relevant values of the
parameters where the present theory is more accurate and it is robust in the sense that both thrust
and efficiency enhancement reach local maxima at these optimal conditions.
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FIG. 7. Contours of the tandem normalized thrust (left panels) and the tandem normalized propulsive
efficiency (right panels) in the d̃/c-ϕ plane for purely pitching motions with k = π and a = p = −1. Panels
(a) and (b) are for a tandem of rigid foils, with quantities normalized by those of an otherwise identical
single foil, while panels (c) and (d) are for a tandem of flexible foils with trailing-edge deflection amplitude
dm/a0 = 1/4 and ψ = 180◦, now normalized by the corresponding values for the tandem of rigid foils.

B. Purely pitching motion with chordwise deflection

Banded patterns of enhancement (or reduction) of the tandem propulsive performance in the S-k
plane (or the d̃/c-k plane) are also observed for pitching foils. However, we shall present now the
results in the spacing-phase shift plane following Boschitsch et al. [21], who used it to discuss
their experimental results for a similar configuration of pitching rigid plates. This d̃/c-ϕ plane was
already used in Fig. 2 for two heaving foils, showing angled bands of propulsive enhancement. In
fact, Boschitsch et al. [21] were the first to observe these angled band patterns experimentally for
the thrust amplification of the trailing foil in an in-line configuration of rigid foils pitching about
their leading edges.

Figure 7 shows the contours in the d̃/c-ϕ plane of the normalized thrust coefficient and propulsive
efficiency of a tandem arrangement of both rigid and flexible foils pitching about their leading
edges (a1 = a2 = a = −1) at the same reduced frequency k = π of the results reported in Fig. 8
of Ref. [21]. Note that now, in the absence of heaving motion, ϕ is the phase lag between the
pitching motions. The coefficients are normalized according to Eqs. (40) and (47), thus independent
of the pitch amplitude a0. Boschitsch et al. [21] plotted in their Fig. 8 the same normalized values
but for the downstream foil. However, since the trailing foil is by far the main contributor to the
tandem thrust and efficiency enhancement, the banded patterns in Figs. 7(a) and 7(b) for rigid
foils practically coincide with those reported in Fig. 8 of Boschitsch et al. [21], but obviously with
different contour values since we are representing different quantities.

Similarly to the case of purely heaving motions, for pitching foils with quadratic chordwise
deflection, we consider only configurations with the same pitching and deflection amplitudes for
both plates (�a = �d = 1), with the same deflection phase shifts (ψ1 = ψ2 = ψ) and pivoting
about their leading edges (a1 = a2 = a = p1 = p2 = p = −1). Figures 7(c) and 7(d) show the
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FIG. 8. Maxima in (a) C̃T and (b) η̃ in the first amplification modes plotted in Figs. 7(c) and 7(d),
respectively, as a function of the deflection phase shift ψ and the corresponding optimal values of ϕ and
d̃/c. k = π .

effect of a quadratic flexural deflection on the rigid-foil case plotted in Figs. 7(a) and 7(b) when
the deflection amplitude is dm/a0 = 1/4 and its phase shift ψ = 180◦. The banded patterns for
thrust and efficiency basically remain, but with spots of thrust and efficiency enhancement by the
quadratic deflection in relation to their rigid foil counterparts.

Figure 8 shows the maxima in the thrust and efficiency enhancement corresponding to the first
amplification mode shown in Figs. 7(c) and 7(d) as the deflection phase shift ψ is varied [note that
ψ = 180◦ in Figs. 7(c) and 7(d)], maintaining the flexural deflection amplitude at dm/a0 = 1/4 and
the reduced frequency at k = π . This figure also contains the corresponding optimal values of d̃/c
and ϕ for both thrust and efficiency enhancement by flexural deformation. The deflection amplitude
is not varied because the thrust coefficient increases quadratically with dm/a0 and the efficiency
is almost independent of dm/a0 in the present linear theory. The maximum thrust and efficiency
enhancement by flexural deflection are both obtained at roughly the same values of the parameters,
namely ψ ≈ 60◦, d̃/c ≈ 0.8, and ϕ ≈ 350◦. This optimal separation and the selected frequency are
well within the range of validity of the present theory and this maximum is robust in the sense that
at these optimal conditions both thrust and efficiency enhancement reach local maximum values.

VII. CONCLUSIONS

We have analyzed the effect of chordwise flexural deflection on the propulsive performance of
a tandem arrangement of two-dimensional flapping foils in the linearized inviscid limit. General
expressions for the vorticity distributions, the thrust, moment, power input, and propulsive efficiency
are given analytically in terms of the huge number of geometric and kinematic parameters charac-
terizing the complex aerodynamic problem. This is the main advantage of the present approach:
although limited to small amplitudes of the flapping and deflection motions and to high Reynolds
number flows, the effect on the propulsive performance of all these parameters is readily available,
while in numerical and experimental studies only the effect of a very reduced number of parameters
can be taken into account simultaneously. In addition, we use the analytical expressions for the
vorticity distributions to analyze the effect of the front-foil wake on the thrust of the trailing foil, thus
extracting relevant qualitative information about the optimal configurations for thrust and efficiency
enhancement, both for a tandem of rigid foils and for the case with the additional flexural deflection.

From these general expressions, we have presented results for two particular configurations
consisting of purely heaving and purely pitching motions of the foils about their leading edges.
These configurations have been selected because there exists a good agreement with available
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experimental and numerical data for the case of rigid foils, some of these validations made in a
previous work for tandem rigid foils [46], and new comparisons presented here. We have analyzed
with some detail how a small-amplitude chordwise deflection improves the propulsive performance
of the tandem flapping foils. For heaving foils we find that thrust enhancement by flexibility is
maximized for a phase shift between the two heaving motions of about 75◦, for a separation distance
about 1.25 chord lengths, a reduced frequency around 1.5, and a deflection phase shift of about
300◦. Maximum propulsive efficiency enhancement is obtained for basically the same values of
these parameters, but for a slightly larger spacing between the foils. For pitching foil about their
leading edges we have selected a particular value of the reduced frequency to compare with a
previous experimental work for rigid foils [21] and find that both the maximum thrust and the
maximum efficiency enhancement by flexural deflection is obtained for almost in-phase pitching
foils, separated a little less than one chord length and with a deflection phase shift of about 60◦.
All these results, both the general analytical expressions and the findings for the particular flapping
configurations, may be of interest as a first guide in the design of small aerial or aquatic vehicles
using tandem propulsors.
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APPENDIX A: SOME INTEGRALS AND FUNCTIONS

The integrals and functions used in deriving the results of the paper are summarized here:

A1(k, ε) ≡
∫ −1

1−ε

e−ik(ξ+ε)√
ξ 2 − 1

dξ, A2(k, ε) ≡
∫ ∞

1+ε

e−ik(ξ−ε)√
ξ 2 − 1

dξ, (A1)

Q1(k, ε) ≡
∫ −1

1−ε

e−ik(ξ+ε)
√

ξ 2 − 1dξ, Q2(k, ε) ≡
∫ ∞

1+ε

e−ik(ξ−ε)
√

ξ 2 − 1dξ, (A2)

Q(k, ε) ≡ iH (2)
1 (k) + 4i

πk
[k cos (k) − sin (k)] + 2

π

eik(ε−1)

k
[1 + ik(1 − ε)], (A3)

a(k) ≡ π

2

[
iH (2)

0 (k) + H (2)
1 (k)

]
, (A4)

b(k, ε) ≡ i

k
e−ik +

(
1 + i

d

dk

)
A2(k, ε), (A5)

c(k, ε) ≡ i

k
e−ik +

(
1 + i

d

dk

)
A1(k, ε) − a(k)e−ikε, (A6)

Fa(k, ε) ≡ a(k)

a(k) − b(k,ε)
a(k) c(k, ε)

, Fb(k, ε) ≡ b(k, ε)

a(k) − b(k,ε)
a(k) c(k, ε)

, (A7)

Fc(k, ε) ≡ c(k, ε)

a(k) − b(k,ε)
a(k) c(k, ε)

, (A8)

Ca ≡ 1 − iH (2)
0 (k)Fa(k, ε)

iH (2)
0 (k) + H (2)

1 (k)
, Cb ≡ − iH (2)

0 (k)Fb(k, ε)

iH (2)
0 (k) + H (2)

1 (k)
,

Cc ≡ − iH (2)
0 (k)Fc(k, ε)

iH (2)
0 (k) + H (2)

1 (k)
, (A9)

C(k) ≡ H (2)
1 (k)

iH (2)
0 (k) + H (2)

1 (k)
, C1(k) ≡

1
k e−ik

iH (2)
0 (k) + H (2)

1 (k)
, (A10)
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C1e(k, ε) ≡
1
k e−ikε

iH (2)
0 (k) + H (2)

1 (k)
, (A11)

B1(k, ε) ≡ Q2(k, ε)

a(k)
+ 2

π

(
1 + ik

k
+ iε

)
C1(k), B2(k, ε) ≡ Q(k, ε)C1e(k, ε) − Q1(k, ε)

a(k)
,

(A12)

where H (2)
n (z) = Jn(z) − iYn(z), n = 0, 1, are the Hankel functions of the second kind, related to the

Bessel functions of the first and second kind Jn and Yn, respectively [56]. Note that C(k) in (A10) is
the well-known Theodorsen function [57]. Other defined functions are the following:

fγ (x) ≡ 4

π

K[4/ε2]

1 + ε − x
+ 2

π

(
1 + 2

ε

)(
(1 − ε + x)(1 − x)

(1 + ε − x)(1 + x)
�

[
2

ε

1 + ε − x

1 + x
,

4

ε2

]
− �

[
−2

ε
,

4

ε2

])
,

(A13)

fγα (x) ≡ 2

{
εE

(
4

ε2

)
+ 2(2 + x) + ε(1 − ε + x)

1 + ε − x
K

(
4

ε2

)
+

(
1 + 2

ε

)
(1 + 2x)

×
[

(1 − ε + x)(1 − x)

(1 + ε − x)(1 + x)
�

(
2

ε

1 + ε − x

1 + x
,

4

ε2

)
− �

(
−2

ε
,

4

ε2

)]}
, (A14)

f� ≡ 1

π

[
εE

(
4

ε2

)
+ (2 − ε)K

(
4

ε2

)]
− 1, (A15)

f�α ≡ ε(1 + ε)E

(
4

ε2

)
+ [6 + (3 − ε)ε]K

(
4

ε2

)
− 4(2 + ε)�

(
−2

ε
,

4

ε2

)
, (A16)

where K (x), E (x), and �(x, y) are the complete elliptic integral of the first kind, the complete
elliptic integral of the second kind, and the incomplete elliptic integral of the third kind, respectively
[58]. For the case of two airfoils in tandem configuration the integrals associated with 
12 are the
following:

−
∫ 1+ε

−1+ε

(x − ε)n
12(x, t )dx = �01(t )Iγ ,n + α̇1(t )Iγα,n. (A17)

In the case of considering the first oscillating mode, some new functions appear:

R1(k, ε) =
∫ −1

1−ε

e−ik(ξ+ε)ξ
√

ξ 2 − 1dξ, R2(k, ε) =
∫ ∞

1+ε

e−ik(ξ−ε)ξ
√

ξ 2 − 1dξ, (A18)

C2(k) = H (2)
2 (k)

iH (2)
0 (k) + H (2)

1 (k)
, (A19)

B1δ (k, ε) = R2(k, ε)

a(k, ε)
− 2i

π

{
1 + 1

k2

[
2 + 2i(1 + ε)k − (1 + ε)2k2

]}
C(k), (A20)

B2δ (k, ε) = Qδ (k, ε)C1e(k, ε) − R1(k, ε)

a(k, ε)
− i

π
C1(k), (A21)

Qδ = H (2)
2 (k) + 2

k2

[
2ik sin (k) − i

(
k2 − 2

)
cos (k)

]
+ iei(ε−1)k

k2
[(ε − 1)k − 1 + i][(ε − 1)k + 1 + i], (A22)

f�δ = 2
∫ 1

−1

√
ξ + 1 − ε

ξ − 1 − ε
ξ
√

1 − ξ 2dξ, (A23)

013102-17



J. ALAMINOS-QUESADA AND R. FERNANDEZ-FERIA

Iγ δ,n(ε) = 2

π

∫ 1+ε

−1+ε

(x − ε)n

√
1 + ε − x

1 − ε + x

∫ 1

−1

√
ξ + 1 − ε

ξ − 1 − ε

ξ
√

1 − ξ 2

ξ − x
dξdx, (A24)

and the integrals associated with 
12 are the following:

−
∫ 1+ε

−1+ε

(x − ε)n
12(x, t )dx = �01(t )Iγ ,n − V1(t )Iγα,n − Ḋ1(t )Iγ δ,n. (A25)

The double integral (A24) can be simplified to a single integral, integrating in x,

Iγ δ = 2
∫ 1

−1

(√
(ξ − ε)2 − 1 + ξ − ε

)
ξ
√

1 − ξ 2dξ, (A26)

Iγ δ,2 = 2
∫ 1

−1

(
1

2

√
ξ + 1 − ε

ξ − 1 − ε
+ (ξ − ε)

√
(ξ − ε)2 − 1 + (ξ − ε)2

)
ξ
√

1 − ξ 2dξ, (A27)

Iγ δ,3 = 2
∫ 1

−1

[√
(ξ − ε)2 − 1

(
−1

2
− (ξ − ε)2

)
− (ξ − ε)3

]
ξ
√

1 − ξ 2dξ . (A28)

APPENDIX B: LIFT, THRUST, MOMENT, AND FLEXURAL COEFFICIENTS FOR EACH FOIL

1. Lift coefficient

C(i)
L = L0(t ) + �01(t )L01 + [�02(t ) + �12(t )]L02. (B1)

Only L0(t ) changes when considering the flexural motion.
(a) Front foil

L0(t ) = −π

[
U̇1(t ) + D̈1(t )

2

]
, (B2)

L01 = Ca + Fc

[A2

a
+ 2k

π

(
1 + ε −

√
ε(ε + 2)

)
C1

]
, (B3)

L02 = Cb + Fa

[A2

a
+ 2k

π

(
1 + ε −

√
ε(ε + 2)

)
C1

]
. (B4)

(b) Trailing foil

L0(t ) = −π

[
U̇2(t ) + D̈2(t )

2
− 2U̇1(t )Iγ ,1 − V̇1(t )

(
Iγ ,1 + Iγα,1

π

)
− D̈1(t )

(
Iγ ,1 + Iγ δ,1

π

)]
, (B5)

L01 = Cc + Fa

[
−A1

a
+ 2k

π

(
1 − ε +

√
ε(ε − 2)

)
C1

+ 2

π

(
−i

πk

2
H (2)

0 (k) − 2 sin (k) + 2k cos (k)

)
C1e

]
, (B6)

L02 = Ca + Fb

[
−A1

a
+ 2k

π

(
1 − ε +

√
ε(ε − 2)

)
C1

+ 2

π

(
−i

πk

2
H (2)

0 (k) − 2 sin (k) + 2k cos (k)

)
C1e

]
. (B7)

2. Thrust coefficient

C(i)
T = EiC

(i)
L + ĖiT0 + DiTδ1 + ḊiTδ2 + �01T01 + [�02 + �12]T02. (B8)
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(a) Front foil

T0 = −π

(
U1 + Ḋ1

2

)
, (B9)

Tδ1 = −π

2
V̇1 − �01Tδ01 − (�02 + �12)Tδ02, (B10)

Tδ2 = −π

2
D1, (B11)

T01 = Fa

{[
Ḋ1

(
2i

k2
− 2 + ik

k

)
− 1 + ik

k
V1 − iU1

]
2

π
FaC1

−1

k

[
Ḋ1C2 + iV1C

]} − Fc
(
V1B1 + Ḋ1B1δ

)
, (B12)

T02 = Fb

{[
Ḋ1

(
2i

k2
− 2 + ik

k

)
− 1 + ik

k
V1 − iU1

]
2

π
FaC1 − 1

k

[
Ḋ1C2 + iV1C

]}

−Fa
(
V1B1 + Ḋ1B1δ

)
, (B13)

where the functions Tδ01 and Tδ01 are given by

Tδ01 = Ca − 1 + Fc

{A2

a
+ 2k

π

[
1 + 2(1 + ε)

(√
ε(ε + 2) − (1 + ε)

)]
C1

}
, (B14)

Tδ02 = Cb + Fa

{A2

a
+ 2k

π

[
1 + 2(1 + ε)

(√
ε(ε + 2) − (1 + ε)

)]
C1

}
. (B15)

(b) Trailing foil

T0 = π

[
−U2 − Ḋ2

2
+ 2U1Iγ ,1 + V1

(
Iγ ,1 + Iγα,1

π

)
+ Ḋ1

(
Iγ ,1 + Iγ δ,1

π

)]
, (B16)

Tδ1 = −π

2
V̇2 − 2π

[
U̇1( f� − 2Iγ ,2) + V̇1

(
f�
2

+ f�α

2π
− Iγ ,2 − Iγα,2

π

)

+D̈1

(
f�
2

+ f�δ

2π
− Iγ ,2 − Iγ δ,2

π

)]
− �01Tδ01 − (�02 + �12)Tδ02, (B17)

Tδ2 = −π

[D2

2
+ U1( f� − 2Iγ ,2) + V1

(
f�
2

+ f�α

2π
− Iγ ,2 − Iγα,2

π

)

+Ḋ1

(
f�
2

+ f�δ

2π
− Iγ ,2 − Iγ δ,2

π

)]
, (B18)

T01 = Fc

{[
Ḋ2

(
2i

k2
− 2 + ik

k

)
− 1 + ik

k
V2 − iU2

]
2

π
FaC1 − 1

k

[
Ḋ2C2 + iV2C

]}

−Fa(V2B2 + Ḋ2B2δ ), (B19)

T02 = Fa

{[
Ḋ2

(
2i

k2
− 2 + ik

k

)
− 1 + ik

k
V2 − iU2

]
2

π
FaC1 − 1

k

[
Ḋ2C2 + iV2C

]}

−Fb(V2B2 + Ḋ2B2δ ), (B20)
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where the functions Tδ01 and Tδ01 are given by

Tδ01 = Cc + Fa

{
−A1

a
+ 2k

π
[1 − 2(1 − ε)

(√
ε(ε − 2) + (1 − ε)

)
]C1

+2k

π

(
4i sin (k) − π

2
iH (2)

0 (k)

)
C1e

}
, (B21)

Tδ02 = Ca − 1 + Fb

{
−A1

a
+ 2k

π
[1 − 2(1 − ε)

(√
ε(ε − 2) + (1 − ε)

)
]C1

+2k

π

(
4i sin (k) − π

2
iH (2)

0 (k)

)
C1e

}
. (B22)

3. Moment coefficient

C(i)
M = ai

2
C(i)

L + M0(t ) + �01M01 + [�02(t ) + �12(t )]M02. (B23)

Only M0(t ) changes considering the first oscillation mode.
(a) Front foil

M0(t ) = π

4

(
V1 + V̇1

4
+ Ḋ1

2

)
, (B24)

M01 = 1

4

{
Ca + Fc

[A2

a
+ 2k

π

(
1

2
+ (1 + ε)

√
ε(ε + 2) − (1 + ε)2

)
C1

]}
, (B25)

M02 = 1

4

{
Cb + Fa

[A2

a
+ 2k

π

(
1

2
+ (1 + ε)

√
ε(ε + 2) − (1 + ε)2

)
C1

]}
. (B26)

(b) Trailing foil

M0(t ) = π

4

(
V2 + V̇2

4
+ Ḋ2

2

)

+1

2

[
−�01

(
Iγ ,1 + f�

2

)
+ B1

(
Iγα,1 + f�α

2

)
+ Ḋ1

(
Iγ δ,1 + f�δ

2

)]

+1

4

[
�̇01

(
Iγ ,2 − f�

2

)
− Ḃ1

(
Iγα,2 − f�α

2

)
− D̈1

(
Iγ δ,2 − f�δ

2

)]
, (B27)

M01 = 1

4

{
Cc + Fa

[
−A1

a
+ 2k

π

(
1

2
− (1 − ε)

√
ε(ε − 2) − (1 − ε)2

)
C1

+2k

π

(
2i sin (k) − i

π

2
H (2)

0 (k)

)
C1e

]}
, (B28)

M02 = 1

4

{
Ca + Fb

[
−A1

a
+ 2k

π

(
1

2
− (1 − ε)

√
ε(ε − 2) − (1 − ε)2

)
C1

+2k

π

(
2i sin (k) − i

π

2
H (2)

0 (k)

)
C1e

]}
. (B29)

4. Flexural coefficient

C(i)
F = p

[
4C(i)

M p − pC(i)
L

] + F0(t ) + �01(t )F01 + [�02(t ) + �12(t )]F02. (B30)
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(a) Front foil

F0(t ) = −π

4

[
U̇1 − V1 + D̈1

3

]
, (B31)

F01 = 1

2

{
Ca + A2

a
Fc + 2

3

[
(1 + ε)3 −

(
(1 + ε)2 + 1

2

)√
ε(ε + 2)

]
2k

π
C1eFc

}
, (B32)

F02 = 1

2

{
Cb + A2

a
Fa + 2

3

[
(1 + ε)3 −

(
(1 + ε)2 + 1

2

)√
ε(ε + 2)

]
2k

π
C1eFa

}
. (B33)

(b) Trailing foil

F0(t ) = −π

4

[
U̇2 − V2 + D̈2

3

]
− V1Iγα,2 − Ḋ1Iγ δ,2 + π

3

[
2U̇1Iγ ,3 + V̇1

(
Iγ ,3 + Iγ ,3

π

)]
, (B34)

F01 = 1

2

{
Cc − A1

a
Fa −

(
ikH (2)

0 (k) − 8k

3π
cos (k)

)
C1eFa

+2

3

[
(1 − ε)3 +

(
(1 − ε)2 + 1

2

)√
ε(ε − 2)

]
2k

π
C1Fa

}
, (B35)

F02 = 1

2

{
Ca − A1

a
Fb −

(
ikH (2)

0 (k) − 8k

3π
cos (k)

)
C1eFb

+2

3

[
(1 − ε)3 +

(
(1 − ε)2 + 1

2

)√
ε(ε − 2)

]
2k

π
C1Fb

}
. (B36)
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